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Abstract: The delays and disruptions during the pandemic have awakened interest in the sustainabil-
ity and resilience of production systems to emergencies. In that context, the deployment of smart
technologies has emerged as an almost mandatory development orientation to ensure the stability of
manufacturing. The core value of smart technologies is to reduce the dependence on human labor in
production systems. Thereby, the negative impacts caused by emergency situations are mitigated.
However, the implementation of smart technologies in a specific production system that already
exists requires a high degree of suitability. Motivated by this fact, this study proposes an integrated
spherical fuzzy bounded rationality decision-making approach, which is composite of the spherical
fuzzy decision-making trial and evaluation laboratory (SF DEMATEL) and the spherical fuzzy regret
theory-based combined compromise solution (R-SF CoCoSo) method. The proposed approach reflects
both the ambiguities and psychological behaviors of decision-makers in prioritization problems. It
was applied to prioritize seven smart technologies for manufacturing in Vietnam. The results show
that reliability, costs, and maturity are the most important criteria for choosing smart technology
which is suitable for an existing production system in Vietnam. Our findings seem to suggest that the
automatic inspection, remote machine operation, and robots are the most suitable smart technologies
to stabilize and sustain production in Vietnam for emergency situations.

Keywords: multiple criteria decision-making; bounded rationality decision-making; the combined
compromise solution method; the decision-making trial and evaluation laboratory; spherical fuzzy
sets; regret theory; sustainable manufacturing; smart technology

1. Introduction

Strong global competition along with many fierce events cause instability in produc-
tion. These have strongly demanded that production operations be re-examined from a
flexible perspective [1]. In manufacturing organizations, manufacturing is a core compe-
tency and plays a crucial part in giving firms a competitive advantage. Therefore, the
development of production strategy should be given maximum attention [2]. The produc-
tion function consists of a complex structure, consisting of many different components,
such as workers, equipment, raw materials, machines, etc., and necessary management
functions in production. The main task of production management is to maintain the link
between components to create an efficient production structure [3]. However, disturbance
by unexpected factors without precaution will cause failure to components in the produc-
tion organization as well as the production function. That is why when past events happen,
the production system is vulnerable. For example, the ongoing COVID-19 pandemic has
disrupted the operations of manufacturing organizations, resulting in production flow dis-
ruptions. As of now, this is believed to be the longest disruption the world has ever seen [4].
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As another example, many semiconductor firms’ manufacturing facilities had to shut down
owing to a shortage of raw materials during the 2016 Taiwan earthquake. As a result, Korea,
Japan, and the United States have all been directly impacted by this situation [5]. In other
abrupt events, shipments of hard disks have plummeted due to floods in Thailand in 2011,
causing prices globally to rise unexpectedly [6]. Therefore, to minimize internal or external
failure due to disruption, manufacturing organizations should emphasize building pro-
duction resilience [7]. For the purpose of mitigating economic shocks, the advanced digital
technology of Industry 4.0 is a promising solution [8–10]. In addition, advancements in
advanced technology such as artificial intelligence, blockchain, digital twin, virtual reality,
etc. have attracted the attention of researchers to build resilience recovery of production
function in manufacturing organizations [11]. The correct application of technologies in
production is the most important factor for efficiency, saving costs, and risk reduction for
companies. However, choosing the right technology for the actual context is very important.
In particular, this study focuses on manufacturing companies in Vietnam [12]. This is one
of the countries that integrates strongly with the regional supply chain, especially with
China. However, the investigations to prioritize smart technologies to ensure sustainable
production in emergency situations are still lacking in the case of Vietnam. This has been
the inspiration and starting point for the research.

According to the literature, prioritization problems, which consider multiple factors or
criteria, are wisely handled by multiple criteria decision-making (MCDM) methods [13,14].
Amongst famous MCDM approaches, the decision-making trial and evaluation laboratory
method (DEMATEL) is an emerging and robust method. The DEMATEL is frequently
applied in studies to determine the weight of evaluation criteria. In addition, it is a
useful practical tool for identifying potential relationships between criteria in complex
systems [15]. As one of the newest MCDM approaches, the combined compromise solution
(CoCoSo) method has been applied in various applications and fields such as supply chain
management [16], technology [17,18], transportation [19], etc. In decision-making problems,
crisp scales struggle to accurately express the judgments of decision-makers because of
their intrinsic complexity and ambiguity [20]. Uncertainty information is defined by a
membership function by Zadeh, which marks the birth of the original fuzzy set [21]. In
parallel with the development and evolution of multi-criteria decision-making methods,
fuzzy sets have been studied and proposed continuously for decades [13]. Milestones
in this development can be listed as type-2 fuzzy sets by Zadeh [22], intuitionistic fuzzy
sets by Atanassov [23], interval type-2 fuzzy sets by Jerry et al. [24], Pythagorean fuzzy
sets by Yager [25], neutrosophic fuzzy sets by Smarandache [26], hesitant fuzzy sets by
Torra [27], etc. Based on the synthesis of Pythagorean fuzzy sets and neutrosophic fuzzy
sets, Kutlu Gündoğdu and Kahraman introduced spherical fuzzy sets (SFSs) in 2019 [28].
Accordingly, spherical fuzzy numbers (SFNs) are defined using three parameters including
membership, non-membership, and hesitancy. As a result, decision-makers are not only
able to demonstrate their hesitancy, but are also provided with a larger domain of preference
for judgments. Moreover, the intrinsic complexity of decision-makers is also reflected
in other psychological behaviors [29]. Regret theory is one of the important bounded
rational decision theories for decision-making processes by capturing the regret aversion
psychological behavior of decision-makers [30].

The primary objective of the present investigation is to propose a powerful and novel
MCDM approach, which must reflect both the ambiguities and psychological behaviors
of decision-makers, in the problem of prioritizing smart technologies in sustainable pro-
duction. Therefore, an integrated spherical fuzzy bounded rationality decision-making
approach is developed and introduced in this study. The proposed approach is developed
based on the advantages of DEMATEL and CoCoSo methods in the spherical fuzzy envi-
ronment. Furthermore, it is enhanced by the principles of regret theory that capture the
psychological behaviors of decision-makers. Then, the proposed approach is applied to
prioritize smart technologies for manufacturing in Vietnam to increase the ability to re-
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spond to emergency situations. The findings of the prioritization process are the secondary
research objective of this article.

The organization of this study begins with motivation, research objectives, and novelty
in Section 1. In Section 2, a systematic review of related studies is conducted and discussed.
The proposed method and numerical results of applying technologies in smart manufactur-
ing are presented in Sections 3 and 4, respectively. A comparative study is presented in
Section 5. Finally, conclusions are presented to close this article.

2. Literature Review

Over the decades, MCDM techniques have been applied with increasing frequency
to decision-making problems in many fields as shown in Table 1. Common problems of
decision-making in manufacturing include determining sustainable production strategies,
evaluating innovations, and choosing smart technologies. Among them, technology selec-
tion is one of the most rigorous multi-criteria decision-making issues, especially in cases
where sustainability is concerned. Kabir et al. proposed the strengths, weaknesses, oppor-
tunities, and threats (SWOT) analysis and analytic hierarchy process (AHP) integration
method to support the technology selection process for the implementation of intelligent
power management [31]. As a result, potential technologies have been introduced to make
it easier to deploy smart power management programs. Kaa et al. introduced the MCDM
model based on the AHP and logarithmic fuzzy preference programming (LFPP) to support
the evaluation of photovoltaic technologies [32]. The results of this study are useful to
energy policy-makers as well as those who must make decisions about which standards
should be supported for photovoltaic technology. Shen et al. developed an MCDM model
that integrates Delphi fuzzy methods, DEMATEL, and analytical network processes (ANPs)
for the problem of technology selection related to economic and industrial prospects [33].
The results of this paper can help the top managers of companies to apply accurate and ef-
fective technologies. Büyüközkan et al. introduced a cloud computing technology selection
method based on AHP, complex proportional assessment (COPRAS), multiple objective
optimization on the basis of ratio analysis plus full multiplicative form (MULTIMOORA),
and multi-criteria optimization and compromise solution (Višekriterijumsko Kompromisno
Rangiranjein, VIKOR, in Serbian) methods [34]. Onur developed spherical fuzzy AHP and
sensitivity analysis to aid in the mining technology selection and evaluation process [35].

