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Abstract: Petroleum products are hazardous both for humans and nature. Diesel oil is one of the main
contaminants of land but also of sea, during its transportation. Currently, there are many different
clean-up techniques for petroleum products. One of the most common is adsorption by adsorbent
materials. Although adsorption is an eco-friendly and cost-effective approach, it lacks efficiency. The
present study investigates the performance of low-cost activated carbon, derived from potato peels
and activated under different temperature conditions, from 350 ◦C to 800 ◦C. The yield of activated
carbon decreases with the increase in the carbonization temperature. However, the sample prepared
at 600 ◦C shows an oil sorption capacity of 72 g/g, which is the highest of all samples. Nitrogen
adsorption characterization reveals that this specific sample has the highest specific surface (SSA)
area of 1052 m2/g and total a pore volume of 2.959 cm3/g, corresponding to a 94% and 77% increase
compared to the sample prepared at 350 ◦C. Oil sorption kinetics experiments show that, for all
samples, the maximum uptake is reached after 1h. Oil uptake was also investigated under realistic
conditions by introducing the best performance activated carbon to an oil/seawater system, and
the outcome does not show a significant decrease in the oil sorption. The outcomes of this study
indicate that low-cost adsorbents from agricultural by-products have strong potential as an oil spill
response technique.

Keywords: oil spill; low-cost activated carbon; sorption kinetics

1. Introduction

Petroleum hydrocarbon is a complex pollutant of both land and marine environ-
ments [1]. Petroleum products, such as diesel, are obtained during crude oil distillation and
are made up of low molecular weight alkanes and polycyclic aromatic hydrocarbons [2].
The hydrocarbon composition of diesel fuel makes it toxic to the environment and its
widespread application in human activities makes it one of the most hazardous hydrocar-
bon pollutants. In large quantities in water, due to its hydrophobicity, diesel forms a layer
on the water surface, and it becomes easy to remove. However, in marine environments,
due to wind and currents, petroleum products evaporate, spread and sediment, according
to its properties [3]. If the spill response is not implemented on time, small quantities of the
diesel will form an emulsion [4] with the water and more elaborate removal methods will
need to be applied.

Remediation of water contaminated by petroleum hydrocarbons can be performed
by a number of methods, categorized as physical or chemical [5] ones. Chemical methods
include dispersants (essentially a surfactant spreading on the oil spill [6]), chemical oxi-
dation such as the Fenton process [7], etc. Although the implemented methods showcase
good performance, most of the time, they are energy consuming and not cost-effective
approaches [8].

Among the physical methods, spill adsorption is considered one of the most cost
effective and eco-friendly cleaning techniques [9]. However, there are some restrictions
regarding its performance, such as its low sorption capacity, which in turn is characterized
mainly as hydrophilic. A solution in this direction is the improvement of such materials
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by surface modification. Activated carbon can be modified to gain magnetic properties
for easier collection after the clean-up process [10]. Another example is to enhance its
hydrophobicity by acidic additives [11].

The drawbacks of such modifications include more laborious synthesis processes
and an increase in the total cost. Another important criterion in the total cost equation is
the origin of activated carbon precursors. Although the most popular and commercially
available activated carbons are derived from raw materials such as coconut shells [12] and
rice husks [13], it is not the optimal solution for large-scale activated carbon production
in the European region; such raw materials have to be imported, and thus the cost will
be increased. This local abundance can be eliminated by replacement with a “universal”
precursor such as food waste. Specifically, everyday life by-products, for example vegetable
and fruit peels [14], tend to gain attention as a good alternative.

To this end, the present study investigates the performance of activated carbon derived
from potato peels, which are prepared under different activation temperature conditions,
for oil adsorption. Examination of sorbents’ performance for the specific application is
restricted by the simulation of the real environment, where in addition to temperature
and aqueous phase composition, there are natural impact factors such as currents and the
wildlife of the area. The main criterion of the performance is the sorption capacity of the
material, while kinetics play a significant role as well. The experimental design aims to
find the optimal synthesis conditions that result in a high SSA (specific surface area) and
total pore volume (Vtot) activated carbon and then examine its performance for oil spill
cleaning applications. Material characterization by N2 adsorption measurements indicates
the sample with the best structural properties, while SEM (scanning electron microscopy)
visualizes the selected sample. Activated carbon yield, oil sorption kinetics and material
reusability were examined for material performance evaluation. For reasons of comparison,
realistic conditions were simulated too.

