
Citation: Wang, Y.; Xiao, Y.; Guo, Y.;

Li, J. Dynamic Chaotic

Opposition-Based Learning-Driven

Hybrid Aquila Optimizer and

Artificial Rabbits Optimization

Algorithm: Framework and

Applications. Processes 2022, 10, 2703.

https://doi.org/10.3390/pr10122703

Academic Editors: Amir H. Gandomi

and Laith Abualigah

Received: 21 November 2022

Accepted: 12 December 2022

Published: 14 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Dynamic Chaotic Opposition-Based Learning-Driven Hybrid
Aquila Optimizer and Artificial Rabbits Optimization
Algorithm: Framework and Applications
Yangwei Wang, Yaning Xiao , Yanling Guo and Jian Li *

College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
* Correspondence: lijian499@163.com

Abstract: Aquila Optimizer (AO) and Artificial Rabbits Optimization (ARO) are two recently devel-
oped meta-heuristic optimization algorithms. Although AO has powerful exploration capability, it
still suffers from poor solution accuracy and premature convergence when addressing some com-
plex cases due to the insufficient exploitation phase. In contrast, ARO possesses very competitive
exploitation potential, but its exploration ability needs to be more satisfactory. To ameliorate the
above-mentioned limitations in a single algorithm and achieve better overall optimization perfor-
mance, this paper proposes a novel chaotic opposition-based learning-driven hybrid AO and ARO
algorithm called CHAOARO. Firstly, the global exploration phase of AO is combined with the local
exploitation phase of ARO to maintain the respective valuable search capabilities. Then, an adaptive
switching mechanism (ASM) is designed to better balance the exploration and exploitation proce-
dures. Finally, we introduce the chaotic opposition-based learning (COBL) strategy to avoid the
algorithm fall into the local optima. To comprehensively verify the effectiveness and superiority of
the proposed work, CHAOARO is compared with the original AO, ARO, and several state-of-the-art
algorithms on 23 classical benchmark functions and the IEEE CEC2019 test suite. Systematic compar-
isons demonstrate that CHAOARO can significantly outperform other competitor methods in terms
of solution accuracy, convergence speed, and robustness. Furthermore, the promising prospect of
CHAOARO in real-world applications is highlighted by resolving five industrial engineering design
problems and photovoltaic (PV) model parameter identification problem.

Keywords: Aquila Optimizer; Artificial Rabbits Optimization; adaptive switching mechanism;
chaotic opposition-based learning; industrial engineering design; photovoltaic model

1. Introduction

Optimization can be considered the process of finding the best solution among all
candidates for a particular problem so as to maximize profits, efficiency, and performance
with limited resource consumption [1]. Optimization problems widely exist in different dis-
ciplines and engineering fields, such as feature selection [2], industrial design [3], Internet
of Things task scheduling [4], data clustering [5], and aerospace control [6,7], which makes
the study on optimization techniques become a hot topic and have drawn the attention
of many scholars. Deterministic mathematical programming methodology commonly
requires the target function of an optimization problem to be convex and differentiable.
Nevertheless, over the past few decades, the complexity of real-life optimization problems
has increased dramatically. These conventional optimization methods struggle to find
optimal or near-optimal solutions effectively when facing the challenges of large-scale,
multimodal, and non-convex search domains [8]. Therefore, to accomplish the desired
goal, meta-heuristic algorithms (MAs) are gradually becoming very popular as power-
ful tools to solve such intractable global optimization problems [9]. The meta-heuristic
algorithm is a kind of stochastic algorithm, which assumes the optimization problem as

Processes 2022, 10, 2703. https://doi.org/10.3390/pr10122703 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10122703
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-3803-4719
https://orcid.org/0000-0002-5227-6944
https://doi.org/10.3390/pr10122703
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10122703?type=check_update&version=2

Processes 2022, 10, 2703 2 of 46

a black box and then iteratively adopts different random operators to sample the search
domain for better decision variables. Compared with traditional techniques, MAs have the
unique advantages of conceptual simplicity, high flexibility, and no gradient information
required [10]. Benefiting from these advantages, MAs are always capable of showing
excellent performance in various scientific and industrial application scenarios. This drives
the continuous interest of more worldwide scholars devoted to MAs.

MAs generally build mathematical optimization models by simulating various stochas-
tic occurrences in nature. Based on different design philosophies, MAs can be classified
into four dominant categories [11]: evolution-based algorithms, physics-based algorithms,
swarm-based algorithms, and human-based algorithms. Evolutionary algorithms mimic
the laws of natural selection in biology and use operators like selection, crossover, and
mutation to evolve the initial population toward the global optimum. Physics-based algo-
rithms are derived from physical phenomena in the universe and update the search agent
with formulas borrowed from physical theories. Swarm-based algorithms are inspired by
the social behavior within a group of animals, plants, or other organisms. The common
feature of these algorithms is the sharing of biological information of all individuals in the
optimization process. The last category of methods, human-based algorithms, originates
from human cooperative behavior and activities in the community. Table 1 shows the
details of some well-known optimization paradigms belonging to these four classes of
algorithms. The core components of MAs are global exploration and local exploitation. In
the early iterations, a well-organized optimizer would explore the entire search space as
much as possible to locate promising regions where the global optimal solution may exist.
Then, in the later stage, more local exploitation is performed to improve the final quality of
the solution based on the previously obtained space information. Generally speaking, it is
critical for MAs to maintain a good balance between exploration and exploitation, which is
related to the effectiveness of algorithms in solving complex optimization problems [12].

Table 1. Classification of meta-heuristic algorithms.

Classification Algorithm Inspiration Year Reference

Evolutionary

Genetic Algorithm (GA) Evolutionary concepts 1992 [13]
Differential Evolution (DE) Darwin’s theory of evolution 1997 [14]
Biogeography-Based Optimization (BBO) Biogeography regarding the migration of species 2008 [15]
Tree Growth Algorithm (TGA) Competition of trees for food and light 2018 [16]

Physics-based

Simulated Annealing (SA) Annealing process in metallurgy 1983 [17]
Gravity Search Algorithm (GSA) Law of gravity and mass interactions 2009 [18]
Black Hole Algorithm (BHA) Black hole phenomenon 2013 [19]
Multi-Verse Optimizer (MVO) Multi-verse theory 2015 [20]
Sine Cosine Algorithm (SCA) Sine/cosine functions 2016 [21]
Henry gas solubility optimization (HGSO) Huddling behavior of gas 2019 [22]

Arithmetic Optimization Algorithm (AOA) Distribution behavior of arithmetic operators in
mathematics 2021 [23]

Swarm-based

Particle Swarm Optimization (PSO) Foraging behavior of bird flocks 1995 [24]

Ant Colony Optimization (ACO) Foraging behavior of some
ant species 2006 [25]

Cuckoo Search (CS) Breed behavior of certain
cuckoo species 2011 [26]

Grey Wolf Optimizer (GWO) Leadership hierarchy and hunting mechanism of
grey wolves 2014 [27]

Ant Lion Optimizer (ALO) Hunting mechanism of antlions 2015 [28]
Moth-Flame Optimization (MFO) Navigation of moths in nature 2015 [29]
Whale Optimization Algorithm (WOA) Social behavior of humpback whales 2016 [30]
Salp Swarm Algorithm (SSA) Swarming behavior of salps 2017 [31]

Harris Hawks Optimization (HHO) Cooperative behavior and chasing style of
Harris’ hawks 2019 [32]

Tunicate Swarm Algorithm (TSA) Jet propulsion behavior of tunicates 2020 [33]

Processes 2022, 10, 2703 3 of 46

Table 1. Cont.

Classification Algorithm Inspiration Year Reference

Slime Mould Algorithm (SMA) Oscillation mode of slime mould 2020 [34]
Reptile Search Algorithm (RSA) Hunting behavior of Crocodiles 2022 [35]
Golden Jackal Optimization (GJO) Hunting behavior of golden jackals 2022 [36]

Human-based

Teaching Learning-Based Optimization (TLBO) Teaching and learning in a classroom 2011 [37]
Harmony Search (HS) Behavior of a music orchestra 2013 [38]
Collective Decision Optimization (CDO) Decision-making characteristics of humans 2017 [39]
Political Optimizer (PO) Multi-phased process of politics 2020 [40]

Though MAs play an increasingly prominent role in computational science, some
skepticism also emerges: since there are already many famous MAs like those mentioned
above, why is it necessary to present new algorithms as well as further innovations? That
is because, according to the No-Free-Lunch (NFL) [41] theorem, no one algorithm can be
guaranteed to work for all optimization problems. In fact, the average performance of the
original optimizers is almost the same, and most of them still have some drawbacks to be
eliminated, such as poor solution accuracy, slow convergence speed, and ease of falling
into local optima. Hence, motivated by the NFL theorem, apart from developing new
MAs, lots of scholars try to improve existing optimization algorithms by employing some
helpful measures. Currently, there are three popular trends in the improvement of existing
MAs [42]: (1) Embed one or more search mechanisms into the algorithm, (2) Hybridize two
or more algorithms, and (3) Hybridize two or more algorithms with further enhancement
by one or more search mechanisms. Among them, the third approach is highly favored
because it can effectively promote valuable information exchange and diversity between
search agents in the optimization process of the hybrid algorithm; meanwhile, the improve-
ment strategies would also assist in boosting the overall performance [3]. For example,
Zhang et al. [43] presented a chaotic hybridization optimizer of SCA and HHO, namely
CSCAHHO. In CSCAHHO, the stable convergence ability of SCA and the fast conver-
gence speed of HHO were fully retained. Besides, chaotic mapping was used to improve
the randomness of the algorithm. Compared with basic SCA, HHO, and five advanced
algorithms, it was proven that CSCAHHO could provide better convergence accuracy
and stability. Cheng et al. [44] integrated PSO and GWO into an efficient optimization
approach known as IPSO-GWO. To further increase population diversity and avoid the
local optimum, Logistic mapping and adaptive inertial weight were embedded in this
hybrid algorithm. In a case study of global path planning for mobile robots, IPSO-GWO
was able to find the optimal path with a faster convergence speed than traditional methods.
In [45], the authors proposed a hybrid LSMA-TLBO algorithm. First, SMA was combined
with TLBO to balance the exploration and exploitation, and then Lévy flight was introduced
into the hybrid algorithm to improve its global search capability further. Experimental
results showed that LSMA-TLBO has superior performance over other competitors on
33 well-known benchmark functions and six engineering design problems. Moreover,
Liu et al. [3] constructed a novel improved hybrid technique (HAGSA) based on the AOA
and Golden Sine Algorithm (GSA). The Brownian mutation was also employed to enhance
the local exploitation competence of HAGSA.

In this study, we center on two state-of-the-art swarm intelligence optimization algo-
rithms, namely Aquila Optimizer (AO) and Artificial Rabbits Optimization (ARO). The AO
algorithm simulates the Aquila’s behavior during the process of hunting the prey, which
was first proposed by Abualigah et al. [46] in 2021. Preliminary studies have demonstrated
that AO has quite a few advantages, such as easy implementation, stable global exploration
capability, and unique search ways. In view of this, AO is widely applied to scientific
research and real-world optimization problems [47,48]. However, as with other MAs, the
canonical AO inevitably suffers from poor convergence accuracy and proneness to fall
into local optima in certain cases, mainly due to its inadequate exploitation phase [49,50].
Consequently, many variants of AO were suggested to enhance its searchability for global

Processes 2022, 10, 2703 4 of 46

optimization. Yu et al. [51] proposed a modified AO-based method called mAO, which
assimilated opposition-based learning and restart strategy to strengthen the exploration
capability of the algorithm and employed chaotic local search to boost the exploitation
trend. Compared with the original AO and nine other algorithms, mAO can obtain bet-
ter results on 29 benchmark functions and five constrained engineering design issues.
Zhao et al. [49] presented a simplified AO by removing the two exploitation strategies and
keeping only the position update formula of the exploration phase for the whole iteration.
The effectiveness of the proposed method was validated by a series of comprehensive
experiments. In [52], an improved version of AO, namely IAO, was developed for solving
continuous numerical optimization problems. First, a novel search control factor was used
to refine the hunting strategies. Furthermore, opposition-based learning and Gaussian mu-
tation were integrated to enhance the general search performance of IAO. Wang et al. [50]
combined the exploration phase of AO and the exploitation phase of HHO into a new
hybrid optimizer termed as IHAOHHO. Additionally, random opposition-based learning
and nonlinear escaping energy parameter were introduced to help the algorithm avoid
local optima and accelerate convergence. Experimental findings revealed that IHAOHHO
shows excellent performance on benchmark function optimization tests. In [53], a new
hybrid meta-heuristic optimization technique named AGO was raised based on the AO and
Grasshopper Optimization Algorithm (GOA). The proposed AGO was applied to optimize
the motor geometry of Surface Inset Permanent Magnet Synchronous Motor (SI-PMSM) to
minimize the total core loss. The results indicated that AGO could effectively reduce core
losses, thereby increasing the power density of the motor. Also, Zhang et al. [54] merged
the merits of AO and AOA to design the AOAOA algorithm. Simulation experiments on
27 benchmark test functions and three practical engineering applications fully verified the
superior robustness and convergence accuracy of AOAOA.

In 2022, Wang et al. [55] first proposed the ARO algorithm by modeling the survival
strategies of rabbits in nature. The strategy of rabbits searching for food away from
their nests represents the exploration capability of the algorithm, whereas the strategy of
rabbits randomly choosing one burrow to shelter from predators reflects the exploitation
capability of the algorithm. Despite its strong local exploitation potential and good search
efficiency, ARO is plagued by the unstable exploration phase so that it tends to fall into
the local optimum when processing some complex or high-latitude problems [56]. Since
this algorithm has been proposed only a short time ago, there is not any study on the
improvement of ARO.

Given the above discussion and the encouragement of NFL theorem, this paper
attempts to hybridize AO and ARO to make full use of their respective advantages and
then proposes a novel chaotic opposition-based learning-driven hybrid AO and ARO
optimizer for solving complex global optimization problems, namely CHAOARO. To our
knowledge, such hybridization has never been used before. First, the exploration strategy of
AO is integrated into ARO to achieve better overall search performance. Then, an adaptive
switching mechanism (ASM) is designed to establish a robust exploration-exploitation
balance in the hybrid algorithm. Finally, chaotic opposition-based learning (COBL) is used
to update the current best solution to increase the population diversity and avoid the local
minimum stagnation. On the basis of various metrics, the performance of the proposed
CHAOARO is compared with those of the original AO, ARO, and other existing MAs using
a total of thirty-three benchmark functions, including seven unimodal, six multimodal,
ten fix-dimension multimodal, and ten modern CEC2019 benchmark functions. Moreover,
five industrial engineering design problems and the parameter identification problem
of the photovoltaic (PV) model are employed to test the applicability of CHAOARO in
solving real-life optimization problems. Experimental results indicate that the proposed
work performs better than other comparison algorithms in terms of solution accuracy,
convergence speed, and stability. The main contributions of this paper can be shortened
as follows:

Processes 2022, 10, 2703 5 of 46

• A new hybrid meta-heuristic algorithm, CHAOARO, is proposed based on AO and
ARO for global optimization;

• The ASM and COBL strategies are adopted to synergistically improve the global
exploration and local exploitation capabilities of the hybrid algorithm;

• The performance of CHAOARO is thoroughly compared with that of AO, ARO, and
several state-of-the-art optimizers on 23 classical benchmark functions and 10 IEEE
CEC2019 test functions;

• Five constrained engineering optimization problems and PV cell/module parameter
identification problem are considered to highlight the applicability of CHAOARO in
addressing real-life optimization tasks;

• Experimental results demonstrate that CHAOARO can significantly outperform other
competitor algorithms in most cases.

The structure of this paper is organized as follows: A brief review of the original
AO and ARO is presented in Section 2. Section 3 details the two novel search operators
employed, namely ASM and COBL, as well as the framework of the proposed CHAOARO
algorithm in this paper. In Section 4, a series of comparison experiments based on the
23 classical benchmark functions and IEEE CEC2019 test suite are carried out to fully
validate the superiority of the proposed technique. In Sections 5 and 6, the proposed
CHAOARO is applied to solve five common industrial engineering design problems and
identify the optimal parameters for PV system, respectively. The conclusion and potential
future research are given in Section 7.

2. Preliminary Knowledge
2.1. Aquila Optimizer (AO)

AO is a novel swarm-based meta-heuristic algorithm proposed by Abualigah et al. [46]
in 2021 which mimics the intelligent hunting behaviors of the Aquila, a famous genus of
bird of prey found in the Northern Hemisphere. Aquila uses its breakneck flight speed
and powerful claws to attack the intended prey, and it is able to switch between different
predation methods depending on the prey species, including (1) High soar with vertical
stoop, (2) Contour flight with short glide attack, (3) Low flight with slow descent attack,
and (4) Walking and grabbing prey. Accordingly, in the mathematical model of the AO
algorithm, the first two hunting strategies of Aquila are defined as the exploration phase,
whereas the last two hunting strategies belong to the exploitation phase. To achieve a
smooth transition between global exploration and local exploitation, each phase of the
algorithm is performed or not based on the condition that if t ≤

(2
3
)
∗ T, the exploration

steps are executed; otherwise, the exploitation steps will be executed, where t is the current
iteration and T is the maximum number of iterations. In the following, the four strategies
involved in the mathematical model of AO are described.

2.1.1. Expanded Exploration: High Soar with Vertical Stoop

In the first strategy, Aquila conducts a preliminary search at high altitude to detect the
target. Once the best hunting area is determined, Aquila will dive vertically toward the
prey. This behavior is modeled as follows:

Xi(t + 1) = Xbest(t)×
(

1− t
T

)
+ Xm(t)− Xbest(t)× r1 (1)

where Xi(t + 1) denotes the candidate position vector of i-th Aquila in the next iteration
t + 1. Xbest(t) denotes the best solution obtained so far. Xm(t) represents the mean position
value of all individuals in the population, which can be calculated by Equation (2). r1 is a
random value between 0 and 1.

Xm(t) =
1
N

N

∑
i=1

Xi(t) (2)

Processes 2022, 10, 2703 6 of 46

where N refers to the population size, and Xi(t) denotes the position vector of i-th Aquila
in the current iteration.

2.1.2. Narrowed Exploration: Contour Flight with Short Glide Attack

This is the most common hunting strategy utilized by Aquila. When the prey area is
located, Aquila will shift from soaring high to hovering above the target prey and look for
a suitable opportunity to attack. At this moment, the position update formula is shown as:

Xi(t + 1) = Xbest(t)× LF(D) + Xr(t) + (y− x)× r2 (3)

where Xr(t) denotes the position of a random Aquila individual. D denotes the dimension
size of the given problem. r2 is a random number between 0 and 1. LF(·) stands for the
Lévy flight distribution function, which is expressed as follows:

LF(x) = 0.01× u× σ

|v|
1
β

, σ =

(
Γ(1 + β)× sin(πβ

2)

Γ(1 + β)× β× 2(
β−1

2)

)1/β

(4)

where u and v are random numbers in the range of 0 and 1, Γ(·) is the gamma function,
and β is a constant equal to 1.5. In Equation (3), y and x are employed to depict the contour
spiral shape, which can be calculated using Equation (5).{

x = (R + U × D1)× sin(−ω× D1 +
3×π

2)
y = (R + U × D1)× cos(−ω× D1 +

3×π
2)

(5)

where R means a fixed number of search cycles between 1 and 20, U denotes a small value
fixed to 0.00565, D1 is integer numbers from 1 to the dimension size (D), and ω equals 0.005.

2.1.3. Expanded Exploitation: Low Flight with Slow Descent Attack

In the third strategy, when the location of the prey has been roughly specified, Aquila
descends vertically and then makes an initial attack on the prey to observe its reaction. This
predation behavior can be simulated as in Equation (6).

Xi(t + 1) = (Xbest (t)− Xm(t))× α− r3 + ((ub− lb)× r4 + lb)× δ (6)

where α and δ are the exploitation adjustment coefficients fixed to 0.1. r3 and r4 are random
numbers within the interval [0, 1]. ub and lb are the upper and lower bounds of the search
domain, respectively.

2.1.4. Narrowed Exploitation: Walking and Grabbing Prey

In this step, Aquila comes to the land, follows the random escape trajectory of the target
prey in pursuit, and finally launches a precise attack. The mathematical representation of
this behavior is given by:

Xi(t + 1) = QF× Xbest(t)− G1 × Xi(t)× r5 − G2 × LF(D) + G1 × r6 (7) QF(t) = t
2×r7−1

(1−T)2

G1 = 2× r8 − 1
G2 = 2× (1− t

T)

(8)

where QF denotes the quality function used to balance the search strategy, G1 denotes the
motion parameter of Aquila in tracking the absconding prey, which is a random number in
the range of −1 and 1, G2 denotes the flight slope of Aquila in tracking the absconding prey,
which decreases linearly from 2 to 0, r5, r6, r7, r8 are all random numbers between 0 and 1.

The flow chart of the original AO algorithm is presented in Figure 1.

Processes 2022, 10, 2703 7 of 46

Processes 2022, 10, x FOR PEER REVIEW 7 of 45

7
2

2 1
(1)

1 8

2

()
2 1

2 (1)

r
TQF t t

G r
tG
T

× −
−


 =


= × −

 = × −


 (8)

where 𝑄𝐹 denotes the quality function used to balance the search strategy, 𝐺ଵ denotes the
motion parameter of Aquila in tracking the absconding prey, which is a random number
in the range of −1 and 1, 𝐺ଶ denotes the flight slope of Aquila in tracking the absconding
prey, which decreases linearly from 2 to 0, 𝑟ହ, 𝑟଺, 𝑟଻, 𝑟 are all random numbers between 0
and 1.

The flow chart of the original AO algorithm is presented in Figure 1.

Figure 1. Flow chart of AO.

2.2. Artificial Rabbits Optimization (ARO)
As a new gradient-free meta-heuristic algorithm developed by Wang et al. [55] in

2022, ARO simulates the survival skills of rabbits in nature. Rabbits are herbivores, which
primarily eat grass and leafy weeds. To avoid predators detecting their own nests, rabbits
would not consume the grass surrounding the holes; instead, they often look for food
away from the nest. This detour foraging strategy is defined as exploration in ARO. More-
over, to further reduce the likelihood of being captured by predators or hunters, rabbits
are adept at digging many holes for their nests and then randomly select one as a shelter.
This random hiding strategy is considered as exploitation in ARO. Due to their lower level
in the food chain, rabbits need to run fast to avoid the danger from numerous predators,
which will lead to a decrease in their energy, so rabbits have to adaptively shift between
detour foraging and random hiding based on the energy status. With the above
knowledge about the biological habits of rabbits, the mathematical model of ARO is con-
structed, including exploration, transition from exploration to exploitation, and exploita-
tion. Subsequently, we will briefly outline each phase in ARO.

2.2.1. Detour Foraging (Exploration)
In ARO, it is assumed that each rabbit in the population has its own region with some

grass and burrows. During foraging activities, the rabbit tends to randomly move to the
far-away areas of other individuals in search for food and overlooks what lies close at
hand, just like an old Chinese proverb says: “A rabbit doesn’t eat grass near its own nest”.

Figure 1. Flow chart of AO.

2.2. Artificial Rabbits Optimization (ARO)

As a new gradient-free meta-heuristic algorithm developed by Wang et al. [55] in
2022, ARO simulates the survival skills of rabbits in nature. Rabbits are herbivores, which
primarily eat grass and leafy weeds. To avoid predators detecting their own nests, rabbits
would not consume the grass surrounding the holes; instead, they often look for food away
from the nest. This detour foraging strategy is defined as exploration in ARO. Moreover,
to further reduce the likelihood of being captured by predators or hunters, rabbits are
adept at digging many holes for their nests and then randomly select one as a shelter. This
random hiding strategy is considered as exploitation in ARO. Due to their lower level in the
food chain, rabbits need to run fast to avoid the danger from numerous predators, which
will lead to a decrease in their energy, so rabbits have to adaptively shift between detour
foraging and random hiding based on the energy status. With the above knowledge about
the biological habits of rabbits, the mathematical model of ARO is constructed, including
exploration, transition from exploration to exploitation, and exploitation. Subsequently, we
will briefly outline each phase in ARO.