According to previous studies, the DEMATEL method is a most advanced way to
construct and examine a structural model for examining the relationship between influences
among complicated criteria [15,36,37]. On another hand, the CoCoSo, a novel MCDM
technique that combines straightforward additive weights with exponentially weighted
product models, was created by Yazdani et al. in 2019 [38]. This is an effective method
of ranking alternatives and is one of the most modern multi-criteria decision-making
strategies based on compromise solutions. In recent years, MCDM integration approaches
from the CoCoSo method have been introduced more and more. For spray-painting robot
identification in the automotive industry, a novel combination of the CoCoSo method
and SWARA method is introduced [39]. Moreover, the fuzzy extensions of the CoCoSo
method are also vigorously developed by scholars. In 2021, Lahane and Ravi introduced a
Pythagorean fuzzy extension of integrated AHP and CoCoSo approach for performance
outcome ranking of a circular supply chain [40]. As another example, Deveci et al. proposed
a hybrid q-rung fuzzy extension of the CoCoSo approach for offshore wind farm location
selection problems in Norway [41]. On the other hand, prospect and regret theories are
increasingly applied in the bounded rationality decision-making process [42,43]. For
example, Ilbahar et al. assessed the risk of investments in renewable energy based on
prospect theory and intuitive fuzzy AHP [44]. In 2022, Zhang et al. applied the spherical
gray relational analysis (SF-GRA) method based on cumulative prospect theory to select
suppliers of materials [45].

From the literature review, the development, application, and widespread integration
of MCDM methods with each other as well as with fuzzy theories can be seen. Among
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them, the highlight is the rapid development of combinations from DEMATEL and CoCoSo
methods. Furthermore, theories that reflect psychological behavior in decision-making such
as prospect theory and regret theory are widely reinforced in MCDM approaches. Our new
approach, which is presented in the following section, is motivated by these conclusions.

Table 1. Application of MCDM approaches in manufacturing.

No. Authors Year

MCDM Approach

Other
Approach Fuzzy Set
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O
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1 Tzeng and Huang [46] 2011 X X X -
2 Shen et al. [33] 2011 X X Triangular fuzzy
3 Kaa et al. [32] 2014 X LFPP -
4 Büyüközkan et al. [34] 2018 X X X Triangular fuzzy
5 Dogan [35] 2021 X Spherical fuzzy
6 Kabir et al. [31] 2021 X SWOT -
7 Wang et al. [47] 2021 X X DEA Triangular fuzzy
8 Le and Nhieu [12] 2022 X Triangular fuzzy
9 Guan et al. [48] 2022 X X Triangular fuzzy

10 Garg et al. [49] 2022 X X Triangular fuzzy
11 Krstić et al. [50] 2022 X X Triangular fuzzy
12 Gamal et al. [51] 2022 X X Triangular fuzzy
13 Peng et al. [52] 2022 X Spherical fuzzy
14 Le et al. [53] 2022 X X DEA Spherical fuzzy
15 This study 2022 X X Regret theory Spherical fuzzy

3. Methodology
3.1. Regret Theory in Decision-Making

For the risk decision-making problems, the decision-maker’s opinions are bounded
rational with their psychological behaviors such as loss aversion, risk aversion, reference
dependence, regret aversion [42]. Regret theory is one of important bounded rational deci-
sion theories for decision-making processes by capturing the regret aversion psychological
behavior of decision-makers [30]. The core idea of regret theory is to care not only about
the utility of the chosen alternatives, but also the utility of the remaining alternatives. This
is to avoid choosing alternatives that could lead to regret for decision-makers. In other
words, decision-makers will feel regret if their choices yield utility that is less than the
expected utility, otherwise, they feel rejoiceful. The important principles of regret theory
are represented by the following definitions.

Definition 1. Let b be a consequence of choosing alternative B, the utility value obtained by
alternative B with a given decision-maker’s risk aversion coefficient (λ) can be determined as:

v(b) = bλ, 0 < λ < 1 (1)

The smaller the risk aversion of the decision-makers, the larger the value of the risk
aversion coefficient.

Definition 2. Let b1 and b2 be consequences of choosing alternatives B1 and B2. The regret–rejoice
utility of choosing alternative B1 rather than B2 with a given decision-maker’s regret aversion
coefficient (θ) is defined as:

r(b1, b2) = 1− e−θ(v(b1)−v(b2)), θ > 0 (2)
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The smaller the regret aversion of the decision-makers, the smaller the value of the
regret aversion coefficient.

Definition 3. Let bi(i = 1 . . . n) be a consequence of choosing alternative Bi(i = 1 . . . I). The
overall utility obtained by alternative Bi can be defined as:

u(bi) = v(bi) + r(bi, b∗) (3)

where
b∗ = max

1≤i≤I
bi r(bi, b∗) ≤ 0 (4)

3.2. Fuzzy Sets and Spherical Fuzzy Sets

To deal with ambiguity in human judgments, linguistic variables are seen as more
effective descriptors than crisp numbers. To quantify linguistic terms, fuzzy theories have
been introduced, developed, and widely used in the field of decision-making. Based on
the synthesis of Pythagorean fuzzy sets and neutrosophic fuzzy sets, Kutlu Gündoğdu
and Kahraman introduced spherical fuzzy sets (SFSs) in 2019 [28]. Accordingly, spherical
fuzzy numbers (SFNs) are defined using three parameters including membership, non-
membership, and hesitancy. As a result, decision-makers are not only able to demonstrate
their hesitancy, but are also provided with a larger domain of preference for judgments.
The definition of the SFN and its operators are presented as follows:

Definition 4. Considering the universe of discourse T, a spherical fuzzy number Ã of T, with the
degree of membership

(
αÃ

)
, non-membership

(
βÃ

)
, and hesitancy

(
δÃ

)
, is defined as:

Ã =
{
〈t,
(
αÃ(t), βÃ(t), δÃ(t)

)∣∣t ∈ T
}

(5)

where αÃ : T → [0, 1], βÃ : T → [0, 1], δÃ : T → [0, 1]

and

0 ≤ α2
Ã
(t) + β2

Ã
(t) + δ2

Ã
(t) ≤ 1 ∀t ∈ T (6)

Definition 5. Consider two SFNs Ã =
(
αÃ, βÃ, δÃ

)
and B̃ =

(
αB̃, βB̃, δB̃

)
from the universe of

discourse T1 and T2. Here are the basic operators [28]:
Addition

Ã⊕ B̃ =

{√
α2

Ã
+ α2

B̃
− α2

Ã
α2

B̃
, βÃβB̃,

√(
1− α2

B̃

)
δ2

Ã
+
(

1− α2
Ã

)
δ2

B̃
− δ2

Ã
δ2

B̃

}
(7)

Multiplication

Ã⊗ B̃ =

{
αÃαB̃,

√
β2

Ã
+ β2

B̃
− β2

Ã
β2

B̃
,
√(

1− β2
B̃

)
δ2

Ã
+
(

1− β2
Ã

)
δ2

B̃
− δ2

Ã
δ2

B̃

}
(8)

Multiplication by a scalar (ε > 0)