2. Materials and Methods
2.1. Materials

For the experiment, commercially available oil (diesel) was used as the petroleum
product, while the activated carbon (AC) sorbent was synthesized in the lab. To examine
sorption performance closer to the real environment, seawater from the region was used
after filtration with filter paper in order to avoid any solid matter.

2.1.1. Activated Carbon Synthesis

For AC synthesis, waste potato peels collected from local restaurants were used.
Primarily, the potato peels were cleaned of dust and other impurities by washing with
distilled water. Next, the moisture was reduced by drying for 24 h in an oven at 393 K.
The resulting biomass was ground and sieved in order to obtain a specific size and a more
homogeneous shape.

The synthesis process was described analytically in a previous work [15]. Briefly,
chemical activation of dry biomass was achieved with phosphoric acid (H3PO4). An
amount of 10 g of dry potato peel precursor was impregnated with 125 mL of H3PO4 (75%
w/w) at room temperature and kept under stirring for 24 h. The impregnated biomass
was dried in a sand bath at high temperature in order to remove residual water and then
oven-dried for 24 h at 100 ◦C.

A weighed amount of the dried impregnated samples was placed in a furnace and
heated from 350 to 800 ◦C (with 50 ◦C interval) activation temperatures. The treatments
were carried out with a nitrogen flow (99.999% pure) of 30 STP cm3/min; the latter was kept
at the same rate during heating and cooling, and at a constant heating rate of 10 K/min.
The treatment at the activation temperature lasted 2 h, and after cooling, the solid residues
were washed in a Soxhlet apparatus for 24 h until neutral pH and then with ethanol. The
resulted activated carbons were dried at 100 ◦C for 24 h.



Processes 2022, 10, 314 3 of 11

The code name of the prepared samples includes an ACp prefix (activated carbon
from potato peels) followed by a number corresponding to each activation temperature; for
example, ACp-450 is for a sample activated at 450 ◦C. The effect of the carbonization time
on the yield followed the synthesis process.

2.1.2. Material Characterization

All the prepared samples were characterized regarding their structure and porous
properties by isothermal adsorption measurements. Surface area according to the BET
equation was obtained at 77 K by a N2 porosimeter (Quantachrome, NOVA® e-Series
Surface Area Analyzer, Boynton Beach, Florida, U.S.). Prior to the measurement, each
sample was properly prepared in the apparatus degasser station, where degassing for 8 h
at 250 ◦C was performed.

Scanning electron microscopy (SEM) was performed (JEOL, JSM-6390LV, Akishima,
Tokyo, Japan) for morphological characterization of the prepared samples (ACp-350
and ACp-600).

2.2. Experimental Procedure
2.2.1. Activated Carbon Yield

The resulting activated carbon yield for each activation temperature was calculated by
weighing the biomass before the synthesis process and the amount of the resulting material.

2.2.2. Sorption Kinetics

For the sorption kinetics experiments, 100 mL of the oil was poured into a conical flask.
An amount of 0.5 g of the prepared AC sample was enclosed in a paper bag and weighted
prior to the run and then immersed in the flask. Each run was repeated four times at 20 ◦C,
controlled by a water bath. The contact times selected were 10, 20, 30, 40, 50, 60, 70, 80,
90, 100, 1300 and 1450 min for all prepared samples (from ACp-300 to ACp-800). After
each run, samples were left to air-dry for 24 h. The amount of oil removed was the mass
difference of the AC samples prior to and after each run, given by:

Oilsorption =
maf −mai

mai
(1)

where mai and maf are the initial and final masses of the adsorbent, respectively. Oil
capacity in g/g of the adsorbent is given by further dividing by the total weight of the
prepared sample bag.

2.2.3. Real Environment Simulation

In order to investigate sorbent uptake properties in the presence of salinity, an experi-
ment was conducted by introducing the sample bag (ACp-600 staple) into a conical flask
containing the same amount of seawater and oil (50 mL each). Specifically, oil was poured
carefully into the flask, forming a layer on the water surface. The sample bag was hung
so to have contact only with the layer of diesel. Sample bags were weighted before and
after each run as in the previous experiment. The uptake was calculated once more from
Equation (1).

