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Abstract: In fault-diagnosis classification, a pressing issue is the lack of target-fault samples. Obtain-
ing fault data requires a great amount of time, energy and financial resources. These factors affect
the accuracy of diagnosis. To address this problem, a novel fault-diagnosis-classification optimiza-
tion method, namely TLSCA-SVM, which combines the sine cosine algorithm and support vector
machine (SCA-SVM) with transfer learning, is proposed here. Considering the availability of fault
data, this thesis uses the data generated by analog circuits from different faults for analysis. Firstly,
the data signal is collected from different faults of the analog circuit, and then the characteristic
data are extracted from the data signals by the wavelet packets. Secondly, to employ the principal
component analysis (PCA) reduces the feature-value dimension. Lastly, as an auxiliary condition,
the error-penalty item is added to the objective function of the SCA-SVM classifier to construct an
innovative fault-diagnosis model namely TLSCA-SVM. Among them, the Sallen–Key bandpass filter
circuit and the CSTV filter circuit are used to provide the data for horizontal- and vertical-contrast
classification results. Comparing the SCA with the five optimization algorithms, it is concluded
that the performance of SCA optimization parameters has certain advantages in the classification
accuracy and speed. Additionally, to prove the superiority of the SCA-SVM classification algorithm,
the five classification algorithms are compared with the SCA-SVM algorithm. Simulation results
showed that the SCA-SVM classification has higher precision and a faster response time compared
to the others. After adding the error penalty term to SCA-SVM, TLSCA-SVM requires fewer fault
samples to process fault diagnosis. Ultimately, the method which is proposed could not only perform
fault diagnosis effectively and quickly, but also could run effectively to achieve the effect of transfer
learning in the case of less failure data.

Keywords: TLSCA-SVM; optimization method; fault diagnosis; transfer learning

1. Introduction

In terms of practical application, fault diagnosis is primarily used in industrial failure.
Among such incidents, 80% of industrial failures come from analog circuits. Therefore, ana-
log circuit fault diagnosis is the research focus of industrial fault diagnosis. Compared with
digital circuits, analog circuits are more complicated and have more stringent requirements
for fault diagnosis. Training using analog circuits for diagnostic models in fault diagnosis
is more valuable. With the continuous refinement of various data-analysis methods, the
troubleshooting technology for analog circuits is also improving; common troubleshooting
techniques, including PCA [1], Search Grid [2], particle swarm optimization (PSO) [3],
ant colony algorithm (ACA) [4], simulated annealing (SA) [5], genetic algorithm (GA) [6],
Back Propagation Neural Network (BP) [6], Self-organizing Maps (SOM) [7], Extreme
Learning Machine (ELM) [8], decision tree [9], random forest [10] and SVM [11] all have
good classification results to some extent [12].
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For the fault diagnosis of analog circuits [13], the following operations are required.
Firstly, an analog circuit model is built, the fault is set in the analog circuit and the failure
data is collected. Secondly, the fault data is processed, using methods such as feature-value
extraction, dimensionality reduction, linearization, etc. Finally, the processed data is used
in the modelling of fault diagnosis to judge the performance of the model [14]. In this
article, the data of Sallen–Key circuit is used for model comparison and the more complex
CSTV circuit is used for validation to determine the versatility of the model. Here, the data
of both analog circuits are used for horizontal and vertical comparison experiments of the
algorithm in order to obtain more practical conclusions. When there are fewer fault samples,
the auxiliary condition, namely the error penalty item, is added to the objective function of
the SCA-SVM [15] classifier to construct a new fault diagnosis model, which is TLSCA-SVM.
The model not only has the advantages of the SCA-SVM fault diagnosis model, i.e., the
fault classification speed is fast, the accuracy is higher, but also the transfer-learning [16]
ability is better.

As a new concept of machine learning [17], transfer learning brings new research direc-
tions to machine learning. This paper uses the data from different faults in the analog circuit
for fault diagnosis [18], performs a series of data processing, combines the SCA optimization
method with SVM to obtain the classifier SCA-SVM and adds an error penalty item to build
a new fault diagnosis model, namely the TLSCA- SVM model. This method imports the
data processed by the wavelet packet and PCA into the improved SCA-SVM classifier for
training and prediction, thereby improving the speed and accuracy of diagnosis [19].

The controversy about the SCA algorithm [20] concerns the local search of the op-
timization algorithm. It is not difficult to understand that the optimal solution can be
guaranteed using global search [21]. However, it is inevitable that the local optimal solution
may appear in the local search, performance at a certain point is best, and the farther away
from the point, the worse the performance. In response to this debate, this paper effectively
avoids the occurrence of the problem. In this paper, the parameters of SVM are optimized
by using the same characteristics of local search and global search probability of the SCA
algorithm in optimizing parameters. The SCA-SVM classifier and a good classification
effect are obtained.

As machine learning continues to innovate, the concept of transfer learning has been in-
troduced through research. Traditional machine learning uses the continuous autonomous
acquisition of knowledge from the data. This mechanism requires a lot of data and itera-
tions to achieve data-driven effects. In machine learning, when a trained model is applied
to a new field, the effect is often poor. Transfer learning, as an important branch of machine
learning, focuses on applying knowledge that has already been learned to new problems, so
that the knowledge transfer can allow trained models to be applied to new areas. Transfer
learning includes zero-shot learning [22], one-shot learning [23] and few-shot learning [24].
Since the zero-shot learning is too ideal to exist in actual data processing, the limit of
few-shot learning is zero-shot learning. Therefore, in this paper about analog circuits fault
diagnosis, few-shot learning is used for fault diagnosis [25], as well as transfer learning, in
order to achieve the effect of fault prediction [26].

Transfer learning refers to the transfer of knowledge from one field to another, and
it is common to apply the experience gained from learning to new learning, which is the
influence of one learning state on another. The earliest application of transfer learning
was in educational psychology, which put forward that the implementation of transfer
learning must combine old with new knowledge. In terms of machine learning, transfer-
learning development has a better development prospect. Since 1995, NIPS launched
a “Learning to Learn” professional seminar in the field of machine learning [27], and
since then transfer-learning research has entered a period of rapid development. Transfer
learning is to apply the knowledge extracted from the source task [28] to the target task.
Compared with multitasking, the most important thing in transfer learning is the target
task [29], rather than extracting knowledge of all source tasks at the same time. Of course,
in educational psychology, the implementation object of transfer learning is human, while
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the implementation object in machine learning is the corresponding algorithm model. In
this regard, humans have excellent transfer-learning capabilities. For example, in human
childhood, when young children are provided with oral descriptions by their parents, the
children can find the corresponding objects. Even in the learning process, as long as the
solution is mastered, similar problems can be solved. However, the application of transfer
learning in machine learning is not particularly easy. This is because, unlike humans,
machines cannot achieve the so-called independent thinking and can only achieve the
desired results through continuous data optimization. It is worth mentioning that in the
face of massive data analysis, the introduction of migration learning can reduce a lot of the
unnecessary workload, which has certain research significance.

At present, there are many scholars focused on transfer learning research and most
people research the algorithm related to transfer learning. They use different technologies
to achieve the requirement of transfer learning. Many transfer-learning ideas are applied to
image recognition [30], such as image features being extracted to a training set, the knowl-
edge of the source task is transferred to the target task, and finally the image recognition in
the test set can be realized.

This article uses transfer learning for the purpose of fault diagnosis. Obtaining fault
data in industrial fault diagnosis requires a lot of manpower and material resources. The
fault of actual industrial equipment is a kind of damage. Therefore, the application of
fault-diagnosis methods in transfer learning is typical. The use of normal data and a some
fault data can effectively diagnose faults and achieve predictive effects. This method can
maintain equipment safety and ensure the normal operation of actual industrial equipment.
Considering the availability of fault data, this paper uses the data generated by analog
circuits from different faults for analysis. An error penalty is added to the SCA-SVM
classifier to build an innovative fault-diagnosis model, which is TLSCA-SVM. By comparing
the experiments, it is concluded that the model can diagnose the fault with less fault data,
achieve the effect of transfer learning, and finally realize the prediction of failure.