εÃ =

{√
1−

(
1− α2

Ã

)ε
, βε

Ã
,

√(
1− α2

Ã

)ε
−
(

1− α2
Ã
− δ2

Ã

)ε
}

(9)
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Power of Ã (ε > 0)

Ãε =

{
αε

Ã
,

√
1−

(
1− β2

Ã

)ε
,

√(
1− β2

Ã

)ε
−
(

1− β2
Ã
− δ2

Ã

)ε
}

(10)

Definition 6. The spherical weighted arithmetic mean (WAM) and spherical weighted geometric
mean (WGM) with the weights w = (w1, w2, . . . , wI), where 0 ≤ wi ≤ 1 and ∑ I

i=1wi = 1, are
calculated as [28]:

WAMw

(
Ã1, Ã2, . . . , ÃI

)
= w1 Ã1 + w2 Ã2 + . . . + wI ÃI

=

{√
1−

I
∏
i=1

(
1− α2

Ãi

)wi
,

I
∏
i=1

β
wi
Ãi

,

√
I

∏
i=1

(
1− α2

Ãi

)wi −
I

∏
i=1

(
1− α2

Ãi
− δ2

Ãi

)wi

}
(11)

WGMw

(
Ã1, Ã2, . . . , ÃI

)
= Ãw1

1 + Ãw2
2 + . . . + ÃwI

I

=

{
I

∏
i=1

α
wi
Ãi

,

√
1−

I
∏
i=1

(
1− β2

Ãi

)wi
,

√
I

∏
i=1

(
1− β2

Ãi

)wi −
I

∏
i=1

(
1− β2

Ãi
− γ2

Ãi

)wi

}
(12)

Definition 7. Consider two SFNs Ã =
(
αÃ, βÃ, δÃ

)
and B̃ =

(
αB̃, βB̃, δB̃

)
from the universe of

discourse T1 and T2. The following equations from (13) to (18) are valid with the positive value of ε,
ε1, and ε2 [28].

Ã⊕ B̃ = B̃⊕ Ã (13)

Ã⊗ B̃ = B̃⊗ Ã (14)

ε
(

Ã⊕ B̃
)
= εÃ⊕ εB̃ (15)

ε1 Ã⊕ ε2 Ã = (ε1 + ε2)Ã (16)(
Ã⊗ B̃

)ε
= Ãε ⊗ B̃ε (17)

Ãε1 ⊗ Ãε2 = Ãε1+ε2 (18)

Definition 8. The score function and accuracy function of SFSs are defined as follows for defuzzifi-
cation and comparison.

Ã < B̃ i f and only i f
i.Score

(
Ã
)
< Score

(
B̃
)

or

ii.Score
(

Ã
)
= Score

(
B̃
)

and Accuracy
(

Ã
)
< Accuracy

(
B̃
) (19)

where
Score

(
Ã
)
=
(
αÃ − δÃ

)2
+
(

βÃ − δÃ

)2 (20)

Accuracy
(

Ã
)
= α2

Ã
+ β2

Ã
+ δ2

Ã
(21)

3.3. Integrated Spherical Fuzzy Bounded Rationality Decision-Making Approach (SFBRDM)

In this section, an integrated spherical fuzzy bounded rationality decision-making
approach (SFBRDM), which has been developed based on the advantages of the spherical
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fuzzy DEMATEL (SF DEMATEL) and regret theory-based CoCoSo methods (R-SF CoCoSo),
is proposed and illustrated as Figure 1.
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Step 1. Group of decision-maker identification
A group of decision-makers (DMs) (k = 1 . . . K), which have expertise and experience,

is identified.
Step 2-a. DM weighting
The weights of the kth DMs are determined based on a given SFN Ãk =

(
αÃk

, βÃk
, δÃk

)
,

which represents their expertise, as Equation (22) [37,54].

γk =
1−

(((
1− α2

Ãk

)
+ β2

Ãk
+ δ2

Ãk

)
/3
) 1

2

∑K
k=1 1−

(((
1− α2

Ãk

)
+ β2

Ãk
+ δ2

Ãk

)
/3
) 1

2
(22)

where ∑ K
k=1γk = 1 and 0 ≤ α2

Ãk
+ β2

Ãk
+ δ2

Ãk
≤ 1.

Step 2-b. DMs’ psychological behavior survey
The risk aversion coefficient (λk) and the regret aversion coefficient (θk) of DMs are

surveyed with 0 < λk < 1 and θk > 0. These coefficients are aggregated according to
Equations (23) and (24).

λ =
1
K

K

∑
k=1

λk (23)

θ =
1
K

K

∑
k=1

θk (24)

Step 2-c. Criteria identification
The evaluation criteria (j = 1 . . . J) are determined according to the recommendations

of DMs and references.
Step 3. Criteria cross-influence survey
Each DM provides pairwise comparisons of influence among the criteria in the form

of linguistic terms. The linguistic terms are transformed into SFNs according to the scale
shown in Table 2. As a result, direct influence matrices are formed of the criteria from
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each DM’s point of view. The SF direct influence evaluation matrix of the kth decision-

maker is shown by X̃k =
[

x̃k
jl

]
JxJ

=

[(
αx̃k

jl
, βx̃k

jl
, δx̃k

jl

)]
JxJ

. By using the spherical weighted

arithmetic mean as described in Equation (11), the SF aggregated direct influence matrix is
constructed as Equations (25) and (26).

X̃ =
[

x̃jl

]
JxJ

(25)

where

x̃jl = WAMγk

(
x̃1

jl , x̃2
jl , . . . , x̃k

jl , . . . , x̃K
jl

)
= γ1 x̃1

jl + γ2 x̃2
jl + · · ·+ γk x̃k

jl + · · ·+ γK x̃K
jl (26)

Table 2. SF DEMETAL linguistic scale [55].

Degree of Influence Spherical Fuzzy Number
(α,β,δ)

Insignificant (0.00, 0.30, 0.15)
Low (0.35, 0.25, 0.25)

Medium (0.60, 0.20, 0.35)
High (0.85, 0.15, 0.45)

Step 4. Criteria total influence calculation
The SF aggregated direct influence matrix is divided into three submatrices correspond-

ing to membership, non-membership, and hesitancy for normalization. These matrices
are represented as Equation (27). According to Equations (28), (29), (30), the normalized
submatrices are defined. After that, the total influence submatrices are calculated with the
identity matrix (IM) according to Equations (31), (32), (33). By concatenating total influence
submatrices, the SF total influence matrix is constructed as shown in Equation (34).

Xα =
[
αX̃jl

]
JxJ

, Xβ =
[

βX̃jl

]
JxJ

, Xδ =
[
δX̃jl

]
JxJ

(27)

Yα = sα × Xα, where sα = min

 1

max
j

∑J
l=1 αX̃jl

,
1

max
l

∑J
j=1 αX̃jl

 (28)

Yβ = sβ × Xβ, where sβ = min

 1

max
j

∑J
l=1 βX̃jl

,
1

max
l

∑J
j=1 βX̃jl

 (29)

Yδ = sγ × Xδ, where sγ = min

 1

max
j

∑J
l=1 δX̃jl

,
1

max
l

∑J
j=1 δX̃jl

 (30)

Zα = Yα + Yα′ = Yα(IM−Yα)−1 (31)

Zβ = Yβ + Yβ′ = Yα
(

IM−Yβ
)−1

(32)

Zδ = Yδ + Yδ′ = Yα
(

IM−Yδ
)−1

(33)

Z̃ =
[
z̃jl

]
JxJ

(34)

Step 5. Criteria weighting
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To determine the weight of the criteria, the SF total influence matrix is defuzzied
according to Equation (20). As a result, the total influence matrix is established and
presented as Equation (35). Based on the total influence matrix, the weights of the criteria(

wj
)

are determined according to Equations (36) and (37).