3. Results and Discussion

To better evaluate the experimental results, a step-by-step procedure was followed. At
first, the characterization of the materials was achieved by using BET analysis regarding
structural properties with SEM for sample morphology. Then, the activated samples were
adsorptively evaluated by varying the experimental conditions of the process.
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3.1. Material Characterization
3.1.1. Activated Carbon Yield

To study the effect of carbonization of potato peels on oil adsorption, the yield of the
prepared activated carbon samples (ACp-350, ACp-400, ACp-450, ACp-500, ACp-550, ACp-
600, ACp-650, ACp-700, ACp-750 and ACp-800) clearly shows a decrease with increasing
carbonization temperature. In particular, the sample ACp-350 presented 56% yield, while
the ACp-800 sample had a yield of 43% from the initial amount. Figure 1 presents this
gradual decrease.
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This decrease (by increasing the carbonization temperature) is normal and was ob-
served in other published works [12,16,17], especially in the case of other peels (from
vegetables, fruits) [18,19] or polymeric sources [17]. So, it can be concluded that the source
plays a key role on the final yield of any AC sample. The major explanation of the above
behavior is thermal degradation; in particular, the degradation because of the phosphor-
carbonaceous species and the respective reduction of the phosphates present to elemental
phosphorus. The latter caused the formation of volatile phosphorous compounds, P4O10
(phosphorus(V) oxide) and P (elemental form). Moreover, phosphorus (elemental) will also
be a product of the activation procedure (by using H3PO4) of phosphorus-containing phe-
nol resins. The volatile phosphorus compounds may be formed according to the following
reactions:

4H3PO4 + 10C→ P4 + 10CO + 6H2O (2)

4H3PO4 + 10C→ P4O10 + 6H2O (3)

P4O10 + 10C→ P4 + 10CO (4)

3.1.2. BET Analysis

To further characterize the samples prepared, the porosity of the samples was analyzed
by measurements of N2 adsorption. So, the major textural surface characteristics were
observed. The SSA (specific surface area) and other porosity parameters were calculated
for all the prepared samples and are given in Table 1.
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Table 1. Parameters of the pore structure calculated from nitrogen adsorption isotherms.

Adsorbent
Specific Surface

Area
m2/g

Micropore
Volume
cm3/g

Mesopore
Volume
cm3/g

Total Pore
Volume
cm3/g

ACp-350 542 0.081 0.362 0.669
ACp-400 899 0.092 0.357 0.737
ACp-450 942 0.087 0.348 0.994
ACp-500 998 0.071 0.342 1.582
ACp-550 1025 0.068 0.339 2.321
ACp-600 1052 0.052 0.333 2.959
ACp-650 1032 0.031 0.251 2.733
ACp-700 221 0.030 0.125 0.586
ACp-750 112 0.021 0.089 0.342
ACp-800 5 0.002 0.003 0.005

The surface area of ACp-350 (542 m2/g) is smaller by 66% than that of ACp-400
(899 m2/g). However, by increasing the carbonization temperature from 350 to 600 ◦C, a
gradual increase in SSA was clearly observed. As can be seen, there is a crucial carbonization
temperature range (from 550 to 650 ◦C) over which the SSA decreases. This is normal in
terms of activated carbon chemistry and can be attributed to damage (and in some cases
further collapse) of the sample structure. In the case of oil adsorption, the major factor is
the volume of the samples in line with the SSA. So, the above characteristics can be used to
select the most appropriate sample for the oil experiments.

3.1.3. SEM Micrographs

Scanning Electron Microscopy was used in order to visualize the surface morphology
of the ACp-600 (best oil sorption performance) and ACp-800 (lowest oil sorption perfor-
mance) samples. Figure 2 presents the surface morphology of both samples. For ACp-800,
the SEM micrograph shows layer-formed AC particles with dispersed agglomerates on
the surface estimated to be due to the synthesis process and possible formation of carbon
crystals [18], but no pore openings are visible.
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Figure 2. SEM micrographs; (a) ACp-800 and (b) ACp-600.

