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Abstract: The drying industry has grown considerably due to the tremendous demand for non-
perishable food. Convective drying is one of the most popular equipment in the drying industry (food,
chemical, pharmaceutical, etc.). One of the drawbacks of this equipment, when used for convective
drying, is the non-uniformity in the final product quality. This study presents the development of
a numerical model through Computational Fluid Dynamics (CFD). The drying chamber of a heat
pump dryer is assessed from the perspective of drying air velocity and temperature profiles. The
model was developed by solving different transport phenomena-related equations. The established
methodology was set up to evaluate how the drying air velocity and temperature distribution affect
the drying chamber. These results will define if there is a need to redesign it. The air velocity and
temperature profile results show a need to redesign the chamber. Only trays 2, 3, and 4 are the ones
that would achieve the drying of the products. The proposed solution is to implement air distributors
or modify the tray positioning to make the drying air and temperature distribution homogeneous.

Keywords: drying industry; convective drying; CFD; heat pump dryer

1. Introduction

The significant demands of the drying industry constantly push the development
of new technologies and equipment. In the last decades, considerable efforts have been
devoted to understanding the changes in drying operations, aiming to develop different
ways to prevent undesirable quality losses [1–10]. Drying not only has applications in the
food area, but it also expands to industries such as (bio)chemical, pharmaceutical, and
agricultural sectors [11]. Among the equipment available in the drying industry, the heat
pump dryer is the most used, which has a potential for heat recovery and relatively high
energy efficiency [12]. In heat pump dryers, sensible and latent heat of evaporated water
is recovered and recycled by reheating the dehumidified air [13]. Drying processes have
facilitated the use of new products due to the easy incorporation of dry products into
prepared dishes, snacks, bakery, and pastry products, among others [14]. Typical drying
parameters of different fruits and vegetables that can be dried in the observed chamber is
presented in Table 1.
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Table 1. Typical drying parameters of different fruits and vegetables that can be dried in the observed
chamber [15].

Researchers Material Year Ta (◦C) HR
(%) Vel (m/s) Other

variables Dependent variables Refrigerant

Vasquez et al. Grape 1997 50 3 Pretto Kinetics 134a Cinética
Prasertsan et al. Banana ABB 1998 50–60 MER, SMER, COP R-22 MER, SMER, COP

Rahman et al Green peas 1998 25–60 20–60 1.5 Kinetics, isotherms Cinética, isotermas

Chua et al. Guava 2000 var. Cyclic 20–65 2.5 Moisture content,
ascorbic acid

Contenido humedad,
ácido ascórbico

Chua et al. Banana, guava,
potato 2000a 20–40 20–65 2.5 Kinetics,

color variation
Cinética,

variacion color
Chua et al. Banana, guava 2002b 25, 30, 40 2.5 t-cycle Drying time, color Tiempo secado, color

Tia et al.
Pineapple,

banana, bean,
cabbage

2000 45–55 t, flow DR, MER, SMER,
SEC, COP R-22 DR, MER, SMER,

SEC, COP

Achariyaviriya et al. Papaya 2000 fracc-rec DR, SMER DR, SMER

Alves-Filho Fruits and
vegetables 2002 20–30 0.5–1.5 Kinetics, color, law,

size, density CO2
Cinética, color, law,
tamano, densidad

Cardona et al. Lactic acid
bacteria 2002 10, 15, 20, 25 1.71 medium Viability, activity Viabilidad, actividad

Teeboonma et al. Papaya,
mango glaze 2003 45–55 kg/h air Optimization:

Minimum annual cost R-22 Optimización: Minimo
costo anual

Hawlader et al. Food grains 2003 COP R11-R12 COP
Hawlader et al. Ginger 2006a 45 10 0.7 atm-mod Gingerol loss Pérdida gingerol

Hawlader et al. Apple, guava,
potato 2006b 45 10 0.7 atm-mod Color, porosity,

rehydration, texture
Color, porosidad,

rehidratación, textura

Hawlader et al. Guava, papaya 2006c 45 10 0.7 atm-mod Color, porosity,
rehydration, text, Vit C

Color, porosidad,
rehidrat, text, Vit C

Ortiz Banana 2003 10, 60 2 Color, aw, drying
time, moisture R-22 Color, aw, tiempo

secado, humedad
Sosle et al. Apple 2003 45–65 30–50 Rehydration time,

SEC, SMER R-22 Tiempo rehidratación,
SEC, SMER

Kohayakawa et al. Sliced mango 2004 40, 46, 56 1.6–4.4 thickness Effective diffusivity,
COP R-22 Difusividad

efectiva, COP
Queiroz et al. Tomatoes 2004 40, 45, 50 1.5–2 type Kinetics R-22 Cinética
Moreira et al. Chestnut 2005 45, 55, 65 20–40 1.8–2.7 Kinetic Modeling Modelamiento Cinética