2.2.1. Detour Foraging (Exploration)

In ARO, it is assumed that each rabbit in the population has its own region with some
grass and burrows. During foraging activities, the rabbit tends to randomly move to the
far-away areas of other individuals in search for food and overlooks what lies close at hand,
just like an old Chinese proverb says: “A rabbit doesn’t eat grass near its own nest”. This
behavior is called detour foraging, and its mathematical model is represented as follows:

Xi(t + 1) = Xj(t) + A×
(
Xi(t)− Xj(t)

)
+ round(0.5× (0.05 + R1))× n1,

i, j = 1, . . . , N and i 6= j
(9)

A = L× c (10)

L =

(
e− e(

t−1
T)

2
)
× sin(2πR2) (11)

c(k) =
{

1, i f k == g(l)
0, otherwise

k = 1, . . . , D and l = 1, . . . , dR3 × De (12)

g = randperm(D) (13)

Processes 2022, 10, 2703 8 of 46

n1 ∼ N(0, 1) (14)

where Xi(t + 1) is the candidate position of the i-th rabbit in the next iteration t + 1. Xi(t)
and Xj(t) denotes the position of the i-th rabbit and the j-th rabbit in the current iteration t,
respectively. N denotes the population size. t is the current iteration. T is the maximum
number of iterations. D represents the dimension size of the specific problem. d·e stands
for the ceiling function. round(·) signifies rounding to the nearest integer. randperm(·)
represents a randomly selected integer between 1 and D. R1, R2, and R3 are all random
number in the interval [0, 1]. n1 follows the standard normal distribution. L represents the
length of the movement step while conducting the detour foraging.

2.2.2. Transition from Exploration to Exploitation

In ARO, rabbits are inclined to implement continual detour foraging in the early stage
of the iteration, whereas in the later stages of the search, they frequently execute random
hiding. To maintain a good balance between exploration and exploitation, a concept of
rabbit energy E is introduced, which will gradually decrease over time. The formula for
the energy factor E is as follows:

E(t) = 4(1− t
T
) ln

1
R4

(15)

where R4 is a random number between 0 and 1. The value of the energy coefficient E varies
in the interval [0, 2]. When E > 1, it means that the rabbit has lots of energy to randomly
explore the foraging area of other different individuals so that the detour foraging occurs,
and this phase is defined as the exploration. In the case of E ≤ 1, it indicates that the rabbit
has less energy for physical activity, so it needs to perform random hiding to escape from
predation, and the ARO algorithm enters the exploitation phase.

2.2.3. Random Hiding (Exploitation)

Rabbits are usually confronted with chase and attack from predators. To survive, they
would dig a number of different holes around the nest for shelter. In ARO, at each iteration,
a rabbit always generates D burrows along the dimension of the search space and then
randomly selects one among them for hiding to decrease the probability of being captured.
The mathematical model of this behavior is simulated as follows:

Xi(t + 1) = Xi(t) + A× (R5 × bi,r(t)− Xi(t)) (16)

bi,r(t) = Xi(t) + H × gr(k)× Xi(t) (17)

gr(k) =
{

1, i f k == dR6 × De
0, otherwise

(18)

H =
T − t + 1

T
× n2 (19)

n2 ∼ N(0, 1) (20)

where the parameter A can be calculated using Equations (10)–(13), bi,r(t) represents a
randomly selected burrow of the i-th rabbit from D burrows used for hiding in the current
iteration t, R5 and R6 are two random numbers between 0 and 1, and n2 follows the
standard normal distribution.

The flow chart of the original ARO algorithm is presented in Figure 2.

Processes 2022, 10, 2703 9 of 46

Processes 2022, 10, x FOR PEER REVIEW 9 of 45

61,
()

0,r

if k R D
g k

otherwise
 == ×   = 


 (18)

2
1T tH n

T
− += × (19)

2 ~ (0,1)n N (20)

where the parameter 𝐴 can be calculated using Equations (10)–(13), 𝑏௜,௥(𝑡) represents a
randomly selected burrow of the 𝑖-th rabbit from 𝐷 burrows used for hiding in the current
iteration 𝑡, 𝑅ହ and 𝑅଺ are two random numbers between 0 and 1, and 𝑛ଶ follows the stand-
ard normal distribution.

The flow chart of the original ARO algorithm is presented in Figure 2.

Figure 2. Flow chart of ARO.

3. The Proposed CHAOARO Algorithm
3.1. Hybridization of AO with ARO Algorithms

In the exploration phase of AO, the algorithm simulates the predatory behavior of
Aquila rapidly pursuing target prey within a wide flight area. When updating the posi-
tions of search agents, the current global optimal position is added directly to improve
searchability and accelerate the convergence (see Equations (1) and (3)). Nevertheless, at
the later stage, the selected search domain cannot be exploited thoroughly, and the weak
escape mechanism of Lévy flight makes the algorithm easily fall into local optima (see
Equation (7)). As demonstrated in earlier studies: the convergence curve of AO remains
the same during later iterations, especially on the multi-modal benchmark functions [49].
Most of the quality results achieved throughout the optimization process are likely to
come from the contributions of exploration. Thus, the AO algorithm has an excellent
global exploration capability, but meanwhile, its exploitation phase is still inadequate. On
the contrary, the experimental findings of the ARO algorithm indicate that the defects of
poor population diversity and slow convergence speed exist in the early exploration
phase, and the detour foraging mechanism cannot provide sufficient volatility for search
agents to explore the whole search space as much as possible (see Equation (9)). As the
number of iterations increases, the energy coefficient 𝐸 of the rabbit gradually decreases,
and ARO enters the development stage. The random hiding behavior makes the individ-
uals in the swarm continuously move closer to the neighborhood of the global optimal

Figure 2. Flow chart of ARO.

3. The Proposed CHAOARO Algorithm
3.1. Hybridization of AO with ARO Algorithms

In the exploration phase of AO, the algorithm simulates the predatory behavior
of Aquila rapidly pursuing target prey within a wide flight area. When updating the
positions of search agents, the current global optimal position is added directly to improve
searchability and accelerate the convergence (see Equations (1) and (3)). Nevertheless, at
the later stage, the selected search domain cannot be exploited thoroughly, and the weak
escape mechanism of Lévy flight makes the algorithm easily fall into local optima (see
Equation (7)). As demonstrated in earlier studies: the convergence curve of AO remains
the same during later iterations, especially on the multi-modal benchmark functions [49].
Most of the quality results achieved throughout the optimization process are likely to come
from the contributions of exploration. Thus, the AO algorithm has an excellent global
exploration capability, but meanwhile, its exploitation phase is still inadequate. On the
contrary, the experimental findings of the ARO algorithm indicate that the defects of poor
population diversity and slow convergence speed exist in the early exploration phase, and
the detour foraging mechanism cannot provide sufficient volatility for search agents to
explore the whole search space as much as possible (see Equation (9)). As the number of
iterations increases, the energy coefficient E of the rabbit gradually decreases, and ARO
enters the development stage. The random hiding behavior makes the individuals in the
swarm continuously move closer to the neighborhood of the global optimal point, which
significantly improves the solution accuracy (see Equation (16)). So, ARO owns good local
exploitation ability.

Based on the above characteristic analysis, we consider the framework of ARO as the
main body and preliminarily hybridize the exploration phase of AO with it to give full
play to the strengths of the two basic algorithms and preserve more robust global and local
search capabilities as well as faster convergence speed.

3.2. Adaptive Switching Mechanism (ASM)

For most bio-inspired optimizers, how to more effectively balance exploration and
exploration is key to improving the algorithm’s performance. Exploration is a process of
leaving any local region and subsequently exploring unknown spaces, while exploitation
refers to the process of probing a local region to find a promising solution. Generally,

Processes 2022, 10, 2703 10 of 46

exploration should be executed in the early stages of the algorithm, whereas exploitation is
implemented in the later stages [57]. A successful hybrid algorithm needs to be equipped
with effective switching mechanisms to reasonably balance the relationship between explo-
ration and exploitation in the search for the global optimum [58]. In order to better balance
the exploration process of AO and the exploitation phase of ARO, another parameter needs
to be involved in the new combined optimizer to guide the search direction of individuals.
The random number may be an option [54], however, considering the starvation ratio
F of vultures in the African Vultures Optimization Algorithm (AVOA) [59] can lead the
algorithm to transit smoothly from exploration to exploitation, thus providing competitive
performance even when solving challenging optimization problems, therefore, an adaptive
switching mechanism (ASM) is proposed based on this. The mathematical representation
for ASM is as follows:

F = (2× rand + 1)× z× (1− t
T
) + g (21)

g = h× (sinw(
π

2
× t

T
) + cos(

π

2
× t

T
)− 1) (22)

where rand denotes a random value in the interval [0, 1], z is a random number between−1
and 1, t and T are the current number of iterations and the maximum iteration, respectively,
h is a random number between−2 and 2, and w is a constant equal to 2.5. Figure 3 illustrates
the dynamic behavior of F over 1000 iterations during the optimization operation. As per
the AVOA algorithm, when |F| ≥ 1, vultures look for food in different regions (exploration),
and if |F| < 1, vultures search for food near the optimal solution (exploitation). The ASM
based on the F-value ensures that the algorithm focuses on global exploration in the early
iterations whilst retaining the possibility of local search. As the value of F gradually
decreases, the algorithm performs more local exploitation in the later stage.

Processes 2022, 10, x FOR PEER REVIEW 10 of 45

point, which significantly improves the solution accuracy (see Equation (16)). So, ARO
owns good local exploitation ability.

Based on the above characteristic analysis, we consider the framework of ARO as the
main body and preliminarily hybridize the exploration phase of AO with it to give full
play to the strengths of the two basic algorithms and preserve more robust global and
local search capabilities as well as faster convergence speed.

3.2. Adaptive Switching Mechanism (ASM)
For most bio-inspired optimizers, how to more effectively balance exploration and

exploration is key to improving the algorithm’s performance. Exploration is a process of
leaving any local region and subsequently exploring unknown spaces, while exploitation
refers to the process of probing a local region to find a promising solution. Generally,
exploration should be executed in the early stages of the algorithm, whereas exploitation
is implemented in the later stages [57]. A successful hybrid algorithm needs to be
equipped with effective switching mechanisms to reasonably balance the relationship be-
tween exploration and exploitation in the search for the global optimum [58]. In order to
better balance the exploration process of AO and the exploitation phase of ARO, another
parameter needs to be involved in the new combined optimizer to guide the search direc-
tion of individuals. The random number may be an option [54], however, considering the
starvation ratio 𝐹 of vultures in the African Vultures Optimization Algorithm (AVOA) [59]
can lead the algorithm to transit smoothly from exploration to exploitation, thus provid-
ing competitive performance even when solving challenging optimization problems,
therefore, an adaptive switching mechanism (ASM) is proposed based on this. The math-
ematical representation for ASM is as follows:

(2 1) (1)tF rand z g
T

= × + × × − + (21)

(sin () cos() 1)
2 2

w t tg h
T T

π π= × × + × − (22)

where 𝑟𝑎𝑛𝑑 denotes a random value in the interval [0, 1], 𝑧 is a random number between
−1 and 1, 𝑡 and 𝑇 are the current number of iterations and the maximum iteration, respec-
tively, ℎ is a random number between −2 and 2, and 𝑤 is a constant equal to 2.5. Figure 3
illustrates the dynamic behavior of 𝐹 over 1000 iterations during the optimization opera-
tion. As per the AVOA algorithm, when |𝐹| ≥ 1, vultures look for food in different regions
(exploration), and if |𝐹| < 1, vultures search for food near the optimal solution (exploita-
tion). The ASM based on the 𝐹-value ensures that the algorithm focuses on global explo-
ration in the early iterations whilst retaining the possibility of local search. As the value
of 𝐹 gradually decreases, the algorithm performs more local exploitation in the later stage.

Figure 3. Dynamic behavior of F during 1000 iterations.

3.3. Chaotic Opposition-Based Learning (COBL)

Opposition-based learning (OBL) is a powerful optimization technique in the field of
intelligence computation first proposed by Tizhoosh [60]. In general, MAs start with some
initial random solutions and try to continuously approach the global optimum through
iterative calculation. The search procedure terminates once certain pre-defined conditions
are met. If no related advance information about the solution is available, it may take
quite a long time to converge. As illustrated in Figure 4, the main principle of OBL is to
simultaneously evaluate the fitness values of the current solution and its corresponding
opposite solution, then retain the dominant individual to continue with the next iteration,
thus effectively strengthening the population diversity. It turns out that the generated

Processes 2022, 10, 2703 11 of 46

opposite candidate solution has almost a 50% higher probability of being close to the
global optimum than the current solution. Therefore, OBL has been widely implemented
to enhance the optimization performance of many basic MAs [61,62]. The mathematical
model for OBL is presented as follows:

X̂ = lb + ub− X (23)

where X̂ denotes the generated opposite solution, X is the current solution, ub and lb
represent the upper and lower bounds of the search domain, respectively.

Processes 2022, 10, x FOR PEER REVIEW 11 of 45

Figure 3. Dynamic behavior of 𝐹 during 1000 iterations.

3.3. Chaotic Opposition-Based Learning (COBL)
Opposition-based learning (OBL) is a powerful optimization technique in the field of

intelligence computation first proposed by Tizhoosh [60]. In general, MAs start with some
initial random solutions and try to continuously approach the global optimum through
iterative calculation. The search procedure terminates once certain pre-defined conditions
are met. If no related advance information about the solution is available, it may take quite
a long time to converge. As illustrated in Figure 4, the main principle of OBL is to simul-
taneously evaluate the fitness values of the current solution and its corresponding oppo-
site solution, then retain the dominant individual to continue with the next iteration, thus
effectively strengthening the population diversity. It turns out that the generated opposite
candidate solution has almost a 50% higher probability of being close to the global opti-
mum than the current solution. Therefore, OBL has been widely implemented to enhance
the optimization performance of many basic MAs [61,62]. The mathematical model for
OBL is presented as follows:

X̂ lb ub X= + − (23)

where 𝑋෠ denotes the generated opposite solution, 𝑋 is the current solution, 𝑢𝑏 and 𝑙𝑏 rep-
resent the upper and lower bounds of the search domain, respectively.

Figure 4. Principle of the traditional opposition-based learning.

As can be seen from Equation (23), OBL can only yield the opposite solution at a fixed
location, which works well in the early stage of optimization, but as the search process
continues, it may occur that the opposite solution falls near the local optimum, and other
individuals will quickly move towards this region, resulting in premature convergence
and poor solution accuracy. To this end, reference [63] proposed a random opposition-
based learning (ROBL) strategy by introducing the random perturbation to modify Equa-
tion (23) as follows:

X̂ lb ub rand X= + − ⋅ (24)

where 𝑟𝑎𝑛𝑑 is a random number between 0 and 1. Although ROBL can enhance the pop-
ulation diversity of the algorithm and help avoid local optima to some extent, the algo-
rithm’s convergence speed is still not satisfactory.

Chaos is a dynamic behavior found in nonlinear systems with three essential charac-
teristics of chaos: ergodicity, regularity, and randomness [64]. Compared with random
search, which mainly relies on probability distributions, the chaotic map can thoroughly
investigate the search space at a much higher speed benefiting from its dynamic proper-
ties. To further improve population diversity and global convergence speed, this paper
combines traditional OBL together with chaotic maps and proposes a chaotic opposition-
based learning (COBL) strategy. The mathematical formula is given as follows:

coX lb ub Xϕ= + − ⋅ (25)

where 𝑋௖௢෢ denotes the generated inverse solution of 𝑋, and 𝜑 is the chaotic map value.

Figure 4. Principle of the traditional opposition-based learning.

As can be seen from Equation (23), OBL can only yield the opposite solution at a fixed
location, which works well in the early stage of optimization, but as the search process
continues, it may occur that the opposite solution falls near the local optimum, and other
individuals will quickly move towards this region, resulting in premature convergence and
poor solution accuracy. To this end, reference [63] proposed a random opposition-based
learning (ROBL) strategy by introducing the random perturbation to modify Equation (23)
as follows:

X̂ = lb + ub− rand · X (24)

where rand is a random number between 0 and 1. Although ROBL can enhance the
population diversity of the algorithm and help avoid local optima to some extent, the
algorithm’s convergence speed is still not satisfactory.

Chaos is a dynamic behavior found in nonlinear systems with three essential char-
acteristics of chaos: ergodicity, regularity, and randomness [64]. Compared with random
search, which mainly relies on probability distributions, the chaotic map can thoroughly
investigate the search space at a much higher speed benefiting from its dynamic properties.
To further improve population diversity and global convergence speed, this paper com-
bines traditional OBL together with chaotic maps and proposes a chaotic opposition-based
learning (COBL) strategy. The mathematical formula is given as follows:

X̂co = lb + ub− ϕ · X (25)

where X̂co denotes the generated inverse solution of X, and ϕ is the chaotic map value.
In our paper, ten common chaotic maps are used to combine with OBL, including

Chebyshev map, circle map, gauss map, iterative map, logistic map, piecewise map, sine
map, singer map, sinusoidal map, and tent map. The images of these chaotic maps are
shown in Figure 5, and the specific equations are listed in Table 2. In the next section, we
will test in detail which map is more suitable to be employed for boosting the optimization
performance of the proposed algorithm.

Processes 2022, 10, 2703 12 of 46

Processes 2022, 10, x FOR PEER REVIEW 12 of 45

In our paper, ten common chaotic maps are used to combine with OBL, including
Chebyshev map, circle map, gauss map, iterative map, logistic map, piecewise map, sine
map, singer map, sinusoidal map, and tent map. The images of these chaotic maps are
shown in Figure 5, and the specific equations are listed in Table 2. In the next section, we
will test in detail which map is more suitable to be employed for boosting the optimization
performance of the proposed algorithm.

Figure 5. Visualization of ten commonly used chaotic maps.

Table 2. Ten chaotic maps.

No Map Name Equation
CM1 Chebyshev 𝜑௜ାଵ = cos൫𝑖cosିଵ(𝜑௜)൯

CM2 Circle 𝜑௜ାଵ = mod ቀ𝜑௜ + 𝑏 − ቀ 𝑎2𝜋ቁ sin(2𝜋𝜑௜) , 1ቁ ; 𝑎 = 0.5, 𝑏 = 0.2

CM3 Gauss/mouse 𝜑௜ାଵ = ቐ1, 𝜑௜ = 01mod(𝜑௜, 1) ,otherwise

CM4 Iterative 𝜑௜ାଵ = sin ൬𝑎𝜋𝜑௜ ൰ , 𝑎 = 0.7

CM5 Logistic 𝜑௜ାଵ = 𝑎𝜑௜(1 − 𝜑௜), 𝑎 = 4

CM6 Piecewise 𝜑௜ାଵ =
⎩⎪⎪⎨
⎪⎪⎧𝜑௜/𝑃, 0 ≤ 𝜑௜ < 𝑃𝜑௜ − 𝑃0.5 − 𝑃 , 𝑃 ≤ 𝜑௜ ≤ 0.51 − 𝑃 − 𝜑௜0.5 − 𝑃 , 0.5 ≤ 𝜑௜ < 1 − 𝑃1 − 𝜑௜𝑃 , 1 − 𝑃 ≤ 𝜑௜ < 1

, 𝑃 = 0.4

CM7 Sine 𝜑௜ାଵ = 𝑎4 sin(𝜋𝜑௜) , 𝑎 = 4

CM8 Singer 𝜑௜ାଵ = 𝜇(7.86𝜑௜ − 23.31𝜑௜ଶ + 28.75𝜑௜ଷ − 13.301875𝜑௜ସ), 𝜇 = 1.07
CM9 Sinusoidal 𝜑௜ାଵ = 𝑎𝜑௜ sin(𝜋𝜑௜) , 𝑎 = 2.3

CM10 Tent 𝜑௜ାଵ = ൝𝜑௜/0.7, 𝜑௜ < 0.7103 (1 − 𝜑௜), 𝜑௜ ≥ 0.7

3.4. Detailed Design of CHAOARO
On the basis of the above Sections 3.1–3.3, the proposed methodology is summarized

as follows. First, the exploration phase of AO is hybridized with the exploitation phase of
ARO to achieve a more stable overall optimization performance. Then, ASM is designed
to control the smooth switch from exploration to exploitation, which improves the effi-
ciency of the algorithm in finding the most promising domain. In addition, AO and ARO
share a common drawback of local optima stagnation. For this reason, the COBL strategy

Figure 5. Visualization of ten commonly used chaotic maps.

Table 2. Ten chaotic maps.

No Map Name Equation

CM1 Chebyshev ϕi+1 = cos
(
i cos−1(ϕi)

)
CM2 Circle ϕi+1 = mod

(
ϕi + b−

(a
2π

)
sin(2πϕi), 1

)
; a = 0.5, b = 0.2

CM3 Gauss/mouse ϕi+1 =

{
1, ϕi = 0

1
mod(ϕi , 1) , otherwise

CM4 Iterative ϕi+1 = sin
(

aπ
ϕi

)
, a = 0.7

CM5 Logistic ϕi+1 = aϕi(1− ϕi), a = 4

CM6 Piecewise
ϕi+1 =


ϕi/P, 0 ≤ ϕi < P
ϕi−P
0.5−P , P ≤ ϕi ≤ 0.5
1−P−ϕi

0.5−P , 0.5 ≤ ϕi < 1− P
1−ϕi

P , 1− P ≤ ϕi < 1

, P = 0.4

CM7 Sine ϕi+1 = a
4 sin(πϕi), a = 4

CM8 Singer ϕi+1 = µ
(
7.86ϕi − 23.31ϕ2

i + 28.75ϕ3
i − 13.301875]ϕ4

i
)
, µ = 1.07

CM9 Sinusoidal ϕi+1 = aϕi sin(πϕi), a = 2.3

CM10 Tent ϕi+1 =

{
ϕi/0.7, ϕi < 0.7
10
3 (1− ϕi), ϕi ≥ 0.7

3.4. Detailed Design of CHAOARO

On the basis of the above Sections 3.1–3.3, the proposed methodology is summarized
as follows. First, the exploration phase of AO is hybridized with the exploitation phase of
ARO to achieve a more stable overall optimization performance. Then, ASM is designed to
control the smooth switch from exploration to exploitation, which improves the efficiency of
the algorithm in finding the most promising domain. In addition, AO and ARO share a com-
mon drawback of local optima stagnation. For this reason, the COBL strategy is utilized to
update the current optimal solution before the next iteration calculation to further enhance
the population diversity and local optima avoidance. All these operations significantly
boost the convergence speed, solution accuracy, and robustness of both single algorithms.
Finally, this new hybrid version of Aquila Optimizer and Artificial Rabbits Optimization
driven by chaotic opposition-based learning can be abbreviated as CHAOARO. Figure 6
presents the flow chart of CHAOARO, and its pseudo-code is described in Algorithm 1.

Processes 2022, 10, 2703 13 of 46

Processes 2022, 10, x FOR PEER REVIEW 13 of 45

is utilized to update the current optimal solution before the next iteration calculation to
further enhance the population diversity and local optima avoidance. All these operations
significantly boost the convergence speed, solution accuracy, and robustness of both sin-
gle algorithms. Finally, this new hybrid version of Aquila Optimizer and Artificial Rabbits
Optimization driven by chaotic opposition-based learning can be abbreviated as
CHAOARO. Figure 6 presents the flow chart of CHAOARO, and its pseudo-code is de-
scribed in Algorithm 1.

Computational complexity is an important metric to evaluate the time consumption
of an algorithm when solving optimization problems. With the pseudo-code shown in
Algorithm 1, it can be concluded that the computational complexity of the proposed
CHAOARO is related to the population size (𝑁), the dimension space of problems (𝐷),
and the maximum number of iterations (𝑇). In the initialization process, the positions of
all search agents are randomly generated in the search space, which requires a computa-
tional complexity of 𝑂(𝑁) . Afterward, throughout the iteration procedure, it takes 𝑂(𝑁 × 𝑇 + 𝑁 × 𝐷 × 𝑇) to carry out the fitness evaluation and position update. Accord-
ingly, the total computational complexity of CHAOARO should be 𝑂(𝑁 + 𝑁𝑇 + 𝑁𝐷𝑇).
Compared with the canonical AO and ARO algorithms, the computational complexity of
the proposed method does not increase.

Figure 6. Flow chart of the proposed CHAOARO.

Algorithm 1 Pseudo-code of the proposed CHAOARO
1. Initialize the population size 𝑁 and the maximum iterations 𝑇
2. Initialize the position of each search agent 𝑋௜(𝑖 = 1,2, ⋯ , 𝑁)
3. While 𝑡 ≤ 𝑇
4. Check if the position goes beyond the search limits and adjust it
5. Evaluate the fitness values of all search agents
6. Set 𝑋௕௘௦௧ as the best solution obtained so far

Figure 6. Flow chart of the proposed CHAOARO.

Computational complexity is an important metric to evaluate the time consumption
of an algorithm when solving optimization problems. With the pseudo-code shown in
Algorithm 1, it can be concluded that the computational complexity of the proposed
CHAOARO is related to the population size (N), the dimension space of problems (D),
and the maximum number of iterations (T). In the initialization process, the positions
of all search agents are randomly generated in the search space, which requires a com-
putational complexity of O(N). Afterward, throughout the iteration procedure, it takes
O(N × T + N × D× T) to carry out the fitness evaluation and position update. Accord-
ingly, the total computational complexity of CHAOARO should be O(N + NT + NDT).
Compared with the canonical AO and ARO algorithms, the computational complexity of
the proposed method does not increase.