2. SCA-SVM Algorithm

The SCA optimization parameter algorithm is a novel random optimization method
based on population. The SCA was proposed by Australian scholar Mirjalili in 2016 [31],
the essence of which is to optimize the parameter by using random probability. SCA
creates randomly generating multiple initial candidate solutions, and uses sine and cosine
functions to make these initial candidate solutions have the same probability of moving
either in the direction of the optimal solution or reverse. This method not only guarantees
the accuracy of global search optimization parameters, but also ensures the speed of local
search optimization parameters, so that the optimal parameters can be found quickly and
accurately in the model. Because the essence of the SCA optimization algorithm is the
population optimization algorithm, it also meets the general law of the two stages of the
population optimization algorithm, which is exploration and utilization. When the algo-
rithm is in the exploration stage, the algorithm randomly searches with a large probability
gradient to ensure sufficient search space. When the algorithm is in the utilization stage,
the random probability gradient decreases gradually, ensuring that the optimal solution
can be found accurately. In SCA [32], the optimization process is divided into global search
and local search. These two parts promote and restrain each other, as global search is used
to quickly locate the optimal solution of the range, and local search is used to find the
optimal solution. These two parts reach a dynamic balance can find the global optimal
solution. If there is only a global search, the optimization speed is slow and the equipment
configuration is high. If there is only a local search, it is easy to obtain a local optimal
solution. The SCA optimization parameter algorithm is determined by the different value
situation of the sine function global search and local search.

The two important parameters of SVM are kernel function [33] and the penalty fac-
tor [34]. These two parameters directly affect the performance of SVM [35], so finding
the optimal parameters of SVM becomes the core problem of constructing a classification
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model. How to find the optimal parameters quickly and effectively becomes the key to the
optimization algorithm. This article introduces SCA to optimize the SVM parameters. SCA
randomly creates multiple initial candidate solutions and uses sine and cosine functions [36]
to determine the search method. This method ensures that the initial candidate solution
moves toward or away from the optimal solution with the same probability. This way of
finding the optimal solution not only ensures the accuracy of the global search optimization
parameters, but also ensures the speed of the local search optimization parameters, so that
the optimal parameters can be found quickly and accurately in the model [37].

2.1. Principles of SCA Optimization Parameters

In this essay, the SCA optimization parameter algorithm can be used to optimize
two important parameters in SVM. The essence of the SCA algorithm is to use the unique
characteristics of the trigonometric function to make the probability of each optimization
the same, so that the optimization effect meets the accuracy of the global search and the
speed of the local search. The specific operation is that the value of the sine and cosine
function is used to determine whether to perform a global search. For example, when the
distance between the value of the sine and cosine function and the abscissa exceeds 0.5, that
is the function value is distributed between 0.5 and 1 or −0.5 and −1, the optimization of
the global search method is achieved. When the distance from the sine and cosine function
value to the horizontal coordinates is less than 0.5, which is the function value is distributed
between −0.5 and 0.5, the SCA algorithm conducts a local search. SCA randomly creates
multiple initial-candidate solutions and uses sine and cosine functions to move these initial
candidates in the same probability of moving or reversing in the direction of the best
solution, which not only ensures the accuracy of the global-search optimization parameters,
but also ensures the speed of the local search [11].

In the SCA optimization algorithm, the trigonometric function determines the position
of the next iteration point and is iterate according to the following formula:

Xt+1
i = Xt

i + θ1 + sin θ2 +
∣∣θ3Pt

i − Xt
i
∣∣ (1)

Xt+1
i = Xt

i + θ1 + cos θ2 +
∣∣θ3Pt

i − Xt
i
∣∣ (2)

In the equation, Xt
i is the position of the current iteration, θ1θ2 and θ3 are random

numbers of random values in iteration that decide the trigonometric function, Pt
i is the

best selected scenario. In the actual optimization process, the above positions are selected
appropriately and the equation can be updated with the sine cosine function:{

Xt+1
i =Xt

i+θ1+sin θ2+|θ3Pt
i−Xt

i |, θ4<0.5

Xt+1
i =Xt

i+θ1+cos θ2+|θ3Pt
i−Xt

i |, θ4≥0.5
(3)

In the equation, θ4 is a number randomly selected each time in the range of 0 and 1,
ensuring that the probability is the same when optimizing.

In the above formula, according to parameter θ1, the algorithm can determine the
direction of the next iteration. The operation occurs when the distance from the parameter
value to the abscissa exceeds 0.5, that is, the value is distributed between 0.5 and 1 or
between −0.5 and −1, in the outer ring area shown in Figure 1. When the distance between
the parameter value and the abscissa is less than 0.5, that is, the function value is distributed
between −0.5 and 0.5, the search is performed in the circle area shown in Figure 1. The
parameter is a number randomly selected between 0 and π each time. Parameter θ3 is used
to determine the random allocation of the enhanced or weakened relationship, and a size
comparison with 1 has been used to determine whether the relationship is enhanced or
weakened. As can be seen from the Formula (3), the parameter value of θ4 can select the
type of the sine and cosine function, when θ4 < 0.5, the equation containing only the sine
function is selected for the next iteration. When θ4 ≥ 0.5, the equation containing only
the cosine function is selected for the next iteration. Through the above iteration, it can be
guaranteed that the algorithm has the same probability in global search and local search,
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so that the algorithm itself can combine the benefits of both search modes itself to achieve
better results.
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In order to satisfy the global search and the local search with the same probability
conditions, and make the optimization solution converge, the SCA optimization algorithm
self-adjusts using Formula (4):

θ1 = a− t
a
T

(4)

2.2. The Classification Principle of SVM

SVM was originally used to deal with dichotomous problems. In order to meet more
classification problems, slack variables and maximum separation hyperplane theory were
continuously introduced and applied to classify nonlinear problems. Due to the special
theoretical concept, the SVM classifier effect can be applied to transfer learning, so this
paper used the SVM for fault diagnosis based on transfer learning.

The most important problem of SVM is the mapping of kernel functions. It is a
nonlinear indistinguishable problem. It is classified by hyperplane and mapped to a simple
linear problem, where the largest hyperplane satisfies the following conditions:{

minφ(ω)= 1
2 ‖ω‖

2

s.t.yi(ω
Tx+b)≥1,i=1,2,3,...,n (5)

ω is the general vector of the maximum hyperplane, and b is the offset of the maximum
hyperplane, parameter ξ (ξ > 0) determines the boundaries.

yi[ω · φ(xi) + b] + ξi ≥ 1, i = 1, 2, . . . , n (6)

The penalty factor C is applied to alter the proportion of relaxation variable ξi, and
Formula (5) is altered to: min(ω)= 1

2 ‖ω‖
2+C

n
∑

i=1
ξi

yi [ω·φ(xi)+b]+ξi≥1,i=1,2,...,n (7)

By introducing Lagrange multiplier α, the maximum hyperplane problem as a pair
problem is reflected as follows:

maxL(α)=
n
∑

i=1
αi+

1
2

n
∑

i=1

n
∑

j=1
αiαjyiyjK(xi ·xj)

s.t.
n
∑

i=1
αiyi=0,0≤αi≤C,i=1,2,...,n

(8)
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Solving the upper class, the decision function of the SVM is shown below:

f (x) = sgn

[
n

∑
i=1

αiyiK(xi · xj) + b

]
(9)

In this paper, the important parameters penalty factor C and kernel parameter in
SVM were perfected by SCA optimization parameters, and a fault classifier with excellent
classification performance is obtained.