Z =
[
zjl

]
JxJ

(35)

zrow
j =

J

∑
l=1

cjl ; zcolumn
j =

J

∑
l=1

cl j (36)

wj =
crow

j + ccolumn
j

∑J
j=1

(
crow

j + ccolumn
j

) (37)

Step 6. Alternative performance survey
The DMs provide performance evaluations of alternatives (i = 1 . . . I) according to

the criteria in the form of linguistic terms. The SF decision matrices were established by
transforming to SFNs according to Table 3. The SF decision matrix of the kth decision-maker

is shown by S̃k =
[
s̃k

ij

]
IxJ

=

[(
αs̃k

ij
, βs̃k

ij
, δs̃k

ij

)]
IxJ

. Then, the spherical weighted arithmetic

mean is applied to aggregate and construct the SF aggregated decision matrix as shown in
Equations (38) and (39).

S̃ =
[
s̃ij
]

IxJ (38)

where

s̃ij = WAMγk

(
s̃1

ij, s̃2
ij, . . . , s̃k

ij, . . . , s̃K
ij

)
= γ1 s̃1

ij + γ2 s̃2
ij + · · ·+ γk s̃k

ij + · · ·+ γK s̃K
ij (39)

Table 3. R-SF CoCoSo linguistic scale [12].

Linguistic Term
Spherical Fuzzy

Number
(α,β,δ)

Linguistic Term
Spherical Fuzzy

Number
(α,β,δ)

Absolutely Low (0.1, 0.9, 0.1) Slightly High (0.6, 0.4, 0.4)
Very Low (0.2, 0.8, 0.2) High (0.7, 0.3, 0.3)

Low (0.3, 0.7, 0.3) Very High (0.8, 0.2, 0.2)
Slightly Low (0.4, 0.6, 0.4) Absolutely High (0.9, 0.1, 0.1)

Neutral (0.5, 0.5, 0.5)

Step 7. Alternative utility calculation
The weighted arithmetic sequence

(
W̃Aij

)
and the weighted geometric sequence(

W̃Gij

)
of alternatives are determined based on the criteria weights

(
wj
)

according to
Equations (9) and (10) and shown in Equations (40) and (41). After that, the score function
as shown in Equation (20) is used to defuzzy the weighted sequences. As the results,
the defuzzied weighted arithmetic sequence and the weighted geometric sequence are
constructed as shown in Equations (42) and (43).

W̃Aij =
[
w̃aij

]
IxJ where w̃aij = wj s̃ij (40)

W̃Gij =
[
w̃gij

]
IxJ

where w̃gij =
(
s̃ij
)wj (41)

WAij =
[
waij

]
IxJ where waij = Score

(
w̃aij

)
(42)

WGij =
[
wgij

]
IxJ where wgij = Score

(
w̃gij

)
(43)



Processes 2022, 10, 2732 10 of 21

According to regret theory, the utility of sequences is determined based on the ag-
gregated risk aversion coefficient (λ) as Equations (44) and (45). Then, the vector of ideal
points (V∗) is defined as Equations (46) and (47).

VWA =
[
vWA

ij

]
IxJ

where vWA
ij =

(
waij

)λ (44)

VWG =
[
vWG

ij

]
IxJ

where vWG
ij =

(
wgij

)λ (45)

VWA∗ =
[
vWA∗

j

]
J

where vWA∗
j = max

1≤i≤I

(
vWA

ij

)
(46)

VWG∗ =
[
vWG∗

j

]
J

where vWG∗
j = max

1≤i≤I

(
vWG

ij

)
(47)

Step 8. Alternative regret–rejoice utility calculation
Additionally, the regret–rejoice utility of sequences is determined based on the aggre-

gated regret aversion coefficient (θ) as shown in Equations (48) and (49):

RWA =
[
rWA

ij

]
IxJ

where rWA
ij = 1− e−θ(vWA

ij −vWA∗
j ) (48)

RWG =
[
rWG

ij

]
IxJ

where rWG
ij = 1− e−θ(vWG

ij −vWG∗
j ) (49)

Step 9. Alternative overall utility determination
According to regret theory, the overall utility of sequences is calculated as represented

in Equations (50) and (51). After that, the sum value of overall utility is calculated as
Equations (52) and (53).

UWA =
[
uWA

ij

]
IxJ

where uWA
ij = vWA

ij + rWA
ij (50)

UWG =
[
uWG

ij

]
IxJ

where uWG
ij = vWG

ij + rWG
ij (51)

SUWA =
[
suWA

i

]
I

where suWA
i =

J

∑
j=1

uWA
ij (52)

SUWG =
[
suWG

i

]
I

where suWG
i =

J

∑
j=1

uWG
ij (53)

Step 10. Alternative prioritization
Based on the sum value of overall utility, the additive normalized importance (ψa

i )
and the relative importance (ψb

i ) of alternatives are defined as Equations (54) and (55),
respectively. Meanwhile, the trade-off importance (ψc

i ) of the alternatives is determined
as Equation (56) with the flexibility and stability coefficient (0 < ω < 1). Finally, the final
score (ψi) of alternatives is calculated according to Equation (57). The higher value of ψi,
the better the alternative.

ψa
i =

suWA
i + suWG

i

∑I
i=1
(
suWA

i + suWG
i
) (54)

ψb
i =

suWA
i

min
1≤i≤I

(
suWA

i
) + suWG

i
min

1≤i≤I

(
suWG

i
) (55)

ψc
i =

ωsuWA
i + (1−ω)suWG

i
ω max

1≤i≤I

(
suWA

i
)
+ (1−ω)max

1≤i≤I

(
suWG

i
) (56)
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ψi =

(
ψa

i +ψ
b
i +ψ

c
i

)
3

+ 3
√
ψa

i ×ψb
i ×ψc

i (57)

4. Case Study

In this section, the proposed approach is applied to prioritize smart technologies in
production systems in Vietnam to increase the ability to respond to emergency situations.
To ensure production in unexpected conditions, the core value of smart technologies is to
free the dependence on human labor. Therefore, in this study, seven smart technologies,
which support the three objectives as illustrated in Figure 2, are prioritized.
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In the 1st step, ten experts in different manufacturing sectors in Vietnam were iden-
tified as DMs. Their qualifications, experience, and fields of production are shown in
Table A1 in the Appendix A. In the 2nd step, the authors provide judgments about the
expertise of DMs to determine their weights. By applying Equation (22), DMs’ weights
are calculated as shown in Figure 3. Experts are scored in order to increase the accuracy
of their judgments because the expertise of the experts is different. Therefore, the authors
of this study performed linguistic assessments of experts based on their expertise such as
qualifications, years of experience, manufacture fields, etc. In addition, DMs provided their
risk and regret aversion coefficients. The aggregated risk and regret aversion coefficients
were calculated according to Equations (23) and (24) as shown in Figure 4. According to
DMs, criteria to evaluate the performance of smart technologies in production include
costs, flexibility, productivity, agility, reliability, quality, energy consumption (Ener. Cons.),
profitability, complexity, maturity.

In the 3rd step, the linguistic pairwise comparisons of influence among the criteria
are provided by DMs. Based on those comparisons, the SF aggregated direct influence
evaluation matrix is constructed as shown in Table A2.