Processes 2022, 10, 2703 14 of 46

Algorithm 1. Pseudo-code of the proposed CHAOARO

1. Initialize the population size N and the maximum iterations T
2. Initialize the position of each search agent Xi(i = 1, 2, · · · , N)
3. While t ≤ T
4. Check if the position goes beyond the search limits and adjust it
5. Evaluate the fitness values of all search agents
6. Set Xbest as the best solution obtained so far
7. For each Xi
8. Calculate the starvation ratio F using Equation (21) //ASM
9. If |F| ≥ 1 then //Exploration of AO
10. If rand ≤ 0.5 then =⇒ rand is a random number between 0 and 1
11. Update the search agent’s position using Equation (1)
12. Else
13. Update the search agent’s position using Equation (3)
14. End If
15. Else
16. Calculate the energy factor E using Equation (15)
17. If E > 1 then
18. Update the search agent’s position using Equation (9) //Detour foraging of ARO
19. Else
20. Update the search agent’s position using Equation (16) //Random hiding of ARO
21. End If
22. End If
23. Generate the opposite solution of Xbest using Equation (25),

Select the one with better fitness into the next generation //COBL
24. End For
25. t = t + 1
26. End While
27. Return Xbest

4. Experimental Results and Discussion

In this section, a series of systematic experimental studies are conducted on 23 clas-
sical benchmark functions (IEEE CEC2005 test suite) and the IEEE CEC2019 test set
to comprehensively investigate the performance of the proposed CHAOARO method.
In order to illustrate the superiority of CHAOARO, seven state-of-the-art MAs, and
two improved algorithms are employed for comparison analysis, namely AO [46],
GWO [27], WOA [30], SCA [21], TSA [33], GJO [36], ARO [55], Weighted Chimp Opti-
mization Algorithm (WChOA) [65], and Dynamic Arithmetic Optimization Algorithm
(DAOA) [66]. Table 3 lists the main parameters used in each algorithm, which are the same
as those recommended in the original research papers. Note that the parameter settings
appearing in the position update model (Equations (1) and (3)) for the exploration phase of
AO are also inherited into CHAOARO. In the experiment, for all involved algorithms, the
population size is fixed to 30, and the maximum iteration is set as 30 for a fair comparison.

Table 3. Parameter settings for CHAOARO and other selected competitor algorithms.

Algorithm Parameter Setting

AO [46] U = 0.00565; R = 10; ω = 0.005; α = 0.1; δ = 0.1; G1 ∈ [−1, 1]; G2 = [2, 0]
GWO [27] a = [2, 0]
WOA [30] b = 1; a1 = [2, 0]; a2 = [−2,−1]
SCA [21] a = 2
TSA [33] Pmin = 1; Pmax = 4
GJO [36] c1 = 1.5
ARO [55] —
WChOA [65] f = [2.5, 0]; M = Gauss chaotic value
DAOA [66] α = 25; µ = 0.001
CHAOARO U = 0.00565; R = 10; ω = 0.005

Processes 2022, 10, 2703 15 of 46

Through 30 independent runs, the obtained average fitness (Avg) and standard devia-
tion (Std) results are recorded as evaluation criteria, where the average fitness value reflects
the optimization accuracy of an algorithm, which can be calculated as follows:

Avg =
1

times

times

∑
i=1

Oi (26)

where times stands for the total number of runs, and Oi denotes the outcome of the i-th
operation. The closer the average fitness is to the theoretical optimal solution, the better
the searchability of the algorithm. On the other hand, the standard deviation reveals the
departure degree of the experimental data, and the smaller the standard deviation, the
higher the stability of the algorithm. The mathematical formula for the standard deviation
is as follows:

Std =

√√√√ 1
times− 1

times

∑
i=1

(Oi −Avg)2 (27)

Besides, two non-parametric statistical techniques, including the Friedman ranking
test [67] and the Wilcoxon rank-sum test [68], are further performed to check whether
CHAOARO is significantly different from other comparison methods. All the experiments
are implemented in MATLAB R2017a with Microsoft Windows 10 system, and the hardware
platform configuration of the computer is Intel (R) Core (TM) i5-10300H CPU @ 2.50 GHz
and 16 GB RAM.

4.1. Experiment 1: Classical Benchmark Functions

To verify the effectiveness of the proposed CHAOARO in solving simple numerical
optimization problems, we select 23 classical benchmark functions with different char-
acteristics from [10] for testing. These benchmark functions can be classified into three
categories: unimodal, multimodal, and fix-dimension multimodal functions. Unimodal
functions (F1~F7) have only one global optimum, which can be utilized to estimate the
exploitation propensity of the algorithm. For multimodal and fix-dimension multimodal
functions (F8~F23), they contain a large number of local optima and are therefore usually
adopted to examine the exploration and local optima avoidance abilities of the algorithm.
Table 4 provides the details of the 23 classical benchmark functions.

First, the impact of ten different combinations of the chaotic map and opposition-based
learning on the performance of the proposed CHAOARO algorithm is studied. Afterward,
we compare CHAOARO with other selected advanced algorithms in turn with respect to
numerical results, convergence behavior, boxplot, computational consumption, Wilcoxon
rank-sum test, and scalability in the dimensional space.

4.1.1. Chaotic Map Selection Analysis

The COBL strategy designed in Section 3.3 integrates chaotic maps and traditional
opposition-based learning to prevent the algorithm from getting trapped in the local
optimum during iterations. To confirm which chaotic map in Table 2 should be used, this
part tests the optimization performance of CHAOARO with ten different chaotic maps
on 23 classical benchmark functions. After 30 independent runs, the average fitness and
standard deviation results obtained are listed in Table 5.

As can be clearly seen from Table 5, in most test cases, CHAOARO based on CM3
(gauss/mouse map) performs better than that using other chaotic maps. When solving uni-
modal functions F1~F7, CM3 (gauss/mouse map) ranks first among all its peers, especially
on F1~F4, which can consistently find the theoretical optimal value (0). For multimodal
and fix-dimension multimodal functions F8~F23, the gauss/mouse map also provides satis-
factory solutions. Eventually, CHAOARO with gauss/mouse map obtains the minimum
Friedman mean ranking value of 1.4348. This indicates that the gauss/mouse map has the

Processes 2022, 10, 2703 16 of 46

best effect in improving the comprehensive performance of the algorithm; therefore, it is
selected to generate chaotic map values ϕ for the COBL strategy in this paper.

Table 4. Characteristics of the 23 classical benchmark functions (UM: unimodal, MM: multimodal,
FM: fix-dimension multimodal, Dim: dimension, Range: search boundaries, Fmin: theoretical
optimal value).

Function Type Dim (D) Range Fmin

F1(x) = ∑D
i=1 x2

i UM 30 [−100, 100] 0
F2(x) = ∑D

i=1|xi |+ ∏D
i=1|xi | UM 30 [−10, 10] 0

F3(x) = ∑D
i=1 (∑

D
j=1 xj)

2 UM 30 [−100, 100] 0
F4(x) = maxi{|xi |, 1 ≤ i ≤ D} UM 30 [−100, 100] 0
F5(x) = ∑D−1

i=1 [100(xi+1 − x2
i)

2
+
(
xi − 1)2

]
UM 30 [−30, 30] 0

F6(x) = ∑D
i=1(|xi + 0.5|)2 UM 30 [−100, 100] 0

F7(x) = ∑D
i=1 ix4

i + random[0, 1) UM 30 [−1.28, 1.28] 0

F8(x) = ∑D
i=1 −xi sin

(√
|xi |
)

MM 30 [−500, 500] −418.9829 × D

F9(x) = ∑D
i=1
[
x2

i − 10 cos(2πxi) + 10
]

MM 30 [−5.12, 5.12] 0

F10(x) = −20 exp(−0.2
√

1
n ∑D

i=1 x2
i)− exp(1

n ∑D
i=1 cos(2πxi)) + 20 + e MM 30 [−32, 32] 0

F11(x) = 1
4000 ∑D

i=1 x2
i −∏D

i=1 cos(xi√
i
) + 1 MM 30 [−600, 600] 0

F12(x) =
π
D

{
10 sin(πy1) + ∑D−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yD − 1)2

}
+ ∑D

i=1 u(xi , 10, 100, 4)

yi = 1 + xi+1
4 , u(xi , a, k, m) =

 k(xi − a)m , xi > a
0,−a < xi < a
k(−xi − a)m , xi < −a

MM 30 [−50, 50] 0

F13(x) = 0.1
{

sin2(3πxi) + ∑D
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xD − 1)2[1 + sin2(2πxn)

]}
+

∑D
i=1 u(xi , 5, 100, 4)

MM 30 [−50, 50] 0

F14(x) = (1
500 + ∑25

j=1 (j + ∑2
i=1 (xi − aij)

6)
−1
)
−1

FM 2 [−65, 65] 0.998

F15(x) = ∑11
i=1 [ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]
2

FM 4 [−5, 5] 0.00030

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 FM 2 [−5, 5] −1.0316
F17(x) = (x2 − 5.1

4π2 x2
1 +

5
π x1 − 6)

2
+ 10

(
1− 1

8π

)
cos x1 + 10 FM 2 [−5, 5] 0.398

F18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x2 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)] FM 2 [−2, 2] 3

F19(x) = −∑4
i=1 ci exp(−∑3

j=1 aij(xj − pij)
2) FM 3 [−1, 2] −3.8628

F20(x) = −∑4
i=1 ci exp(−∑6

j=1 aij(xj − pij)
2) FM 6 [0, 1] −3.32

F21(x) = −∑5
i=1 [(X− ai)(X− ai)

T + ci]
−1 FM 4 [0, 10] −10.1532

F22(x) = −∑7
i=1 [(X− ai)(X− ai)

T + ci]
−1 FM 4 [0, 10] −10.4028

F23(x) = −∑10
i=1 [(X− ai)(X− ai)

T + ci]
−1 FM 4 [0, 10] −10.5363

4.1.2. Evaluation of Exploitation and Exploration

Based on the properties of the unimodal, multimodal, and fix-dimension multimodal
benchmark functions described earlier, in this subsection, we perform a systematic evalua-
tion of the exploitation and exploration propensities of the proposed optimizer. The specific
parameter settings have been shown in Table 3. After 30 runs on the 30-dimensional test
functions F1~F23, the average fitness and standard deviation values obtained by CHAOARO
and other competitor algorithms are recorded in Table 6.

Processes 2022, 10, 2703 17 of 46

Table 5. Comparison results of different chaotic maps on 23 benchmark functions.

Fn Criteria CM1 CM2 CM3 CM4 CM5 CM6 CM7 CM8 CM9 CM10

F1

Avg 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 7.26 × 10−288 1.84 × 10−165 0.00 × 100

Std 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Rank 1 1 1 1 1 1 1 9 10 1

F2

Avg 3.68 × 10−286 2.81 × 10−230 0.00 × 100 5.71 × 10−248 1.21 × 10−310 3.49 × 10−203 1.07 × 10−305 1.03 × 10−144 3.75 × 10−84 8.25 × 10−204

Std 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 1.21 × 10−144 6.69 × 10−84 0.00 × 100

Rank 4 6 1 5 2 8 3 9 10 7

F3

Avg 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 2.97 × 10−286 5.18 × 10−165 0.00 × 100

Std 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Rank 1 1 1 1 1 1 1 9 10 1

F4

Avg 2.59 × 10−286 7.95 × 10−231 0.00 × 100 3.07 × 10−248 5.02 × 10−311 1.12 × 10−203 3.84 × 10−306 5.29 × 10−145 2.75 × 10−81 2.05 × 10−204

Std 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 8.98 × 10−145 4.23 × 10−81 0.00 × 100

Rank 4 6 1 5 2 8 3 9 10 7

F5

Avg 1.19 × 10−2 3.11 × 10−2 3.21 × 10−3 3.04 × 10−2 8.96 × 10−3 8.00 × 10−3 5.91 × 10−3 3.71 × 10−3 1.65 × 10−2 1.37 × 10−2

Std 3.74 × 10−2 1.35 × 10−1 3.70 × 10−3 7.81 × 10−2 3.68 × 10−2 2.69 × 10−2 8.18 × 10−3 5.05 × 10−3 6.09 × 10−2 3.63 × 10−2

Rank 6 10 1 9 5 4 3 2 8 7

F6

Avg 4.45 × 10−6 3.24 × 10−6 2.13 × 10−6 6.26 × 10−6 3.12 × 10−6 3.52 × 10−6 3.51 × 10−6 2.32 × 10−6 3.74 × 10−6 4.28 × 10−6

Std 8.39 × 10−6 4.45 × 10−6 2.86 × 10−6 1.76 × 10−5 4.16 × 10−6 3.94 × 10−6 5.40 × 10−6 2.70 × 10−6 9.22 × 10−6 4.85 × 10−6

Rank 9 4 1 10 3 6 5 2 7 8

F7

Avg 1.81 × 10−4 2.44 × 10−4 1.76 × 10−4 2.10 × 10−4 2.65 × 10−4 2.03 × 10−4 2.03 × 10−4 1.80 × 10−4 2.28 × 10−4 2.00 × 10−4

Std 1.77 × 10−4 1.90 × 10−4 1.74 × 10−4 1.63 × 10−4 2.40 × 10−4 2.41 × 10−4 2.03 × 10−4 1.38 × 10−4 1.81 × 10−4 1.55 × 10−4

Rank 3 9 1 7 10 6 5 2 8 4

F8

Avg −9051.0832 −9152.4981 −9400.3304 −9281.9785 −9290.1890 −8903.7512 −9024.0377 −9007.2763 −9003.1787 −9282.5212
Std 8.87 × 102 9.51 × 102 7.22 × 102 7.99 × 102 8.87 × 102 5.49 × 102 6.66 × 102 1.17 × 103 6.82 × 102 9.29 × 102

Rank 6 5 1 4 2 10 7 8 9 3

F9

Avg 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Std 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Rank 1 1 1 1 1 1 1 1 1 1

F10

Avg 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

Std 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Rank 1 1 1 1 1 1 1 1 1 1

F11

Avg 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Std 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Rank 1 1 1 1 1 1 1 1 1 1

F12

Avg 2.87 × 10−7 5.11 × 10−7 1.75 × 10−7 2.22 × 10−7 3.24 × 10−7 2.55 × 10−7 2.38 × 10−7 1.62 × 10−7 2.53 × 10−7 3.50 × 10−7

Std 5.34 × 10−7 1.37 × 10−6 2.26 × 10−7 2.36 × 10−7 7.49 × 10−7 2.77 × 10−7 3.87 × 10−7 2.23 × 10−7 3.81 × 10−7 4.45 × 10−7

Rank 7 10 2 3 8 6 4 1 5 9

F13

Avg 2.73 × 10−6 1.79 × 10−6 1.75 × 10−6 3.86 × 10−6 3.09 × 10−6 1.40 × 10−6 1.99 × 10−6 1.92 × 10−6 1.73 × 10−6 2.92 × 10−6

Std 5.59 × 10−6 2.13 × 10−6 2.31 × 10−6 6.32 × 10−6 5.80 × 10−6 1.63 × 10−6 2.19 × 10−6 3.43 × 10−6 1.80 × 10−6 5.76 × 10−6

Rank 7 4 3 10 9 1 6 5 2 8

Processes 2022, 10, 2703 18 of 46

Table 5. Cont.

Fn Criteria CM1 CM2 CM3 CM4 CM5 CM6 CM7 CM8 CM9 CM10

F14

Avg 1.97 × 100 9.98 × 10−1 9.98 × 10−1 1.13 × 100 1.13 × 100 1.84 × 100 1.59 × 100 1.20 × 100 1.20 × 100 1.06 × 100

Std 2.97 × 100 1.75 × 10−14 7.14 × 10−17 5.03 × 10−1 5.24 × 10−1 2.74 × 100 2.18 × 100 6.05 × 10−1 2.35 × 10−1 3.62 × 10−1

Rank 10 2 1 4 5 9 8 7 6 3

F15

Avg 3.38 × 10−4 3.08 × 10−4 3.08 × 10−4 3.07 × 10−4 3.52 × 10−4 3.42 × 10−4 3.42 × 10−4 3.69 × 10−4 3.38 × 10−4 3.07 × 10−4

Std 1.68 × 10−4 8.34 × 10−8 1.55 × 10−8 4.31 × 10−8 2.35 × 10−4 1.68 × 10−4 1.86 × 10−4 2.35 × 10−4 1.67 × 10−4 2.41 × 10−9

Rank 6 4 3 2 9 7 8 10 5 1

F16

Avg −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Std 5.76 × 10−16 6.12 × 10−16 5.21 × 10−16 5.83 × 10−16 5.53 × 10−16 6.12 × 10−16 5.61 × 10−16 5.98 × 10−16 5.90 × 10−16 5.83 × 10−16

Rank 4 9 1 5 2 9 3 8 7 5

F17

Avg 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

Std 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Rank 1 1 1 1 1 1 1 1 1 1

F18

Avg 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100

Std 1.53 × 10−15 1.32 × 10−15 1.26 × 10−15 2.18 × 10−15 6.39 × 10−16 1.31 × 10−15 5.71 × 10−16 1.42 × 10−15 1.40 × 10−15 1.37 × 10−15

Rank 9 5 3 10 2 4 1 8 7 6

F19

Avg −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628
Std 2.64 × 10−15 2.60 × 10−15 2.60 × 10−15 2.60 × 10−15 2.67 × 10−15 2.64 × 10−15 2.67 × 10−15 2.55 × 10−15 2.60 × 10−15 2.64 × 10−15

Rank 6 2 2 2 9 6 9 1 2 6

F20

Avg −3.2784 −3.2744 −3.2982 −3.2824 −3.2902 −3.2586 −3.2744 −3.2823 −3.2902 −3.2863
Std 5.83 × 10−2 5.92 × 10−2 4.84 × 10−2 5.83 × 10−2 5.35 × 10−2 6.03 × 10−2 5.92 × 10−2 5.70 × 10−2 5.35 × 10−2 5.54 × 10−2

Rank 7 9 1 5 2 10 8 6 2 4

F21

Avg −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532
Std 5.56 × 10−15 5.63 × 10−15 5.56 × 10−15 7.05 × 10−10 5.63 × 10−15 5.58 × 10−15 1.75 × 10−14 5.56 × 10−15 5.69 × 10−15 5.58 × 10−15

Rank 1 6 1 10 6 4 9 1 8 4

F22

Avg −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029
Std 4.66 × 10−16 5.71 × 10−16 0.00 × 100 2.35 × 10−10 3.30 × 10−16 0.00 × 100 3.30 × 10−16 3.32 × 10−15 1.81 × 10−15 4.66 × 10−16

Rank 5 7 1 10 3 1 3 9 8 5

F23

Avg −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364
Std 1.68 × 10−15 1.85 × 10−9 1.64 × 10−15 1.71 × 10−15 1.68 × 10−15 1.65 × 10−15 1.55 × 10−15 1.68 × 10−15 1.62 × 10−15 1.65 × 10−15

Rank 6 10 3 9 6 4 1 6 2 4

Friedman Mean Rank 4.6087 4.9565 1.4348 5.0435 3.9565 4.7391 4.0000 5.0435 5.6522 4.2174
Final Ranking 5 7 1 8 2 6 3 8 10 4

The best values obtained have been highlighted in boldface.

Processes 2022, 10, 2703 19 of 46

Table 6. Comparison results of CHAOARO and other algorithms on 23 benchmark functions.

Fn Criteria AO GWO WOA SCA TSA GJO ARO WChOA DAOA CHAOARO

F1

Avg 2.48 × 10−103 1.58 × 10−27 3.55 × 10−72 4.81 × 101 2.04 × 10−194 3.60 × 10−54 4.10 × 10−58 6.78 × 10−281 8.21 × 100 0.00 × 100

Std 1.36 × 10−102 3.76 × 10−27 1.94 × 10−71 1.54 × 102 0.00 × 100 9.28 × 10−54 2.08 × 10−57 0.00 × 100 4.32 × 100 0.00 × 100

Rank 4 8 5 10 3 7 6 2 9 1

F2

Avg 2.33 × 10−54 9.47 × 10−17 2.50 × 10−51 1.71 × 10−2 1.20 × 10−100 1.97 × 10−32 2.43 × 10−32 5.44 × 10−145 1.18 × 106 0.00 × 100

Std 1.27 × 10−53 6.62 × 10−17 8.78 × 10−51 2.71 × 10−2 3.13 × 10−100 2.56 × 10−32 7.41 × 10−32 7.88 × 10−145 5.23 × 106 0.00 × 100

Rank 4 8 5 9 3 6 7 2 10 1

F3

Avg 3.34 × 10−102 9.76 × 10−6 3.82 × 104 8.88 × 103 2.12 × 10−182 2.19 × 10−17 8.18 × 10−40 3.76 × 10−190 1.88 × 103 0.00 × 100

Std 1.83 × 10−101 1.46 × 10−5 1.46 × 104 5.24 × 103 0.00 × 100 6.63 × 10−17 4.39 × 10−39 0.00 × 100 6.16 × 102 0.00 × 100

Rank 4 7 10 9 3 6 5 2 8 1

F4

Avg 1.08 × 10−51 7.69 × 10−7 4.74 × 101 3.94 × 101 8.50 × 10−92 2.27 × 10−16 1.32 × 10−23 3.50 × 10−137 1.25 × 101 0.00 × 100

Std 4.12 × 10−51 6.64 × 10−7 3.12 × 101 1.27 × 101 3.06 × 10−91 3.94 × 10−16 6.84 × 10−23 1.68 × 10−136 5.92 × 100 0.00 × 100

Rank 4 7 10 9 3 6 5 2 8 1

F5

Avg 9.19 × 10−3 2.71 × 101 2.81 × 101 6.27 × 104 2.86 × 101 2.77 × 101 3.79 × 100 2.90 × 101 1.22 × 103 2.66 × 10−3

Std 3.46 × 10−3 8.65 × 10−1 4.52 × 10−1 1.63 × 105 4.04 × 10−1 8.07 × 10−1 8.90 × 100 2.05 × 10−3 1.39 × 103 4.89 × 10−4

Rank 2 4 6 10 7 5 3 8 9 1

F6

Avg 1.83 × 10−4 8.21 × 10−1 4.18 × 10−1 1.92 × 101 6.30 × 100 2.58 × 100 1.63 × 10−3 2.39 × 100 8.07 × 100 1.53 × 10−6

Std 2.56 × 10−4 4.40 × 10−1 2.75 × 10−1 3.49 × 101 8.02 × 10−1 4.71 × 10−1 7.53 × 10−4 2.93 × 10−1 2.86 × 100 2.28 × 10−6

Rank 2 5 4 10 8 7 3 6 9 1

F7

Avg 9.23 × 10−5 2.05 × 10−3 2.17 × 10−3 1.03 × 10−1 7.55 × 10−5 5.59 × 10−4 8.47 × 10−4 1.52 × 10−4 9.77 × 10−2 8.52 × 10−5

Std 9.80 × 10−5 1.12 × 10−3 2.10 × 10−3 1.09 × 10−1 7.24 × 10−5 3.97 × 10−4 7.51 × 10−4 1.39 × 10−4 3.64 × 10−2 8.29 × 10−5

Rank 3 7 8 10 1 5 6 4 9 2

F8

Avg −6.45 × 103 −5.98 × 103 −1.05 × 104 −3.70 × 103 −3.35 × 103 −4.28 × 103 −9.05 × 103 −2.49 × 103 −7.33 × 103 −1.03 × 104

Std 2.07 × 103 8.50 × 102 3.02 × 102 1.67 × 103 4.30 × 102 1.26 × 103 8.17 × 102 4.40 × 102 7.00 × 102 4.89 × 102

Rank 5 6 1 8 9 7 3 10 4 2

F9

Avg 0.00 × 100 2.63 × 100 7.52 × 100 4.41 × 101 3.50 × 101 0.00 × 100 0.00 × 100 0.00 × 100 5.34 × 101 0.00 × 100

Std 0.00 × 100 2.70 × 100 4.12 × 101 4.34 × 101 5.76 × 101 0.00 × 100 0.00 × 100 0.00 × 100 1.33 × 101 0.00 × 100

Rank 1 6 7 9 8 1 1 1 10 1

F10

Avg 8.88 × 10−16 1.03 × 10−13 4.80 × 10−15 1.22 × 101 4.56 × 10−15 7.28 × 10−15 8.88 × 10−16 4.20 × 10−15 3.13 × 100 8.88 × 10−16

Std 0.00 × 100 1.73 × 10−14 3.00 × 10−15 9.12 × 100 6.49 × 10−16 1.45 × 10−15 0.00 × 100 9.01 × 10−16 7.69 × 10−1 0.00 × 100

Rank 1 8 6 10 5 7 1 4 9 1

F11

Avg 0.00 × 100 1.95 × 10−3 6.10 × 10−3 9.62 × 10−1 2.60 × 10−3 0.00 × 100 0.00 × 100 0.00 × 100 1.06 × 100 0.00 × 100

Std 0.00 × 100 5.13 × 10−3 3.34 × 10−2 5.54 × 10−1 8.20 × 10−3 0.00 × 100 0.00 × 100 0.00 × 100 2.53 × 10−2 0.00 × 100

Rank 1 6 8 9 7 1 1 1 10 1

F12

Avg 1.09 × 10−6 4.20 × 10−2 2.12 × 10−2 2.91 × 104 9.82 × 10−1 2.42 × 10−1 7.40 × 10−5 1.68 × 10−1 5.65 × 100 2.25 × 10−7

Std 1.01 × 10−6 2.06 × 10−2 1.71 × 10−2 9.95 × 104 3.10 × 10−1 1.04 × 10−1 5.54 × 10−5 3.32 × 10−2 2.78 × 100 3.24 × 10−7

Rank 2 5 4 10 8 7 3 6 9 1

F13

Avg 8.95 × 10−6 6.09 × 10−1 5.18 × 10−1 8.05 × 105 2.53 × 100 1.71 × 100 5.38 × 10−3 3.00 × 100 4.35 × 100 2.11 × 10−6

Std 1.43 × 10−5 2.20 × 10−1 2.41 × 10−1 2.96 × 106 2.93 × 10−1 2.18 × 10−1 9.63 × 10−3 2.30 × 10−5 5.74 × 100 3.41 × 10−6

Rank 2 5 4 10 7 6 3 8 9 1

Processes 2022, 10, 2703 20 of 46

Table 6. Cont.