3. Fault Diagnosis Model of TLSCA-SVM Algorithm
3.1. Principles of Transfer Learning

Transfer learning is the novel branch of machine learning, which has a critical influence
on the data processing of artificial intelligence. In 1995, the NIPS professional seminar
“Learning to Learn” was launched in the field of machine learning 26. Since then, transfer-
learning research has entered a period of rapid development. The main principle of transfer
learning is to apply the knowledge of the source task to the target task. Compared with
multi-task learning, the most important thing in transfer learning is the target task, rather
than learning the source task that applies to the target task.

Transfer learning mainly includes the following two concepts: domain D and task H.
The two parts of D are composed of two parts: the feature space E and the edge probability
distribution P(e), where {e1, . . . , en} ∈ E, for a given domain, H also consists of two parts.

Ds is given a labeled source domain data, Hs is the corresponding source task. Dt is a
target domain with very few tags, Ht is the corresponding learning task. The purpose is to
transfer the knowledge of Ds and Hs to Dt, so as to perfect the performance of the target
function (Ds 6= Dt, Hs 6= Ht).

3.2. TLSCA-SVM Algorithm

The SCA optimization algorithm uses the equality constraints to optimize the pa-
rameters of the SVM classifier. This method transforms the solution of the optimiza-
tion problem into the solution of a set of linear equations. For a set of input samples
{(di, gi)}, i = 1, . . . , n, di ∈ Rn. SVM maps the nonlinear inseparable problem to a high-
dimensional space into a linearly separable problem through kernel function mapping,
where the function discriminant is:

f (d) = uT ϕ(d) + q (10)

To propose the migration algorithm of the auxiliary data set, the auxiliary data sets
are similar to the target set to enhance the accuracy of the classification model. Given that
{(di, gi)}n

i=1 is the target sample data, {(di, gi)}n
i=n+1 is similar sample data. On the basis

of the original SCA-SVM optimization problem, the TLSCA-SVM method adds auxiliary
data that is an error penalty term, to the target formula to realize the transfer of knowledge.
The improved objective function can be expressed as:

minJ(u,λ)= 1
2 uTu+ βt

2

n
∑

i=1
λ2+

βs
2

n+m
∑

i=n+1
λ2

i

s.t.gi(uT ϕ(di)+q)+1−λi ,i=1,2,...,n,...,n+m (11)

In the formula, βt and βs are the penalty parameters of the target domain and source
domain data sets, respectively, λi is the prediction error.

When the Lagrange multiplier is introduced, the dual equation of Equation (10) is
derived, multiply each equation constraint with the Lagrange multiplier αi, Then, the
Lagrange function is established by adding the objective function:

L(u, q, λi, αi) = J(u, λ)−
n+1

∑
i=1

αi

[
gi(uT ϕ(di) + q)− 1 + λi

]
(12)
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The necessary condition for taking the extreme value is to find the partial derivative
of each variable and set it to zero to obtain the Formula (13).

∂L
∂u = 0⇒ u =

n+m
∑

i=1
αigi ϕ(di)

∂L
∂λi

= 0⇒ αi =

{
βtλi, i = 1, 2, . . . , n

βsλi, i = n + 1, . . . , n + m
∂L
∂q = 0⇒

n
∑

i=1
αigi = 0

∂L
∂αi

= 0⇒ gi(uT ϕ(di) + q)− 1 + λi = 0

(13)

Eliminate variables u and λi to get the matrix equation:[
Ω + 1

β G
GT 0

][
α
q

]
=

[
e
0

]
(14)

In the formula, Ω = gigjk(di, dj), k(di, dj) = ϕ(di)
T ϕ(dj) is the kernel function.

G = [g1, . . . , gn+m]
T and e = [1, . . . , 1]T are n + m dimensional column vectors, β =

diag[βt, . . . , βt, βs, . . . , βs].
The expression of TLSCA-SVM decision function is obtained by Formula (14).

G(d) = sgn

[
l

∑
i=1

αigi ϕ(di)
T ϕ(di) + q

]
(15)

The Gaussian kernel function has an excellent anti-interference ability to the noise of
the data. In this paper, the Gaussian kernel is used as the kernel function of TLSCA-SVM.
The expression is:

k(d, di) = exp

(
−‖d− di‖2

2δ2

)
(16)

where δ is the parameter of the Gaussian kernel width.
Finally, combined with the previous SCA-SVM algorithm, the decision function of the

TLSCA-SVM classifier is obtained by the improved algorithm.

3.3. Fault Diagnosis Process of TLSCA-SVM Algorithm

In this paper, the TLSCA-SVM algorithm is applied to an analog circuit fault anal-
ysis, which is accomplished via the following main four steps (shown from step 1–step
4): building analog circuit model, setting and collecting fault data, using wavelets for
data feature extraction, using PCA dimension reduction, using TLSCA-SVM classifier for
troubleshooting, and comparing the actual fault data with the fault diagnosis results to
arrive at the fault diagnosis rate.

The programming in this article is based on the mutual control of multiple modules.
The data processing uses a five-layer wavelet packet and PCA technology. The classifier part
uses SCA to perfect the parameters in the SVM to achieve fast and accurate classification
results. When the classification algorithm adds auxiliary conditions, the algorithm has the
ability of transfer learning. The specific fault handling process is shown in Figure 2.
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Figure 2. TLSCA-SVM fault diagnosis specific operation flowchart.

In this paper, the steps of fault diagnosis are shown below. The entire diagnostic
process is not changed when comparing algorithms, but the comparison is made with the
classifier and the optimized parameters of the classifier. This ensures that when comparing
algorithms, the external conditions are consistent, and only the diagnostic effect of the
classifier itself is considered. In order to ensure the consistency of the external conditions
of the comparison algorithm, the same failure training set data is the same when using
different classifiers for troubleshooting.

Step 1. The circuit model is established to collect and process data from different faults
in the analog circuit. Input variables are obtained and the input data undergoes a series of
data processing steps such as wavelet packet extraction, feature-value processing and PCA
dimensionality reduction.

Step 2. After the above data processing is completed, the data is put into the pre-built
classification model to achieve the effect of classifying the fault data. In this paper, the
function of SVM is realized by LIBSVM. The penalty factor and kernel parameter in SVM
are perfected by the SCA optimization method. In the SCA optimization method, multiple
initial candidate solutions are randomly created. These initial candidates are used with the
same probability of moving or reversing in the direction of the best solution. When looking
for a relatively good solution, this method chooses to keep and proceed to the next iteration.

Step 3. An auxiliary condition is added to the objective function of the already de-
bugged SCA-SVM classifier that is an error penalty term. An innovative fault diagnosis
model, namely TLSCA-SVM, is constructed. The knowledge of the source domain is trans-
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ferred to train the target domain, and the TLSCA-SVM classifier performs fault diagnosis.
Fewer fault data is used as a training set and put into the classifier for fault diagnosis

Step 4. The trained TLSCA-SVM classifier model is used to classify faults on the test
set, output the diagnosis results and judge the accuracy of the fault diagnosis results.

In this article, it is worth mentioning that the problem of a single-fault diagnosis
in analog circuits is considered. Single fault refers to changing the parameters of only
one component in the circuit while the parameters of other components in the circuit
remain unchanged. The situation in which multiple component parameters are changed
at the same time is referred to as a multiple-fault diagnosis problem. The data processing
method of multi-fault diagnosis is similar to that of single-fault diagnosis. Multiple faults
are changing the parameters of only two or more components while the parameters of
other circuit components remain unchanged. Single fault is the basis of fault diagnosis in
analog circuit fault diagnoses. In the actual analog circuit fault, the occurrence probability
of a single fault is more than 80%, and the occurrence probability of multiple faults is
relatively low. Additionally, a multi-fault diagnosis can be regarded as multiple single-fault
problems occurring at the same time. That is, a multi-fault problem can be decomposed into
multiple single-fault problems. Single-fault diagnosis and multi-fault diagnosis have many
similarities in analog circuit fault diagnosis and multi-fault problems with less probability
can be decomposed into single-fault for processing. Considering all of these aspects, this
paper does not analyze the multi-fault diagnosis.

