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Abstract: The development of new biologics is becoming more challenging due to global competition
and increased requirements for process understanding and assured quality in regulatory approval.
As a result, there is a need for predictive, mechanistic process models. These reduce the resources and
time required in process development, generating understanding, expanding the possible operating
space, and providing the basis for a digital twin for automated process control. Monoclonal antibodies
are an important representative of industrially produced biologics that can be used for a wide range of
applications. In this work, the validation of a mechanistic process model with respect to sensitivity, as
well as accuracy and precision, is presented. For the investigated process conditions, the concentration
of glycine, phenylalanine, tyrosine, and glutamine have been identified as significant influencing
factors for product formation via statistical evaluation. Cell growth is, under the investigated process
conditions, significantly dependent on the concentration of glucose within the investigated design
space. Other significant amino acids were identified. A Monte Carlo simulation was used to simulate
the cultivation run with an optimized medium resulting from the sensitivity analysis. The precision
of the model was shown to have a 95% confidence interval. The model shown here includes the
implementation of cell death in addition to models described in the literature.

Keywords: dynamic metabolic model; digital twin; advanced process control; CHO; monoclonal
antibody; validation

1. Introduction

In biopharmaceutical production, the time-to-market for new, innovative products is
growing shorter and shorter [1,2]. In this context, process development in the upstream,
which typically involves optimization of the medium, feeding strategy, and various process
parameters such as pH, power input, etc., is very costly, as a large number of lengthy culti-
vation experiments, often based on statistical experimental design, have to be performed [3].
Although the application of statistical experimental designs reduces the necessary number
of experiments, in contrast to classical one-factor-at-a-time experiments, it is still very
resource and time intensive due to the high number of process parameters and possible
media compositions [4,5]. In addition to high-throughput screening using miniaturized
and parallelized cultivation [6–8], a mechanistic, predictive process model is available
as an alternative process optimization method [9–11]. Compared with the experimental
approach, this offers the advantage that many parameter combinations can be screened
within a short time [12,13]. For later automation, the process model also serves as the
basis of the digital twin [14]. In the course of validating the process model, mechanistic
understanding of the process can also be generated, which reduces hurdles in approval and
expands the possible operating range [15]. A typical example of biopharmaceuticals for
the regulated market is monoclonal antibodies (mAb). These are usually produced using
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animal cells, mostly Chinese hamster ovary (CHO) cells [16,17]. This system is thus very
suitable for the development and validation of a process model.

Simple Monod models with static yield coefficients are often used [10,18]. Although
these are easy to determine from an already performed cultivation, there is no causality
between the metabolism of the cell and biomass, as well as product formation. However,
these processes are usually the actual subject of media optimization. The trend towards
automated processes requires a validated, mechanistic process model that represents the
processes in the cell in sufficient detail and causally [19,20]. In this work, the application
of a dynamic metabolic model to mAb-producing CHO-DG44 cells is investigated and
a procedure for model validation is presented. Models of this kind are published in the
literature; recently, a metabolic model has been presented by Robitaille for CHO cells [21].
The model used in this work additionally includes the implementation of cell death and
is, to our knowledge, the first adaption to CHO-DG44 for mAb production in fed-batch
cultivation.

1.1. QbD-Based Process Development

The quality-by-design (QbD) concept has become an established pillar in modern
process development of biologics [22–24]. In contrast to classical quality-by-testing, this
approach, based on the use of process understanding and quantitatively defined nor-
mal operating range, enables the process to be readjusted for optimization, even after
approval [25].

The basic principles of QbD-based process development are laid down in the ICH
guidelines Q8–Q12 [26–30]. Figure 1 graphically illustrates the most important steps and
development phases. Once the most important product properties have been determined
and the quality target product profile (QTPP) thus defined, it is possible to derive related
critical product properties [31,32]. If the focus is on process development, traditional
process parameters such as productivity are often chosen as critical quality attributes (CQA),
in addition to toxicity, bioavailability, etc. [33]. This enables an initial risk assessment to be
carried out [34]. If predictive, mechanistic models are to be developed alongside or instead
of resource-intensive experiments and subsequently used for optimization and control, the
risk assessment of the model must be carried out according to the same principles as those
used in an experimental process development [35]. Part of this procedure is the collection
and quantitative evaluation of risk severity and risk probability, which together result in
a risk rank that forms the decision-making basis for the design of multi- and univariate
investigations [36].