Fn Criteria AO GWO WOA SCA TSA GJO ARO WChOA DAOA CHAOARO

F14

Avg 5.13 × 100 5.33 × 100 3.29 × 100 2.05 × 100 1.17 × 101 6.08 × 100 9.98 × 10−1 1.71 × 100 2.72 × 100 9.98 × 10−1

Std 5.01 × 100 4.56 × 100 3.51 × 100 1.90 × 100 4.96 × 100 4.64 × 100 4.12 × 10−17 1.79 × 100 1.27 × 100 0.00 × 100

Rank 7 8 6 4 10 9 2 3 5 1

F15

Avg 3.29 × 10−4 2.44 × 10−3 6.59 × 10−4 1.03 × 10−3 8.27 × 10−3 3.12 × 10−3 3.22 × 10−4 4.11 × 10−2 1.09 × 10−2 3.12 × 10−4

Std 2.60 × 10−5 6.08 × 10−3 4.16 × 10−4 3.67 × 10−4 1.76 × 10−2 6.88 × 10−3 6.45 × 10−5 3.91 × 10−2 8.31 × 10−3 2.26 × 10−5

Rank 3 6 4 5 8 7 2 10 9 1

F16

Avg −1.0314 −1.0316 −1.0316 −1.0316 −1.0242 −1.0316 −1.0316 −1.0031 −0.9228 −1.0316
Std 1.07 × 10−3 2.12 × 10−8 2.70 × 10−10 3.71 × 10−5 1.36 × 10−2 2.61 × 10−7 5.68 × 10−16 7.48 × 10−3 2.82 × 10−1 5.61 × 10−16

Rank 7 4 3 6 8 5 2 9 10 1

F17

Avg 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 4.01 × 10−1 4.00 × 10−1 3.98 × 10−1 3.98 × 10−1 1.19 × 100 1.00 × 100 3.98 × 10−1

Std 2.96 × 10−5 7.64 × 10−7 1.50 × 10−5 3.25 × 10−3 2.57 × 10−3 8.90 × 10−5 0.00 × 100 8.70 × 10−1 7.97 × 10−1 0.00 × 100

Rank 5 3 4 8 7 6 1 10 9 1

F18

Avg 1.66 × 101 3.00 × 100 3.00 × 100 3.00 × 100 1.05 × 101 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100

Std 1.38 × 101 5.16 × 10−5 1.59 × 10−4 1.12 × 10−4 2.22 × 101 6.59 × 10−6 1.47 × 10−15 1.21 × 10−4 3.18 × 10−4 1.28 × 10−15

Rank 10 4 7 5 9 3 2 6 8 1

F19

Avg −3.8384 −3.8611 −3.8563 −3.8546 −3.8595 −3.8606 −3.8628 −3.4620 −3.8112 −3.8628
Std 3.90 × 10−2 2.64 × 10−3 1.08 × 10−2 3.41 × 10−3 2.60 × 10−3 3.49 × 10−3 3.65 × 10−15 3.35 × 10−1 1.96 × 10−1 2.61 × 10−15

Rank 8 3 6 7 5 4 2 10 9 1

F20

Avg −3.2582 −3.2697 −3.2483 −2.9609 −3.1590 −3.1552 −3.2744 −1.7121 −3.2744 −3.2824
Std 7.46 × 10−2 7.35 × 10−2 9.16 × 10−2 3.12 × 10−1 1.66 × 10−1 1.12 × 10−1 5.92 × 10−2 4.60 × 10−1 5.92 × 10−2 5.70 × 10−2

Rank 5 4 6 9 7 8 2 10 2 1

F21

Avg −10.1521 −8.8856 −8.2071 −2.8999 −7.1024 −8.7078 −9.6483 −0.9418 −5.8722 −10.1532
Std 1.11 × 10−3 2.37 × 100 2.71 × 100 1.85 × 100 1.65 × 100 2.45 × 100 1.91 × 100 3.53 × 10−1 3.02 × 100 9.43 × 10−5

Rank 2 4 6 9 7 5 3 10 8 1

F22

Avg −10.4012 −10.4012 −7.2731 −2.9022 −6.5091 −9.2546 −9.8260 −1.3450 −5.8760 −10.4029
Std 2.14 × 10−3 1.15 × 10−3 3.28 × 100 1.75 × 100 2.06 × 100 2.34 × 100 1.77 × 100 7.23 × 10−1 3.38 × 100 4.66 × 10−16

Rank 3 2 6 9 7 5 4 10 8 1

F23

Avg −10.5348 −10.5346 −6.5171 −3.6233 −6.1982 −9.4430 −10.3130 −1.2424 −5.4826 −10.5364
Std 2.21 × 10−3 1.02 × 10−3 2.99 × 100 1.44 × 100 2.68 × 100 2.51 × 100 1.22 × 100 4.17 × 10−1 3.73 × 100 1.84 × 10−15

Rank 2 3 6 9 7 5 4 10 8 1

Friedman Mean Rank 3.7826 5.3478 5.7391 8.4348 6.3913 5.5652 3.0870 6.2609 8.2174 1.0870
Final Ranking 3 4 6 9 8 5 2 7 10 1

The best values obtained have been highlighted in boldface.

Processes 2022, 10, 2703 21 of 46

As seen from Table 6, for unimodal functions F1~F7, as far as the average fitness is
concerned, CHAOARO is able to precisely pinpoint the theoretical optimal solution (0) on
F1~F4, whereas the obtained results of other comparison algorithms are not satisfactory.
Meanwhile, it is noteworthy that the solution accuracy of the hybrid algorithm has a
significant improvement over the basic AO and ARO. On functions F5 and F6, although
CHAOARO fails to search for the global optimum, it still achieves the best average fitness
value in the competition with the remaining nine algorithms. Regarding function F7, the
proposed CHAOARO also provides very competitive average fitness, which is second only
to the best TSA. Additionally, CHAOARO achieves the smallest standard deviation among
all algorithms on functions F1~F6, but marginally inferior to TSA on function F7. Since the
unimodal function has only one global optimal value, these experimental data indicate that
CHAOARO has strong local exploitation potential. This is because the COBL strategy can
effectively expand the unknown search domain and the hybrid operation facilitates the
exchange of useful information among individuals in the population.

With regard to solving multimodal and fix-dimension multimodal functions F8~F23,
CHAOARO maintains good convergence accuracy and robustness, which can reveal the
best results on 15 out of 16 benchmark functions both in terms of average fitness and
standard deviation. Especially on functions F12, F13, F15, F20, F21, F22, and F23, CHAOARO
has an overwhelming advantage compared with the basic AO and ARO, as well as other
optimization methods. On functions F16~F19, some algorithms achieve the same average
fitness as CHAOARO. However, the calculated standard deviation value of the proposed
algorithm is the smallest among them. This highlights the superior stability of CHAOARO.
Considering that the multimodal and fix-dimension multimodal functions are characterized
by numerous local minima, these results prove the excellent exploration and local optima
avoidance capabilities of CHAOARO. It can be explained that CHAOARO takes full
advantage of the powerful exploration trend of AO, and the ASM mechanism can better
balance the algorithm exploration and exploitation.

Moreover, the final Friedman mean ranking of CHAOARO obtained on 23 classical
benchmark functions is 1.0870, which ranks first among these algorithms. Hence, it can
be believed that the searchability of the hybrid algorithm proposed in this paper has been
significantly enhanced.

4.1.3. Analysis of Convergence Behavior

To study the convergence behavior of the algorithm throughout the process of finding
the global optimal solution, Figure 7 illustrates the convergence curves of AO, GWO, WOA,
TSA, GJO, ARO, WChOA, DAOA, and CHAOARO on 23 classical benchmark functions.
From Figure 7, it can be observed that the proposed CHAOARO can effectively reach the
global optimal solution at the initial stage of the unimodal benchmark functions F1~F4 and
shows the fastest convergence speed, while the original AO, ARO, and other comparison
algorithms converge slowly with unsatisfactory convergence accuracy. On functions F5
and F6, CHAOARO has a similar convergence trend to AO in the early search process, but
gradually AO falls into the local optima, while the proposed algorithm still maximizes the
information in the search space to improve the quality of the solution. Finally, CHAOARO
provides the best convergence accuracy among all these optimization methods. On function
F7, CHAOARO also gains a good ameliorate in the field of convergence accuracy and
speed compared with AO and ARO. For multimodal functions F8~F13, the proposed
CHAOARO continues its outstanding search performance. Specifically, on functions F9
and F11, CHAOARO is able to obtain the theoretical optimum with the minimum number
of iterations among all algorithms. On functions F8, F10, F12, and F13, the convergence
accuracy and speed of CHAOARO once again outperform the other competitors in varying
degrees. For fix-dimension multimodal functions F14~F23, CHAOARO can quickly transfer
from exploration to exploitation, converge to the global optimal value in the early searching
stage, and not fall into the local optimum. Compared with its peers, CHAOARO possesses
a significant superiority in terms of convergence accuracy and speed.

Processes 2022, 10, 2703 22 of 46
Processes 2022, 10, x FOR PEER REVIEW 22 of 45

 Figure 7. Cont.

Processes 2022, 10, 2703 23 of 46
Processes 2022, 10, x FOR PEER REVIEW 23 of 45

Figure 7. Convergence curves of CHAOARO and other comparison algorithms on 23 benchmark
functions.

Figure 7. Convergence curves of CHAOARO and other comparison algorithms on 23 benchmark
functions.

To sum up, the convergence pattern of the proposed CHAOARO is obviously im-
proved, and it can rapidly and precisely locate an excellent solution for both unimodal and
multimodal functions.

Processes 2022, 10, 2703 24 of 46

4.1.4. Boxplot Analysis

To better describe the consistency between the data obtained from 30 independent runs,
in this subsection, the boxplot diagram is utilized to reflect the distribution characteristics
of each algorithm. Figure 8 depicts the boxplots of AO, GWO, WOA, SCA, TSA, GJO,
ARO, WChOA, DAOA, and CHAOARO on 12 representative benchmark functions. In this
diagram, the center mark of each box signifies the median obtained, the lowest and largest
points on the edges are the minimum and maximum values, respectively, and the symbol
”+” denotes an outlier. From Figure 9, we can notice that the objective distribution of
CHAOARO is narrower than that of comparison algorithms in most cases, which suggests
that the proposed algorithm has excellent robustness in solving these test problems. In
particular, on functions F1, F2, F3, F4, F9, F10, F11, F14, F16, and F17, CHAOARO does not
produce any outliers. On the remaining functions, although there exist individual outliers,
the general distribution of CHAOARO regarding the median, minimum, and maximum
values is likewise more concentrated than others. Experimental findings demonstrate that
the stability of CHAOARO is considerably improved compared to its predecessors AO and
ARO, which benefits largely from the key ASM and COBL strategies.

Processes 2022, 10, x FOR PEER REVIEW 25 of 45

Figure 8. Boxplots of CHAOARO and other comparison algorithms on some benchmark functions. Figure 8. Boxplots of CHAOARO and other comparison algorithms on some benchmark functions.

Processes 2022, 10, 2703 25 of 46Processes 2022, 10, x FOR PEER REVIEW 26 of 45

Figure 9. Friedman mean ranking of CHAOARO and its peers in different dimensions.

Table 7. Statistical results of Wilcoxon rank-sum test for different algorithms on 23 benchmark func-
tions.

Fn
CHAOARO VS.
AO GWO WOA SCA TSA GJO ARO WChOA DAOA

F1 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12
F2 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12
F3 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12
F4 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12
F5 2.12 × 10−4 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.41 × 10−9 2.95 × 10−11 3.02 × 10−11
F6 2.15 × 10−10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11
F7 2.92 × 10−2 3.02 × 10−11 2.92 × 10−9 3.02 × 10−11 5.83 × 10−3 7.04 × 10−7 1.47 × 10−7 8.77 × 10−3 3.02 × 10−11
F8 1.07 × 10−7 3.02 × 10−11 3.18 × 10−3 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 7.74 × 10−6 3.02 × 10−11 4.18 × 10−9
F9 NaN 1.17 × 10−12 1.61 × 10−1 1.21 × 10−12 6.25 × 10−10 NaN NaN NaN 1.21 × 10−12
F10 NaN 1.04 × 10−12 3.76 × 10−8 1.21 × 10−12 2.71 × 10−14 1.55 × 10−13 NaN 7.15 × 10−13 1.21 × 10−12
F11 NaN 2.16 × 10−2 3.34 × 10−3 1.21 × 10−12 4.19 × 10−2 NaN NaN NaN 1.21 × 10−12
F12 2.32 × 10−6 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11
F13 8.68 × 10−3 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 2.86 × 10−11 3.02 × 10−11
F14 1.72 × 10−12 1.72 × 10−12 1.72 × 10−12 1.72 × 10−12 1.72 × 10−12 1.72 × 10−12 3.34 × 10−5 1.72 × 10−12 1.72 × 10−12
F15 3.50 × 10−9 9.76 × 10−10 9.92 × 10−11 3.34 × 10−11 9.92 × 10−11 3.82 × 10−10 3.67 × 10−3 3.02 × 10−11 3.02 × 10−11
F16 1.45 × 10−11 1.45 × 10−11 1.45 × 10−11 1.45 × 10−11 1.45 × 10−11 1.45 × 10−11 8.04 × 10−2 1.45 × 10−11 1.45 × 10−11
F17 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NaN 1.21 × 10−12 1.21 × 10−12
F18 6.47 × 10−12 6.47 × 10−12 6.47 × 10−12 6.47 × 10−12 6.47 × 10−12 6.47 × 10−12 2.23 × 10−1 6.47 × 10−12 6.47 × 10−12
F19 7.57 × 10−12 7.57 × 10−12 7.57 × 10−12 7.57 × 10−12 7.57 × 10−12 7.57 × 10−12 3.26 × 10−1 7.57 × 10−12 7.57 × 10−12
F20 3.99 × 10−4 1.25 × 10−4 1.25 × 10−4 3.02 × 10−11 1.11 × 10−6 4.68 × 10−8 1.78 × 10−5 3.02 × 10−11 6.76 × 10−5
F21 1.17 × 10−11 3.16 × 10−12 3.16 × 10−12 3.16 × 10−12 3.16 × 10−12 3.16 × 10−12 4.22 × 10−10 3.16 × 10−12 8.44 × 10−12
F22 2.36 × 10−12 2.36 × 10−12 2.36 × 10−12 2.36 × 10−12 2.36 × 10−12 2.36 × 10−12 1.89 × 10−8 2.36 × 10−12 2.36 × 10−12
F23 9.04 × 10−12 9.04 × 10−12 9.04 × 10−12 9.04 × 10−12 9.04 × 10−12 9.04 × 10−12 1.04 × 10−5 9.04 × 10−12 9.04 × 10−12
+/=/− 20/3/0 23/0/0 22/0/1 23/0/0 23/0/0 21/2/0 16/4/3 21/2/0 23/0/0

The p-value obtained greater than 0.05 have been highlighted in boldface.

Figure 9. Friedman mean ranking of CHAOARO and its peers in different dimensions.

4.1.5. Wilcoxon Rank-Sum Test

The Wilcoxon rank-sum test is a non-parametric statistical method used to assess
the performance difference between two samples at a significance level of 0.05 [68]. To
be specific, if the p-value is less than 0.05, it means that there is a significant difference
between CHAOARO and the comparison algorithm, i.e., CHAOARO performs better
than its opponent (“+”). In contrast, when the p-value is greater than 0.05, it indicates
that the difference between CHAOARO and the comparison algorithm is not apparent,
i.e., CHAOARO performs worse than its opponent (“−”). In addition, NaN represents
that CHAOARO and the comparison algorithm have consistent performance in terms of
statistics (“=”). Table 7 outlines the p-values between CHAOARO and each comparison
optimizer obtained via Wilcoxon rank-sum test on 23 benchmark functions. As can be
seen from this table, the proposed method is significantly superior to AO on 20 functions,
GWO on 23 functions, WOA on 22 functions, SCA on 23 functions, TSA on 23 functions,
GJO on 21 functions, ARO on 16 functions, WChOA on 21 functions, and DAOA on
23 functions. These statistical results provide evidence that CHAOARO shows better
significant optimization performance on almost all test functions compared with other
comparison algorithms.

4.1.6. Computation Time Analysis

To quantitatively analyze the computational cost of the proposed algorithm, the
average runtime of ten algorithms on 23 benchmark functions is reported in Table 8. We
calculate the total operation time for each algorithm and give the corresponding rankings
as follows: WChOA (27.9750 s) > AO (6.2460 s) > GJO (5.4630 s) > CHAOARO (4.3330 s) >
ARO (4.2020 s) > GWO (4.0796 s) > TSA (3.5097 s) > SCA (3.3658 s) > DAOA (2.7242 s) >
WOA (2.3238 s). From the results, it can be seen that the time consumption of CHAOARO
is slightly higher than that of ARO but significantly lower than that of AO. Although the
algorithm designed in this paper has a more complex framework compared with the basic
AO and ARO algorithms, mainly due to the hybrid operation, ASM, and COBL mechanisms,
its optimization performance is greatly improved. On the other hand, using the added
steps to obtain more reliable solutions does not result in too much time cost required to
be sacrificed by CHAOARO. On the whole, given that CHAOARO has better exploration
and exploitation capabilities than other comparison algorithms, a little computation time
is acceptable. The proposed method is expected to be successfully adopted in some
real-time applications.

Processes 2022, 10, 2703 26 of 46

Table 7. Statistical results of Wilcoxon rank-sum test for different algorithms on 23 benchmark functions.

Fn
CHAOARO VS.

AO GWO WOA SCA TSA GJO ARO WChOA DAOA

F1 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F2 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F3 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F4 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F5 2.12 × 10−4 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.41 × 10−9 2.95 × 10−11 3.02 × 10−11

F6 2.15 × 10−10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F7 2.92 × 10−2 3.02 × 10−11 2.92 × 10−9 3.02 × 10−11 5.83 × 10−3 7.04 × 10−7 1.47 × 10−7 8.77 × 10−3 3.02 × 10−11

F8 1.07 × 10−7 3.02 × 10−11 3.18 × 10−3 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 7.74 × 10−6 3.02 × 10−11 4.18 × 10−9

F9 NaN 1.17 × 10−12 1.61 × 10−1 1.21 × 10−12 6.25 × 10−10 NaN NaN NaN 1.21 × 10−12

F10 NaN 1.04 × 10−12 3.76 × 10−8 1.21 × 10−12 2.71 × 10−14 1.55 × 10−13 NaN 7.15 × 10−13 1.21 × 10−12

F11 NaN 2.16 × 10−2 3.34 × 10−3 1.21 × 10−12 4.19 × 10−2 NaN NaN NaN 1.21 × 10−12

F12 2.32 × 10−6 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F13 8.68 × 10−3 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 2.86 × 10−11 3.02 × 10−11

F14 1.72 × 10−12 1.72 × 10−12 1.72 × 10−12 1.72 × 10−12 1.72 × 10−12 1.72 × 10−12 3.34 × 10−5 1.72 × 10−12 1.72 × 10−12

F15 3.50 × 10−9 9.76 × 10−10 9.92 × 10−11 3.34 × 10−11 9.92 × 10−11 3.82 × 10−10 3.67 × 10−3 3.02 × 10−11 3.02 × 10−11

F16 1.45 × 10−11 1.45 × 10−11 1.45 × 10−11 1.45 × 10−11 1.45 × 10−11 1.45 × 10−11 8.04 × 10−2 1.45 × 10−11 1.45 × 10−11

F17 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NaN 1.21 × 10−12 1.21 × 10−12

F18 6.47 × 10−12 6.47 × 10−12 6.47 × 10−12 6.47 × 10−12 6.47 × 10−12 6.47 × 10−12 2.23 × 10−1 6.47 × 10−12 6.47 × 10−12

F19 7.57 × 10−12 7.57 × 10−12 7.57 × 10−12 7.57 × 10−12 7.57 × 10−12 7.57 × 10−12 3.26 × 10−1 7.57 × 10−12 7.57 × 10−12

F20 3.99 × 10−4 1.25 × 10−4 1.25 × 10−4 3.02 × 10−11 1.11 × 10−6 4.68 × 10−8 1.78 × 10−5 3.02 × 10−11 6.76 × 10−5

F21 1.17 × 10−11 3.16 × 10−12 3.16 × 10−12 3.16 × 10−12 3.16 × 10−12 3.16 × 10−12 4.22 × 10−10 3.16 × 10−12 8.44 × 10−12

F22 2.36 × 10−12 2.36 × 10−12 2.36 × 10−12 2.36 × 10−12 2.36 × 10−12 2.36 × 10−12 1.89 × 10−8 2.36 × 10−12 2.36 × 10−12

F23 9.04 × 10−12 9.04 × 10−12 9.04 × 10−12 9.04 × 10−12 9.04 × 10−12 9.04 × 10−12 1.04 × 10−5 9.04 × 10−12 9.04 × 10−12

+/=/− 20/3/0 23/0/0 22/0/1 23/0/0 23/0/0 21/2/0 16/4/3 21/2/0 23/0/0

The p-value obtained greater than 0.05 have been highlighted in boldface.

Processes 2022, 10, 2703 27 of 46

Table 8. Average computation time of CHAOARO and other algorithms on all benchmark functions (unit: s).