4. Acquisition and Process Fault Samples of Analog Circuits

This article takes the Sallen–Key circuit [38] and CSTV circuit [39] as diagnostic ex-
amples. Sallen–Key circuits and CSTV circuits are typical circuits that are often used to
analog-circuit fault diagnosis. In the simulation experiment, considering the selectivity of
the simulated circuit data, for more rigorous consideration, the faults of the Sallen–Key
circuit and the CSTV circuit were set according to the literature [40–42].

At the same time, the Sallen–Key circuit is used because it is relatively simple as a
second-order circuit and can use a public dataset. The Sallen–Key circuit is widely used
in the fault diagnosis of analog circuits, so the Sallen–Key circuit was used to verify the
validity of the algorithm. The CSTV circuit is a fourth-order circuit, which is more complex
than the Sallen–Key circuit. The application of this circuit can show that the algorithm itself
has universal applicability

4.1. Data Processing of Sallen-Key Band-Pass Filter Circuit with Injected Fault

In this essay, the data were studied by extracting the data in different modes of the
Sallen–Key circuit. Circuit structure, individual component types and values are shown in
Figure 3. Here, the parameter value is set to deviate from the original value by 50%, the
capacity is set to deviate from the original value by 10%, and the resistance is set to deviate
from the original value by 5%.
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The excitation-signal parameters of the analog circuit are shown in Figure 3. After
sensitivity analysis, R2, R3, C1, and C2 are selected as faulty components. The fault type
and parameter list are shown in Table 1. The data of Sallen−Key circuit contains eight
failure modes, which includes R2+, R2−, R3+, R3−, C1+, C1−, C2+ and C2−. The symbols
− and + denote additional or little data and normal state (no failure, NF).

Table 1. Fault type and encoding of Sallen-Key band-pass filter circuit.

Malfunction Coding Failure Mode Nominal Value Fault Value

F0 NF - -
F1 R2+ 3 KΩ 4.5 KΩ
F2 R2− 3 KΩ 1.5 KΩ
F3 R3+ 2 KΩ 3 KΩ
F4 R3− 2 KΩ 1 KΩ
F5 C1+ 5 nF 7.5 nF
F6 C1− 5 nF 2.5 nF
F7 C2+ 5 nF 7.5 nF
F8 C2− 5 nF 2.5 nF

In this paper, the data of the analog circuit output signal waveform is collected, and
the nine modes are set, which are the signal data of the normal state and the signal data of
the eight fault states. Each mode collects 100 sample points, so there are a total of 900 state
sample points, which are randomly selected. A total of 600 sample points were used as the
training set, and the remaining 300 sample points were used as the test set.

4.2. Data Processing of the CSTV Filter Circuit Injected into the Fault

To reflect the generality of the SCA-SVM classifier to fault diagnosis, a relatively
complex circuit, CSTV filter, was selected as the verification analog circuit. The circuit
element name and value are shown in Figure 4, and the status type is shown in Table 2.
A total of 1800 samples, 900 of which were collected as the training set, and the other
900 samples were used as the test set.

Processes 2022, 9, x FOR PEER REVIEW  11  of  32 
 

 

The specific operation  is  to compare  the classification algorithm and optimize  the 

parameter method. The common second‐order filter Sallen‐Key circuit is applied for com‐

parison experiments. To verify the versatility of the comparison algorithm conclusions, 

the multi‐stage filter, which is a CSTV filter, is used. As verification, a more general result 

can be obtained. 

 

Figure 4. CSTV filter circuit. 

Table 2. Fault type and encoding of CSTV filter circuit. 

Malfunction Coding  Failure Mode  Nominal Value  Fault Value 

F0  NF  ‐  ‐ 

F1  R1+  10 KΩ  15 KΩ 

F2  R1−  10 KΩ  5 KΩ 

F3  R2+  10 KΩ  15 KΩ 

F4  R2−  10 KΩ  5 KΩ 

F5  C1+  20 nF  30 nF 

F6  C1−  20 nF  10 nF 

F7  C2+  20 nF  30 nF 

F8  C2−  20 nF  10 nF 

Because the experimental simulation environment and experimental data are differ‐

ent, the experimental results will also be different. Therefore, when simulating the soft 

fault of the circuit, a more general experimental environment and data set were selected. 

According to the above parameter settings, each of the nine modes are analyzed using 100 

MC, the start frequency is set to 100 Hz, and the cutoff frequency is set to 10k Hz. A voltage 

probe is set at the output node of the circuit to collect the output voltage. This ensures that 

the experimental results studied in this paper are more extensive and reliable. 

4.3. Feature Processing of Analog Circuit Fault Data 

In this paper, the processing of analog circuit fault data is divided into the three steps, 

which includes the extraction of fault signals, wavelet packet extraction of data features 

and PCA dimensionality reduction. 

4.3.1. Extract Fault Signal 

Multiple fault control groups were established, the original data set was simulated, 

a voltage probe was set on the output node of the circuit, the output was processed by 

Monte Carlo and the output voltage was collected. The output voltage of each mode was 

U3

OPAMP

+

-

OUT

U2

OPAMP

+

-

OUT

R6
3k

C1

20n

U1

OPAMP

+

-

OUT

R2

10k

C2

20n

R4

10k

V1
1Vac
0Vdc

out

R3

10k

0

R5

10k

R7

7k

0

V

R1

10k

0

0

Figure 4. CSTV filter circuit.

The specific operation is to compare the classification algorithm and optimize the
parameter method. The common second-order filter Sallen-Key circuit is applied for
comparison experiments. To verify the versatility of the comparison algorithm conclusions,
the multi-stage filter, which is a CSTV filter, is used. As verification, a more general result
can be obtained.

Because the experimental simulation environment and experimental data are different,
the experimental results will also be different. Therefore, when simulating the soft fault of
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the circuit, a more general experimental environment and data set were selected. According
to the above parameter settings, each of the nine modes are analyzed using 100 MC, the
start frequency is set to 100 Hz, and the cutoff frequency is set to 10k Hz. A voltage probe
is set at the output node of the circuit to collect the output voltage. This ensures that the
experimental results studied in this paper are more extensive and reliable.

Table 2. Fault type and encoding of CSTV filter circuit.

Malfunction Coding Failure Mode Nominal Value Fault Value

F0 NF - -
F1 R1+ 10 KΩ 15 KΩ
F2 R1− 10 KΩ 5 KΩ
F3 R2+ 10 KΩ 15 KΩ
F4 R2− 10 KΩ 5 KΩ
F5 C1+ 20 nF 30 nF
F6 C1− 20 nF 10 nF
F7 C2+ 20 nF 30 nF
F8 C2− 20 nF 10 nF

4.3. Feature Processing of Analog Circuit Fault Data

In this paper, the processing of analog circuit fault data is divided into the three steps,
which includes the extraction of fault signals, wavelet packet extraction of data features
and PCA dimensionality reduction.

4.3.1. Extract Fault Signal

Multiple fault control groups were established, the original data set was simulated, a
voltage probe was set on the output node of the circuit, the output was processed by Monte
Carlo and the output voltage was collected. The output voltage of each mode was used as
the original data set. To visually compare the characteristics of circuit failures in different
modes, the simulation results of the above two circuits were selected, and the signal data of
the eight failure modes and the normal mode were displayed. Figures 5 and 6 present the
results of circuit simulation of different fault modes in the Sallen–Key circuit and CSTV
circuit. As can be seen from the figure, there are differences in the output signal of the
circuit in different fault modes.
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Figures 5 and 6 reflect the states of different faulty circuit signals. Since the analog
circuit fault data is set by changing the values of different elements of the circuit. Therefore,
the circuit signals corresponding to each fault have a certain similarity. In each subplot
in Figures 5 and 6, each image is similar, but each subplot is slightly different due to the
different values of the components.