Processes 2022, 10, 316 3 of 16

Processes 2022, 10, x FOR PEER REVIEW 2 of 15 
 

 

biopharmaceuticals for the regulated market is monoclonal antibodies (mAb). These are 
usually produced using animal cells, mostly Chinese hamster ovary (CHO) cells [16,17]. 
This system is thus very suitable for the development and validation of a process model. 

Simple Monod models with static yield coefficients are often used [10,18]. Although 
these are easy to determine from an already performed cultivation, there is no causality 
between the metabolism of the cell and biomass, as well as product formation. However, 
these processes are usually the actual subject of media optimization. The trend towards 
automated processes requires a validated, mechanistic process model that represents the 
processes in the cell in sufficient detail and causally [19,20]. In this work, the application 
of a dynamic metabolic model to mAb-producing CHO-DG44 cells is investigated and a 
procedure for model validation is presented. Models of this kind are published in the lit-
erature; recently, a metabolic model has been presented by Robitaille for CHO cells [21]. 
The model used in this work additionally includes the implementation of cell death and 
is, to our knowledge, the first adaption to CHO-DG44 for mAb production in fed-batch 
cultivation. 

1.1. QbD-Based Process Development 
The quality-by-design (QbD) concept has become an established pillar in modern 

process development of biologics [22–24]. In contrast to classical quality-by-testing, this 
approach, based on the use of process understanding and quantitatively defined normal 
operating range, enables the process to be readjusted for optimization, even after approval 
[25]. 

The basic principles of QbD-based process development are laid down in the ICH 
guidelines Q8–Q12 [26–30]. Figure 1 graphically illustrates the most important steps and 
development phases. Once the most important product properties have been determined 
and the quality target product profile (QTPP) thus defined, it is possible to derive related 
critical product properties [31,32]. If the focus is on process development, traditional pro-
cess parameters such as productivity are often chosen as critical quality attributes (CQA), 
in addition to toxicity, bioavailability, etc. [33]. This enables an initial risk assessment to 
be carried out [34]. If predictive, mechanistic models are to be developed alongside or 
instead of resource-intensive experiments and subsequently used for optimization and 
control, the risk assessment of the model must be carried out according to the same prin-
ciples as those used in an experimental process development [35]. Part of this procedure 
is the collection and quantitative evaluation of risk severity and risk probability, which 
together result in a risk rank that forms the decision-making basis for the design of multi- 
and univariate investigations [36]. 

 

Define Quality 
Target Product 
Profile (QTPP)

Determine Critical 
Quality Attributes 

(CQAs)
Risk Assessment Design Space Control Strategy Continuous 

Improvement

DoE

Modeling

PAT Real time 
release testing 

(RTRT)

Part of process model validation workflow

Figure 1. Workflow of model validation based on a QbD-oriented approach [37]. In a first step, the
QTPPs are defined. Subsequently, the CQAs are defined and a risk assessment of the influence of
various process parameters on the CQAs is carried out. The risk assessment results in a design space
for the process parameters to be investigated, which can be examined either via experiments or by
means of a rigorous process model. Based on the results, a control strategy is defined, which can be
continuously compared online via PAT with the actual state of the system. Strict implementation of
this strategy allows for continuous process optimization.

In analogy to the experimental development, design-of-experiments (DoE) can also be
used in the model validation. This allows the evaluation of the criticality of the investigated
parameters, and additionally the definition of a design space [38].