According to Equations (27)–(34), the SF total influence matrices are defined as dis-
cussed in the 4th step and represented in Table A3. By applying Equation (20) to defuzzy
the SF total influence matrix, the criteria are weighted according to Equations (35)–(37).
The criteria weighting results are presented in Figure 5. From these results, it is clear
that reliability, local maturity, and costs are the major concerns for manufacturers in Viet-
nam when implementing smart technologies in their production systems. In contrast,
according to decision-makers, mobility was identified as having the lowest weight in smart
technology selection.
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In the 6th step, DMs provide the linguistic evaluations about the performance of
smart technologies according to criteria. The respective linguistic evaluations and SFNs
are presented in Table 3. The evaluation process considers all criteria as benefit criteria.
In other words, for all criteria, the greater the value of SFNs, the better the effect of smart
technology. According to Equations (38) and (39), the SF aggregated decision matrix is
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defined as shown in Table A4. In the 7th step, the weighted arithmetic sequence
(

W̃Aij

)
and the weighted geometric sequence

(
W̃Gij

)
of technologies are determined according to

Equations (40) and (41). Then, the sequences are defuzzied according to Equations (42) and
(43) as shown in Tables A5 and A6.

Applying regret theory, the utility, regret–rejoice utility, and overall utility matrices are
constructed with the aggregated risk aversion coefficient (λ = 0.669) and regret aversion
coefficient (θ = 0.223) according to Equations (44)–(51). In the common case, those coef-
ficients are suggested to be λ = 0.88 and θ = 0.3 as validated in experiments [56]. Those
matrices are presented as Tables A7–A12 in Appendix A.

Finally, the final score (ψi) of smart technologies is determined based on their additive
normalized importance (ψa

i ), relative importance (ψb
i ), and the trade-off importance (ψc

i )
according to Equations (54)–(57). The final results of the R-SF CoCoSo method with the
flexibility and stability coefficient (ω = 0.5) are shown in Table 4.

Table 4. The R-SF CoCoSo results with ω = 0.5.

Technology
The Additive
Normalized

Importance (ψa
i )

The Relative
Importance (ψb

i )

The Trade-Off
Importance with

ω = 0.5 (ψc
i )

The Final Score (ψi) Rank

Robots 0.144 2.075 0.954 1.716 3
Additive production 0.142 2.050 0.937 1.691 5

Internet of Things 0.143 2.055 0.944 1.698 4
Remote machine operation 0.144 2.080 0.951 1.717 2

Voice machine operation 0.141 2.032 0.941 1.684 6
Automatic inspection 0.145 2.093 0.996 1.750 1

Cyber-physical systems 0.141 2.033 0.922 1.673 7

In the final step, the value of flexibility and stability coefficients is changed to analyze
the sensitivity of this factor to the prioritization result. The results of this analysis are
summarized in Figure 6. As seen in Figure 6, there are three priority groups in the deploy-
ment of smart technologies for production systems in Vietnam. The high-priority groups
include automatic inspection, remote machine operation, and robots. The maturity of these
technologies is said to be in line with the level of scientific and technical development in
developing countries. Therefore, their feasibility, ease of deployment, and estimated cost
make them more suitable for manufacturers in Vietnam. The additive production and
Internet of Things belong to the second group, which has medium priority for deployment
in Vietnam. The low-priority group includes voice machine operation and cyber-physical
systems because of their certain strangeness to production systems in developing countries.

Processes 2022, 10, 2732 13 of 21 
 

 

Applying regret theory, the utility, regret–rejoice utility, and overall utility matrices 
are constructed with the aggregated risk aversion coefficient (𝜆 = 0.669) and regret aver-
sion coefficient (𝜃 = 0.223) according to Equations (44)–(51). In the common case, those 
coefficients are suggested to be 𝜆 = 0.88 and 𝜃 = 0.3 as validated in experiments [56]. 
Those matrices are presented as Tables A7–A12 in Appendix A. 

Finally, the final score (ψ ) of smart technologies is determined based on their addi-
tive normalized importance (ψ ), relative importance (ψ ), and the trade-off importance 
(ψ ) according to Equations (54)–(57). The final results of the R-SF CoCoSo method with 
the flexibility and stability coefficient (𝜔 = 0.5) are shown in Table 4. 

Table 4. The R-SF CoCoSo results with 𝜔 = 0.5 

Technology 
The Additive Normalized 

Importance (𝛙𝒊𝒂) 
The Relative 

Importance (𝛙𝒊𝒃) 

The Trade-Off Im-
portance with 𝝎 = 𝟎. 𝟓 (𝛙𝒊𝒄) 

The Final 
Score (𝛙𝒊) Rank 

Robots 0.144 2.075 0.954 1.716 3 
Additive production 0.142 2.050 0.937 1.691 5 

Internet of Things 0.143 2.055 0.944 1.698 4 
Remote machine operation 0.144 2.080 0.951 1.717 2 
Voice machine operation 0.141 2.032 0.941 1.684 6 

Automatic inspection 0.145 2.093 0.996 1.750 1 
Cyber-physical systems 0.141 2.033 0.922 1.673 7 

In the final step, the value of flexibility and stability coefficients is changed to analyze 
the sensitivity of this factor to the prioritization result. The results of this analysis are sum-
marized in Figure 6. As seen in Figure 6, there are three priority groups in the deployment 
of smart technologies for production systems in Vietnam. The high-priority groups in-
clude automatic inspection, remote machine operation, and robots. The maturity of these 
technologies is said to be in line with the level of scientific and technical development in 
developing countries. Therefore, their feasibility, ease of deployment, and estimated cost 
make them more suitable for manufacturers in Vietnam. The additive production and In-
ternet of Things belong to the second group, which has medium priority for deployment 
in Vietnam. The low-priority group includes voice machine operation and cyber-physical 
systems because of their certain strangeness to production systems in developing coun-
tries. 

 
Figure 6. Stability coefficient sensitivity analysis results. 

5. Comparative Study 

3 3 3 3 3 3 3 3
2

5 5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4 4

2 2 2 2 2 2 2
1 1

6 6 6 6
7 7 7 7 7

1 1 1 1 1 1 1
2

3

7 7 7 7
6 6 6 6 6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Flexibility and stability coefficient (𝜔)

Robots Additive production

Internet of things Remote machine operation

Voice machine operation Automatic inspection

Cyber-physical systems

Figure 6. Stability coefficient sensitivity analysis results.



Processes 2022, 10, 2732 14 of 21

5. Comparative Study

In this section, the values of the flexibility and stability coefficients of the three methods,
R-SF CoCoSo, SF TOPSIS, and SF EDAS, are given for comparison. The results of this
comparison are summarized in Table 5. As shown in Table 5, additive production, Internet
of Things, and voice machine operation are the smart technologies with unchanged results
in the rankings for all three methods. The next groups are robots and remote machine
operation, and these two technologies have similar results in the rankings, with slight
differences. However, automatic inspection and cyber-physical systems are very different,
almost opposite in rankings. Automatic inspection technology ranked 7th when applying
the SF TOPSIS method, but ranked first when applying the other two methods, R-SF
CoCoSo and SF EDAS. For cyber-physical systems technology, when applying the SF
TOPSIS method, it is ranked second, but when applying the other two methods, it ranks
last. In general, through the table analysis of the comparison ranking results, we can see
that the application of the R-SF CoCoSo method is quite similar in terms of results to the
SF EDAS method. However, the R-SF CoCoSo method applied in the case of this paper is
more prominent in its novelty.

Table 5. The comparison ranking results.

Smart Technology R-SF CoCoSo SF TOPSIS SF EDAS

Robots 3 1 2
Additive production 5 5 5

Internet of Things 4 4 4
Remote machine operation 2 3 3

Voice machine operation 6 6 6
Automatic inspection 1 7 1

Cyber-physical systems 7 2 7

6. Conclusions

The delays and disruptions during the pandemic have awakened interest in the
sustainability and resilience of production systems to emergencies. In that context, the
deployment of smart technologies has emerged as an almost mandatory development
orientation to ensure the stability of manufacturing. The core value of smart technologies is
to reduce the dependence on human labor in production systems. Thereby, the negative
impacts caused by emergency situations are mitigated. However, the implementation of
smart technologies in a specific production system that already exists requires a high degree
of suitability. Motivated by this fact, this study proposes an integrated spherical fuzzy
bounded rationality decision-making approach.