The latter fact supports the N2 adsorption measurement results, where the specific
sample showcased the minimum SSA and Vtot of all samples. On the contrary, ACp-600
in Figure 2b, shows pores with good distribution on the surface of the sample, while it
preserves its layered formation.
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3.2. Sorption Evaluation
3.2.1. Sorption Capacity

The sorption evaluation is the major parameter that affects the process given that it is
very important in real conditions (i.e., oil spills) to use “fast” sorbents with high capacity.
Figure 3 shows the sorption capacity expressed in grams of oil per gram of ACp for the
different samples prepared (different carbonization temperatures during synthesis).
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The most efficient ACp sample prepared is that prepared at 600 ◦C (carbonization). It
seems that by increasing the temperature of carbonization, the SSA and Vtot increases, which
consequently causes the oil sorption to increase. In particular, the oil sorption capacity
increased from ACp-350 to ACp-600 by 148%. Then, a slight decrease was observed for the
sample ACp-650 (2.5%—from 72 to 70 g/g). However, a drastic reduction of 86% was clear
from the 650 to 700 ◦C samples. This intense decrease can be attributed to the collapse of the
material which “deactivated” the sorptive sites and the so-called “structure” of the material;
the latter can be confirmed from Table 1. In general, at first the oil molecules will be diffused
onto the material’s surface, so the oil molecules then become entrapped in the material
because of the capillarity (capillary effects). The result is the agglomeration of the oil
droplets in the porous network. It should be noted that the majority of the composition of
oil is non-polar hydrocarbons; therefore, their sorption can be due to physical non-covalent
interactions (van der Waals forces).

3.2.2. Sorption Kinetics

Figure 4 shows the affinity of AC samples to oil with regard to time. It should be
noted that the experimental points are the average of four experimental measurements. The
first finding, regarding the samples prepared with carbonization temperatures from 350 to
600 ◦C, is the similar kinetic trend and the obvious splitting of the kinetic areas. All samples
from 5 to 35 min showed a strong increase in the oil sorption. This is absolutely normal and
can be explained by considering the AC surface chemistry. When the oil comes in contact
with the material, the molecules try to find the appropriate active site to be adsorbed. This
phenomenon is very intense in the first stages of contact because the material is “empty”.
By increasing the contact time, the first oil molecules that have come in contact with the AC
samples were already adsorbed, so the available active sites are fewer and the oil molecules
cannot easily find sites.
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After a fixed time (as we can see after 1 h), all active sites are filled with oil and the
residual ones are in the solution (liquid phase) and cannot be adsorbed. So, the three kinetic
regions of (i) sharp, (ii) gradual, and (iii) equilibrium can follow the widely known theory
of sorption kinetics. The aforementioned behavior is the same for all materials with some
very slight changes because all of them are of the same type (activated carbons from the
same source).

On the other hand, the sorption capacity is different for the prepared AC samples, but
they follow a fully explainable order. In particular, the material with the highest capacity
(72 g/g) has the highest SSA (ACp-600, 1052 m2/g) and Vtot. (2.959 cm3/g). This indicates
that the increase in carbonization temperature from 350 to 600 ◦C had positive effects on
the textural characteristics of the AC samples and consequently on their sorption capacity.
The more SSA and Vtot the material presents, the higher capacity they have.

However, after the crucial value of 600 ◦C, the further carbonization affected the
sorption negatively because the structure of the samples was damaged. This behavior
seems to be exponential in the cases of 700–800 ◦C.

3.2.3. Real Environment Simulation

The selected sample for this case was again ACp-600, while contact times were 5,
10, 20, 30, 45, 60, 90 and 120 min. Figure 5 shows a comparative plot of oil sorption
capacity of ACp-600 in oil and oil/seawater systems (Figure 5a). In Figure 5b, a comparison
of ACp-600 sorption capacity in seawater with ACp-700 in oil is presented in order to
quantitatively evaluate oil sorption. As can be observed, the oil uptake is affected by
the system’s complexity with the presence of seawater, while time dependence is not so
pronounced. On the other hand, the sorption process seems to have a sharper increase in
the first 15 min compared to that of the oil system.

The sorption capacity of ACp-600 decreases by 77% in the oil/seawater system. This
decrease can be attributed to oil solubility, which increases as salinity increases [19]. Despite
the lower total performance, ACp-600 in seawater preserves its superiority compared to
samples prepared at higher carbonization temperatures. In fact, as can be seen in Figure 5b,
ACp-600 in seawater has faster, sharper and 39% more oil uptake than ACp-700. The latter
fact supports the estimation that initial oil sorption capacity of ACp-600 is depressed due
to higher oil solubility and pore occupation by seawater salts.
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In order to validate the experimental results, oil sorption kinetic models were per-
formed. The selected models were the linear driving force (LDF) model and the fractal-like
linear driving force (FL-LDF) model. Figure 6 shows experimental results fitted with the
two selected oil sorption kinetic modelsBoth models are similar, with LDF being more
simplistic, presenting a linear relationship of sorption with time.