The following steps in QbD-based process development deal with the feasibility
of a control strategy [39]. The control strategy lists the critical process parameters and
the CQAs depending on them, which have to be measured continuously in order to
achieve QTTP assurance. Key enabling technologies for continuous monitoring are grouped
under the umbrella term process-analytical-technology (PAT). Real time release testing
(RTRT) could be realized based on full QbD-based process development and validated
PAT, eliminating bottlenecks in the production of critical biopharmaceuticals [40]. The
continuous monitoring of process variables by PAT as well as the achieved and documented
process understanding allow the process to be continuously improved based on new process
data [41].

1.2. Model Validation

The feasibility of the continuous monitoring, control, and optimization of the process
described above requires a digital twin of the process. This should be based on the model
used in the process development. The distinction between a predictive process model and
a digital twin is made in the literature on the basis of the model depth and the degree of
information exchange with the physical process. Figure 2 shows the intermediate stages
from a simple steady-state model to a fully fledged digital twin for predictive, model-
based control.
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Figure 2. Levels of a digital twin, starting from a steady-state-model, over a dynamic model, a
validated model, and a digital shadow to a model-based control [42].

A prerequisite for the use of digital twins in regulated industries in a QbD-based
process is a quantitative and unambiguous validation of the process model [43], as shown
in Figure 3. The procedure for this is described several times in the literature for different
upstream and downstream processes. Here, the specifics of a dynamic metabolic model
for cell cultivation are addressed. First, after defining the model task and application, the
model must be verified. In this case, it must be verified whether the model can reasonably
represent the fundamental processes, such as cell growth, substrate consumption and
product formation. Due to the large number of Monod-based formation and consumption
rates, particular attention must be paid to the correct implementation of stoichiometry. If
the model is plausible according to the assessment of an experienced process engineer, the
sensitivity of the model should be quantified in the next step. For this purpose, DoE can
be used to compare sensitivities from the model prediction with those from the process
development. If the sensitivity is known, a rough design space can be defined, for example
in the form of contour plots, which can also be used for further process optimization. For
use as a digital twin, the model must be accurate and precise. For different states, the
model predictions must match the target variables measured in the process (accuracy). For
robust control, sufficient precision in the prediction is also necessary. The final validation
milestone tests whether the model in the design space under investigation is at least as
precise and accurate as the measurement in the physical process.
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Figure 3. Decision tree for a process model validation according to Sixt et al. The application allows a
quantitative evaluation of the model quality based on mechanistic and statistical decision criteria. A
rigorous execution of the procedure leads to a distinctively and quantitatively validated rigorous
process model.
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2. Modeling of the Intracellular Metabolism of CHO Cells

The mathematical description of intracellular metabolism was adapted from a pub-
lished dynamic metabolic model [21]. A detailed overview of model equations can be
found in the original publication [21]. The reaction equations are based on modified
Michaelis–Menten-type reaction equations. Multiplicative Michaelis–Menten equations
are used when multiple substrates are involved. Feedback inhibition and activation were
considered by using formulations 1 and 2, respectively.

v =
vmax·[S]

KS ·
(

1 + [I]
KI

)
+ [S]

, (1)

v =
vmax · [S] ·

(
1 + β · [A]

α · [KA]

)
KS ·

(
1 + [A]

KA

)
+ [S] ·

(
1 + [A]

KA

) , (2)

where vmax is the maximal reaction rate, [S], [A], and [I] are the concentrations of sub-
strate, activator, and inhibitor, respectively, and KS, KA, and KI, are the Michaelis–Menten
constants for substrate, activator, and inhibitor, respectively.

The cell-specific growth rate, as well as the mAb formation rate, were also formulated
as multiplicative Monod kinetics, with all amino acids, ATP, and, in the case of the growth
rate, additionally glucose-6-phosphate and ribulose-5-phosphate, each being considered
with a separate term. A separate Monod constant was also defined for each of the substrates
for both the growth and the mAb formation.