The remarkable and key contribution of this study is the novel proposed SFBRDM
approach which is a composite of the SF DEMATEL and R-SF CoCoSo methods. It reflects
both the ambiguities and psychological behaviors of decision-makers in prioritization
problems. As the secondary contribution, this study’s findings show that reliability, costs,
and maturity are the most important criteria for choosing smart technology which is suitable
for an existing production system in Vietnam. The results also suggest that automatic
inspection, remote machine operation, and robots are the most suitable smart technologies
to stabilize and sustain production in Vietnam for emergency situations. In future studies,
manufacturers can apply this proposed approach to identify the smart technology which is
best suited to their existing system, based on their criteria and psychological characteristics.
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Appendix A

Table A1. Decision-makers’ qualifications, experience, and manufacture field.

DM Qualification Year of Experience Manufacture Fields SFN Expertise
Judgment

DM 1 Master 13 Textile (0.60, 0.20, 0.35)
DM 2 Ph.D. 9 High-tech product (0.85, 0.15, 0.45)
DM 3 Ph.D. 11 High-tech product (0.85, 0.15, 0.45)
DM 4 Master 9 Textile (0.60, 0.20, 0.35)
DM 5 Master 6 Dairy product (0.35, 0.25, 0.25)
DM 6 Ph.D. 15 Renewable energy device (0.85, 0.15, 0.45)
DM 7 Master 5 High-tech product (0.35, 0.25, 0.25)
DM 8 Master 8 Automotive industry (0.35, 0.25, 0.25)
DM 9 Ph.D. 7 Automotive industry (0.35, 0.25, 0.25)
DM 10 Master 14 High-tech product (0.85, 0.15, 0.45)

Table A2. The SF direct influence matrix.

Criteria Agility Flexibility Productivity Cost Reliability

Agility (0.00, 0.30, 0.20) (0.63, 0.22, 0.48) (0.46, 0.25, 0.37) (0.75, 0.18, 0.48) (0.60, 0.21, 0.44)
Flexibility (0.63, 0.21, 0.47) (0.00, 0.30, 0.20) (0.66, 0.20, 0.46) (0.61, 0.22, 0.47) (0.53, 0.23, 0.40)

Productivity (0.65, 0.21, 0.49) (0.61, 0.22, 0.47) (0.00, 0.30, 0.20) (0.51, 0.23, 0.38) (0.59, 0.22, 0.44)
Cost (0.66, 0.20, 0.46) (0.73, 0.19, 0.50) (0.68, 0.21, 0.50) (0.00, 0.30, 0.20) (0.59, 0.23, 0.48)

Reliability (0.61, 0.22, 0.46) (0.63, 0.21, 0.46) (0.69, 0.20, 0.49) (0.53, 0.23, 0.40) (0.00, 0.30, 0.20)
Quality (0.46, 0.25, 0.37) (0.61, 0.22, 0.47) (0.64, 0.21, 0.46) (0.47, 0.25, 0.38) (0.61, 0.22, 0.46)

Ener. Cons. (0.71, 0.20, 0.50) (0.60, 0.22, 0.46) (0.58, 0.22, 0.41) (0.58, 0.22, 0.43) (0.65, 0.21, 0.48)
Profitability (0.67, 0.20, 0.47) (0.68, 0.20, 0.48) (0.49, 0.24, 0.39) (0.56, 0.23, 0.43) (0.56, 0.22, 0.39)
Complexity (0.64, 0.22, 0.48) (0.63, 0.21, 0.47) (0.69, 0.20, 0.49) (0.59, 0.22, 0.44) (0.49, 0.24, 0.40)

Maturity (0.58, 0.22, 0.43) (0.61, 0.22, 0.47) (0.48, 0.24, 0.39) (0.48, 0.23, 0.31) (0.70, 0.19, 0.47)

Criteria Quality Ener. Cons. Profitability Complexity Maturity

Agility (0.72, 0.19, 0.48) (0.47, 0.25, 0.42) (0.23, 0.28, 0.22) (0.49, 0.24, 0.38) (0.49, 0.23, 0.37)
Flexibility (0.61, 0.22, 0.48) (0.46, 0.25, 0.37) (0.64, 0.22, 0.49) (0.66, 0.20, 0.47) (0.34, 0.26, 0.26)

Productivity (0.61, 0.22, 0.44) (0.76, 0.18, 0.49) (0.58, 0.22, 0.44) (0.62, 0.21, 0.46) (0.50, 0.24, 0.39)
Cost (0.71, 0.19, 0.48) (0.68, 0.20, 0.49) (0.66, 0.21, 0.49) (0.63, 0.21, 0.47) (0.73, 0.19, 0.49)

Reliability (0.58, 0.22, 0.44) (0.60, 0.21, 0.41) (0.74, 0.18, 0.48) (0.58, 0.21, 0.39) (0.72, 0.19, 0.48)
Quality (0.00, 0.30, 0.20) (0.57, 0.22, 0.43) (0.67, 0.21, 0.48) (0.54, 0.23, 0.39) (0.58, 0.22, 0.45)

Ener. Cons. (0.60, 0.22, 0.45) (0.00, 0.30, 0.20) (0.57, 0.24, 0.48) (0.46, 0.24, 0.37) (0.57, 0.24, 0.46)
Profitability (0.49, 0.24, 0.40) (0.70, 0.20, 0.49) (0.00, 0.30, 0.20) (0.46, 0.24, 0.37) (0.48, 0.24, 0.39)
Complexity (0.59, 0.23, 0.46) (0.60, 0.22, 0.44) (0.66, 0.21, 0.47) (0.00, 0.30, 0.20) (0.58, 0.22, 0.43)

Maturity (0.68, 0.20, 0.49) (0.56, 0.23, 0.43) (0.38, 0.25, 0.28) (0.52, 0.24, 0.43) (0.00, 0.30, 0.20)
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Table A3. The SF total influence matrix.

Criteria Agility Flexibility Productivity Cost Reliability

Agility (0.60, 0.43, 0.46) (0.71, 0.39, 0.53) (0.65, 0.41, 0.48) (0.66, 0.39, 0.48) (0.66, 0.40, 0.49)
Flexibility (0.72, 0.39, 0.53) (0.64, 0.42, 0.50) (0.70, 0.39, 0.52) (0.67, 0.40, 0.50) (0.68, 0.40, 0.51)

Productivity (0.75, 0.38, 0.55) (0.76, 0.38, 0.56) (0.63, 0.42, 0.48) (0.68, 0.40, 0.49) (0.72, 0.39, 0.53)
Cost (0.83, 0.36, 0.58) (0.85, 0.35, 0.60) (0.80, 0.37, 0.57) (0.67, 0.41, 0.49) (0.78, 0.38, 0.57)

Reliability (0.78, 0.37, 0.54) (0.79, 0.37, 0.56) (0.76, 0.37, 0.53) (0.71, 0.39, 0.50) (0.65, 0.41, 0.48)
Quality (0.70, 0.40, 0.52) (0.73, 0.39, 0.55) (0.70, 0.39, 0.52) (0.65, 0.41, 0.48) (0.69, 0.40, 0.52)

Ener. Cons. (0.75, 0.38, 0.55) (0.75, 0.39, 0.56) (0.71, 0.40, 0.52) (0.68, 0.40, 0.50) (0.71, 0.39, 0.54)
Profitability (0.72, 0.38, 0.53) (0.74, 0.38, 0.54) (0.67, 0.40, 0.50) (0.65, 0.41, 0.48) (0.68, 0.40, 0.50)
Complexity (0.76, 0.38, 0.56) (0.77, 0.38, 0.57) (0.74, 0.38, 0.54) (0.70, 0.40, 0.51) (0.71, 0.40, 0.53)