Fn AO GWO WOA SCA TSA GJO ARO WChOA DAOA CHAOARO

F1 2.08 × 10−1 1.91 × 10−1 5.68 × 10−2 1.30 × 10−1 1.51 × 10−1 2.72 × 10−1 1.40 × 10−1 1.86 × 100 9.08 × 10−2 1.72 × 10−1

F2 1.82 × 10−1 1.74 × 10−1 5.39 × 10−2 1.28 × 10−1 1.46 × 10−1 2.31 × 10−1 1.53 × 10−1 1.88 × 100 8.88 × 10−2 1.43 × 10−1

F3 4.79 × 10−1 3.11 × 10−1 1.94 × 10−1 2.60 × 10−1 2.76 × 10−1 3.60 × 10−1 2.79 × 10−1 1.96 × 100 2.20 × 10−1 2.82 × 10−1

F4 1.82 × 10−1 1.80 × 10−1 5.10 × 10−2 1.40 × 10−1 1.48 × 10−1 2.35 × 10−1 1.38 × 10−1 1.93 × 100 8.28 × 10−2 1.44 × 10−1

F5 2.15 × 10−1 2.12 × 10−1 7.87 × 10−2 1.54 × 10−1 1.70 × 10−1 2.54 × 10−1 1.47 × 10−1 1.92 × 100 1.00 × 10−1 1.56 × 10−1

F6 1.83 × 10−1 1.98 × 10−1 5.66 × 10−2 1.37 × 10−1 1.57 × 10−1 2.50 × 10−1 1.39 × 10−1 1.82 × 100 8.77 × 10−2 1.35 × 10−1

F7 3.07 × 10−1 2.55 × 10−1 1.30 × 10−1 2.03 × 10−1 1.94 × 10−1 3.11 × 10−1 2.15 × 10−1 1.87 × 100 1.47 × 10−1 2.16 × 10−1

F8 2.13 × 10−1 1.87 × 10−1 6.55 × 10−2 1.48 × 10−1 1.65 × 10−1 2.46 × 10−1 1.57 × 10−1 1.85 × 100 1.06 × 10−1 1.62 × 10−1

F9 1.93 × 10−1 2.00 × 10−1 6.20 × 10−2 1.34 × 10−1 1.40 × 10−1 2.27 × 10−1 1.24 × 10−1 1.87 × 100 9.87 × 10−2 1.43 × 10−1

F10 1.90 × 10−1 1.89 × 10−1 6.13 × 10−2 1.39 × 10−1 1.38 × 10−1 2.28 × 10−1 1.39 × 10−1 1.81 × 100 9.58 × 10−2 1.36 × 10−1

F11 2.26 × 10−1 2.02 × 10−1 7.32 × 10−2 1.60 × 10−1 1.65 × 10−1 2.45 × 10−1 1.51 × 10−1 1.90 × 100 1.15 × 10−1 1.59 × 10−1

F12 5.45 × 10−1 3.44 × 10−1 2.26 × 10−1 2.99 × 10−1 3.18 × 10−1 4.01 × 10−1 3.28 × 10−1 1.96 × 100 2.83 × 10−1 3.41 × 10−1

F13 5.35 × 10−1 3.42 × 10−1 2.35 × 10−1 3.05 × 10−1 2.98 × 10−1 3.75 × 10−1 3.14 × 10−1 1.93 × 100 2.67 × 10−1 3.33 × 10−1

F14 9.38 × 10−1 4.27 × 10−1 4.27 × 10−1 4.22 × 10−1 4.37 × 10−1 5.09 × 10−1 5.08 × 10−1 5.35 × 10−1 4.28 × 10−1 5.35 × 10−1

F15 1.63 × 10−1 6.73 × 10−2 5.17 × 10−2 6.26 × 10−2 6.15 × 10−2 1.43 × 10−1 1.34 × 10−1 3.42 × 10−1 4.93 × 10−2 1.29 × 10−1

F16 1.60 × 10−1 5.64 × 10−2 5.17 × 10−2 5.36 × 10−2 5.51 × 10−2 1.43 × 10−1 1.30 × 10−1 2.39 × 10−1 4.60 × 10−2 1.33 × 10−1

F17 1.53 × 10−1 5.09 × 10−2 5.12 × 10−2 4.69 × 10−2 4.88 × 10−2 1.23 × 10−1 1.27 × 10−1 2.26 × 10−1 4.61 × 10−2 1.34 × 10−1

F18 1.54 × 10−1 5.07 × 10−2 4.02 × 10−2 4.47 × 10−2 4.44 × 10−2 1.27 × 10−1 1.30 × 10−1 2.23 × 10−1 4.18 × 10−2 1.33 × 10−1

F19 1.81 × 10−1 7.72 × 10−2 6.50 × 10−2 6.95 × 10−2 6.60 × 10−2 1.45 × 10−1 1.39 × 10−1 2.84 × 10−1 5.41 × 10−2 1.39 × 10−1

F20 1.69 × 10−1 8.13 × 10−2 5.37 × 10−2 7.06 × 10−2 7.32 × 10−2 1.55 × 10−1 1.47 × 10−1 4.74 × 10−1 5.24 × 10−2 1.37 × 10−1

F21 2.08 × 10−1 7.92 × 10−2 6.33 × 10−2 7.74 × 10−2 7.97 × 10−2 1.55 × 10−1 1.52 × 10−1 3.79 × 10−1 6.93 × 10−2 1.52 × 10−1

F22 2.19 × 10−1 9.86 × 10−2 8.30 × 10−2 8.25 × 10−2 8.29 × 10−2 1.56 × 10−1 1.46 × 10−1 3.42 × 10−1 7.09 × 10−2 1.54 × 10−1

F23 2.43 × 10−1 1.06 × 10−1 9.30 × 10−2 9.90 × 10−2 9.51 × 10−2 1.72 × 10−1 1.65 × 10−1 3.71 × 10−1 8.37 × 10−2 1.65 × 10−1

Total
runtime 6.2460 4.0796 2.3238 3.3658 3.5097 5.4630 4.2020 27.9750 2.7242 4.3330

The best values obtained have been highlighted in boldface.

Processes 2022, 10, 2703 28 of 46

4.1.7. Scalability Analysis

The scalability test can be used to investigate the impact of problems in different
dimensions on the optimization performance of the algorithm. To check whether the
proposed algorithm suffers from dimension disaster while tackling high-dimensional
optimization problems, this subsection will apply CHAOARO to optimize the 13 variable-
dimension benchmark functions F1~F13 in Table 4. We increase the test dimensions (D)
from 30 to 50, 100, and 500, and the average fitness and standard deviation results obtained
from 30 independent runs of each algorithm are filled in Table 9.

As can be found in Table 9, CHAOARO also exhibits superior search capabilities
than comparison algorithms on high-dimensional problems. With the expansion of di-
mensionality, more elements need to be optimized, so the convergence accuracy of most
algorithms decreases to some extent, but CHAOARO is able to steadily find the theoretical
optimum (0) on functions F1, F2, F3, F4, F9, and F11 in all dimensions. For functions F5, F6,
F12, and F13, the Avg and Std of the original AO and ARO gradually deteriorate with the
increase of dimension; nevertheless, CHAOARO maintains high solution accuracy. For
functions F7 and F8, the performance of CHAOARO is slightly inferior to that of TSA and
WOA, respectively, ranking second among all algorithms. Figure 9 illustrates the Friedman
mean rankings of CHAOARO and the other nine comparison algorithms on these scalable
functions. From this figure, it can be seen that CHAOARO has the best overall performance
among all algorithms regardless of dimensionality.

Based on the above, it can be concluded that when resolving high-dimensional prob-
lems, CHAOARO can maintain well exploration and exploitation trends at the same time.

4.2. Experiment 2: IEEE CEC2019 Test Suite

The above series of comparison experiments based on classical benchmark functions
have successfully witnessed the superiority of CHAOARO in solving simple optimization
problems. To further validate the effectiveness of our improved algorithm in addressing
complex optimization problems, in this section, we will evaluate the performance of
CHAOARO by using the IEEE CEC2019 test suite. Table 10 provides the details of the ten
benchmark functions in the IEEE CEC2019 test suite. Likewise, CHAOARO and the other
nine algorithms run independently 30 times on each function with the maximum iteration
and population size set as 500 and 30, respectively. And the experimental results are shown
in Table 11.

Processes 2022, 10, 2703 29 of 46

Table 9. Comparison results of CHAOARO and other algorithms on 13 unimodal and multimodal benchmark functions in different dimensions.

Fn Dimension Criteria AO GWO WOA SCA TSA GJO ARO WChOA DAOA CHAOARO

F1

50
Avg 4.99 × 10−110 4.10 × 10−20 2.25 × 10−73 8.37 × 102 6.82 × 10−186 3.19 × 10−40 4.35 × 10−55 7.27 × 10−272 5.52 × 101 0.00 × 100

Std 2.19 × 10−109 3.91 × 10−20 1.22 × 10−72 9.04 × 102 0.00 × 100 6.97 × 10−40 1.60 × 10−54 0.00 × 100 1.55 × 101 0.00 × 100

100
Avg 9.85 ×

10−102 1.31 × 10−12 5.71 × 10−73 1.06 × 104 1.39 × 10−176 1.51 × 10−27 2.53 × 10−52 1.97 × 10−262 9.03 × 102 0.00 × 100

Std 4.63 × 10−101 9.19 × 10−13 1.87 × 10−72 7.41 × 103 0.00 × 100 3.13 × 10−27 9.66 × 10−52 0.00 × 100 2.17 × 102 0.00 × 100

500
Avg 9.79 × 10−99 1.54 × 10−3 4.52 × 10−68 1.93 × 105 1.02 × 10−162 8.15 × 10−13 3.13 × 10−49 3.35 × 10−249 2.86 × 105 0.00 × 100

Std 4.02 × 10−98 5.27 × 10−4 2.45 × 10−67 7.20 × 104 0.00 × 100 1.25 × 10−12 1.69 × 10−48 0.00 × 100 2.11 × 104 0.00 × 100

F2

50
Avg 9.78 × 10−57 2.25 × 10−12 1.95 × 10−49 6.00 × 10−1 1.19 × 10−95 8.35 × 10−25 7.24 × 10−32 2.17 × 10−139 5.00 × 1014 0.00 × 100

Std 4.50 × 10−56 1.31 × 10−12 1.07 × 10−48 7.89 × 10−1 3.80 × 10−95 1.58 × 10−24 2.45 × 10−31 3.26 × 10−139 2.66 × 1015 0.00 × 100

100
Avg 1.06 × 10−61 4.01 × 10−8 2.83 × 10−49 6.44 × 100 3.34 × 10−91 1.33 × 10−17 9.08 × 10−31 5.58 × 10−134 4.99 × 1040 0.00 × 100

Std 5.83 × 10−61 1.31 × 10−8 9.54 × 10−49 5.09 × 100 4.03 × 10−91 8.41 × 10−18 1.89 × 10−30 8.48 × 10−134 2.73 × 1041 0.00 × 100

500
Avg 1.58 × 10−56 1.06 × 10−2 1.68 × 10−49 1.01 × 102 5.50 × 10−83 5.72 × 10−9 2.22 × 10−29 5.75 × 10−127 6.86 × 10246 0.00 × 100

Std 8.64 × 10−56 1.67 × 10−3 6.06 × 10−49 6.08 × 101 2.13 × 10−83 2.66 × 10−9 5.21 × 10−29 4.62 × 10−127 Inf 0.00 × 100

F3

50
Avg 1.93 × 10−100 3.79 × 10−1 1.96 × 105 5.34 × 104 6.24 × 10−175 3.04 × 10−9 2.46 × 10−37 2.57 × 10−178 1.73 × 104 0.00 × 100

Std 1.02 × 10−99 9.20 × 10−1 3.78 × 104 1.72 × 104 0.00 × 100 1.18 × 10−8 1.35 × 10−36 0.00 × 100 4.30 × 103 0.00 × 100

100
Avg 4.93 × 10−98 7.18 × 102 1.19 × 106 2.36 × 105 1.42 × 10−166 2.16 × 101 1.45 × 10−34 1.12 × 10−34 1.07 × 105 0.00 × 100

Std 1.75 × 10−97 5.34 × 102 3.34 × 105 6.07 × 104 0.00 × 100 1.18 × 102 7.94 × 10−34 6.16 × 10−34 9.99 × 103 0.00 × 100

500
Avg 4.70 × 10−100 3.29 × 105 2.84 × 107 6.83 × 106 1.59 × 10−154 6.14 × 104 2.29 × 10−31 3.03 × 103 2.87 × 106 0.00 × 100

Std 2.24 × 10−99 7.04 × 104 9.61 × 106 1.56 × 106 3.07 × 10−154 6.75 × 104 8.60 × 10−31 1.42 × 104 3.62 × 105 0.00 × 100

F4

50
Avg 2.24 × 10−51 6.27 × 10−4 6.94 × 101 6.72 × 101 2.52 × 10−88 6.93 × 10−7 4.71 × 10−23 5.16 × 10−126 4.56 × 101 0.00 × 100

Std 1.22 × 10−50 7.18 × 10−4 2.75 × 101 6.48 × 100 5.03 × 10−88 2.77 × 10−6 1.33 × 10−22 2.83 × 10−125 8.64 × 100 0.00 × 100

100
Avg 1.61 × 10−51 8.37 × 10−1 7.93 × 101 8.95 × 101 2.36 × 10−84 4.16 × 100 1.51 × 10−21 5.43 × 10−96 7.35 × 101 0.00 × 100

Std 7.16 × 10−51 9.52 × 10−1 2.07 × 101 2.96 × 100 3.38 × 10−84 7.70 × 100 6.59 × 10−21 1.90 × 10−95 6.21 × 100 0.00 × 100

500
Avg 5.05 × 10−55 6.36 × 101 8.08 × 101 9.90 × 101 2.01 × 10−75 8.26 × 101 2.60 × 10−19 5.29 × 10−74 9.71 × 101 0.00 × 100

Std 2.03 × 10−54 6.24 × 100 1.81 × 101 4.10 × 10−1 9.25 × 10−75 4.30 × 100 6.57 × 10−19 2.38 × 10−73 1.08 × 100 0.00 × 100

F5

50
Avg 2.36 × 10−2 4.73 × 101 4.82 × 101 6.13 × 106 4.86 × 101 4.78 × 101 5.21 × 10−1 4.90 × 101 5.69 × 103 1.06 × 10−2

Std 4.98 × 10−2 7.14 × 10−1 3.67 × 10−1 6.39 × 106 3.00 × 10−1 7.98 × 10−1 5.50 × 10−1 2.95 × 10−4 6.80 × 103 2.23 × 10−2

100
Avg 2.55 × 10−1 9.79 × 101 9.82 × 101 1.20 × 108 9.85 × 101 9.83 × 101 1.70 × 100 9.90 × 101 8.33 × 104 1.36 × 10−2

Std 8.35 × 10−1 7.02 × 10−1 1.96 × 10−1 6.73 × 107 2.60 × 10−1 4.54 × 10−1 2.10 × 100 1.09 × 10−1 3.48 × 104 2.41 × 10−2

500
Avg 1.16 × 100 4.98 × 102 4.96 × 102 2.03 × 109 4.98 × 102 4.98 × 102 7.40 × 100 4.99 × 102 6.68 × 108 1.03 × 10−1

Std 1.22 × 100 2.63 × 10−1 3.49 × 10−1 5.69 × 108 2.66 × 10−1 2.02 × 10−1 9.29 × 100 1.21 × 10−1 9.84 × 107 1.11 × 10−1

F6

50
Avg 3.88 × 10−4 2.77 × 100 1.24 × 100 9.46 × 102 1.12 × 101 6.14 × 100 3.21 × 10−2 5.60 × 100 5.49 × 101 1.50 × 10−5

Std 6.94 × 10−4 4.90 × 10−1 4.53 × 10−1 1.13 × 103 7.38 × 10−1 7.29 × 10−1 2.86 × 10−2 4.41 × 10−1 1.31 × 101 2.09 × 10−5

100
Avg 3.18 × 10−4 9.79 × 100 4.52 × 100 1.17 × 104 2.41 × 101 1.65 × 101 4.09 × 10−1 1.56 × 101 8.71 × 102 1.71 × 10−4

Std 6.57 × 10−4 9.06 × 10−1 1.24 × 100 7.86 × 103 8.07 × 10−1 8.91 × 10−1 2.00 × 10−1 7.13 × 10−1 1.71 × 102 3.90 × 10−4

500
Avg 1.45 × 10−3 9.11 × 101 3.08 × 101 2.01 × 105 1.25 × 102 1.10 × 102 4.25 × 100 1.12 × 102 2.82 × 105 7.90 × 10−4

Std 3.38 × 10−3 1.34 × 100 8.25 × 100 7.46 × 104 1.32 × 10−7 1.36 × 100 1.68 × 100 1.28 × 100 1.94 × 104 1.33 × 10−3

F7 50
Avg 2.37 × 10−4 3.52 × 10−3 3.81 × 10−3 2.68 × 100 9.04 × 10−5 7.04 × 10−4 8.22 × 10−4 1.19 × 10−4 3.88 × 10−1 9.69 × 10−5

Std 1.96 × 10−4 1.72 × 10−3 5.06 × 10−3 2.83 × 100 6.21 × 10−5 4.95 × 10−4 5.22 × 10−4 9.93 × 10−5 7.76 × 10−2 1.71 × 10−4

Processes 2022, 10, 2703 30 of 46

Table 9. Cont.

Fn Dimension Criteria AO GWO WOA SCA TSA GJO ARO WChOA DAOA CHAOARO

100
Avg 2.59 × 10−4 7.68 × 10−3 3.50 × 10−3 1.78 × 102 8.68 × 10−5 1.50 × 10−3 8.56 × 10−4 1.20 × 10−4 2.47 × 100 1.00 × 10−4

Std 2.00 × 10−4 2.99 × 10−3 5.11 × 10−3 8.68 × 101 8.17 × 10−5 7.88 × 10−4 7.74 × 10−4 9.80 × 10−5 4.96 × 10−1 9.68 × 10−5

500
Avg 3.18 × 10−4 4.68 × 10−2 4.54 × 10−3 1.47 × 104 8.81 × 10−5 6.37 × 10−3 1.18 × 10−3 2.08 × 10−4 4.20 × 103 1.34 × 10−4

Std 2.49 × 10−4 9.83 × 103 4.80 × 10−3 3.11 × 103 8.59 × 10−5 2.99 × 10−3 6.76 × 10−4 2.40 × 10−4 7.61 × 102 1.69 × 10−4

F8

50
Avg −8.40 × 103 −9.15 × 103 −1.68 × 104 −4.79 × 103 −4.44 × 103 −5.49 × 103 −1.37 × 104 −3.25 × 103 −1.13 × 104 −1.50 × 104

Std 1.71 × 103 1.19 × 103 3.10 × 103 3.80 × 102 7.01 × 102 1.86 × 103 7.95 × 102 4.45 × 102 1.15 × 103 7.76 × 102

100
Avg −1.11 × 104 −1.63 × 104 −3.51 × 104 −6.75 × 103 −6.32 × 103 −9.77 × 103 −2.23 × 104 −4.55 × 103 −1.97 × 104 −2.42 × 104

Std 3.38 × 103 1.56 × 103 4.87 × 103 6.01 × 102 9.38 × 102 4.01 × 103 2.55 × 103 4.37 × 102 1.57 × 103 1.21 × 103

500
Avg −2.86 × 104 −5.45 × 104 −1.84 × 105 −1.54 × 104 −1.37 × 104 −2.72 × 104 −6.19 × 104 −1.05 × 104 −5.63 × 104 −6.46 × 104

Std 8.37 × 103 1.15 × 104 2.77 × 104 1.36 × 103 2.14 × 103 1.40 × 104 2.40 × 103 1.41 × 103 5.34 × 103 2.27 × 103

F9

50
Avg 0.00 × 100 5.99 × 100 0.00 × 100 1.35 × 102 5.65 × 10−1 0.00 × 100 0.00 × 100 0.00 × 100 1.55 × 102 0.00 × 100

Std 0.00 × 100 6.77 × 100 0.00 × 100 5.68 × 101 6.26 × 10−1 0.00 × 100 0.00 × 100 0.00 × 100 1.95 × 101 0.00 × 100

100
Avg 0.00 × 100 1.01 × 101 0.00 × 100 2.86 × 102 8.35 × 10−1 0.00 × 100 0.00 × 100 0.00 × 100 6.03 × 102 0.00 × 100

Std 0.00 × 100 7.30 × 100 0.00 × 100 1.05 × 102 6.56 × 10−1 0.00 × 100 0.00 × 100 0.00 × 100 3.83 × 101 0.00 × 100

500
Avg 3.03 × 10−14 6.65 × 101 0.00 × 100 1.20 × 103 4.34 × 10−1 3.40 × 10−12 0.00 × 100 0.00 × 100 5.03 × 103 0.00 × 100

Std 1.66 × 10−13 1.81 × 101 0.00 × 100 4.02 × 102 5.74 × 10−1 1.72 × 10−12 0.00 × 100 0.00 × 100 2.61 × 102 0.00 × 100

F10

50
Avg 8.88 × 10−16 4.50 × 10−11 4.09 × 10−15 1.63 × 101 4.80 × 10−15 1.34 × 10−14 8.88 × 10−16 4.44 × 10−15 5.14 × 100 8.88 × 10−16

Std 0.00 × 100 2.51 × 10−11 2.16 × 10−15 6.91 × 100 1.08 × 10−15 3.33 × 10−15 0.00 × 100 0.00 × 100 8.40 × 10−1 0.00 × 100

100
Avg 8.88 × 10−16 1.32 × 10−7 4.80 × 10−15 1.95 × 101 5.98 × 10−15 5.30 × 10−14 8.88 × 10−16 4.09 × 10−15 1.42 × 101 8.88 × 10−16

Std 0.00 × 100 5.46 × 10−8 2.85 × 10−15 2.95 × 100 1.79 × 10−15 1.14 × 10−14 0.00 × 100 1.08 × 10−15 2.81 × 100 0.00 × 100

500
Avg 8.88 × 10−16 1.73 × 10−3 4.68 × 10−15 1.94 × 101 7.16 × 10−15 3.13 × 10−8 8.88 × 10−16 4.09 × 10−15 1.94 × 101 8.88 × 10−16

Std 0.00 × 100 2.61 × 10−4 2.27 × 10−15 3.23 × 100 1.53 × 10−15 1.45 × 10−8 0.00 × 100 1.08 × 10−15 4.60 × 10−2 0.00 × 100

F11

50
Avg 0.00 × 100 3.93 × 10−3 1.41 × 10−2 9.60 × 100 1.60 × 10−3 0.00 × 100 0.00 × 100 0.00 × 100 1.55 × 100 0.00 × 100

Std 0.00 × 100 7.52 × 10−3 5.43 × 10−2 8.83 × 100 3.67 × 10−3 0.00 × 100 0.00 × 100 0.00 × 100 1.68 × 10−1 0.00 × 100

100
Avg 0.00 × 100 5.44 × 10−3 0.00 × 100 8.96 × 101 9.84 × 10−4 0.00 × 100 0.00 × 100 0.00 × 100 9.14 × 100 0.00 × 100

Std 0.00 × 100 1.12 × 10−2 0.00 × 100 5.30 × 101 3.01 × 10−3 0.00 × 100 0.00 × 100 0.00 × 100 1.64 × 100 0.00 × 100

500
Avg 0.00 × 100 2.16 × 10−2 0.00 × 100 1.68 × 103 4.69 × 10−4 1.12 × 10−3 0.00 × 100 0.00 × 100 2.58 × 103 0.00 × 100

Std 0.00 × 100 4.03 × 10−2 0.00 × 100 7.29 × 102 2.57 × 10−3 6.14 × 10−3 0.00 × 100 0.00 × 100 1.96 × 102 0.00 × 100

F12

50
Avg 2.33 × 10−6 1.16 × 10−1 2.18 × 10−2 1.53 × 107 1.09 × 100 3.81 × 10−1 3.12 × 10−3 2.63 × 10−1 1.54 × 101 7.69 × 10−7

Std 4.17 × 10−6 7.66 × 10−2 9.32 × 10−3 1.60 × 107 2.18 × 10−1 9.88 × 10−2 1.23 × 10−2 3.75 × 10−2 9.64 × 100 1.51 × 10−6

100
Avg 1.74 × 10−6 2.95 × 10−1 5.04 × 10−2 3.26 × 108 1.18 × 100 5.85 × 10−1 4.94 × 10−3 4.86 × 10−1 2.76 × 102 8.11 × 10−7

Std 4.41 × 10−6 7.17 × 10−2 3.13 × 10−2 1.68 × 108 9.35 × 10−2 8.16 × 10−2 2.75 × 10−3 6.09 × 10−2 5.62 × 102 1.17 × 10−6

500
Avg 1.62 × 10−6 7.47 × 10−1 9.08 × 10−2 5.93 × 109 1.20 × 100 9.35 × 10−1 1.37 × 10−2 9.91 × 10−1 1.14 × 109 5.41 × 10−7

Std 3.38 × 10−6 4.58 × 10−2 4.73 × 10−2 1.31 × 109 9.37 × 10−3 2.39 × 10−2 4.41 × 10−3 2.74 × 10−2 2.51 × 108 6.73 × 10−7

F13

50
Avg 1.36 × 10−5 2.18 × 100 1.13 × 100 3.16 × 107 4.73 × 100 3.52 × 100 2.83 × 10−2 5.00 × 100 7.85 × 101 6.92 × 10−6

Std 1.29 × 10−5 3.65 × 10−1 4.54 × 10−1 3.59 × 107 2.08 × 10−1 2.45 × 10−1 2.74 × 10−2 4.93 × 10−8 2.85 × 101 1.11 × 10−5

100
Avg 2.10 × 10−5 6.90 × 100 2.84 × 100 4.80 × 108 9.69 × 100 8.46 × 100 2.76 × 10−1 1.00 × 101 8.03 × 103 1.40 × 10−5

Std 2.94 × 10−5 4.47 × 10−1 1.01 × 100 2.79 × 108 3.18 × 10−1 3.39 × 10−1 2.19 × 10−1 1.23 × 10−7 9.28 × 103 2.10 × 10−5

500
Avg 7.84 × 10−4 5.11 × 101 1.90 × 101 9.97 × 109 4.98 × 101 4.79 × 101 2.79 × 100 5.00 × 101 2.42 × 109 1.83 × 10−4

Std 1.33 × 10−3 1.49 × 100 4.90 × 100 1.80 × 109 6.15 × 10−2 3.66 × 10−1 2.11 × 100 6.00 × 10−7 4.90 × 108 3.21 × 10−4

The best values obtained have been highlighted in boldface.

Processes 2022, 10, 2703 31 of 46

Table 10. IEEE CEC2019 test suite.