The fractal-like linear driving force includes oil observed (apparent) diffusion co-
efficient alteration, with time, due to a non-uniform size distribution of the material.
Parameters of both models are summarized in Table 2. For the LDF model, the equation
applied is:

mt = mmax[1 − exp(−βt)] (5)

where mt and mmax are the amount of oil absorbed after each contact time and the maxi-
mum oil absorption capacity of the pores, respectively, designated as g/g of the adsorbent.
Variable β is the mass transfer coefficient related linearly to the apparent diffusion coeffi-
cient of oil into the pores.
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Table 2. Parameters of the FL-LDF and LDF model for ACp-600 in oil and oil/seawater systems.

System Model mmax
(g/g)

β

(s−1) α D’ R2

ACp-600 FL-LDF 72.87 - 0.49 0.021 0.998
LDF 75.43 0.037 - - 0.993

ACp-600sw FL-LDF 16.23 - 0.9 0.009 0.991
LDF 16.89 0.075 - - 0.907

The fractal-like linear driving force is derived from [20]:

mt = mmax[1 − exp(−D’tα)] (6)

where D’ is the progressive, so-called observed diffusion coefficient and α, 0 < α ≤ 1, is
a constant indicating the uniformity of pore size; an approximation to 1 means a more
homogenous size distribution.

In both cases, the best fitting is presented by the FL-LDF model. Model fitting provides
more information about the complexity of the oil/seawater system. Specifically, parameter
D’, which corresponds to the diffusion coefficient, decreases in the case of the ACp-600sw
system due to increased viscosity of the oil because of the salinity [21]. On the other hand,
constant α, which is determined by the uniformity of porous size, increases, thus leading
to the estimation that the α value is increased due to the fact that dissolved salts from the
seawater “blocks” some of the pores, resulting in a false size homogeneity.

3.3. Reuse

A very important factor to evaluate is the ability of the sorbent to be reused [22]. In
Figure 7, the reuse ability of the ACp-600 is presented. The material was selected for this
test because it presented the highest sorption capacity (see previous section). As can be
observed, the material lost only 5% after 40 sequential reuse sorption–desorption cycles.
This makes this AC sample very promising for oil-spill clean-up technology.

The prepared material shows great stability while possessing high oil uptake capacity,
attributed to the porous structure of the adsorbent obtained during the synthesis process.
It is believed that the specific material could be combined with mechanical assistance, such
as rotation. Rotation of the adsorbent in a drum for oil spill response would increase the
surface contact of oil with the material. In fact, experimental results of gas adsorption
under rotation [23], as well as preliminary results of this work’s continuation, showcase
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strong indications to this end. Additionally, regarding the material’s hydrophobic nature,
rotation would provide the desired potential to uptake oil rather than the underlying water.
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4. Conclusions

Petroleum products are toxic, complex hydrocarbon compounds that when spilled,
either in oceans or on land, cause severe issues for ecology, including humans. There are
a number of oil-spill response and clean-up techniques, some of them efficient but not
cost-effective and vice versa. One eco-friendly and cost-effective approach is oil sorption
onto adsorbent materials. Such materials should present (i) efficiency, (ii) reusability and
(iii) availability regarding raw materials. This work investigates a low-cost activated carbon
derived from potato peels with good potential for oil spills, and in general petroleum
products, remediation in water. The results of this specific study reveal that carbonization
temperature plays a crucial role in the pore structure of the final material, showing a
maximum increase in SSA (1052 m2/g) at 600 ◦C followed by an almost exponential
decrease at the higher temperatures, with a 94% increase from the low carbonization
temperature (350◦C) sample. Regarding the total volume, another critical property, the
same sample presents a value of 2.959 cm3/g, which corresponds to a 74% higher level
than the sample with the lowest total pore volume. Therefore, the specific sample presents
the highest oil uptake of 72 g/g. Although the same sample performs only 1/3 of the
uptake when seawater is present, its good reusability rate is promising for application
in oil spill clean-up. Further research is directed towards the assistance of the oil spill
adsorption assisted by mechanical means, such as rotation, that has been shown to increase
the material’s capacity compared to static conditions.
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