Maturity (0.70, 0.39, 0.51) (0.72, 0.39, 0.53) (0.66, 0.41, 0.49) (0.63, 0.41, 0.45) (0.69, 0.39, 0.50)

Criteria Quality Ener. Cons. Profitability Complexity Maturity

Agility (0.70, 0.39, 0.51) (0.65, 0.41, 0.49) (0.59, 0.43, 0.44) (0.61, 0.42, 0.46) (0.61, 0.41, 0.46)
Flexibility (0.72, 0.39, 0.53) (0.68, 0.41, 0.50) (0.68, 0.40, 0.51) (0.66, 0.40, 0.50) (0.62, 0.42, 0.45)

Productivity (0.75, 0.38, 0.54) (0.75, 0.37, 0.54) (0.69, 0.40, 0.51) (0.68, 0.39, 0.51) (0.67, 0.40, 0.49)
Cost (0.83, 0.36, 0.58) (0.81, 0.36, 0.57) (0.77, 0.37, 0.56) (0.75, 0.38, 0.54) (0.76, 0.37, 0.54)

Reliability (0.77, 0.37, 0.54) (0.75, 0.37, 0.52) (0.74, 0.37, 0.52) (0.70, 0.38, 0.49) (0.72, 0.37, 0.51)
Quality (0.63, 0.42, 0.48) (0.69, 0.40, 0.51) (0.68, 0.40, 0.51) (0.65, 0.41, 0.48) (0.65, 0.40, 0.49)

Ener. Cons. (0.73, 0.39, 0.55) (0.62, 0.42, 0.48) (0.68, 0.41, 0.52) (0.65, 0.41, 0.49) (0.67, 0.41, 0.51)
Profitability (0.70, 0.40, 0.51) (0.70, 0.39, 0.52) (0.57, 0.43, 0.45) (0.63, 0.41, 0.47) (0.63, 0.41, 0.47)
Complexity (0.75, 0.39, 0.55) (0.73, 0.39, 0.53) (0.71, 0.39, 0.53) (0.59, 0.43, 0.46) (0.68, 0.40, 0.51)

Maturity (0.71, 0.39, 0.52) (0.67, 0.40, 0.50) (0.62, 0.42, 0.45) (0.63, 0.42, 0.47) (0.55, 0.44, 0.43)

Table A4. The SF decision matrix.

Technology Agility Flexibility Productivity Cost Reliability

Robots (0.39, 0.65, 0.32) (0.68, 0.33, 0.3) (0.66, 0.4, 0.24) (0.53, 0.52, 0.29) (0.67, 0.36, 0.3)
Additive production (0.51, 0.54, 0.32) (0.48, 0.57, 0.34) (0.66, 0.38, 0.28) (0.57, 0.47, 0.32) (0.59, 0.45, 0.31)

Internet of Things (0.55, 0.51, 0.31) (0.54, 0.49, 0.36) (0.68, 0.34, 0.31) (0.51, 0.53, 0.33) (0.57, 0.48, 0.26)
Remote machine

operation (0.69, 0.35, 0.25) (0.64, 0.38, 0.31) (0.58, 0.47, 0.32) (0.56, 0.49, 0.27) (0.69, 0.36, 0.23)

Voice machine
operation (0.61, 0.43, 0.31) (0.65, 0.38, 0.31) (0.66, 0.39, 0.25) (0.55, 0.5, 0.33) (0.54, 0.48, 0.41)

Automatic inspection (0.73, 0.29, 0.24) (0.72, 0.32, 0.24) (0.75, 0.28, 0.21) (0.65, 0.38, 0.31) (0.69, 0.33, 0.29)
Cyber-physical

systems (0.63, 0.4, 0.28) (0.69, 0.34, 0.31) (0.46, 0.58, 0.36) (0.57, 0.47, 0.33) (0.53, 0.51, 0.33)

Technology Quality Ener. Cons. Profitability Complexity Maturity

Robots (0.67, 0.36, 0.24) (0.53, 0.52, 0.33) (0.72, 0.31, 0.23) (0.49, 0.55, 0.34) (0.71, 0.31, 0.28)
Additive production (0.63, 0.41, 0.29) (0.67, 0.36, 0.27) (0.52, 0.54, 0.27) (0.52, 0.52, 0.34) (0.7, 0.32, 0.31)

Internet of Things (0.77, 0.24, 0.23) (0.54, 0.49, 0.33) (0.61, 0.42, 0.31) (0.54, 0.5, 0.3) (0.67, 0.37, 0.25)
Remote machine

operation (0.56, 0.5, 0.24) (0.59, 0.43, 0.34) (0.6, 0.44, 0.32) (0.51, 0.56, 0.27) (0.51, 0.52, 0.35)

Voice machine
operation (0.64, 0.39, 0.27) (0.54, 0.52, 0.31) (0.56, 0.47, 0.35) (0.68, 0.34, 0.3) (0.75, 0.27, 0.26)

Automatic inspection (0.79, 0.22, 0.19) (0.63, 0.4, 0.32) (0.67, 0.35, 0.27) (0.7, 0.33, 0.27) (0.66, 0.37, 0.29)
Cyber-physical

systems (0.63, 0.4, 0.24) (0.69, 0.33, 0.28) (0.57, 0.45, 0.36) (0.34, 0.69, 0.3) (0.56, 0.48, 0.33)
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Table A5. The defuzzied weighted arithmetic sequence.

Technology Agility Flexibility Productivity Cost Reliability

Robots 0.718 0.654 0.669 0.682 0.568
Additive production 0.679 0.713 0.632 0.644 0.603

Internet of Things 0.668 0.679 0.582 0.656 0.658
Remote machine operation 0.644 0.667 0.639 0.684 0.628

Voice machine operation 0.637 0.664 0.656 0.649 0.549
Automatic inspection 0.626 0.690 0.637 0.610 0.559

Cyber-physical systems 0.650 0.644 0.658 0.634 0.621

Technology Quality Ener. Cons. Profitability Complexity Maturity

Robots 0.677 0.680 0.645 0.675 0.569
Additive production 0.659 0.651 0.710 0.663 0.550

Internet of Things 0.623 0.666 0.639 0.683 0.625
Remote machine operation 0.735 0.636 0.636 0.725 0.622

Voice machine operation 0.665 0.690 0.626 0.611 0.566
Automatic inspection 0.651 0.636 0.631 0.631 0.593

Cyber-physical systems 0.694 0.636 0.610 0.750 0.616

Table A6. The defuzzied weighted geometric sequence.

Technology Agility Flexibility Productivity Cost Reliability

Robots 0.615 0.776 0.764 0.689 0.704
Additive production 0.666 0.681 0.739 0.682 0.666

Internet of Things 0.683 0.699 0.727 0.647 0.692
Remote machine operation 0.773 0.758 0.685 0.709 0.761

Voice machine operation 0.709 0.756 0.757 0.667 0.577
Automatic inspection 0.791 0.817 0.808 0.717 0.717

Cyber-physical systems 0.739 0.771 0.606 0.676 0.627

Technology Quality Ener. Cons. Profitability Complexity Maturity

Robots 0.785 0.684 0.793 0.654 0.742
Additive production 0.742 0.767 0.704 0.663 0.719

Internet of Things 0.817 0.685 0.710 0.697 0.744
Remote machine operation 0.754 0.699 0.699 0.707 0.614

Voice machine operation 0.755 0.697 0.665 0.744 0.767
Automatic inspection 0.847 0.722 0.754 0.771 0.714

Cyber-physical systems 0.773 0.768 0.665 0.613 0.651

Table A7. The utility matrix of weighted arithmetic sequence.