4.3.2. Feature Extraction and Dimensionality Reduction of Fault Signals

In this paper, the wavelet packet was used for feature extraction. The feature extraction
is representative data extracted from a large amount of data, so the original signal is similar
but not identical to the signal after feature extraction. In Figure 7, it can be seen that
Figure 7a is similar but not the same as Figure 7d. The main function in the step of
extracting features is to obtain highly representative data in the overall data, that is to
remove redundant data. In Figure 7, it can be seen that Figure 7c contrasts Figure 7b with
the redundant signal data removed.

After the analog circuit is built, the relevant parameters are set. All failure modes
are analyzed by 100 MC, the start frequency is set to 100 Hz, and the cutoff frequency
is set to 10 kHz. At the output node of the circuit, a voltage probe is used to collect the
output voltage. The output voltage is used as the original data set, the wavelet packet is
used to extract the features, and the PCA is used to reduce the dimensionality. Finally,
the feature-processed analog circuit fault data is obtained, which can be used in the fault
diagnosis classifier.

When the fault signal is extracted, the output voltage in each mode is obtained as
the original data set, and the features are extracted by wavelet packet, and then the PCA
dimension reduction is performed. Finally, the fault data of the analog circuit after feature
processing is obtained, which is used in the fault-diagnosis classifier. Among them, the
wavelet packet is mainly used to extract the eigenvalues, and the wavelet packet comes
from the wavelet, which is a more perfect decomposition method based on the wavelet
decomposition. Compared with the wavelet transformation, the wavelet packet trans-
formation can analyze the signal in all directions, can further decompose the wavelet
transform without subdividing, and evenly distribute the corresponding two frequency
bands according to the same spacing in the high frequency part in the range. This article
uses a five-layer wavelet packet, which can effectively decompose the input signal to extract
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the characteristic value. Figure 7 shows the changes before and after the signal when the
wavelet packet is used in this article to extract the characteristic value.
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Figure 7. Comparison before and after extraction of eigenvalue signal by wavelet packet, where
(a) original signal; (b) reconstruction of original signal; (c) extract the reconstructed signal; (d) the
signal after extracting the feature.

Regarding the PCA technique, the main purpose of this essay is to use PCA to perform
dimensionality reduction operations. The number of selected Principal components is
five, as shown in Figure 8, which reflects the changes in the data before and after the PCA
analysis. When using PCA to reduce the dimensionality, the threshold is set to 85%. When
the cumulative contribution rate reaches 85%, the pivot is no longer selected. After all the
original variables are processed by dimensionality reduction, the pivot can be obtained.
The pivot is the linearity of the original variable combination.
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5. Algorithm Horizontal and Vertical Comparison Experiment Results
5.1. SCA Optimization Parameter Comparison
5.1.1. Comparison of Optimized Parameters under Sallen-Key Band-Pass Filter Circuit

The fault-diagnosis method in this article is based on SVM. There are two important
parameters in SVM, namely the penalty factor C and the parameter coefficient g of the
kernel function. The two parameters determine the classification performance of the
SVM, and a way to quickly and effectively obtain the optimal parameter value becomes
the key consideration of the optimization algorithm. This paper compares optimization
parameter algorithms such as Grid Search, GA, PSO, ACA, SA and SCA, by comparing
the results, and the SCA method is considered to be the best way to optimize parameters.
The main operation is to compare Grid Search-SVM, GA-SVM, PSO-SVM, ACA-SVM,
SA-SVM and SCA-SVM. The classifiers of different optimization algorithms are used in the
fault diagnosis of the Sallen-Key circuit, and there are certain advantages in determining
the SCA-optimization parameters. The experimental results are shown in Table 3, which
compares the results of fault diagnosis with different optimization algorithms. It can be
concluded that the SCA-optimization parameter algorithm can enhance the optimization
speed and reduce the optimization time under the premise of meeting the parameter
optimization requirements, so that the performance of the entire model not only has the
rapidity of classification, but also has the accuracy of classification.

Table 3. Sallen-Key bandpass filter circuit optimization parameter algorithm comparison.

Optimization Parameter Algorithm Accuracy Rating/% Elapsed Time/s

Grid Search 100 62.37
GA 87.04 31.35
PSO 99.67 19.87
ACA 98.13 30.52
SA 89.65 17.54

SCA 100 10.85

Fitness curves are introduced to reflect the performance of different optimization
algorithms. In Figures 9–14, the fitness curves of different optimization algorithms applied
to the SVM parameter optimization of the Sallen-Key circuit fault data are detailed.

The optimization parameter comparison experiment in this article aimed to perfect the
parameters of the classification algorithm under the premise of SVM, in which no changes
are made to the various modules of the fault classification, and only the optimization-
parameter module is compared to ensure that the external conditions are consistent. The
experimental performance is compared below, and the comparison results are shown in
Table 3.

The experimental results can be deduced by comparing optimization-parameter algo-
rithms such as Grid Search, GA, PSO, ACA and SA. The performance of SCA-optimization
parameters is superior than other algorithms in terms of accuracy and classification speed.
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5.1.2. Comparison of Optimized Parameters under CSTV Filter Circuit

In the method of comparing and optimizing parameters, the common Sallen-Key filter
is used for comparison experiments. To verify the generality of the comparison method
conclusions, the multi-stage filter, which is a CSTV circuit, is used for verification. Grid
Search-SVM, GA-SVM, PSO-SVM, ACA-SVM, SA-SVM and SCA-SVM are compared, and
the fault classifier is used with the CSTV filter-circuit data to ensure that the fault-diagnosis
classifier has universal applicability. In Table 4, comparison results of optimized parameter
algorithms by the CSTV filter circuit are presented.
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Table 4. CSTV filter circuit optimization parameter algorithm comparison.

Optimization Parameter Algorithm Accuracy Rating/% Elapsed Time/s

Grid Search 99.85 73.07
GA 81.54 34.08
PSO 97.08 27.15
ACA 95.38 39.87
SA 83.66 26.31

SCA 99.89 18.49

Fitness curves are introduced to reflect the performance of different optimization
algorithms. As shown in Figures 15–20, the fitness curves of different optimization algo-
rithms applied to the SVM parameter optimization of the Sallen–Key circuit fault data are
shown in detail. When comparing the algorithms for optimizing parameters, the number
of iteration steps is uniformly set to 200.

Finally, in order to draw a more general conclusion, the CSTV filter circuit is used as
verification. It can be concluded that the performance of the SCA-optimization parameters
has certain advantages, when considering the classification accuracy and classification
speed. SCA not only meets the requirements of parameter optimization, but also improves
the optimization speed and reduces the optimization time, so that the performance of the
entire algorithm has both the rapidity of classification and the accuracy of classification.
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5.2. Comparison of SCA-SVM Classification Algorithms
5.2.1. Comparison of Classification Algorithms under Sallen-Key Bandpass Filter Circuit

According to the fault data of the Sallen-Key circuit, different classification algorithms
are used, such as BP, SOM, ELM, decision tree, random forest and SCA-SVM. Through
comparative experiments, it is concluded that the SCA-SVM classification algorithm is
superior to other classification algorithms in fault diagnosis. As shown in Figures 21–26, the
classification effect of the Sallen-Key circuit fault data by different classification algorithms
is shown in detail.
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It is worth mentioning that when comparing the classification algorithms, the neural
networks [43] used for comparison include BP, RBF, GRNN, PNN, competitive neural
network, and SOM. The characteristics of the experimental data are combined. The BP and
the SOM have the best comprehensive classification performance. After comprehensive
consideration, it was decided to use the BP neural network and the SOM neural network as
representative of the neural network-classification algorithm for comparison.
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In terms of the classification effect, the accuracy of the SCA-SVM classification algo-
rithm is superior to other algorithms. Table 5 is obtained by digitizing the experimental
statements. As presented in Table 5, by comparing other classification algorithms such as
BP, SOM, ELM, decision trees, random forests, etc., the conclusion is obtained. It draws a
conclusion that when considering classification accuracy, the performance of SCA-SVM is
better than that other algorithms. SCA is very effective for optimizing SVM parameters
fo4 fault diagnosis, and the classification effect of the Sallen–Key circuit fault data can
reach 100%.