The reaction network, shown in Figure 4, covers the major metabolic pathways of
central metabolism, namely glycolysis, TCA cycle, pentose phosphate pathway, and oxida-
tive phosphorylation as well as energy-consuming pathways in the form of ATPases, and
anabolic reactions for cell division and mAb synthesis. Additionally, the model includes the
most relevant metabolic pathways for amino acid metabolism, especially glutaminolysis as
a central contributor to the TCA cycle. In addition, aspartate and alanine transaminase, the
conversion of serine to pyruvate and formation of alpha ketoglutarate and succinate from
two different reactions is covered in the model.

The composition of cells and the result he literature [44]. An average molecular weight
of 107.5 g mol−1 was assumed for the proteins composing the biomass. The IgG1 sequence
was assumed to be the average sequence as proposed in the literature [45], and the amino
acid consumption for mAb synthesis was set accordingly. Lipid metabolism was not
considered separately in the model; hence, the assumption was made that the entire lipid
content of the cells was derived from citrate in the citric acid cycle. Similarly, the synthesis
of nucleic acids was modeled as a lumped reaction and the synthesis was assumed to be
derived from ribulose-5-phosphate and glucose-6-phosphate. The ATP requirements for the
synthesis of biomass and mAb were adopted from the literature [19]. From the literature, a
conversion factor of 3.15 × 10−4 gDW 10−6 cells was adopted [21].
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For dynamic modeling the following assumptions were made:

- Ideally mixed stirred tank reactor, i.e., no spatial differences in pH, temperature,
concentration of chemical species. Constant pH, constant temperature, no oxygen
limitation.

- The model is an unsegregated, structured model, meaning the entire cell population
was assumed to be an “average cell” and cell cycle differences were not considered.

- Limited number of metabolites: primarily metabolites were used that represent a
branch in a metabolic pathway, or that are taken up directly from the medium into the
cell. In this approach, subsequent reactions are often grouped together, allowing the
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number of metabolites, and thus model complexity, to be reduced without sacrificing
predictive power.

- Constant enzyme amounts: the maximum reaction rate of an enzyme-catalyzed re-
action depends on the enzyme amount. The enzyme amount depends on the tran-
scription and translation rates, which may depend on substrate concentration and
other influencing variables. In order to represent the dependence of transcription and
translation rates, “omics” data are required, which were not available in the context of
this work. Therefore, constant enzyme amounts were assumed in this model.

- New cells and monoclonal antibodies were assumed to be directly formed from
precursors present in the cell (amino acids, citrate (representing lipids), and R5P
(representing nucleotides).

- Analytically undetermined media components such as vitamins, trace elements, phos-
pholipid precursors, growth factors, etc., were assumed to be non-limiting. Thus, it
implicitly follows that the growth rate depends only on the number of quantified
substrates.

- The cell volume was assumed to be constant. The concentration of intracellular
substrates depends on the volume of the cell, whereas the substrate mass remains
constant. Changes in the concentration of intracellular substrates due to changes in
cell volume were not considered.

- The composition of the cells was assumed to be constant.

In addition to the description of substrate consumption and the associated product
formation and cell growth, described by the metabolic model, fluid dynamics and energy
balance are necessary for a complete process model in order to be scale-able due to fluid
dynamics and energy management non-idealities due to scale. In the context of this work,
work was carried out at the 1 L scale standardized defined laboratory equipment. At this
small scale, fluid dynamics non-idealities do not play a significant role in terms of mixing
time and residence time behavior. Details on the implementation of such an approach, i.e.,
residence time and energy balancing non-idealities for stirred reactors at different scales,
can be found in [46], for example.

Here, the balance space for the energy balance includes the accumulation as the
difference of the heat energy removed and added (see Equation (3)). The power input
of the stirrer can be described by Equation (4). Here, the Ne number describes the ratio
of flow resistance to inertial force. To keep the bioreactor at 37 ◦C, the reactor must be
tempered. The heat supplied or dissipated via the double jacket depends on the heat
transfer coefficient and the exchange surface (see Equation (5)).

ρS·cp·Vs
dT
dt

=
.