Function Name Dimension (D) Range Fmin

CEC01 Storn’s Chebyshev Polynomial Fitting Problem 9 [−8192, 8192] 1
CEC02 Inverse Hilbert Matrix Problem 16 [−16384, 16384] 1
CEC03 Lennard-Jones Minimum Energy Cluster 18 [−4, 4] 1
CEC04 Rastrigin’s Function 10 [−100, 100] 1
CEC05 Griewangk’s Function 10 [−100, 100] 1
CEC06 Weierstrass Function 10 [−100, 100] 1
CEC07 Modified Schwefel’s Function 10 [−100, 100] 1
CEC08 Expanded Schaffer’s F6 Function 10 [−100, 100] 1
CEC09 Happy Cat Function 10 [−100, 100] 1
CEC10 Ackley Function 10 [−100, 100] 1

From Table 11, it is evident that CHAOARO can show better optimization performance
than its peers on almost all test functions. On functions CEC01 and CEC04~CEC10, the
solution obtained by CHAOARO is much closer to the theoretical optimum than other
comparison algorithms. On functions CEC02 and CEC03, though certain optimizers can
achieve the same average fitness value as CHAOARO, the latter has a smaller standard
deviation, which again proves the excellent robustness of the proposed work. Furthermore,
the Wilcoxon rank-sum test and Friedman ranking test used for statistical analysis are
also conducted to check whether the performance of CHAOARO has been significantly
improved on the IEEE CEC2019 test set. According to the statistical results, CHAOARO
outperforms AO, GWO, WOA, SCA, TSA, GJO, WChOA, and DAOA on 10 test functions
and outperforms ARO on 9 functions. Besides, CHAOARO gains a Friedman mean ranking
value of 1.0, which ranks first in the competition. These findings imply that the proposed
algorithm not only can provide higher-quality solutions for simple optimization problems
but also is very competitive in solving complex numerical optimization problems.

Figure 10 plots the convergence curves of CHAOARO and other comparison algo-
rithms on 10 CEC2019 test functions. It can be visually seen from this figure that CHAOARO
scores a promising convergence pattern, which shows great improvements over the ba-
sic AO and ARO. On functions CEC01, CEC02, CEC07, and CEC08, CHAOARO has a
large decay rate in the early search phase, which enables it to obtain the most satisfactory
outcomes with the least number of iterations among all algorithms. This is primarily
attributed to the increased population diversity by COBL strategy. On functions CEC04,
CEC05, CEC06, and CEC10, the superior exploitation capability of CHAOARO is well
demonstrated. CHAOARO follows the same trend as some of its competitors in the early
iterations, but in the later iterations, as most algorithms fall into the local optima, the
proposed method is still approaching the global optimum and thus achieves better final
convergence accuracy. On functions CEC03 and CEC09, CHAOARO also performs very
competitively in terms of convergence accuracy and speed.

Processes 2022, 10, 2703 32 of 46

Table 11. Comparison results of CHAOARO and other algorithms on 10 CEC2019 test functions.

Fn Criteria AO GWO WOA SCA TSA GJO ARO WChOA DAOA CHAOARO

CEC01

Avg 1.31 × 105 1.80 × 108 4.28 × 1010 9.17 × 109 6.38 × 104 2.56 × 108 4.16 × 104 9.65 × 104 7.51 × 1010 4.05 × 104

Std 3.59 × 104 2.43 × 108 6.20 × 1010 1.11 × 1010 1.38 × 104 6.33 × 108 3.33 × 103 9.87 × 103 5.82 × 1010 2.74 × 103

p-value 3.02 × 10−11 6.70 × 10−11 3.02 × 10−11 3.02 × 10−11 6.70 × 10−11 3.65 × 10−8 1.62 × 10−5 3.02 × 10−11 3.02 × 10−11 —
Rank 5 6 9 8 3 7 2 4 10 1

CEC02

Avg 1.79 × 101 1.74 × 101 1.74 × 101 1.75 × 101 1.84 × 101 1.74 × 101 1.73 × 101 1.75 × 101 6.08 × 101 1.73 × 101

Std 2.88 × 10−1 2.91 × 10−2 6.07 × 10−2 7.72 × 10−2 6.66 × 10−1 7.74 × 10−2 2.82 × 10−5 1.87 × 10−1 2.32 × 101 6.16 × 10−6

p-value 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 4.43 × 10−3 3.02 × 10−11 3.02 × 10−11 —
Rank 8 3 4 6 9 5 2 7 10 1

CEC03

Avg 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101

Std 6.18 × 10−4 4.52 × 10−4 8.09 × 10−7 5.85 × 10−4 1.67 × 10−3 3.66 × 10−4 1.45 × 10−8 6.33 × 10−4 1.14 × 10−7 1.38 × 10−10

p-value 3.02 × 10−11 4.08 × 10−11 1.61 × 10−10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 7.51 × 10−10 3.02 × 10−11 3.02 × 10−11 —
Rank 8 6 4 7 10 5 2 9 3 1

CEC04

Avg 7.95 × 103 5.54 × 101 3.51 × 102 1.53 × 103 7.01 × 103 1.16 × 103 3.98 × 101 2.17 × 104 7.09 × 101 3.92 × 101

Std 2.46 × 103 2.18 × 101 2.57 × 102 5.31 × 102 3.32 × 103 1.32 × 103 2.11 × 101 7.97 × 103 2.00 × 101 1.60 × 101

p-value 3.02 × 10−11 2.16 × 10−3 3.69 × 10−11 3.02 × 10−11 3.02 × 10−11 1.33 × 10−10 1.23 × 10−3 3.02 × 10−11 1.87 × 10−7 —
Rank 9 3 5 7 8 6 2 10 4 1

CEC05

Avg 4.18 × 100 1.39 × 100 1.93 × 100 2.24 × 100 3.23 × 100 1.69 × 100 1.14 × 100 5.72 × 100 1.31 × 100 1.10 × 100

Std 8.36 × 10−1 2.35 × 10−1 5.18 × 10−1 1.31 × 10−1 9.84 × 10−1 4.38 × 10−1 9.58 × 10−2 7.81 × 10−1 1.31 × 10−1 8.78 × 10−2

p-value 3.02 × 10−11 1.25 × 10−7 3.34 × 10−11 3.02 × 10−11 3.02 × 10−11 2.37 × 10−10 7.51 × 10−1 3.02 × 10−11 1.16 × 10−7 —
Rank 9 4 6 7 8 5 2 10 3 1

CEC06

Avg 9.89 × 100 1.10 × 101 9.34 × 100 1.11 × 101 1.11 × 101 1.11 × 101 5.47 × 100 1.09 × 101 1.09 × 101 5.35 × 100

Std 1.17 × 100 8.05 × 10−1 1.22 × 100 7.01 × 10−1 8.57 × 10−1 6.59 × 10−1 1.17 × 100 6.23 × 10−1 6.46 × 10−1 1.09 × 100

p-value 3.69 × 10−11 3.02 × 10−11 6.70 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 8.07 × 10−4 3.02 × 10−11 3.02 × 10−11 —
Rank 4 7 3 9 10 8 2 5 6 1

CEC07

Avg 8.05 × 102 4.79 × 102 6.14 × 102 7.97 × 102 9.52 × 102 6.76 × 102 1.29 × 102 1.00 × 103 3.48 × 102 1.02 × 102

Std 2.38 × 102 2.85 × 102 2.33 × 102 1.71 × 102 3.03 × 102 2.86 × 102 1.10 × 102 1.90 × 102 2.33 × 102 1.05 × 102

p-value 4.08 × 10−11 2.78 × 10−7 3.82 × 10−10 4.08 × 10−11 3.69 × 10−11 5.00 × 10−9 2.82 × 10−8 3.02 × 10−11 2.68 × 10−4 —
Rank 8 4 5 7 9 6 2 10 3 1

CEC08

Avg 5.88 × 100 5.27 × 100 6.02 × 100 6.03 × 100 6.40 × 100 5.59 × 100 4.46 × 100 6.61 × 100 5.63 × 100 4.17 × 100

Std 5.82 × 10−1 7.25 × 10−1 6.31 × 10−1 4.87 × 10−1 6.33 × 10−1 8.57 × 10−1 6.99 × 10−1 6.90 × 10−1 7.29 × 10−1 3.61 × 10−1

p-value 4.20 × 10−10 1.39 × 10−6 1.33 × 10−10 6.70 × 10−11 3.02 × 10−11 1.60 × 10−7 1.19 × 10−5 3.02 × 10−11 1.85 × 10−8 —
Rank 6 3 7 8 9 4 2 10 5 1

Processes 2022, 10, 2703 33 of 46

Table 11. Cont.

Fn Criteria AO GWO WOA SCA TSA GJO ARO WChOA DAOA CHAOARO

CEC09

Avg 1.32 × 103 4.37 × 100 4.74 × 100 1.23 × 102 6.02 × 102 1.04 × 102 2.75 × 100 6.80 × 102 2.96 × 100 2.72 × 100

Std 4.25 × 102 9.39 × 10−1 7.64 × 10−1 9.64 × 101 6.08 × 102 3.04 × 102 2.76 × 10−1 1.26 × 101 4.30 × 10−1 2.46 × 10−1

p-value 3.02 × 10−11 8.89 × 10−10 4.08 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 8.53 × 10−3 3.02 × 10−11 3.67 × 10−3 —
Rank 10 4 5 7 8 6 2 9 3 1

CEC10

Avg 2.03 × 101 2.05 × 101 2.03 × 101 2.05 × 101 2.05 × 101 2.03 × 101 2.00 × 101 2.05 × 101 2.04 × 101 1.82 × 101

Std 1.25 × 10−1 7.57 × 10−2 1.37 × 10−1 9.19 × 10−2 9.50 × 10−2 1.10 × 10−1 6.03 × 10−2 9.61 × 10−2 7.20 × 10−2 5.75 × 10−2

p-value 2.15 × 10−10 3.02 × 10−11 6.07 × 10−11 3.02 × 10−11 3.02 × 10−11 4.20 × 10−10 1.51 × 10−10 3.02 × 10−11 3.02 × 10−11 —
Rank 4 7 5 8 9 3 2 10 6 1

+/=/− 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 9/0/1 10/0/0 10/0/0 —
Friedman Mean Rank 7.1 4.7 5.3 7.4 8.3 5.5 2.0 8.4 5.3 1.0
Final Ranking 7 3 4 8 9 6 2 10 4 1

The best values obtained have been highlighted in boldface.

Processes 2022, 10, 2703 34 of 46

Processes 2022, 10, x FOR PEER REVIEW 31 of 45

competitors in the early iterations, but in the later iterations, as most algorithms fall into
the local optima, the proposed method is still approaching the global optimum and thus
achieves better final convergence accuracy. On functions CEC03 and CEC09, CHAOARO
also performs very competitively in terms of convergence accuracy and speed.

Figure 10. Convergence curves of CHAOARO and other comparison algorithms on 10 CEC2019 test
functions.

In conclusion, no matter whether handling simple or complex numerical problems,
CHAOARO can be trusted to offer reliable optimization performance in most scenarios.

Figure 10. Convergence curves of CHAOARO and other comparison algorithms on 10 CEC2019
test functions.

In conclusion, no matter whether handling simple or complex numerical problems,
CHAOARO can be trusted to offer reliable optimization performance in most scenarios.
CHAOARO succeeds the strengths of the original AO and ARO and employs ASM and
COBL strategies to compensate for defects like the tendency to fall into the local optima
and the imbalance between exploration and exploitation, thus achieving better solution
accuracy, convergence speed, and robustness. Next, we are going to validate the practicality
of the proposed hybrid technique for real-world optimization tasks.

Processes 2022, 10, 2703 35 of 46

5. CHAOARO for Solving Engineering Design Problems

In this section, five complex engineering design problems, including pressure vessel
design problem, cantilever beam design problem, tubular column design problem, speed
reducer design problem, and rolling element bearing design problem, are used to suffi-
ciently verify the effectiveness of the proposed CHAOARO at the real-world application
level. In contrast to the benchmark functions, these engineering test cases contain several
equality and inequality constraints, which present a major challenge for MAs. To deal with
these inequality constraints in the problem, here we introduce the penalty function [69]
to modify the original objective function. Similarly, CHAOARO runs independently
30 times on each problem with the population size (N) and the maximum number of
iterations (T) fixed to 30 and 500, respectively, and the optimal results obtained are com-
pared with different famous optimization methods released in previous studies.

5.1. Design of Pressure Vessel

The design of pressure vessels is a common engineering test case appeared in previous
studies for evaluating the performance of optimization techniques. In this design, the
objective is to minimize the overall fabrication cost of a cylindrical vessel capped at both
ends by hemispherical heads. As illustrated in Figure 11, the thickness of the shell (Ts = x1),
the thickness of the head (Th = x2), the vessel’s inner radius (R = x3), and the length of
the vessel without heads (L = x4) are the four decision parameters for optimization. This
problem is mathematically stated as follows:
Consider

→
x = [x1, x2, x3, x4] = [Ts, Th, R, L]

Minimize f (
→
x) = 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3
Subject to

g1(
→
x) = −x1 + 0.0193x3 ≤ 0, g2(

→
x) = −x3 + 0.00954x3 ≤ 0,

g3(
→
x) = −πx2

3x4 − 4
3πx3

3 + 1296000 ≤ 0, g4(
→
x) = x4 − 240 ≤ 0.

Variable range
0 ≤ x1, x2 ≤ 99, 10 ≤ x3, x4 ≤ 200.

Processes 2022, 10, x FOR PEER REVIEW 32 of 45

CHAOARO succeeds the strengths of the original AO and ARO and employs ASM and
COBL strategies to compensate for defects like the tendency to fall into the local optima
and the imbalance between exploration and exploitation, thus achieving better solution
accuracy, convergence speed, and robustness. Next, we are going to validate the practi-
cality of the proposed hybrid technique for real-world optimization tasks.

5. CHAOARO for Solving Engineering Design Problems
In this section, five complex engineering design problems, including pressure vessel

design problem, cantilever beam design problem, tubular column design problem, speed
reducer design problem, and rolling element bearing design problem, are used to suffi-
ciently verify the effectiveness of the proposed CHAOARO at the real-world application
level. In contrast to the benchmark functions, these engineering test cases contain several
equality and inequality constraints, which present a major challenge for MAs. To deal
with these inequality constraints in the problem, here we introduce the penalty function
[69] to modify the original objective function. Similarly, CHAOARO runs independently
30 times on each problem with the population size (𝑁) and the maximum number of iter-
ations (𝑇) fixed to 30 and 500, respectively, and the optimal results obtained are compared
with different famous optimization methods released in previous studies.

5.1. Design of Pressure Vessel
The design of pressure vessels is a common engineering test case appeared in previ-

ous studies for evaluating the performance of optimization techniques. In this design, the
objective is to minimize the overall fabrication cost of a cylindrical vessel capped at both
ends by hemispherical heads. As illustrated in Figure 11, the thickness of the shell (𝑇௦ =𝑥ଵ), the thickness of the head (𝑇௛ = 𝑥ଶ), the vessel’s inner radius (𝑅 = 𝑥ଷ), and the length
of the vessel without heads (𝐿 = 𝑥ସ) are the four decision parameters for optimization.
This problem is mathematically stated as follows:

Consider 1 2 3 4[, , ,] [, , ,]s hx x x x x T T R L= =

Minimize 2 2 2
1 3 4 2 3 1 4 1 3() 0.6224 +1.7781 3.1661 19.84f x x x x x x x x x x= + +

Subject to

31 2

3

1 3 3

2 3
3 44 3 4

0.0193 0 0.00954 0,
4π π , 240 0.

() , ()

() 1296000 0 ()
3

xg gx x x

x x

x x

g xx g x x

= =

= +

− + ≤ − + ≤

− ≤− − ≤=

 

 

Variable range

1 2 3 40 99,10 200., ,x x x x≤ ≤ ≤ ≤

Figure 11. Schematic illustration of pressure vessel design problem.

Table 12 reports the results of CHAOARO and other optimization techniques for the
pressure vessel design problem. As can be seen from this table, the minimum cost of

Figure 11. Schematic illustration of pressure vessel design problem.

Table 12 reports the results of CHAOARO and other optimization techniques for the
pressure vessel design problem. As can be seen from this table, the minimum cost of
5885.5834 is attained by CHAOARO when the four variables Ts, Th, R, and L are set as
0.7783, 0.3847, 40.3254, and 199.9213, respectively. Compared with AO, MVO, WOA, GWO,
MFO, HHO, SMA, GJO, ARO, and AOASC, the proposed method provides the best design
outcome. Therefore, it is reasonable to believe that CHAOARO has remarkable advantages
in resolving such problem.

Processes 2022, 10, 2703 36 of 46

Table 12. Comparison results for pressure vessel design problem.

Algorithms
Optimal Values for Variables

Minimum Cost
Ts(x1) Th(x2) R(x3) L(x4)

AO [46] 1.0540 0.1828 59.6219 38.8050 5949.2258
MVO [20] 0.8125 0.4375 42.0907 176.7387 6060.8066
WOA [30] 0.8125 0.4375 42.0987 176.6390 6059.7410
GWO [27] 0.8125 0.4345 42.0892 176.7587 6051.5639
MFO [29] 0.8125 0.4375 42.0984 176.6366 6059.7143
HHO [32] 0.8176 0.4072 42.0917 176.7196 6000.4626
SMA [34] 0.7931 0.3932 40.6711 196.2178 5994.1857
GJO [36] 0.7783 0.3848 40.3219 200.0000 5887.0711
ARO [55] 0.7782 0.3848 40.3234 199.9479 5885.6679
AOASC [70] 0.8254 0.4262 42.7605 169.3396 6048.6812
CHAOARO 0.7783 0.3847 40.3254 199.9213 5885.5834

The best values obtained have been highlighted in boldface.

5.2. Design of Cantilever Beam
The cantilever beam design problem originated by [71] is one of the most representative

issues in the area of mechanics and civil engineering. This problem aims to minimize the
total weight of a cantilever beam with a square section while satisfying the load-carrying
conditions. As illustrated in Figure 12, the height or width of the five square hollow
elements are the decision variables that need to be taken into account in the minimization
process, and the thickness of each element is constant. The mathematical formula of this
problem can be expressed as follows:

Processes 2022, 10, x FOR PEER REVIEW 33 of 45

5885.5834 is attained by CHAOARO when the four variables 𝑇௦, 𝑇௛, 𝑅, and 𝐿 are set as
0.7783, 0.3847, 40.3254, and 199.9213, respectively. Compared with AO, MVO, WOA,
GWO, MFO, HHO, SMA, GJO, ARO, and AOASC, the proposed method provides the
best design outcome. Therefore, it is reasonable to believe that CHAOARO has remarka-
ble advantages in resolving such problem.

Table 12. Comparison results for pressure vessel design problem.

Algorithms
Optimal Values for Variables

Minimum Cost 𝑻𝒔(𝒙𝟏) 𝑻𝒉(𝒙𝟐) 𝑹(𝒙𝟑) 𝑳(𝒙𝟒)
AO [46] 1.0540 0.1828 59.6219 38.8050 5949.2258
MVO [20] 0.8125 0.4375 42.0907 176.7387 6060.8066
WOA [30] 0.8125 0.4375 42.0987 176.6390 6059.7410
GWO [27] 0.8125 0.4345 42.0892 176.7587 6051.5639
MFO [29] 0.8125 0.4375 42.0984 176.6366 6059.7143
HHO [32] 0.8176 0.4072 42.0917 176.7196 6000.4626
SMA [34] 0.7931 0.3932 40.6711 196.2178 5994.1857
GJO [36] 0.7783 0.3848 40.3219 200.0000 5887.0711
ARO [55] 0.7782 0.3848 40.3234 199.9479 5885.6679
AOASC [70] 0.8254 0.4262 42.7605 169.3396 6048.6812
CHAOARO 0.7783 0.3847 40.3254 199.9213 5885.5834
The best values obtained have been highlighted in boldface.

5.2. Design of Cantilever Beam
The cantilever beam design problem originated by [71] is one of the most representa-

tive issues in the area of mechanics and civil engineering. This problem aims to minimize
the total weight of a cantilever beam with a square section while satisfying the load-car-
rying conditions. As illustrated in Figure 12, the height or width of the five square hollow
elements are the decision variables that need to be taken into account in the minimization
process, and the thickness of each element is constant. The mathematical formula of this
problem can be expressed as follows:

Consider 1 2 3 4 5[, , , ,]x x x x x x=
Minimize ()1 2 3 4 5(0.6224) xf x xx x x= + + + +

Subject to

3 3 3 3 3
1 2 3 4 5

61 27 19 1() 1 07g
x x x x x

x = + + + + − ≤

Variable range

1 2 3 4 50.01 , , , , 100x x x x x≤ ≤

Figure 12. Schematic illustration of cantilever beam design problem. Figure 12. Schematic illustration of cantilever beam design problem.

Consider
→
x = [x1, x2, x3, x4, x5]

Minimize f (
→
x) = 0.6224(x1 + x2 + x3 + x4 + x5)

Subject to

g(
→
x) =

61
x3

1
+

27
x3

2
+

19
x3

3
+

7
x3

4
+

1
x3

5
− 1 ≤ 0

Variable range
0.01 ≤ x1, x2, x3, x4, x5 ≤ 100

In Table 13, the optimum variables and solutions of different algorithms for the
cantilever beam design problem are listed. As it presents, CHAOARO can reveal a much
smaller weight than the majority of other competitors, which is 1.339956. In addition, the
performance of RUN on this application is equally competitive. These experimental data
demonstrate the promising potential of CHAOARO in terms of reducing the total weight
of cantilever beams.

Processes 2022, 10, 2703 37 of 46

Table 13. Comparison results for cantilever beam design problem.

Algorithms
Optimal Values for Variables

Minimum Weight
x1 x2 x3 x4 x5

CS [26] 6.0089 5.3049 4.5023 3.5077 2.1504 1.339990
MVO [20] 6.0239 5.3060 4.4950 3.4960 2.1527 1.339960
MFO [29] 5.9849 5.3167 4.4973 3.5136 2.1616 1.339988
SMA [34] 6.0178 5.3109 4.4938 3.5011 2.1502 1.339957
ARO [55] 6.0068 5.3114 4.4935 3.5029 2.1590 1.339960
SOS [72] 6.0188 5.3034 4.4959 3.4990 2.1556 1.339960
AHA [58] 6.0138 5.3024 4.4963 3.5084 2.1527 1.339957
RUN [73] 6.0049 5.3190 4.4868 3.5033 2.1595 1.339956
HAGSA [3] 5.9271 5.3962 4.5081 3.4760 2.1726 1.340400
ERHHO [74] 6.0509 5.2639 4.5140 3.4605 2.1878 1.340200
CHAOARO 6.0163 5.3099 4.4951 3.5007 2.1517 1.339956

The best values obtained have been highlighted in boldface.

5.3. Design of Tubular Column

In this optimization, the task is to design a uniform column of the tubular section with
the length L = 250 cm at minimum cost so as to withstand the compressive load P = 2500
kgf. As illustrated in Figure 13, this problem involves two design variables, namely the
column’s mean diameter (d = x1) and the thickness of tube (t = x2). Besides, the yield
stress (σy), modulus of elasticity (E), and density (ρ) of the material used to construct the
column are 500 kgf/cm2, 0.85× 106 kgf/cm2, and 0.0025 kgf/cm3, respectively. For it, the
mathematical model is as follows:

Processes 2022, 10, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/processes

Figure 13. Schematic illustration of tubular column design problem.

Consider
→
x = [x1, x2] = [d, t]

Minimize f (
→
x) = 9.8x1x2 + 2x1

Subject to
g1(
→
x) = P

πx1x2σy
− 1 ≤ 0, g2(

→
x) = 8PL2

π3Ex1x2(x2
1+x2

2)
− 1 ≤ 0,

g3(
→
x) = 2.0

x1
− 1 ≤ 0, g4(

→
x) = x1

14 − 1 ≤ 0,

g5(
→
x) = 0.2

x2
− 1 ≤ 0, g6(

→
x) = x2

8 − 1 ≤ 0.

Variable range
2 ≤ x1 ≤ 14, 0.2 ≤ x2 ≤ 0.8.

Processes 2022, 10, 2703 38 of 46

Table 14 records the comparison results between the proposed CHAOARO and the
remaining algorithms for tackling the tubular column design problem. It is evident that
CHAOARO obtains the lowest optimum cost of 26.48636 among these algorithms when
the two variables d and t are set as 5.45218 and 0.29163. Nevertheless, the performances of
the basic ARO and AO accordingly rank 3rd and 10th. It is proved that CHAOARO has
better effects regarding this design.

Table 14. Comparison results for tubular column design problem.

Algorithms
Optimal Values for Variables

Minimum Cost
d(x1) t(x2)

AO 5.41639 0.29826 26.66455
CS [26] 5.45139 0.29196 26.53217
SNS [75] 5.45116 0.29197 26.49950
GWO 5.45643 0.29142 26.49618
WOA 5.45658 0.29139 26.49516
SCA 5.37810 0.30510 26.83667
GJO 5.45086 0.29194 26.49682
ARO 5.45665 0.29139 26.49559
ChOA 5.46878 0.29327 26.65508
GSA-GA [76] 5.45116 0.29197 26.53133
CHAOARO 5.45218 0.29163 26.48636

The best values obtained have been highlighted in boldface.