Table 5. Comparison of Sallen-Key bandpass filter circuit classification algorithms.

Classification Algorithm Accuracy Rating/% Elapsed Time/s

BP 99.25 31.57
SOM 82.76 7.20
ELM 94.70 1.43

Decision Tree 93.07 4.26
Random Forest 97.88 9.75

SCA-SVM 100 10.85

5.2.2. Comparison of Classification Algorithms under CSTV Filter Circuit

In the comparison classification algorithm, the common second-order filter, which
is the Sallen–Key circuit, is used for comparison experiments. To verify the versatility
of the conclusions of the comparison method, a multi-stage filter, which is a CSTV filter
circuit, is used for verification. Since the CSTV filter circuit is more complex and there
are more aspects to consider in the fault diagnosis, the data of the CSTV filter circuit is
added for a better analysis. So, for the CSTV filter circuit, a total of 1800 samples were
collected, of which 900 samples constitute the training data set, and the remaining 900
samples constitute the test data set. In Figures 27–32, the classification effect of CSTV filter
circuit fault data with different classification algorithms is shown in detail.
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It can be seen from Table 6 that by comparing other classification algorithms such as
BP, SOM, ELM, decision trees, random forests, etc., when considering accuracy, the perfor-
mance of SCA-SVM is better than other algorithms. SCA is very effective for optimizing
SVM parameters for fault diagnosis, and the classification effect of the CSTV filter circuit
fault data can reach 99.89%.
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Table 6. Comparison of CSTV filter circuit classification algorithms.

Classification Algorithm Accuracy Rating/% Elapsed Time/s

BP 96.89 40.69
SOM 74.15 17.49
ELM 91.85 9.12

Decision Tree 89.45 19.99
Random Forest 95.12 10.90

SCA-SVM 99.89 18.49

In order to draw a more general comparison algorithm conclusion, the multi-stage
filter, that is, the CSTV filter circuit, is used as a verification object and a more general
conclusion can be drawn. When the target is analog circuit-fault diagnosis, SCA-SVM is
considered to have certain advantages at the level of classification accuracy.

5.3. TLSCA-SVM Comparative Test Results

The aforementioned SCA-SVM fault classifier can be effectively applied to fault di-
agnosis, but when there are too few fault samples or only normal samples, there will be a
problem of inaccurate fault diagnosis. Therefore, this paper introduces the TLSCA-SVM
algorithm. An auxiliary condition, that is, an error penalty term, is added to the objective
function of the SCA-SVM classifier to construct a new fault-diagnosis model so that the
fault diagnosis satisfies the ability to effectively classify faults when the fault samples are
not complete. It combines the advantages of the SCA-SVM classifier in fault diagnosis with
high accuracy, fast diagnosis speed and good stability.

According to the type of training samples, transfer learning can be divided into zero-
shot learning and few-shot learning. This paper changes the proportion of faulty data in the
training set by changing the database to reduce the proportion of faulty data in the training
set. Faulty data and normal data are kept in the test set to perform transfer learning. It is
worth mentioning here that the limit of few-shot learning in transfer learning is zero-shot
learning. Zero-shot learning can be achieved under an extremely idealized model, but
zero-shot learning is unrealizable in real data processing, so the transfer learning of this
algorithm is embodied in the fault classification of few-shot learning. This paper compares
the SCA-SVM classifier used in traditional machine learning with the TLSCA-SVM classifier,
based on the transfer-learning theory by constantly changing the proportion of the failure
samples in the training set. Figure 33 is obtained. There is a point to note here. Since
the transfer learning ability of the comparison algorithm requires the use of a lot of data
and a relatively simple circuit form, in the comparison experiment, a simple Sallen-Key
band-pass filter circuit with more circuit data was used.

The conclusion can be drawn from Figure 33 that when the training sample is relatively
small, the traditional SCA-SVM classification algorithm cannot effectively perform fault
diagnosis. The classifier trained by the non-transfer learning model is not effective in
the fault diagnosis of few-shot learning. Classifiers with transfer ability have certain
advantages in few-shot learning. As the proportion of fault samples increases, the effect
of transfer learning becomes weaker. When the proportion of fault samples reaches 50%,
the effect of transfer learning and non-transfer-learning fault diagnosis is the same. When
the proportion of faulty samples does not reach 50%, the classifier with transfer learning
ability shows better classification performance in fault diagnosis. This article classifies the
performance of the TLSCA-SVM classification algorithm in fault diagnosis as better than
SCA-SVM fault samples when the proportion of faults does not reach 50%.
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Figure 33. Comparison of transfer learning and non-transfer learning.

6. Conclusions

This article uses SCA to optimize SVM parameters, and proposes a classification-
diagnosis method using SCA-SVM. Finally, it is proposed that the TLSCA-SVM classifica-
tion algorithm can be used in the case of fewer fault samples in the training set. The data of
the Sallen–Key circuit is used as experimental data, the data of the CSTV circuit is used to
verify the versatility of the method, and a more general conclusion is drawn as follows:

(a) By comparing optimization parameter algorithms such as Grid Search, GA, PSO,
ACA, SA, etc., the SCA is proposed. The SCA optimization-parameter algorithm can
improve the optimization speed and shorten the optimization time on the premise
of meeting the parameter-optimization requirements. The entire algorithm has both
high classification accuracy and fast classification performance.

(b) The SCA-SVM fault-classification method has superior performance in the fault
diagnosis. A complex CSTV circuit is used to verify the versatility of the method.
Several comparison experiments show that the method is not only superior, but also
universal in performance to other algorithms. Different classification algorithms are
used, such as BP, SOM, ELM, decision tree, random forest and SCA-SVM to compare.
It can be concluded that the accuracy of the SCA-SVM classification algorithm is
superior to other comparison algorithms in terms of the classification effect.

(c) With regard to the problems of most optimization algorithms, this paper reasonably
avoids them. The classification algorithm of this paper is analyzed. This paper uses
the SVM classifier as the main body for fault diagnosis. The SVM classifier itself has
a good classification effect, and the difference between the important parameter’s
penalty factor C and kernel parameter will affect the classification effect of the SVM.
The objective of the SCA algorithm is to obtain appropriate parameters. The search
method is randomly determined each time an optimal solution is found. That is to
say, in the next search, both the local search and the global search are random, i.e.,
the probability is the same. Each time the optimal solution is approximated, the
approximation method is randomly determined. Such an optimization method can
avoid local optimal solutions and shorten the optimization time. The classifier formed
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after finding suitable parameters has a good classification effect in fault classification,
and the classification efficiency improved.

(d) Various optimization algorithms were compared, such as Gray Wolf Optimization
(GWO), Gravitational Search Algorithm (GSA), competitive swarm optimizer (CSO),
etc. The advantages and disadvantages of different optimization algorithms were
discovered. Most of the shortcomings focus on non-global search. When the opti-
mization algorithm performs a non-global search, local optimal solutions may appear.
After continuous exploration, some algorithms were optimized by combining the
characteristics of multiple algorithms. For example, the GWO was combined with
SCA to optimize parameters. These issues deserve to be studied in future.