Technology Agility Flexibility Productivity Cost Reliability

Robots 0.801 0.753 0.764 0.774 0.685
Additive production 0.772 0.798 0.736 0.745 0.713

Internet of Things 0.763 0.771 0.696 0.754 0.756
Remote machine operation 0.745 0.762 0.741 0.776 0.732

Voice machine operation 0.740 0.760 0.754 0.749 0.670
Automatic inspection 0.731 0.780 0.740 0.718 0.678

Cyber-physical systems 0.749 0.745 0.756 0.737 0.727

Ideal 0.801 0.798 0.764 0.776 0.756

Technology Quality Ener. Cons. Profitability Complexity Maturity

Robots 0.770 0.773 0.745 0.769 0.686
Additive production 0.756 0.751 0.795 0.759 0.670

Internet of Things 0.728 0.762 0.741 0.775 0.730
Remote machine operation 0.814 0.739 0.739 0.806 0.728

Voice machine operation 0.761 0.780 0.731 0.719 0.684
Automatic inspection 0.750 0.739 0.735 0.735 0.705

Cyber-physical systems 0.783 0.739 0.718 0.825 0.723

Ideal 0.814 0.780 0.795 0.825 0.730
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Table A8. The utility matrix of weighted geometric sequence.

Technology Agility Flexibility Productivity Cost Reliability

Robots 0.722 0.844 0.835 0.779 0.791
Additive production 0.762 0.773 0.817 0.774 0.762

Internet of Things 0.775 0.787 0.808 0.748 0.782
Remote machine operation 0.842 0.831 0.776 0.795 0.833

Voice machine operation 0.794 0.829 0.830 0.763 0.692
Automatic inspection 0.854 0.874 0.867 0.800 0.800

Cyber-physical systems 0.816 0.840 0.715 0.769 0.731

Ideal 0.854 0.874 0.867 0.800 0.833

Technology Quality Ener. Cons. Profitability Complexity Maturity

Robots 0.851 0.776 0.856 0.753 0.819
Additive production 0.819 0.837 0.791 0.759 0.802

Internet of Things 0.873 0.776 0.795 0.785 0.821
Remote machine operation 0.828 0.787 0.787 0.793 0.722

Voice machine operation 0.829 0.785 0.761 0.821 0.838
Automatic inspection 0.895 0.804 0.828 0.840 0.798

Cyber-physical systems 0.841 0.838 0.761 0.720 0.750

Ideal 0.895 0.838 0.856 0.840 0.838

Table A9. The regret–rejoice utility matrix of weighted arithmetic sequence.

Technology Agility Flexibility Productivity Cost Reliability

Robots 0.000 −0.010 0.000 0.000 −0.016
Additive production −0.007 0.000 −0.006 −0.007 −0.010

Internet of Things −0.009 −0.006 −0.015 −0.005 0.000
Remote machine operation −0.013 −0.008 −0.005 0.000 −0.005

Voice machine operation −0.014 −0.008 −0.002 −0.006 −0.019
Automatic inspection −0.016 −0.004 −0.005 −0.013 −0.018

Cyber-physical systems −0.012 −0.012 −0.002 −0.009 −0.006

Technology Quality Ener. Cons. Profitability Complexity Maturity

Robots −0.010 −0.002 −0.011 −0.013 −0.010
Additive production −0.013 −0.007 0.000 −0.015 −0.013

Internet of Things −0.019 −0.004 −0.012 −0.011 0.000
Remote machine operation 0.000 −0.009 −0.013 −0.004 0.000

Voice machine operation −0.012 0.000 −0.014 −0.024 −0.010
Automatic inspection −0.014 −0.009 −0.014 −0.020 −0.006

Cyber-physical systems −0.007 −0.009 −0.017 0.000 −0.001

Table A10. The regret–rejoice utility matrix of weighted geometric sequence.

Technology Agility Flexibility Productivity Cost Reliability

Robots −0.03 −0.01 −0.01 0.00 −0.01
Additive production −0.02 −0.02 −0.01 −0.01 −0.02

Internet of Things −0.02 −0.02 −0.01 −0.01 −0.01
Remote machine operation 0.00 −0.01 −0.02 0.00 0.00

Voice machine operation −0.01 −0.01 −0.01 −0.01 −0.03
Automatic inspection 0.00 0.00 0.00 0.00 −0.01

Cyber-physical systems −0.01 −0.01 −0.03 −0.01 −0.02

Technology Quality Ener. Cons. Profitability Complexity Maturity

Robots −0.01 −0.01 0.00 −0.02 0.00
Additive production −0.02 0.00 −0.01 −0.02 −0.01

Internet of Things 0.00 −0.01 −0.01 −0.01 0.00
Remote machine operation −0.01 −0.01 −0.02 −0.01 −0.03

Voice machine operation −0.01 −0.01 −0.02 0.00 0.00
Automatic inspection 0.00 −0.01 −0.01 0.00 −0.01

Cyber-physical systems −0.01 0.00 −0.02 −0.03 −0.02
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Table A11. The overall utility matrix of weighted arithmetic sequence.

Technology Agility Flexibility Productivity Cost Reliability

Robots 0.8012 0.7427 0.7637 0.7735 0.6686
Additive production 0.7651 0.7976 0.7296 0.7376 0.7031

Internet of Things 0.7546 0.7656 0.6812 0.7494 0.7559
Remote machine operation 0.7325 0.7543 0.7361 0.7756 0.7271

Voice machine operation 0.7259 0.7516 0.7523 0.7425 0.6501
Automatic inspection 0.7150 0.7765 0.7344 0.7051 0.6599

Cyber-physical systems 0.7379 0.7332 0.7537 0.7284 0.7204

Technology Quality Ener. Cons. Profitability Complexity Maturity

Robots 0.7603 0.7709 0.7343 0.7563 0.6759
Additive production 0.7433 0.7441 0.7950 0.7445 0.6565

Internet of Things 0.7093 0.7580 0.7284 0.7636 0.7300
Remote machine operation 0.8138 0.7298 0.7259 0.8022 0.7275

Voice machine operation 0.7490 0.7801 0.7165 0.6955 0.6731
Automatic inspection 0.7361 0.7298 0.7210 0.7144 0.6989

Cyber-physical systems 0.7767 0.7294 0.7009 0.8249 0.7219

Table A12. The overall utility matrix of weighted geometric sequence.

Technology Agility Flexibility Productivity Cost Reliability

Robots 0.6919 0.8376 0.8281 0.7748 0.7811
Additive production 0.7409 0.7506 0.8056 0.7686 0.7461

Internet of Things 0.7567 0.7675 0.7941 0.7357 0.7700
Remote machine operation 0.8391 0.8211 0.7555 0.7936 0.8329

Voice machine operation 0.7805 0.8192 0.8213 0.7543 0.6606
Automatic inspection 0.8544 0.8737 0.8671 0.8000 0.7927

Cyber-physical systems 0.8080 0.8323 0.6809 0.7623 0.7086

Technology Quality Ener. Cons. Profitability Complexity Maturity

Robots 0.8406 0.7615 0.8561 0.7332 0.8406
Additive production 0.8019 0.8371 0.7760 0.7413 0.8019

Internet of Things 0.8684 0.7620 0.7812 0.7730 0.8684
Remote machine operation 0.8129 0.7752 0.7716 0.7823 0.8129

Voice machine operation 0.8141 0.7733 0.7394 0.8163 0.8141
Automatic inspection 0.8946 0.7962 0.8213 0.8401 0.8946

Cyber-physical systems 0.8295 0.8381 0.7392 0.6934 0.8295
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