QSt −
.

QCool (3)

.
QSt= Ne · n3· dR · ρS (4)

.
QCool = kw·AM·∆T (5)

3. Model Parameter Determination

As usual, at first the equipment setup is characterized fluid dynamically and due to
its energy management [46]. The metabolic flux model parameters were initially taken
from the original publication. Since the model predictions did not apply to the cell line
used, the model parameters were newly determined for the different CHO DG 44 cell
line. A total of 12 key parameters had to be determined specifically in order to sufficiently
describe the cultivation of those CHO DG 44 cells. Table 1 shows the modified parameters
and the only slightly updated parameter values. With the exception of the first parameter,
Kgrowth,NH4, which is the Michaelis–Menten constant of growth inhibition by ammonium,
all of the parameters are maximal reaction rates. Maximal reaction rates are dependent on
the amount of enzyme present. Since a different cell line was used, expression of different
enzymes may differ, leading to a different metabolic phenotype.
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Table 1. Modified parameters and new parameter values.

Parameter. Value Unit

K_growth_dNH4 20 mM
v_mab_max 3.30 × 10−4 mM 10−6 cells h−1

v_AAtoSUC_max 6.50 × 10−5 mM 10−6 cells h−1

v_AlaTA_fmax 3.40 × 10−3 mM 10−6 cells h−1

v_AlaTA_rmax 0.24 mM 10−6 cells h−1

v_ASTA_max 7.80 × 10−6 mM 10−6 cells h−1

v_GlnT_fmax 1.91 × 10−4 mM 10−6 cells h−1

v_GlnT_rmax 1.27 × 10−5 mM 10−6 cells h−1

v_HK_max 6.60 × 10−5 mM 10−6 cells h−1

v_LDH_fmax 8.50 × 10−7 mM 10−6 cells h−1

v_LDH_rmax 0.48 mM 10−6 cells h−1

v_SDHH_max 5.10 × 10−6 mM 10−6 cells h−1

4. Model Validation
4.1. Sensitivity Analysis

Part of the model validation process is the execution of the model verification. As
described in the introduction, it is examined here whether the plausibility is given. For
this purpose, the syntax and the stoichiometry are checked for errors. Likewise, the
plausibility of the model has been tested with regard to the correct implementation of
substrate consumption, cell growth, and product formation (see Section 4.1.1). In the
following, the sensitivity of the model parameters, which is the second decision criterion,
is investigated. The results are discussed in Section 4.1.2. The quantification of accuracy
and precision of the model predictions is presented using Monte Carlo simulations in
Section 4.2.

4.1.1. Plausibility

Figure 5 shows the model prediction for cell growth, product formation as well as the
different substrate courses. The model prediction qualitatively agrees with the experimental
courses. The characteristic decrease in VCD after 200 h is correctly reproduced. The
sigmoidal course of the product concentration as well as the turnover of the substrates is
reproduced sufficiently accurately by the model within the experimental accuracy.

From the progression of, e.g., Gln (d) and ASN (f), it can be seen that these amino
acids are consumed faster in cultivation than they are supplied by feeding. Furthermore,
from the progression of GLY concentration (h), a slight overfeeding of this component can
be predicted by the model.
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Figure 5. Simulation results of (a) viable cell concentration, (b) mAb concentration, (c) glucose con-
centration, (d) glutamine concentration, (e) glutamic acid concentration, (f) asparagine concentration,
(g) aspartic acid concentration, (h) glycine concentration, (i) arginine concentration, (j) histidine
concentration, (k) methionine concentration, and (l) serine concentration.