Sun et al. Potato 2005 45 20 1.7 type of heat Drying speed,
temperature profile

Velocidad secado,
perfil temperatura

Fatouh et al Corcholo, herb,
parsley 2006 45, 50, 55 1.2, 1.9, 2.7 size SEC, drying

characteristics 134a SEC, caracteristi-
cas secado

Ceylan et al. Kiwi, avocado,
banana 2007 40 0.03–0.39 MR, DR MR, DR

Sunthonvit et al. Nectarines 2007 25 10 1.6 Volatile compound
composition

Composición
compuestos volátiles

Xanthopoulos et al. Fig 2007 46–60 1, 5 Single layer
drying models R-22 Modelos secado

capa única
Ceylan y Aktas Hazelnut 2008 40, 45, 50 Time, air speed Tiempo, velocidad aire

Shi et al. Tuna 2008 10, 40 1, 4 load Colour, SMER 134a Color, SMER
Shi et al. Tuna 2008a 20–30 1.5–2.5 %NaC1 SMER, DR,

color, TVBN 134a SMER, DR,
color, TVBN

Alves-Filho et al. Isolated
protein 2008 −5, 25 1, 2.3 time MRR, color,

density, shrinkage
MRR, color, densidad,

encogimiento
Aktas et al. Apple 2009 t, load Effective diffusivity,

COP, DR
Difusividad efectiva,

COP, DR
Erbay YIcier Olive leaves 2009 45–55 0.5–1.5 time Phenolic content,

antioxidant act., hum R407C Contenido fenólico, act.
antioxid, hum

Lee and Kim Radish 2009 40 flow Time, MER, SMER,
energy saving 134a Tiempo, MER, SMER,

ahorro energia

A good prediction of convective drying processes can be essential for improving
processes and minimising problems. Some examples of these problems are high energy con-
sumption, excessive load and wear on equipment, and low yields (number of products with
correct characteristics) [14]. Predicting these processes is challenging because it depends on
many factors, such as the air’s speed, temperature, humidity, level of turbulence, uniform
airflow, etc. Keeping these factors under the right conditions is the most challenging task
at a pilot and industrial scale [16]. Temperature and air velocity are the two factors that
must be considered since they are difficult to measure due to the large number of sensors
placed in the chamber. The drying process result depends on the material’s location in
the dryer since the drying rate depends on the airflow in the drying chamber [17]. Using
a computer simulation of the mathematical model of the operation will allow controlling
the dynamics of the drying process. This will optimise the dryer’s performance in terms
of energy consumption, efficiency, and product quality. The numerical methods are also
beneficial in saving both time and money [18–20].

The mathematical models in the drying process have been studied under different
conditions and configurations (i.e., porous media and shrinkage) in diverse investiga-
tions, most of which are approximated in two dimensions. This has provided a significant
compression of the drying phenomenon, but the airflow in a convective dryer is usually
turbulent and in three dimensions. Therefore, it is of great interest to perform an analysis of
the process of turbulent flow and air distribution in a fully three-dimensional way, which
implies a non-negligible load on both computational and in the features and scope of
the model [14]. A complete model of the drying process must consider the interaction
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between heat and mass transfer within the material to be dried and the transfer to the
drying airflow [21]. Several studies have been carried out both by simulations and ex-
perimental facilities. These studies include the ones performed by Cârlescu et al. [22],
Villegas et al. [23], Lemus-Mondaca et al. [14,24], Han et al. [25], Gómez and Ochoa [26],
Ozgen [27], Mohan [16], Lamnatou [21], among many others.

Recent studies have assessed the heat pump dryer with the compressor outside the
air circuit and have also investigated powering it through photovoltaic means [28–36].
Other studies have been done with a hybrid approach [37–39]. The experimental facility
assessed in this paper has the compressor of the heat pump dryer inside the air circuit. This
study aimed to use a three-dimensional Computational Fluid Dynamics (CFD) model of
a convective drying chamber to analyse the airflow behaviour in the chamber geometry
and its effect on the temperature distribution during the convective drying process. This
will provide the basis to redesign the chamber and increase the efficiency of the modified
heat pump dryer at Universidad del Valle, Cali, Colombia.

2. Materials and Methods
2.1. Mathematical Model

The mathematical models used to investigate the flow and heat transfer are momen-
tum and energy equations, turbulence models, and the appropriate boundary conditions.
The physical properties of air are not considered constant. The governing equations are
presented below in Equations (1)–(3).