5.4. Design of Speed Reducer

The speed reducer is one of the most critical components in the gearbox system [77].
The goal of this optimization problem is to reduce the weight of a speed reducer as much
as possible under different constraints on surface stress, bending stress, stress in the shafts,
and transverse deflection of the shafts. As depicted in Figure 14, there are seven decision
variables to be considered in this optimal design, including the face width (x1), the module
of teeth (x2), the number of teeth in the pinion (x3), the length of the first shaft between
bearings (x4), the length of the second shaft between bearings (x5), and the diameter of the
shafts (x6, x7). The mathematical formulation of this problem is given as follows:

Processes 2022, 10, x FOR PEER REVIEW 36 of 45

Consider 1 2 3 4 5 6 7[, , , , , ,]x x x x x x x x=
Minimize

2 2 2 2 3 3
1 2 3 3 1 6 7 6 7

2 2
4 6 5 7

() 0.7854 (3.3333 14.9334 43.0934) 1.508 () 7.4777()
0.7854()

f x x x x x x x x x x
x x x x

= + − − + + +

+ +



Subject to

1 22 2 2
1 2 3 1 2 3

22
54

3 44 4
2 6 3 2 7 3

2 6 2 65 5

2 3 2 3
5 63 3

6 7

2 3
7 8

27 397.5() 1 0, () 1 0,

1.931.93() 1 0, () 1 0,

745 745() 16.9 10 () 157.5 10
() 1 0, () 1 0,

110 85

() 1 0, ()
40

g x g x
x x x x x x

xxg x g x
x x x x x x

x x
x x x x

g x g x
x x

x x
g x g x

= − ≤ = − ≤

= − ≤ = − ≤

+ × + ×
= − ≤ = − ≤

= − ≤

 

 

 

  2 1
9

1 2

6 7
10 11

4 5

5 1 0, () 1 0,
12

1.5 1.9 1.1 1.9() 1 0, () 1 0.

x xg x
x x

x x
g x g x

x x

= − ≤ = − ≤

+ +
= − ≤ = − ≤



 

Variable range

1 2 3 4 5 6

7

2.6 3.6,0.7 0.8,17 28, 7.3 8.3,7.3 8.3, 2.9 3.9,
5.0 5.5.

x x x x x x
x

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
≤ ≤

Figure 14. Schematic illustration of speed reducer design problem.

CHAOARO is employed to optimize this problem and compared with seven other
algorithms respectively. The obtained results are summarized in Table 15. From this table,
it is not difficult to observe that the proposed CHAOARO outperforms all other compar-
ison methods published in the literature and achieves the minimum weight of 2994.4488.
This effectively indicates that CHAOARO possesses an excellent global optimization ca-
pability in the design of the speed reducer.

Figure 14. Schematic illustration of speed reducer design problem.

Consider
→
x = [x1, x2, x3, x4, x5, x6, x7]

Minimize

f (
→
x) = 0.7854x1x2

2(3.3333x2
3 + 14.9334x3 − 43.0934)− 1.508x1(x2

6 + x2
7) + 7.4777(x3

6 + x3
7)

+0.7854(x4x2
6 + x5x2

7)

Processes 2022, 10, 2703 39 of 46

Subject to

g1(
→
x) = 27

x1x2
2x3
− 1 ≤ 0, g2(

→
x) = 397.5

x1x2
2x2

3
− 1 ≤ 0,

g3(
→
x) = 1.93x2

4
x2x4

6x3
− 1 ≤ 0, g4(

→
x) = 1.93x2

5
x2x4

7x3
− 1 ≤ 0,

g5(
→
x) =

√
(

745x5
x2x3

)
2
+16.9×106

110x3
6

− 1 ≤ 0, g6(
→
x) =

√
(

745x5
x2x3

)
2
+157.5×106

85x3
7

− 1 ≤ 0,

g7(
→
x) = x2x3

40 − 1 ≤ 0, g8(
→
x) = 5x2

x1
− 1 ≤ 0, g9(

→
x) = x1

12x2
− 1 ≤ 0,

g10(
→
x) = 1.5x6+1.9

x4
− 1 ≤ 0, g11(

→
x) = 1.1x7+1.9

x5
− 1 ≤ 0.

Variable range

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9,
5.0 ≤ x7 ≤ 5.5.

CHAOARO is employed to optimize this problem and compared with seven other
algorithms respectively. The obtained results are summarized in Table 15. From this table, it
is not difficult to observe that the proposed CHAOARO outperforms all other comparison
methods published in the literature and achieves the minimum weight of 2994.4488. This
effectively indicates that CHAOARO possesses an excellent global optimization capability
in the design of the speed reducer.

Table 15. Comparison results for speed reducer design problem.

Algorithms
Optimal Values for Variables

Minimum Weight
x1 x2 x3 x4 x5 x6 x7

AO [46] 3.5021 0.7000 17.0000 7.3099 7.7476 3.3641 5.2994 3007.7328
AOA [23] 3.50384 0.7 17 7.3 7.72933 3.35649 5.2867 2997.9157
SSA [69] 3.500059 0.7 17 7.3 7.8 3.351209 5.286813 2996.7077
SHO [78] 3.50159 0.7 17 7.3 7.8 3.35127 5.28874 2998.5507
AFA [79] 3.500000 0.7000 17 7.302489 7.800067 3.350219 5.286683 2996.3727
STOA [80] 3.50124 0.7 17 7.3 7.8 3.33425 5.26538 2995.9578
SC-GWO [81] 3.50064 0.7 17 7.30643 7.80617 3.35034 5.28694 2996.9859
CHAOARO 3.50001 0.7000 17 7.30002 7.71535 3.35057 5.28666 2994.4488

The best values obtained have been highlighted in boldface.

5.5. Design of Rolling Element Bearing

The last test case, rolling element bearing design problem, contains ten decision
variables and nine constraints for modeling and geometry-based limitations. Its main
purpose is to maximize the dynamic load-carrying capacity of a rolling element bearing
illustrated in Figure 15. The geometric design parameters are pitch diameter (Dm), ball
diameter (Db), number of balls (Z), inner (fi) and outer (fo) raceway curvature radius
coefficient, Kdmin, Kdmax, δ, e, and ζ. Mathematically, this problem is described below:
Consider

→
x = [Dm, Db, Z, fi, fo, Kdmin, Kdmax, δ, e, ζ]

Maximize

f (
→
x) =

{
fcZ2/3D1.8

b , i f Db ≤ 25.4mm
3.647 fcZ2/3D1.4

b , otherwise

Subject to

g1(
→
x) = φ0

2 sin−1(Db/Dm)
− Z + 1 ≤ 0, g2(

→
x) = 2Db − Kdmin(D− d) > 0,

g3(
→
x) = Kdmax(D− d)− 2Db ≥ 0, g4(

→
x) = ζBw − Db ≤ 0,

g5(
→
x) = Dm − 0.5(D + d) ≥ 0, g6(

→
x) = (0.5 + e)(D + d)− Dm ≥ 0,

g7(
→
x) = 0.5(D− Dm − Db)− δDb ≥ 0, g8(

→
x) = fi ≥ 0.515, g9(

→
x) = fo ≥ 0.515.

where

Processes 2022, 10, 2703 40 of 46

fc = 37.91

[
1 +

{
1.04

(
1−γ
1+γ

)1.72(fi(2 fo−1)
fo(2 fi−1)

)0.41
}10/3

]−0.3

×
[

γ0.3(1−γ)1.39

(1+γ)1/3

][
2 fi

2 fi−1

]0.41
,

φ 0 = 2π− cos−1 {(D−d)/2−3(T/4)}2+{D/2−T/4−Db}2−{d/2+T/4}2

2{(D−d)/2−3(T/4)}{D/2−T/4−Db}
,

γ = Db
Dm

, fi =
ri
Db

, fo =
ro
Db

, T = D− d− 2Db, D = 160, d = 90, Bw = 30, ri = ro = 11.033,
0.5(D + d) ≤ Dm ≤ 0.6(D + d), 0.15(D− d) ≤ Db ≤ 0.45(D− d), 0.515 ≤ fi, fo ≤ 0.6,
4 ≤ Z ≤ 50, 0.4 ≤ Kdmin ≤ 0.5, 0.6 ≤ Kdmax ≤ 0.7, 0.3 ≤ δ ≤ 0.4, 0.02 ≤ e ≤ 0.1, 0.6 ≤ ζ ≤ 0.85.

Processes 2022, 10, x FOR PEER REVIEW 38 of 45

Figure 15. Schematic illustration of rolling element bearing design problem.

The detailed results of CHAOARO for this problem are compared with other meta-
heuristics in Table 16. It can be seen that the developed technique is able to find a more
reliable solution compared with its peers. The load-carrying capacity of CHAOARO opti-
mized design is 85548.8272, showing a significant improvement. This instance once again
validates the merits of CHAOARO from the practical application aspect.

Table 16. Comparison results for rolling element bearing design problem.

Algorithms HHO [32] RSA [35] TLBO [37] RUN [73] IGTO [82] CHAOARO 𝐷௠ 125 125.1722 125.7191 125.2142 125 125.719 𝐷௕ 21.00000 21.29734 21.42559 21.59796 21.41885 21.42554 𝑍 11.09207 10.88521 11.00000 11.40240 10.94110 10.65574 𝑓௜ 0.51500 0.515253 0.51500 0.51500 0.51500 0.51500 𝑓௢ 0.51500 0.517764 0.51500 0.51500 0.51500 0.5151428 𝐾ௗ௠௜௡ 0.40000 0.41245 0.424266 0.40059 0.40000 0.4574078 𝐾ௗ௠௔௫ 0.60000 0.632338 0.633948 0.61467 0.70000 0.6544766 𝛿 0.30000 0.301911 0.30000 0.30530 0.30000 0.3000026 𝑒 0.05047 0.024395 0.068858 0.02000 0.02000 0.05889122 𝜁 0.60000 0.6024 0.799498 0.63665 0.60000 0.6698756
Optimal load-carrying
capacity

83,011.883 83,486.64 81,859.74 83,680.47 85,067.962 85,548.8272

The best values obtained have been highlighted in boldface.

In summary, this section showcases the effectiveness of the proposed CHAOARO in
dealing with real-world engineering test problems subject to different constraints.
CHAOARO could perform better than the basic AO, ARO, as well as other existing opti-
mizers with high-quality solutions, largely attributed to the hybrid operation, adaptive
switching coefficient 𝐹, and COBL that well balance and boost the algorithm exploration
and exploitation to varying degrees. In the next section, the superiority of CHAOARO
will be further illustrated in another practical case study—parameter identification of PV
model.

6. CHAOARO for Parameter Identification of Photovoltaic Model
To cope with the crisis of climate change, environmental pollution, and the depletion

of conventional fossil fuels, an increased emphasis has been placed on the search for high-
quality renewable energy sources in recent years [83]. Among different renewable energy
sources, solar energy is regarded as one of the most promising renewable energy sources
since it is clean, abundant, and pollution-free. In most parts of the world, PV systems are
widely used to convert solar energy into electrical energy for power generation. The

Figure 15. Schematic illustration of rolling element bearing design problem.

The detailed results of CHAOARO for this problem are compared with other meta-
heuristics in Table 16. It can be seen that the developed technique is able to find a more
reliable solution compared with its peers. The load-carrying capacity of CHAOARO
optimized design is 85548.8272, showing a significant improvement. This instance once
again validates the merits of CHAOARO from the practical application aspect.

Table 16. Comparison results for rolling element bearing design problem.

Algorithms HHO [32] RSA [35] TLBO [37] RUN [73] IGTO [82] CHAOARO

Dm 125 125.1722 125.7191 125.2142 125 125.719
Db 21.00000 21.29734 21.42559 21.59796 21.41885 21.42554
Z 11.09207 10.88521 11.00000 11.40240 10.94110 10.65574
fi 0.51500 0.515253 0.51500 0.51500 0.51500 0.51500
fo 0.51500 0.517764 0.51500 0.51500 0.51500 0.5151428
Kdmin 0.40000 0.41245 0.424266 0.40059 0.40000 0.4574078
Kdmax 0.60000 0.632338 0.633948 0.61467 0.70000 0.6544766
δ 0.30000 0.301911 0.30000 0.30530 0.30000 0.3000026
e 0.05047 0.024395 0.068858 0.02000 0.02000 0.05889122
ζ 0.60000 0.6024 0.799498 0.63665 0.60000 0.6698756
Optimal load-carrying
capacity 83,011.883 83,486.64 81,859.74 83,680.47 85,067.962 85,548.8272

The best values obtained have been highlighted in boldface.

In summary, this section showcases the effectiveness of the proposed CHAOARO
in dealing with real-world engineering test problems subject to different constraints.
CHAOARO could perform better than the basic AO, ARO, as well as other existing opti-
mizers with high-quality solutions, largely attributed to the hybrid operation, adaptive
switching coefficient F, and COBL that well balance and boost the algorithm exploration
and exploitation to varying degrees. In the next section, the superiority of CHAOARO
will be further illustrated in another practical case study—parameter identification of
PV model.

6. CHAOARO for Parameter Identification of Photovoltaic Model

To cope with the crisis of climate change, environmental pollution, and the depletion
of conventional fossil fuels, an increased emphasis has been placed on the search for high-

Processes 2022, 10, 2703 41 of 46

quality renewable energy sources in recent years [83]. Among different renewable energy
sources, solar energy is regarded as one of the most promising renewable energy sources
since it is clean, abundant, and pollution-free. In most parts of the world, PV systems
are widely used to convert solar energy into electrical energy for power generation. The
performance of a PV system relies on the chosen PV model and the unknown parameters
in the model [84]. Currently, several PV models have been designed, such as single diode
model (SDM), double diode model (DDM), and triple diode model (TDM). However, SDM
is still extensively utilized in practice attributed to its simplicity and accuracy. Because PV
systems usually operate in harsh outdoor environments, a variety of uncertainties may
directly effect changes in model parameters, thus reducing the utilization efficiency of solar
energy. Hence, it is of great practical significance to develop an accurate and robust method
for identifying the unknown parameters of the PV model.

In this section, CHAOARO is applied to solve the parameter identification problem
of SDM to further verify the superiority of the proposed method. As the most prevalent
model to characterize the properties of PV power generation, the SDM consists of a photo-
generated current source Iph, a parallel diode D, a parallel resistance Rsh, and an equivalent
series resistance Rs, shown in Figure 16. In this model, the output current Io according to
Kirchhoff’s current law can be expressed as follows:

Io = Iph − Id − Ish

= Iph − Isd

[
exp

(
q(Vo+Rs Io)

nkT

)
− 1
]
− Vo+IoRs

Rsh

(28)

where Iph denotes the photo-generated current, Id denotes the diode current, Ish indicates
the shunt resistance current, Isd represents the reverse saturation current of the diode D,
q is the electron charge equal to 1.60217646× 10−19 C, Vo is the output voltage, Rs and
Rsh are the series and parallel resistances, respectively, n is the diode ideality coefficient, k
is the Boltzmann constant equal to 1.3806503× 10−23 J/K, and T stands for the absolute
temperature in Kelvin.

Processes 2022, 10, x FOR PEER REVIEW 39 of 45

performance of a PV system relies on the chosen PV model and the unknown parameters
in the model [84]. Currently, several PV models have been designed, such as single diode
model (SDM), double diode model (DDM), and triple diode model (TDM). However,
SDM is still extensively utilized in practice attributed to its simplicity and accuracy. Be-
cause PV systems usually operate in harsh outdoor environments, a variety of uncertain-
ties may directly effect changes in model parameters, thus reducing the utilization effi-
ciency of solar energy. Hence, it is of great practical significance to develop an accurate
and robust method for identifying the unknown parameters of the PV model.

In this section, CHAOARO is applied to solve the parameter identification problem
of SDM to further verify the superiority of the proposed method. As the most prevalent
model to characterize the properties of PV power generation, the SDM consists of a photo-
generated current source 𝐼୮୦, a parallel diode 𝐷, a parallel resistance 𝑅ୱ୦, and an equiva-
lent series resistance 𝑅ୱ, shown in Figure 16. In this model, the output current 𝐼୭ according
to Kirchhoff’s current law can be expressed as follows:

o ph d sh

o s o o o s
ph sd

sh

()exp 1

I I I I

q V R I V I R
I I

nkT R

= − −

 +  + = − − −  
  

 (28)

where 𝐼୮୦ denotes the photo-generated current, 𝐼 denotes the diode current, 𝐼ୱ୦ indicates
the shunt resistance current, 𝐼ୱୢ represents the reverse saturation current of the diode 𝐷, 𝑞 is the electron charge equal to 1.60217646 × 10ିଵଽ C, 𝑉୭ is the output voltage, 𝑅ୱ and 𝑅ୱ୦
are the series and parallel resistances, respectively, 𝑛 is the diode ideality coefficient, 𝑘 is
the Boltzmann constant equal to 1.3806503 × 10ିଶଷ J/K, and 𝑇 stands for the absolute
temperature in Kelvin.

From Equation (28), it can be observed that there are a total of five unknown param-
eters that need to be estimated for SDM, namely 𝐼୮୦, 𝐼ୱୢ, 𝑅ୱ, 𝑅ୱ୦, and 𝑛.

Figure 16. Structure of single diode model.

To identify the PV parameters using the meta-heuristic algorithm, it is necessary to
define an objective function for this optimization problem first. Here, the root mean
square error (RMSE) [85], which can reflect the degree of error between the actual meas-
ured data and the data estimated by CHAOARO, is introduced as the objective function:

2
o o

1

1min () RMSE() (, ,)
N

k
k

F f V I
N =

= = X X X (29)

where 𝑁 denotes the number of experimental data. The smaller the RMSE value achieved,
the more accurate the identified parameters are.

For SDM, 𝑓௞(𝑉୭, 𝐼୭, 𝐗) and 𝐗 in Equation (29) are as follows:

Figure 16. Structure of single diode model.

From Equation (28), it can be observed that there are a total of five unknown parameters
that need to be estimated for SDM, namely Iph, Isd, Rs, Rsh, and n.

To identify the PV parameters using the meta-heuristic algorithm, it is necessary to
define an objective function for this optimization problem first. Here, the root mean square
error (RMSE) [85], which can reflect the degree of error between the actual measured data
and the data estimated by CHAOARO, is introduced as the objective function:

minF(X) = RMSE(X) =

√√√√ 1
N

N

∑
k=1

fk(Vo, Io, X)2 (29)

where N denotes the number of experimental data. The smaller the RMSE value achieved,
the more accurate the identified parameters are.

Processes 2022, 10, 2703 42 of 46

For SDM, fk(Vo, Io, X) and X in Equation (29) are as follows: fk(Vo, Io, X) = Iph − Isd

[
exp

(
q(Vo+Rs Io)

nkT

)
− 1
]
− Vo+IoRs

Rsh
− Io

X =
{

Iph, Isd, Rs, Rsh, n
} ,

where 0 ≤ Iph ≤ 1, 0 ≤ Isd ≤ 1, 0 ≤ Rs ≤ 0.5, 0 ≤ Rsh ≤ 100, 1 ≤ n ≤ 2.

(30)

Based on the actual measured current-voltage data in reference [86], where commercial
silicon R.T.C French solar cells with a diameter of 57 mm were operated under 1000 W/m2

at 33 ◦C, we utilize the proposed method to identify the five unknown parameters of SDM.
CHAOARO runs independently 30 times on this test problem with the population size (N)
and the maximum number of iterations (T) set to 30 and 500 respectively, and the obtained
optimal parameters and RMSE-value are reported in Table 17.

Table 17. Comparison results for the parameter identification of SDM.

Algorithms Iph (A) Isd (µA) Rs (Ω) Rsh (Ω) n RMSE

ABC [85] 0.760784 0.321523 0.036398 53.639 1.480601 9.8169 × 10−4

SMA [87] 0.76076 0.32314 0.03637 53.71489 1.48114 9.8482 × 10−4

IHBA [88] 0.76101 0.39445 0.034789 55.538 1.4951 1.0272 × 10−3

IBES [89] 0.760776 0.323 0.036377 53.71853 1.4768 9.8600 × 10−4

CPSO [90] 0.7607 0.4 0.0354 59.012 1.5033 1.3900 × 10−3

OBDSSA [91] 0.7608 0.36596 0.0359 56.1662 1.4939 1.0161 × 10−3

GOTLBO [92] 0.760780 0.331552 0.036265 54.115426 1.483820 9.8744 × 10−4

CHAOARO 0.760776 0.314950 0.036485 53.19598 1.478640 7.7330 × 10−4

The best values obtained have been highlighted in boldface.

As can be seen from Table 17, CHAOARO obtains the smallest RMSE value of
7.7330 × 10−4 compared to other state-of-the-art peer competitors, namely ABC [85],
SMA [87], IHBA [88], IBES [89], CPSO [90], OBDSSA [91], and GOTLBO [92], indicating
that CHAOARO has the highest accuracy for parameter identification. Furthermore, the
best-extracted parameters attained by CHAOARO are used to generate the current-voltage
(I-V) and power-voltage (P-V) characteristic curves, as shown in Figure 17. From this
figure, it is clear that the estimated values of CHAOARO can fit the actual measured data
well, which again demonstrates that the proposed method has excellent prospects and
robustness in solving the parameter identification problem of SDM for PV systems.

Processes 2022, 10, x FOR PEER REVIEW 40 of 45

o s o o o s
o o ph sd o

sh

ph sd s sh

ph sd s sh

()(, ,) exp 1
,

{ , , , , }

where 0 1,0 1,0 0.5,0 100,1 2.

k
q V R I V I R

f V I I I I
nkT R

I I R R n

I I R R n

  +  + = − − − −   
   

 =
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

X

X
 (30)

Based on the actual measured current-voltage data in reference [86], where commer-
cial silicon R.T.C French solar cells with a diameter of 57 mm were operated under 1000 W/mଶ at 33 °C, we utilize the proposed method to identify the five unknown param-
eters of SDM. CHAOARO runs independently 30 times on this test problem with the pop-
ulation size (𝑁) and the maximum number of iterations (𝑇) set to 30 and 500 respectively,
and the obtained optimal parameters and RMSE-value are reported in Table 17.

Table 17. Comparison results for the parameter identification of SDM.

Algorithms 𝑰𝐩𝐡 (𝐀) 𝑰𝐬𝐝 (𝛍𝐀) 𝑹𝐬 (𝛀) 𝑹𝐬𝐡 (𝛀) 𝒏 RMSE
ABC [85] 0.760784 0.321523 0.036398 53.639 1.480601 9.8169 × 10−4
SMA [87] 0.76076 0.32314 0.03637 53.71489 1.48114 9.8482 × 10−4
IHBA [88] 0.76101 0.39445 0.034789 55.538 1.4951 1.0272 × 10−3
IBES [89] 0.760776 0.323 0.036377 53.71853 1.4768 9.8600 × 10−4
CPSO [90] 0.7607 0.4 0.0354 59.012 1.5033 1.3900 × 10−3
OBDSSA [91] 0.7608 0.36596 0.0359 56.1662 1.4939 1.0161 × 10−3
GOTLBO [92] 0.760780 0.331552 0.036265 54.115426 1.483820 9.8744 × 10−4
CHAOARO 0.760776 0.314950 0.036485 53.19598 1.478640 7.7330 × 10−4
The best values obtained have been highlighted in boldface.

As can be seen from Table 17, CHAOARO obtains the smallest RMSE value of 7.7330
× 10−4 compared to other state-of-the-art peer competitors, namely ABC [85], SMA [87],
IHBA [88], IBES [89], CPSO [90], OBDSSA [91], and GOTLBO [92], indicating that
CHAOARO has the highest accuracy for parameter identification. Furthermore, the best-
extracted parameters attained by CHAOARO are used to generate the current-voltage (I-
V) and power-voltage (P-V) characteristic curves, as shown in Figure 17. From this figure,
it is clear that the estimated values of CHAOARO can fit the actual measured data well,
which again demonstrates that the proposed method has excellent prospects and robust-
ness in solving the parameter identification problem of SDM for PV systems.

(a) (b)

Figure 17. Fitting curves between the measured data and estimated data obtained by CHAOARO
on the SDM. (a) I-V characteristics; (b) P-V characteristics.
Figure 17. Fitting curves between the measured data and estimated data obtained by CHAOARO on
the SDM. (a) I-V characteristics; (b) P-V characteristics.

7. Conclusions and Future Research

In this study, for the characteristics of AO and ARO, we skillfully combine these
two algorithms and propose a new hybrid meta-heuristic optimization paradigm, called

Processes 2022, 10, 2703 43 of 46

CHAOARO, to provide more reliable solutions for complex global optimization prob-
lems. The proposed method aims to overcome the limitation of the original algorithm’s
insufficient search strategies, enrich the diversity of populations, and avoid local optimal
stagnation. In CHAOARO, firstly, the global exploration stage of AO and the local ex-
ploitation stage of ARO are integrated together to obtain superior overall performance
and convergence speed. Secondly, based on the starvation ratio F in African Vultures Opti-
mization Algorithm, an adaptive switching mechanism is designed to better balance the
exploration and exploitation patterns of the algorithm. Moreover, the chaotic opposition-
based learning tactic is utilized to assist the individual in exploring more unknown search
domains and increase the possibility of getting rid of the local optima. To thoroughly evalu-
ate the performance of CHAOARO, we use 23 classical benchmark functions, including
thirteen unimodal and multimodal benchmark functions under different dimensions and
ten fix-dimension multimodal benchmark functions, as well as the famous IEEE CEC2019
test suite. The significant differences between different competitor algorithms in a statistical
sense are verified by using the Friedman ranking test and Wilcoxon rank-sum test. Com-
pared with AO, ARO, and seven other state-of-the-art metaheuristics, the experimental
results credibly demonstrate that CHAOARO has superior competitiveness in terms of
convergence speed, solution accuracy, local optima avoidance, and stability no matter
when solving simple or challenging numerical problems. To prove the effectiveness of the
proposed method in practical applications, CHAOARO is further applied to tackle five
engineering design problems and the parameter extraction problem of the PV model. Our
findings indicate that CHAOARO is a promising auxiliary tool for addressing real-world
optimization tasks.