4.1.2. Sensitivity

The sensitivity of the model parameters in terms of strength and direction was de-
termined using a partial factorial experimental design. This shows the main factors and
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their interactions with each other. Both product formation (see Figure 6a) and cell growth
(Figure 6b) can be represented sufficiently reliably with a p-value of less than 0.0001 using
the regression model created.
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In the experimental design, the concentration in the reference medium was varied
±50%. The significance of the parameters must therefore not be interpreted as generally
valid, but only for the medium used. For both target parameters, the GLY concentration is
the most significant parameter (see Figure 7). An important finding from the evaluations
discussed above is not the fundamental dependence of cell growth and antibody produc-
tivity on amino acid concentration, but the identifiability of those components that have
a particularly sensitive effect in the process under investigation. Thus, the applicability
of the model lies not only in the prediction of cultivation processes, but in the predictive
optimization of media.
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Figure 7. Effect summaries of DoE simulations for (a) mAb, and (b) viable cell concentration.

Although for cell growth GLC and GLY show an equivalent significance, the dominant
influence of GLY concentration for product formation can be seen from the small effect of
TYR concentration at low GLY concentrations (see Figure 8). All media components show a
positive effect direction in the investigated range. With the obtained knowledge about the
effect of the media components on cell growth and product formation, an optimized media
composition can be predicted.
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Figure 8. Contour plots for (a) mAb concentration and (b) viable cell density.

In order to achieve the next validation criterion, the cultivation process must now be
reproduced sufficiently accurately and precisely by the model for the optimization.

4.2. Accuracy and Precision

The model precision was determined for the media concentrations optimized from the
MFAT study by means of a Monte Carlo simulation, shown in Figure 9. Here, 30 simulations
were carried out. The values for the concentrations used in the model were combined
within the random, normally distributed deviation of 5%. This allows us to determine how
robust the model prediction is. For these simulation results, a t-test confidence interval of
94.97% is obtained with a certainty of 99%. The simulation results deviating by less than
2% can be assumed as sufficiently accurate model predictions. The third criterion is thus
fulfilled with regard to precision.

Processes 2022, 10, x FOR PEER REVIEW 11 of 15 
 

 

Figure 7. Effect summaries of DoE simulations for (a) mAb, and (b) viable cell concentration. 

Although for cell growth GLC and GLY show an equivalent significance, the domi-
nant influence of GLY concentration for product formation can be seen from the small 
effect of TYR concentration at low GLY concentrations (see Figure 8). All media compo-
nents show a positive effect direction in the investigated range. With the obtained 
knowledge about the effect of the media components on cell growth and product for-
mation, an optimized media composition can be predicted. 

  
(a) (b) 

Figure 8. Contour plots for (a) mAb concentration and (b) viable cell density. 

In order to achieve the next validation criterion, the cultivation process must now be 
reproduced sufficiently accurately and precisely by the model for the optimization. 

4.2. Accuracy and Precision 
The model precision was determined for the media concentrations optimized from 

the MFAT study by means of a Monte Carlo simulation, shown in Figure 9. Here, 30 
simulations were carried out. The values for the concentrations used in the model were 
combined within the random, normally distributed deviation of 5%. This allows us to 
determine how robust the model prediction is. For these simulation results, a t-test 
confidence interval of 94.97% is obtained with a certainty of 99%. The simulation results 
deviating by less than 2% can be assumed as sufficiently accurate model predictions. The 
third criterion is thus fulfilled with regard to precision. 

  
(a) (b) 

-10 0 10 20 30 40 50 60 70 80
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

V
ia

bl
e 

ce
ll 

co
nc

en
tr

at
io

n 
(1

06  c
el

ls
 ⋅ 

m
L)

Time (h)

 Mean
 ± 5 %

-10 0 10 20 30 40 50 60 70 80

0.0

0.1

0.2

0.3

0.4

A
nt

ib
od

y 
co

nc
en

tr
at

io
n 

(g
/L

)

Time (h)

 Mean
 ± 5 %

Figure 9. Monte Carlo Simulations using the Optimal Operating Point (derived from DoE) for initial
substrate concentrations with a standard deviation of ±5%. (a) Viable cell concentration during initial
batch phase, (b) mAb concentration.
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5. Materials and Methods