Continuity
∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

Momentum
ρ

∂v
∂t

+
→
v · ∇v = −∇P + ∇ · →τ + ρg (2)

Energy
∂(ρH)

∂t
= −∇ ·

(
ρ
→
vH
)

+ ∇ · (k∇T) +
∂P
∂t

(3)

where ρ is the density (kg/m3), v is the velocity (m/s),
→
τ is the shear stress (Pa) [

→
τ = µ∇ · →v ],

∇P is the pressure gradient (Pa), g is the acceleration due to gravity (m/s2), H is the total
enthalpy (J/kg), k is the material thermal conductivity (W/m·K), T is the temperature (K),
P is the pressure (Pa), and t is the time (s).

2.2. CFD Modelling

CFD is a tool that has gained momentum in studying and evaluating heat transfer
in different systems and processes. One of the reasons is its ability to change operational
conditions faster and more efficiently, which could be more complex and tedious in an ex-
perimental facility. As a result, the model could lead to changes in the geometry that would
improve the system or process. The CFD simulations are developed in the commercial
software called STAR-CCM+ v12.02 (Siemens, Germany).

2.2.1. Geometrical Domain

The geometrical domain is crucial thanks to the importance of being the computa-
tional domain in which the simulation will be developed. The experimental facility to be
represented is shown in Figure 1. The geometry is designed using Autodesk Inventor®

v2017 and transformed into a CAD model.
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2.2.2. Grid Generation

Grid generation is an essential step for the validation of the research project. Several
mesh arrangements depend on the modelled system; the polyhedral-type mesh is used in
this case. This type gives each cell many immediate neighbouring cells from which the
software can obtain information and linear shape functions, resulting in a better approxi-
mation of the gradients, lower skewness angles, and a more accurate flux calculation than
a tetrahedral mesh [40]. Another benefit of using a polyhedral-type mesh over other types
for this particular application is that polyhedral cells allow for easy and gradual control of
grid size changes (for coarsening or refining certain regions of the system). This avoids the
sudden size changes resulting from using some trimmed hexahedral cells [40].

Figure 2 shows how the polyhedral mesh is implemented in the studied chamber.
Figure 3 shows another approximation of the same chamber with a fruit sample represented
by a disk. In this case, a refinement in the grid was made in the entrance, the outlet, and
the disk, to have a more accurate resolution of the equations being solved.
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One key characteristic that must be considered is that the number of cells affects the
computational time and the accuracy of the results. To balance these two variables, a mesh
independence test was performed. The results of this test lead to a mesh selection.

2.2.3. Boundary and Initial Condition Selection

The specification of the Boundary and initial conditions of the system is a significant
step in the pre-processing stage in CFD. For the first model, the inlet and outlet of the
system are modelled as “velocity inlet” and “flow split outlet”, respectively. These were
chosen based on the behaviour of the system and the complex interactions that occur in it.
The remaining spatial discretisation is modelled as a wall condition.

For the second implemented model, the inlet and outlet are modelled as “mass flow
inlet” and “flow split outlet”. In this model, the mass flow was used to have a more stable
solution and correctly model the mass transfer in the system. As before, the remaining
discretisation is modelled as a wall condition except for the disk, which is modelled as
a solid. This condition is made to implement a mass transfer model.

Concerning the initial condition, this is defined for t = 0 s, when the temperature
value is T0 (300.15 K). The surface’s boundary conditions are the equilibrium between
convection and conduction heat.

h
(

Ts − Tgb

)
= (−k∇T) (4)

where h is the convective heat transfer coefficient (W/m2·K), Tgb is the air bulk temperature
(K), Ts is the surface temperature (K), and k is the material thermal conductivity (W/m·K).

The convective heat transfer coefficient is defined with the Chilton–Colburn relation-
ship for turbulent flows [41] with Reynolds (Re), Prandtl (Pr), and Nusselt (Nu) numbers.

Nu =
hL
k

= 0.0296Re
4
5 Pr

1
3 (5)

where Re = vLρ/µ ; Pr =
(
Cp µ

)
/k; with ρ is the density (kg/m3), v is the velocity

(m/s), µ is the air viscosity (Pa·s), L is the air length path (m), Cp is the specific heat
(J/kg·K), k is the thermal conductivity (W/m·K), and h is the convective heat transfer
coefficient (W/m2·K).
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2.2.4. Physical Model Selection

An important step is the physical model selection. In this case, it is modelled as a tran-
sient system with a physical turbulence phenomenon exemplified by the k-εmodel. This
model decomposes the Navier–Stokes (NS) equations’ instantaneous variables into their
mean and fluctuations [42]. Complementary to this, the following models were also used:
segregated model (which solves the momentum equations, one for each dimension [40])
and gravity. The air temperature and velocity are 313.15 K and 1 m/s, respectively.