(e) When the training data is deficient, the TLSCA-SVM classification algorithm can
effectively diagnose the fault. Because the TL-SCASV algorithm adds an auxiliary
condition to the objective function of the SCA-SVM classifier, that is, an error penalty
term to construct a new fault diagnosis model, the fault diagnosis is satisfactory.
When the fault samples are not complete, it can still effectively classify the faults. It
combines the advantages of the SCA-SVM classifier with high accuracy, fast diagnosis
speed and good stability in fault diagnosis. The algorithm not only achieves high
fault-diagnosis accuracy, but can also operate effectively in the case of a lack of fault
samples, and can effectively perform fault classification in multiple circuits.

To sum up, the TLSCA-SVM classifier was constructed. When there are more fault sam-
ples, the fault classification effect of the classifier was found to be better by a cross-sectional
comparison. The classifier was also effective in diagnosis when there were fewer fault
samples. It has certain versatility in fault-data diagnosis and broad application prospects.

Author Contributions: Conceptualization, A.Z. and D.Y.; methodology, A.Z. and D.Y.; software,
D.Y.; validation, A.Z., D.Y. and Z.Z.; formal analysis, D.Y.; investigation, D.Y.; resources, A.Z.; data
curation, D.Y.; writing—original draft preparation, D.Y.; writing—review and editing, A.Z. and D.Y.;
visualization, D.Y.; supervision, A.Z. and Z.Z.; project administration, A.Z.; funding acquisition, A.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This works is partly supported by the Natural Science Foundation of Liaoning, China
under Grant 2019MS008, Education Committee Project of Liaoning, China under Grant LJKZ1011
and LJ2019003.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wen, X.; Xu, Z. Wind turbine fault diagnosis based on ReliefF-PCA and DNN. Expert Syst. Appl. 2021, 178, 115016. [CrossRef]
2. Li, Y.; Miller, M.S. Seismic Evidence for Thermal and Chemical Heterogeneities in Region Beneath Central America From Grid

Search Modeling. Geophys. Res. Lett. 2021, 48, e2021GL092493. [CrossRef]
3. Ebrahim, M.A.; Ayoub, B.A.A.; Nashed, M.N.F.; Osman, F.A.M. A Novel Hybrid-HHOPSO Algorithm Based Optimal Com-

pensators of Four-Layer Cascaded Control for a New Structurally Modified AC Microgrid. IEEE Access 2020, 9, 4008–4037.
[CrossRef]

4. Ding, Y.; Meng, R.; Yin, H.; Hou, Z.; Sun, C.; Liu, W.; Hao, S.; Pan, Y.; Wang, B. Keratin-A6ACA NPs for gastric ulcer diagnosis
and repair. J. Mater. Sci. Mater. Med. 2021, 32, 66. [CrossRef] [PubMed]

5. Han, H.; Xu, L.; Cui, X.; Fan, Y. Novel chiller fault diagnosis using deep neural network (DNN) with simulated annealing (SA).
Int. J. Refrig. 2021, 121, 269–278. [CrossRef]

6. Tobi, M.A.; Bevan, G.; Wallace, P.; Harrison, D.; Okedu, K.E. Using MLP-GABP and SVM with wavelet packet transform-based
feature extraction for fault diagnosis of a centrifugal pump. Energy Sci. Eng. 2021, 1–14. [CrossRef]

7. Fu, J.; Che, G. Fusion Fault Diagnosis Model for Six-Rotor UAVs Based on Conformal Fourier Transform and Improved
Self-Organizing Feature Map. IEEE Access 2021, 9, 14422–14436. [CrossRef]

8. Jain, M.; William, A.; Mark, S. CNN vs ELM for Image-Based Malware Classification. arXiv 2021, preprint. arXiv:2103.13820.
9. Li, Z.; Wang, L.; Huang, L.; Zhang, M.; Cai, X.; Xu, F.; Wu, F.; Li, H.; Huang, W.; Zhou, Q.; et al. Efficient management strategy of

COVID-19 patients based on cluster analysis and clinical decision tree classification. Sci. Rep. 2021, 11, 9626. [CrossRef]
10. Wab, Y.; Yang, Y.; Xu, M.; Huang, W. Intelligent fault diagnosis of planetary gearbox based on refined composite hierarchical

fuzzy entropy and random forest. ISA Trans. 2021, 109, 340–351.

http://doi.org/10.1016/j.eswa.2021.115016
http://doi.org/10.1029/2021GL092493
http://doi.org/10.1109/ACCESS.2020.3047876
http://doi.org/10.1007/s10856-021-06537-3
http://www.ncbi.nlm.nih.gov/pubmed/34117951
http://doi.org/10.1016/j.ijrefrig.2020.10.023
http://doi.org/10.1002/ese3.933
http://doi.org/10.1109/ACCESS.2021.3052317
http://doi.org/10.1038/s41598-021-89187-3


Processes 2022, 10, 362 31 of 32

11. Yu, D.; Zhang, A.; Wei, M. SCA-SVM Fault Diagnosis of Analog Circuits Based on Transfer Learning. In Proceedings of the 2021
IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), Suzhou, China, 14–16 May 2021; IEEE: Piscataway,
NJ, USA, 2021; pp. 818–823.

12. Yin, S.; Ding, S.X.; Xie, X.; Luo, H. A review on basic data-driven approaches for industrial process monitoring. IEEE Trans. Ind.
Electron. 2014, 61, 6418–6428. [CrossRef]

13. Zhong, T.; Qu, J.; Fang, X.; Li, H.; Wang, Z. The intermittent fault diagnosis of analog circuits based on EEMD-DBN. Neurocomputing
2021, 436, 74–91. [CrossRef]

14. Su, X.; Cao, C.; Zeng, X.; Feng, Z.; Shen, J.; Yan, X.; Wu, Z. Application of DBN and GWO-SVM in analog circuit fault diagnosis.
Sci. Rep. 2021, 11, 7969. [CrossRef] [PubMed]

15. Jing, Z.; Liang, Y. Electronic circuit fault diagnosis based on SCA-SVM. In Proceedings of the 2018 10th International Conference
on Communications, Circuits and Systems (ICCCAS), Chengdu, China, 22–24 December 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 44–49.

16. Gianvito, P.; Mignone, P.; Magazzù, G.; Zampieri, G.; Ceci, M.; Angione, C. Integrating genome-scale metabolic modelling and
transfer learning for human gene regulatory network reconstruction. Bioinformatics 2022, 38, 487–493.

17. Lago, V.; Alegre, A.; Lago, V.; Carot-Sierra, J.M.; Bme, A.T.; Montoliu, G.; Domingo, S.; Alberich-Bayarri, Á.; Martí-Bonmatí, L.
Machine Learning ased Integration of Prognostic Magnetic Resonance Imaging Biomarkers for Myometrial Invasion Stratification
in Endometrial Cancer. J. Magn. Reson. Imaging 2021, 54, 987–995.