Although CHAOARO can effectively outperform the original AO and ARO, its op-
timization performance still has room for further improvement. As can be seen from
Table 6, the results of CHAOARO on functions F7 and F8 are not the most perfect. In the
next work, we will try to further enhance the exploration and exploitation capabilities of
CHAOARO for better solution accuracy via introducing other modification techniques,
such as adaptive β-hill climbing, Lévy flight, and evolutionary population dynamics. And
the more challenging IEEE CEC2022 test suite will hopefully be employed to evaluate the
performance differences between CHAOARO and some improved variants of AO. In addi-
tion, CHAOARO is ready to be applied to solve real-world optimization problems in more
fields, for instance, multi-level threshold image segmentation, node localization of wireless
sensor network, path planning for drones in a three-dimensional environment, parameter
self-tuning of speed proportional integral differential (PID) controller for brushless direct
current motors, and fault diagnosis of rolling bearing. It would also make sense to develop
a multi-objective version of the CHAOARO algorithm for complex multi-objective projects.

Author Contributions: Conceptualization, Y.W. and Y.X.; methodology, Y.W.; software, Y.X.;
validation, Y.W. and Y.X.; formal analysis, J.L.; writing—original draft preparation, Y.W. and J.L.;
writing—review and editing, Y.X.; visualization, Y.W.; supervision, J.L. and Y.G.; funding acquisition,
Y.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the National Natural Science Foundation of China
under Grant 52075090, Key Research and Development Program Projects of Heilongjiang Province
under Grant GA21A403, Fundamental Research Funds for the Central Universities under Grant
2572021BF01, and Natural Science Foundation of Heilongjiang Province under Grant YQ2021E002.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors are grateful to the editor and reviewers for their constructive
comments and suggestions, which have improved the presentation.

Conflicts of Interest: The authors declare no conflict of interest.

Processes 2022, 10, 2703 44 of 46

References
1. Xiao, Y.; Sun, X.; Guo, Y.; Cui, H.; Wang, Y.; Li, J.; Li, S. An enhanced honey badger algorithm based on Lévy flight and refraction

opposition-based learning for engineering design problems. J. Intell. Fuzzy Syst. 2022, 43, 4517–4540. [CrossRef]
2. Jia, H.; Zhang, W.; Zheng, R.; Wang, S.; Leng, X.; Cao, N. Ensemble mutation slime mould algorithm with restart mechanism for

feature selection. Int. J. Intell. Syst. 2021, 37, 2335–2370. [CrossRef]
3. Liu, Q.; Li, N.; Jia, H.; Qi, Q.; Abualigah, L.; Liu, Y. A hybrid arithmetic optimization and golden sine algorithm for solving

industrial engineering design problems. Mathematics 2022, 10, 1567. [CrossRef]
4. Abd Elaziz, M.; Abualigah, L.; Attiya, I. Advanced optimization technique for scheduling IoT tasks in cloud-fog computing

environments. Future Gener. Comput. Syst. 2021, 124, 142–154. [CrossRef]
5. Guo, W.; Xu, P.; Dai, F.; Hou, Z. Harris hawks optimization algorithm based on elite fractional mutation for data clustering. Appl.

Intell. 2022, 52, 11407–11433. [CrossRef]
6. Shi, K.; Liu, C.; Sun, Z.; Yue, X. Coupled orbit-attitude dynamics and trajectory tracking control for spacecraft electromagnetic

docking. Appl. Math. Model. 2022, 101, 553–572. [CrossRef]
7. Liu, C.; Yue, X.; Zhang, J.; Shi, K. Active disturbance rejection control for delayed electromagnetic docking of spacecraft in

elliptical orbits. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 2257–2268. [CrossRef]
8. Hu, G.; Zhong, J.; Du, B.; Wei, G. An enhanced hybrid arithmetic optimization algorithm for engineering applications. Comput.

Meth. Appl. Mech. Eng. 2022, 394, 114901. [CrossRef]
9. Yang, J.; Liu, Z.; Zhang, X.; Hu, G. Elite chaotic manta ray algorithm integrated with chaotic initialization and opposition-based

learning. Mathematics 2022, 10, 2960. [CrossRef]
10. Xiao, Y.; Guo, Y.; Cui, H.; Wang, Y.; Li, J.; Zhang, Y. IHAOAVOA: An improved hybrid aquila optimizer and African vultures

optimization algorithm for global optimization problems. Math. Biosci. Eng. 2022, 19, 10963–11017. [CrossRef]
11. Wen, C.; Jia, H.; Wu, D.; Rao, H.; Li, S.; Liu, Q.; Abualigah, L. Modified remora optimization algorithm with multistrategies for

global optimization problem. Mathematics 2022, 10, 3604. [CrossRef]
12. Jia, H.; Sun, K.; Zhang, W.; Leng, X. An enhanced chimp optimization algorithm for continuous optimization domains. Complex

Intell. Syst. 2021, 8, 65–82. [CrossRef]
13. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–72. [CrossRef]
14. Storn, R.; Price, K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
15. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
16. Cheraghalipour, A.; Hajiaghaei-Keshteli, M.; Paydar, M.M. Tree Growth Algorithm (TGA): A novel approach for solving

optimization problems. Eng. Appl. Artif. Intell. 2018, 72, 393–414. [CrossRef]
17. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
18. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
19. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [CrossRef]
20. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-Verse Optimizer: A nature-inspired algorithm for global optimization. Neural

Comput. Appl. 2015, 27, 495–513. [CrossRef]
21. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
22. Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-

based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [CrossRef]
23. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Meth. Appl.

Mech. Eng. 2021, 376, 113609. [CrossRef]
24. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICN’95—International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [CrossRef]
25. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
26. Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization

problems. Eng. Comput. 2011, 29, 17–35. [CrossRef]
27. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
28. Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]
29. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.

[CrossRef]
30. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
31. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired optimizer for

engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
32. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
33. Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm

for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [CrossRef]
34. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future

Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]

http://doi.org/10.3233/JIFS-213206
http://doi.org/10.1002/int.22776
http://doi.org/10.3390/math10091567
http://doi.org/10.1016/j.future.2021.05.026
http://doi.org/10.1007/s10489-021-02985-0
http://doi.org/10.1016/j.apm.2021.08.030
http://doi.org/10.1109/TAES.2021.3130830
http://doi.org/10.1016/j.cma.2022.114901
http://doi.org/10.3390/math10162960
http://doi.org/10.3934/mbe.2022512
http://doi.org/10.3390/math10193604
http://doi.org/10.1007/s40747-021-00346-5
http://doi.org/10.1038/scientificamerican0792-66
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1109/TEVC.2008.919004
http://doi.org/10.1016/j.engappai.2018.04.021
http://doi.org/10.1126/science.220.4598.671
http://doi.org/10.1016/j.ins.2009.03.004
http://doi.org/10.1016/j.ins.2012.08.023
http://doi.org/10.1007/s00521-015-1870-7
http://doi.org/10.1016/j.knosys.2015.12.022
http://doi.org/10.1016/j.future.2019.07.015
http://doi.org/10.1016/j.cma.2020.113609
http://doi.org/10.1109/ICNN.1995.488968
http://doi.org/10.1109/MCI.2006.329691
http://doi.org/10.1007/s00366-011-0241-y
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.advengsoft.2015.01.010
http://doi.org/10.1016/j.knosys.2015.07.006
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1016/j.future.2019.02.028
http://doi.org/10.1016/j.engappai.2020.103541
http://doi.org/10.1016/j.future.2020.03.055

Processes 2022, 10, 2703 45 of 46

35. Abualigah, L.; Elaziz, M.A.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile search algorithm (RSA): A nature-inspired meta-
heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [CrossRef]

36. Chopra, N.; Mohsin Ansari, M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications.
Expert Syst. Appl. 2022, 198, 116924. [CrossRef]

37. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design
optimization problems. Comput.-Aided Des. 2011, 43, 303–315. [CrossRef]

38. Manjarres, D.; Landa-Torres, I.; Gil-Lopez, S.; Del Ser, J.; Bilbao, M.N.; Salcedo-Sanz, S.; Geem, Z.W. A survey on applications of
the harmony search algorithm. Eng. Appl. Artif. Intell. 2013, 26, 1818–1831. [CrossRef]

39. Zhang, Q.; Wang, R.; Yang, J.; Ding, K.; Li, Y.; Hu, J. Collective decision optimization algorithm: A new heuristic optimization
method. Neurocomputing 2017, 221, 123–137. [CrossRef]

40. Askari, Q.; Younas, I.; Saeed, M. Political optimizer: A novel socio-inspired meta-heuristic for global optimization. Knowl.-Based
Syst. 2020, 195, 105703. [CrossRef]

41. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
42. Zheng, R.; Jia, H.; Abualigah, L.; Liu, Q.; Wang, S. Deep ensemble of slime mold algorithm and arithmetic optimization algorithm

for global optimization. Processes 2021, 9, 1774. [CrossRef]
43. Zhang, Y.J.; Yan, Y.X.; Zhao, J.; Gao, Z.M. CSCAHHO: Chaotic hybridization algorithm of the Sine Cosine with Harris Hawk

optimization algorithms for solving global optimization problems. PLoS ONE 2022, 17, e0263387. [CrossRef] [PubMed]
44. Cheng, X.; Li, J.; Zheng, C.; Zhang, J.; Zhao, M. An improved PSO-GWO algorithm with chaos and adaptive inertial weight for

robot path planning. Front. Neurorobot. 2021, 15, 770361. [CrossRef] [PubMed]
45. Kundu, T.; Garg, H. LSMA-TLBO: A hybrid SMA-TLBO algorithm with lévy flight based mutation for numerical optimization

and engineering design problems. Adv. Eng. Softw. 2022, 172, 103185. [CrossRef]
46. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila optimizer: A novel meta-

heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]
47. Guo, Z.; Yang, B.; Han, Y.; He, T.; He, P.; Meng, X.; He, X. Optimal PID tuning of PLL for PV inverter based on aquila optimizer.

Front. Energy Res. 2022, 9, 812467. [CrossRef]
48. Fatani, A.; Dahou, A.; Al-Qaness, M.A.A.; Lu, S.; Abd Elaziz, M. Advanced feature extraction and selection approach using deep

learning and Aquila optimizer for IoT intrusion detection system. Sensors 2021, 22, 140. [CrossRef]
49. Zhao, J.; Gao, Z.-M.; Chen, H.-F. The simplified aquila optimization algorithm. IEEE Access 2022, 10, 22487–22515. [CrossRef]
50. Wang, S.; Jia, H.; Abualigah, L.; Liu, Q.; Zheng, R. An improved hybrid aquila optimizer and harris hawks algorithm for solving

industrial engineering optimization problems. Processes 2021, 9, 1551. [CrossRef]
51. Yu, H.; Jia, H.; Zhou, J.; Hussien, A.G. Enhanced Aquila optimizer algorithm for global optimization and constrained engineering

problems. Math. Biosci. Eng. 2022, 19, 14173–14211. [CrossRef]
52. Gao, B.; Shi, Y.; Xu, F.; Xu, X. An improved Aquila optimizer based on search control factor and mutations. Processes 2022, 10, 1451.

[CrossRef]
53. Verma, M.; Sreejeth, M.; Singh, M. Application of hybrid metaheuristic technique to study influence of core material and core

trench on performance of surface inset PMSM. Arab. J. Sci. Eng. 2021, 47, 3037–3053. [CrossRef]
54. Zhang, Y.-J.; Yan, Y.-X.; Zhao, J.; Gao, Z.-M. AOAAO: The hybrid algorithm of arithmetic optimization algorithm with aquila

optimizer. IEEE Access 2022, 10, 10907–10933. [CrossRef]
55. Wang, L.; Cao, Q.; Zhang, Z.; Mirjalili, S.; Zhao, W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm

for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2022, 114, 105082. [CrossRef]
56. Wang, Y.; Huang, L.; Zhong, J.; Hu, G. LARO: Opposition-based learning boosted artificial rabbits-inspired optimization algorithm

with Lévy flight. Symmetry 2022, 14, 2282. [CrossRef]
57. Zhuoran, Z.; Changqiang, H.; Hanqiao, H.; Shangqin, T.; Kangsheng, D. An optimization method: Hummingbirds optimization

algorithm. J. Syst. Eng. Electron. 2018, 29, 386–404. [CrossRef]
58. Zhao, W.; Wang, L.; Mirjalili, S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications.

Comput. Meth. Appl. Mech. Eng. 2022, 388, 114194. [CrossRef]
59. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuris-

tic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [CrossRef]
60. Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the International Conference

on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce, Vienna, Austria, 28–30 November 2005; pp. 695–701. [CrossRef]

61. Nguyen, T.-T.; Wang, H.-J.; Dao, T.-K.; Pan, J.-S.; Liu, J.-H.; Weng, S. An improved slime mold algorithm and its application for
optimal operation of cascade hydropower stations. IEEE Access 2020, 8, 226754–226772. [CrossRef]

62. Wang, S.; Jia, H.; Liu, Q.; Zheng, R. An improved hybrid Aquila Optimizer and Harris Hawks Optimization for global optimization.
Math. Biosci. Eng. 2021, 18, 7076–7109. [CrossRef]

63. Long, W.; Jiao, J.; Liang, X.; Cai, S.; Xu, M. A random opposition-based learning grey wolf optimizer. IEEE Access 2019,
7, 113810–113825. [CrossRef]

64. Xiao, Y.; Sun, X.; Zhang, Y.; Guo, Y.; Wang, Y.; Li, J. An improved slime mould algorithm based on tent chaotic mapping and
nonlinear inertia weight. Int. J. Innov. Comput Inf. Control 2021, 17, 2151–2176. [CrossRef]

http://doi.org/10.1016/j.eswa.2021.116158
http://doi.org/10.1016/j.eswa.2022.116924
http://doi.org/10.1016/j.cad.2010.12.015
http://doi.org/10.1016/j.engappai.2013.05.008
http://doi.org/10.1016/j.neucom.2016.09.068
http://doi.org/10.1016/j.knosys.2020.105709
http://doi.org/10.1109/4235.585893
http://doi.org/10.3390/pr9101774
http://doi.org/10.1371/journal.pone.0263387
http://www.ncbi.nlm.nih.gov/pubmed/35588436
http://doi.org/10.3389/fnbot.2021.770361
http://www.ncbi.nlm.nih.gov/pubmed/34803648
http://doi.org/10.1016/j.advengsoft.2022.103185
http://doi.org/10.1016/j.cie.2021.107250
http://doi.org/10.3389/fenrg.2021.812467
http://doi.org/10.3390/s22010140
http://doi.org/10.1109/ACCESS.2022.3153727
http://doi.org/10.3390/pr9091551
http://doi.org/10.3934/mbe.2022660
http://doi.org/10.3390/pr10081451
http://doi.org/10.1007/s13369-021-06017-4
http://doi.org/10.1109/ACCESS.2022.3144431
http://doi.org/10.1016/j.engappai.2022.105082
http://doi.org/10.3390/sym14112282
http://doi.org/10.21629/JSEE.2018.02.19
http://doi.org/10.1016/j.cma.2021.114194
http://doi.org/10.1016/j.cie.2021.107408
http://doi.org/10.1109/CIMCA.2005.1631345
http://doi.org/10.1109/ACCESS.2020.3045975
http://doi.org/10.3934/mbe.2021352
http://doi.org/10.1109/ACCESS.2019.2934994
http://doi.org/10.24507/ijicic.17.06.2151

Processes 2022, 10, 2703 46 of 46

65. Khishe, M.; Nezhadshahbodaghi, M.; Mosavi, M.R.; Martin, D. A weighted chimp optimization algorithm. IEEE Access 2021,
9, 158508–158539. [CrossRef]

66. Khodadadi, N.; Snasel, V.; Mirjalili, S. Dynamic arithmetic optimization algorithm for truss optimization under natural frequency
constraints. IEEE Access 2022, 10, 16188–16208. [CrossRef]

67. Theodorsson-Norheim, E. Friedman and Quade tests: Basic computer program to perform nonparametric two-way analysis of
variance and multiple comparisons on ranks of several related samples. Comput. Biol. Med. 1987, 17, 85–99. [CrossRef]

68. García, S.; Fernández, A.; Luengo, J.; Herrera, F. Advanced nonparametric tests for multiple comparisons in the design of
experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 2010, 180, 2044–2064.
[CrossRef]

69. Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020,
8, 22–34. [CrossRef]

70. Abualigah, L.; Ewees, A.A.; Al-qaness, M.A.A.; Elaziz, M.A.; Yousri, D.; Ibrahim, R.A.; Altalhi, M. Boosting arithmetic opti-
mization algorithm by sine cosine algorithm and levy flight distribution for solving engineering optimization problems. Neural
Comput. Appl. 2022, 34, 8823–8852. [CrossRef]

71. Chickermane, H.; Gea, H.C. Structural optimization using a new local approximation method. Int. J. Numer. Methods Eng. 1996,
39, 829–846. [CrossRef]

72. Cheng, M.-Y.; Prayogo, D. Symbiotic organisms search: A new metaheuristic optimization algorithm. Comput. Struct. 2014,
139, 98–112. [CrossRef]

73. Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H. RUN beyond the metaphor: An efficient optimization algorithm
based on Runge Kutta method. Expert Syst. Appl. 2021, 181, 115079. [CrossRef]

74. Song, M.; Jia, H.; Abualigah, L.; Liu, Q.; Lin, Z.; Wu, D.; Altalhi, M. Modified harris hawks optimization algorithm with
exploration factor and random walk strategy. Comput. Intell. Neurosci. 2022, 2022, 4673665. [CrossRef] [PubMed]

75. Bayzidi, H.; Talatahari, S.; Saraee, M.; Lamarche, C.P. Social network search for solving engineering optimization problems.
Comput. Intell. Neurosci. 2021, 2021, 8548639. [CrossRef]

76. Garg, H. A hybrid GSA-GA algorithm for constrained optimization problems. Inf. Sci. 2019, 478, 499–523. [CrossRef]
77. Agushaka, J.O.; Ezugwu, A.E.; Abualigah, L. Dwarf mongoose optimization algorithm. Comput. Meth. Appl. Mech. Eng. 2022,

391, 114570. [CrossRef]
78. Dhiman, G.; Kumar, V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications.

Adv. Eng. Softw. 2017, 114, 48–70. [CrossRef]
79. Baykasoğlu, A.; Ozsoydan, F.B. Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl. Soft

Comput. 2015, 36, 152–164. [CrossRef]
80. Dhiman, G.; Kaur, A. STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Eng. Appl. Artif.

Intell. 2019, 82, 148–174. [CrossRef]
81. Gupta, S.; Deep, K.; Moayedi, H.; Foong, L.K.; Assad, A. Sine cosine grey wolf optimizer to solve engineering design problems.

Eng. Comput. 2021, 37, 3123–3149. [CrossRef]
82. Xiao, Y.; Sun, X.; Guo, Y.; Li, S.; Zhang, Y.; Wang, Y. An improved gorilla troops optimizer based on lens opposition-based learning

and adaptive β-Hill climbing for global optimization. CMES-Comput. Model. Eng. Sci. 2022, 131, 815–850. [CrossRef]
83. Chen, X.; Yu, K. Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model

parameters. Sol. Energy 2019, 180, 192–206. [CrossRef]
84. Zhao, J.; Zhang, Y.; Li, S.; Wang, Y.; Yan, Y.; Gao, Z. A chaotic self-adaptive JAYA algorithm for parameter extraction of photovoltaic

models. Math. Biosci. Eng. 2022, 19, 5638–5670. [CrossRef] [PubMed]
85. Oliva, D.; Cuevas, E.; Pajares, G. Parameter identification of solar cells using artificial bee colony optimization. Energy 2014,

72, 93–102. [CrossRef]
86. Easwarakhanthan, T.; Bottin, J.; Bouhouch, I.; Boutrit, C. Nonlinear minimization algorithm for determining the solar cell

parameters with microcomputers. Int. J. Sol. Energy 1986, 4, 1–12. [CrossRef]
87. Kumar, C.; Raj, T.D.; Premkumar, M.; Raj, T.D. A new stochastic slime mould optimization algorithm for the estimation of solar

photovoltaic cell parameters. Optik 2020, 223, 165277. [CrossRef]
88. Lei, W.; He, Q.; Yang, L.; Jiao, H. Solar photovoltaic cell parameter identification based on improved honey badger algorithm.

Sustainability 2022, 14, 8897. [CrossRef]
89. Ramadan, A.; Kamel, S.; Hassan, M.H.; Khurshaid, T.; Rahmann, C. An improved bald eagle search algorithm for parameter

estimation of different photovoltaic models. Processes 2021, 9, 1127. [CrossRef]
90. Huang, W.; Jiang, C.; Xue, L.; Song, D. Extracting solar cell model parameters based on chaos particle swarm algorithm. In

Proceedings of the 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011;
pp. 398–402. [CrossRef]

91. Wang, Z.; Ding, H.; Yang, J.; Wang, J.; Li, B.; Yang, Z.; Hou, P. Advanced orthogonal opposition-based learning-driven dynamic
salp swarm algorithm: Framework and case studies. IET Control Theory Appl. 2022, 16, 945–971. [CrossRef]

92. Chen, X.; Yu, K.; Du, W.; Zhao, W.; Liu, G. Parameters identification of solar cell models using generalized oppositional teaching
learning based optimization. Energy 2016, 99, 170–180. [CrossRef]

http://doi.org/10.1109/ACCESS.2021.3130933
http://doi.org/10.1109/ACCESS.2022.3146374
http://doi.org/10.1016/0010-4825(87)90003-5
http://doi.org/10.1016/j.ins.2009.12.010
http://doi.org/10.1080/21642583.2019.1708830
http://doi.org/10.1007/s00521-022-06906-1
http://doi.org/10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U
http://doi.org/10.1016/j.compstruc.2014.03.007
http://doi.org/10.1016/j.eswa.2021.115079
http://doi.org/10.1155/2022/4673665
http://www.ncbi.nlm.nih.gov/pubmed/35535189
http://doi.org/10.1155/2021/8548639
http://doi.org/10.1016/j.ins.2018.11.041
http://doi.org/10.1016/j.cma.2022.114570
http://doi.org/10.1016/j.advengsoft.2017.05.014
http://doi.org/10.1016/j.asoc.2015.06.056
http://doi.org/10.1016/j.engappai.2019.03.021
http://doi.org/10.1007/s00366-020-00996-y
http://doi.org/10.32604/cmes.2022.019198
http://doi.org/10.1016/j.solener.2019.01.025
http://doi.org/10.3934/mbe.2022264
http://www.ncbi.nlm.nih.gov/pubmed/35603372
http://doi.org/10.1016/j.energy.2014.05.011
http://doi.org/10.1080/01425918608909835
http://doi.org/10.1016/j.ijleo.2020.165277
http://doi.org/10.3390/su14148897
http://doi.org/10.3390/pr9071127
http://doi.org/10.1109/ICEICE.2011.5777246
http://doi.org/10.1049/cth2.12277
http://doi.org/10.1016/j.energy.2016.01.052

	Introduction
	Preliminary Knowledge
	Aquila Optimizer (AO)
	Expanded Exploration: High Soar with Vertical Stoop
	Narrowed Exploration: Contour Flight with Short Glide Attack
	Expanded Exploitation: Low Flight with Slow Descent Attack
	Narrowed Exploitation: Walking and Grabbing Prey

	Artificial Rabbits Optimization (ARO)
	Detour Foraging (Exploration)
	Transition from Exploration to Exploitation
	Random Hiding (Exploitation)

	The Proposed CHAOARO Algorithm
	Hybridization of AO with ARO Algorithms
	Adaptive Switching Mechanism (ASM)
	Chaotic Opposition-Based Learning (COBL)
	Detailed Design of CHAOARO

	Experimental Results and Discussion
	Experiment 1: Classical Benchmark Functions
	Chaotic Map Selection Analysis
	Evaluation of Exploitation and Exploration
	Analysis of Convergence Behavior
	Boxplot Analysis
	Wilcoxon Rank-Sum Test
	Computation Time Analysis
	Scalability Analysis

	Experiment 2: IEEE CEC2019 Test Suite

	CHAOARO for Solving Engineering Design Problems
	Design of Pressure Vessel
	Design of Cantilever Beam
	Design of Tubular Column
	Design of Speed Reducer
	Design of Rolling Element Bearing

	CHAOARO for Parameter Identification of Photovoltaic Model
	Conclusions and Future Research
	References