The model k-εwas used for the turbulence model, represented by Equations (6) and (7).
This turbulence model is mainly used in industrial applications [40]. It has also been proven
that for this specific application, it does not have a significant difference from the k-ω tur-
bulence model [43].

∂(ρk)
∂t

+ ∇ ·
(
ρk
→
V
)

= ∇ ·
[(
µ +

µt
σk

)
∇k
]
+ Gk − ρε (6)

∂(ρε)

∂t
+ ∇ ·

(
ρε
→
V
)

= ∇ ·
[(
µ +

µt
σk

)
∇ε
]
+ C1ε

ε

k
(Gk) − C2ερ

ε2

k
(7)

where Gk is the kinetic energy generation due to the velocity gradients’ mean. The quan-
tities σk and σε are the Prandtl numbers for k and ε, respectively, with C1ε and C2ε as
constants. µt is the turbulent viscosity (eddy viscosity) defined as:

µt = ρCµ
k2

ε
. (8)

with C1ε = 1.44; C2ε = 1.92; Cµ = 0.09; σk = 1.0, and σε = 1.3 [44–46] for turbulent
airflow conditions in drying.

As specified before, the simulations must be transient to validate the CFD model. The
necessary parameters specified in the model are time step, inner iterations per time step,
and maximum physical time. The most critical parameter is the time step because diverse
problems can appear if it is not correctly calculated. One of these problems is convergence
when the time step is larger than the velocity magnitude. This causes intermediate points to
be not solved, so that the following points have no previous solution while the CFD solver is
expecting those solutions. This leads then to divergence. The CFL (Courant–Friedrichs–Lewy)
condition is used to avoid the divergence problem. The recommended CFL values are below
0.1 to capture the interface accurately. The main results obtained from the simulations are
temperature and velocity profiles.

After the first model is implemented, a second one is tested to study the mass transfer
on the sample and the chamber. A multiphase model is used; the volume of Fluid (VOF) is
the one selected in addition to a Fluid Film. The interaction of these two models will allow
a chamber analysis from a mass transfer perspective.

The VOF model uses only one set of equations for the continuous phase, and the
dispersed phase has a different equation for its volume fraction [45]. The continuity
equation, which guarantees mass conservation, is described in Equation (9).

∂ρ

∂t
+

∂ρvi
∂xi

= 0 (9)

where vi is the fluid velocity, t is the time, and xi is the spatial coordinate. In Equation (10),
the momentum equation is described. This represents the Navier–Stokes equation.

∂

∂t

(
ρvj

)
+

∂

∂xi

(
ρvivj

)
= − ∂P

∂xj
+

∂

∂xi
µ

(
∂vi

∂xj
+

∂vj

∂xi

)
+ ρgj + Fj (10)

In this equation, F, P, and g indicate external force per unit volume, pressure, and
gravitational acceleration, respectively, xj is the spatial coordinate, µ is the dynamic viscosity,
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and vj is the fluid velocity. The fluid properties are calculated as a function of the physical
properties of each phase and their void fractions.

ρm =
n

∑
i = 1

αp ∗ ρp (11)

µm =
n

∑
i = 1

αp ∗ µp (12)

where ρp is the density of the phase p and µp is the dynamic viscosity of the phase p. The
variable αp is the void fraction and can be expressed as Equation (13).

∂αp

∂t
+ u∇(αi) = 0. (13)

3. Results and Discussion
3.1. Mesh Independence Test

Three meshes were tested to select the one that resulted in the best balance of the
previously mentioned variables: computational time and solution accuracy. The number
of cells in each mesh is 373,633, 792,269, and 2,178,418. Figure 4 presents a comparison
between the three meshes with the variable temperature.
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As can be seen, the temperature results do not vary significantly. The volume average
temperature was 308.37 K, 310.288 K, and 310.856 K calculated for meshes 1, 2, and 3,
respectively. Nevertheless, an increase in computational time is seen. For the 45 s that the
simulation was run on a 10-core computer, an estimated 51.4, 127.23, and 238.23 h were
calculated for meshes 1, 2, and 3, respectively. With these results, the chosen mesh was the
second one. The third one had a significant increase in computational time, while the first
one had an unappropriated cell size for the total length of the chamber.

3.2. Model Validation

The data validation was made by comparing the experimental data at the exit of the
chamber in a drying procedure and the simulation data in the exact location.