18. Gao, Z.; Liu, L.X. An overview on fault diagnosis, prognosis and resilient control for wind turbine systems. Processes 2021, 9, 300.
[CrossRef]

19. Li, L.; Ding, S.X.; Luo, H.; Peng, K.; Yang, Y. Performance-Based Fault-Tolerant Control Approaches for Industrial Processes with
Multiplicative Faults. IEEE Trans. Ind. Inform. 2020, 16, 4759–4768. [CrossRef]

20. Niu, P.; Niu, S.; Liu, N.; Chang, L. The defect of the Grey Wolf optimization algorithm and its verification method. Knowl.-Based
Syst. 2019, 171, 37–43. [CrossRef]

21. Singh, N.; Singh, S.B. A novel hybrid GWO-SCA approach for optimization problems. Eng. Sci. Technol. Int. J. 2017, 20, 1586–1601.
[CrossRef]

22. Xie, C.; Xiang, H.; Zeng, T.; Yang, Y.; Yu, B.; Liu, Q. Cross knowledge-based generative zero-shot learning approach with taxonomy
regularization. Neural Netw. 2021, 139, 168–178. [CrossRef]

23. Ntalampiras, S. One-shot learning for acoustic diagnosis of industrial machines. Expert Syst. Appl. 2021, 178, 114984. [CrossRef]
24. Liu, T.; Yang, Y.; Fan, W.; Wu, C. Few-shot learning for cardiac arrhythmia detection based on electrocardiogram data from

wearable devices. Digit. Signal Process. 2021, 116, 103094. [CrossRef]
25. Gao, Z.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based

and signal-based approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [CrossRef]
26. Luo, H.; Li, K.; Kaynak, O.; Yin, S.; Huo, M.; Zhao, H. A Robust Data-Driven Fault Detection Approach for Rolling Mills with

Unknown Roll Eccentricity. IEEE Trans. Control. Syst. Technol. 2019, 28, 2641–2648. [CrossRef]
27. Chaehan, S. Exploring Meta Learning: Parameterizing the Learning-to-learn Process for Image Classification. In Proceedings

of the 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju Island, Korea,
13–16 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 199–202.

28. Blau, F.; Kahn, L.; Comey, M.; Eng, A.; Meyerhofer, P.; Willén, A. Culture and gender allocation of tasks: Source country
characteristics and the division of non-market work among US immigrants. Rev. Econ. Househ. 2020, 18, 907–958. [CrossRef]

29. Tao, D.; Diao, X.; Wang, T.; Guo, J.; Qu, X. Freehand interaction with large displays: Effects of body posture, interaction distance
and target size on task performance, perceived usability and workload. Appl. Ergon. 2021, 93, 103370. [CrossRef]

30. Du, X. Complex environment image recognition algorithm based on GANs and transfer learning. Neural Comput. Appl. 2020, 32,
16401–16412. [CrossRef]

31. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
32. Khawaja, A.W.; Kamari, N.; Zainuri, M. Design of a Damping Controller Using the SCA Optimization Technique for the

Improvement of Small Signal Stability of a Single Machine Connected to an Infinite Bus System. Energies 2021, 14, 2996. [CrossRef]
33. Wang, B.; Zhang, X.; Xing, S.; Sun, C.; Chen, X. Sparse representation theory for support vector machine kernel function selection

and its application in high-speed bearing fault diagnosis. ISA Trans. 2021, 118, 207–218. [CrossRef]
34. Yong, S.B.; Lee, S.; Filatov, M.; Choi, C.H. Optimization of Three State Conical Intersections by Adaptive Penalty Function

Algorithm in Connection with the Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory Method (MRSF-
TDDFT). J. Phys. Chem. A 2021, 125, 1994–2006.

35. Zhou, J.; Huang, S.; Wang, M.; Qiu, Y. Performance evaluation of hybrid GA–SVM and GWO–SVM models to predict earthquake-
induced liquefaction potential of soil: A multi-dataset investigation. Eng. Comput. 2021, 2, 1–19. [CrossRef]

36. Li, Y.; Zhao, Y.; Liu, J. Dynamic sine cosine algorithm for large-scale global optimization problems. Expert Syst. Appl. 2021,
177, 114950. [CrossRef]

37. Huang, J.; Kumar, G.S.; Ren, J.; Zhang, J.; Sun, Y. Accurately predicting dynamic modulus of asphalt mixtures in low-temperature
regions using hybrid artificial intelligence model. Constr. Build. Mater. 2021, 297, 123655. [CrossRef]

38. Zhang, C.; He, Y.; Yuan, L.; He, W.; Xiang, S.; Li, Z. A Novel Approach for Diagnosis of Analog Circuit Fault by Using GMKL-SVM
and PSO. J. Electron. Test. 2016, 32, 531–540. [CrossRef]

http://doi.org/10.1109/TIE.2014.2301773
http://doi.org/10.1016/j.neucom.2021.01.001
http://doi.org/10.1038/s41598-021-86916-6
http://www.ncbi.nlm.nih.gov/pubmed/33846418
http://doi.org/10.3390/pr9020300
http://doi.org/10.1109/TII.2019.2946882
http://doi.org/10.1016/j.knosys.2019.01.018
http://doi.org/10.1016/j.jestch.2017.11.001
http://doi.org/10.1016/j.neunet.2021.02.009
http://doi.org/10.1016/j.eswa.2021.114984
http://doi.org/10.1016/j.dsp.2021.103094
http://doi.org/10.1109/TIE.2015.2417501
http://doi.org/10.1109/TCST.2019.2942799
http://doi.org/10.1007/s11150-020-09501-2
http://doi.org/10.1016/j.apergo.2021.103370
http://doi.org/10.1007/s00521-019-04018-x
http://doi.org/10.1016/j.knosys.2015.12.022
http://doi.org/10.3390/en14112996
http://doi.org/10.1016/j.isatra.2021.01.060
http://doi.org/10.1007/s00366-021-01418-3
http://doi.org/10.1016/j.eswa.2021.114950
http://doi.org/10.1016/j.conbuildmat.2021.123655
http://doi.org/10.1007/s10836-016-5616-y


Processes 2022, 10, 362 32 of 32

39. Zhang, B.; Zhang, L.; Zhang, B.; Yang, B.; Zhao, Y. A fault prediction model of adaptive fuzzy neural network for optimal
membership function. IEEE Access 2020, 8, 101061–101067. [CrossRef]

40. Soltan, A.; Ahmed, G.; Soliman, M. Fractional order Sallen-Key and KHN filters: Stability and poles allocation. Circuits Syst.
Signal Process. 2015, 34, 1461–1480. [CrossRef]

41. Bao, H.; Wu, P.; Bao, B.-C.; Chen, M.; Wu, H. Sallen–Key low-pass filter-based inductor-free simplified Chua’s circuit. J. Eng. 2017,
2017, 653–655. [CrossRef]

42. Song, G.; Li, Q.; Luo, G.; Jiang, S.; Wang, H. Analog circuit fault diagnosis using wavelet feature optimization approach. In
Proceedings of the 2015 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Qingdao, China,
16–18 July 2015; IEEE: Piscataway, NJ, USA, 2015; Volume 1.

43. Rahimilarki, R.; Gao, Z.; Jin, N.; Zhang, A. Convolutional neural network fault classification based on time-series analysis for
benchmark wind turbine machine. Renew. Energy 2022, 185, 916–931. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.2997368
http://doi.org/10.1007/s00034-014-9925-z
http://doi.org/10.1049/joe.2017.0311
http://doi.org/10.1016/j.renene.2021.12.056

	Introduction 
	SCA-SVM Algorithm 
	Principles of SCA Optimization Parameters 
	The Classification Principle of SVM 

	Fault Diagnosis Model of TLSCA-SVM Algorithm 
	Principles of Transfer Learning 
	TLSCA-SVM Algorithm 
	Fault Diagnosis Process of TLSCA-SVM Algorithm 

	Acquisition and Process Fault Samples of Analog Circuits 
	Data Processing of Sallen-Key Band-Pass Filter Circuit with Injected Fault 
	Data Processing of the CSTV Filter Circuit Injected into the Fault 
	Feature Processing of Analog Circuit Fault Data 
	Extract Fault Signal 
	Feature Extraction and Dimensionality Reduction of Fault Signals 


	Algorithm Horizontal and Vertical Comparison Experiment Results 
	SCA Optimization Parameter Comparison 
	Comparison of Optimized Parameters under Sallen-Key Band-Pass Filter Circuit 
	Comparison of Optimized Parameters under CSTV Filter Circuit 

	Comparison of SCA-SVM Classification Algorithms 
	Comparison of Classification Algorithms under Sallen-Key Bandpass Filter Circuit 
	Comparison of Classification Algorithms under CSTV Filter Circuit 

	TLSCA-SVM Comparative Test Results 

	Conclusions 
	References