Chinese hamster ovary cells (CHO DG44) were used to produce an immunoglobulin
(IgG1). The culture conditions were 36.8 ◦C, pH 7.1, 60% pO2, and 433 rpm (three-blade
segment impeller with a diameter of 54 mm and blades at an angle of 30◦, bbi-biotech
GmbH, Berlin, Germany). The cultivations were carried out in serum-free, commercial
medium (CellcaCHO Expression Platform, Sartorius Stedim Biotech GmbH, Göttingen,
Germany) in 2 L glass bioreactors (Biostat® B, Sartorius Stedim Biotech GmbH, Göttingen,
Germany) controlled via a digital control unit (DCU, Biostat® B, Sartorius Stedim Biotech
GmbH, Göttingen, Germany). Pre-cultures were grown in shake flasks in serum-free
medium. In terms of fed-batch bioreactor cultivations, feed medium (based on CellcaCHO
Expression Platform) was provided every 24 h starting at 72 h. Cell concentration was
repeatedly quantified using a hemocytometer (Neubauer improved, BRAND GmbH +
CO KG, Wertheim, Germany) and trypan blue solution (0.4%, Sigma-Aldrich, St. Louis,
MO, USA) as dye for the detection of dead cells. An in situ turbidity probe (transmission,
880 nm, HiTec Zang GmbH, Herzogenrath, Germany) was used for quantifying the cell
concentration during bioreactor cultivations. mAb concentration was determined by
Protein A chromatography (PA ID Sensor Cartridge, Applied Biosystems, Bedford, MA,
USA). Dulbecco’s PBS buffer was used as a loading buffer at pH 7.4 and as an elution buffer
at pH 2.6. The absorbance was monitored at 280 nm. Glucose and lactate concentrations
were quantified using a LaboTrace compact (TRACE Analytics GmbH, Braunschweig,
Germany).

An RP chromatography column (InfinityLab Poroshell HPH-C18; 3.0 × 100 mm;
2.7 µm; Agilent Technologies, Santa Clara, USA) was used to determine amino acid concen-
trations in the cultivation samples. Sample preparation consisted of filtration through a
0.2 µm cellulose acetate syringe filter (VWR International GmbH, Radnor, USA). Prior to
sample injection, the amino acids were derivatized using orthophthalic aldehyde (OPA). To
allow better separation of amino acids, the column oven was set to a temperature of 40 ◦C.

The kinetic model was implemented in Aspen Custom Modeler V8.4 (Aspen Tech-
nology, Inc., Bedford, MA, USA) in order to allow total process simulations and opti-
mizations [15]. The model framework was adapted from the literature [21]. However, a
kinetic for cell death was added to the model to represent decreasing viable cell density
toward the end of the cultivation as well as scalable fluid dynamics and energy balance
non-idealities. As bioreactor cell cultures were performed in fed-batch mode with daily
bolus feed additions, the model equations were extended by feeding terms. Consequently,
volumetric changes were considered as well.

6. Discussion

The present study shows the distinct and quantitative validation of a dynamic metabolic
model that is used for simulating a fed-batch cultivation of an industrially relevant mAb-
producing CHO DG 44 cell line4.

Single- and multi-parameter-at-a-time studies reveal the significance of model pa-
rameters and enables the identification of combined parameter effects with support from
statistical evaluation (Pareto chart and partial least squares loading plot). The comparison
between the simulation and the experiment suggests sufficient precision and accuracy
for the applied model approach to be applicable in a process development scenario. It is
shown in the Pareto analysis that significant parameters regarding the concentration of the
mAb are the tyrosine, glutamine, phenylalanine, and glycine concentration. Additionally,
interactions of these parameters are significant. It is shown that the highest concentration
of mAb is positively correlated to the amino acid concentrations. The results and procedure
presented support the implementation of dynamic modelling of intracellular metabolisms
in upcoming processes. Subsequent research will focus on transferring the model to the
Fed-Batch cultivation of HEK293 cells to produce human immunodeficiency-virus-like
particles, as well as applicability of the developed model on the example of other CHO
cell lines.
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