It is essential to mention that the data compared were only the ones corresponding to
the time after the air temperature has stabilised since it includes food samples, and this
affects the air temperature significantly at the beginning of the process due to changes
in the relative humidity of the air, delaying the time to achieve temperature stabilisation.
Comparison between experimental and simulated data are plotted in Figure 5. Due to
the lack of samples and stability in relative humidity, the time to achieve a constant air
temperature is noticeably faster than for the experimental data, as was explained before. It
is also shown that the numerical data tend to have the same values as the experimental ones.
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3.3. Velocity Profile and Temperature Distribution

The results of the velocity profile can be seen in Figure 6. It can be observed that the
air distribution does not present in a uniform manner. The velocity is optimum for the heat
transfer by convection only in trays 2, 3, and 4 from top to bottom; also, stagnation occurs
at the bottom and top of the chamber. This leads to reconsidering the tray positioning and
the implementation of air distributors such as dampers and diffusers. In addition, it can
be observed that the chamber has two recirculation areas, one at the bottom (below tray 4)
and one at the top, near the air exit. As mentioned above, this can be advantageous if the
air distribution is improved.

The temperature distribution is observed at different times in the solution in Figure 7.
It shows that the temperature profile is not as uniform as expected. As well as in the velocity
profile, only trays 2, 3, and 4 (from top to bottom) are receiving the required amount of heat
needed to make the convective drying chamber successful. Another observation is the fact
that the temperature starts to stabilise. The chamber will have the highest temperature in all
domains in the first seconds. In contrast, the effective area (where the temperature reaches
40 ◦C, which is the optimal temperature) decreases slightly. The temperature starts to be
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uniform at the top of the chamber and at the bottom, where it is not helpful, especially on
trays 5 and 6, where drying will be less efficient, leading to uneven or poor product quality.
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Air temperature and velocity are plotted in Figure 8. According to this, there is a rela-
tionship between these two factors that supports the behaviour observed in Figures 5 and 6;
if stagnation of air increases (decreasing velocity), temperature drops, resulting in poor
drying as is observed in the top and lower regions in Figures 6 and 7. This implies uneven
quality products or, even worse, increasing production time to reprocess or dry the product.
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Air distribution is a characteristic that must be assessed to improve drying and achieve
a uniform distribution. This has been done by researchers, such as Mathioulakis et al. [47],
who assessed the relationship between air velocity and weight loss on drying and agreed
with observations made in this study as well as the work by Amanlou and Zomorodia [48].
They proposed different designs to improve the drying process. Other studies have anal-
ysed the distribution and airflow [47,49], defining air velocity thresholds with the effect
on the drying rate, reassuring the crucial role of air velocity in air drying efficiency, as is
observed in this study from a different point of view in relation with the air velocity and
temperature distribution.

One of the observations made in their work is that low air velocity and poor air
distribution imply a poor design and, ergo, wrong or more prolonged operation, which is
seen in the results of this study.

3.4. Velocity and Mass Profile and Temperature Distribution

Nevertheless, the results of the first part gave an insight into how the chamber
must be modified; the second model was implemented. In this case, three results are
achieved—mass transfer, velocity profile, and temperature distribution within the chamber.
As was expected, only certain parts of the chamber achieve the desired temperature (40 ◦C),
and as a result, only a part has the desired drying effect.

Figure 9 shows the temperature achieved by the chamber sample in the chamber.
This temperature is adequate to have a good drying operation. This was achieved by the
position in which the sample was located. However, the same results can be seen for this
new model. The distribution of the air must be improved.
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In Figure 10, it can be seen how the fraction of water vapour decreases with time. This
proves that the chamber is working, but changes are needed, as shown in Figure 11.
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4. Conclusions

A CFD simulation was implemented using a transient system model with the k-ε
model for turbulence and the CFL criterion to understand the convective drying process.
This is a handy and powerful tool to achieve the desired assessment to identify the temper-
ature and air profiles in the convective drying chamber. The results of the air distribution
show that there are two specific areas of low air velocity that tend to create recirculation.
They are located at the air exit and the other at the bottom of the chamber, which results in
poor drying.

Besides this, the temperature profile shows only a homogeneous drying in half of the
trays (2, 3, and 4), reducing drying efficiency drastically, especially for the bottom ones.
Air distributors or dampers are necessary to deliver and improve the convective chamber.
The study has concluded that a redesign is needed to achieve the expected results from
the system. This assessment is being executed in another project, and the simulations are
still running.

Simulation using CFD has been demonstrated to be a reliable optimisation tool to
avoid unnecessary and expensive experiments to improve the design and can be used in
subsequent research to predict the drying time—with the additional help of a thin film
model implementation or a more extensive heat and mass transfer model.
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