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Abstract: Laser scanning technology has been used for several years. Nevertheless, no comprehensive
study has been conducted to prove that the application of confocal chromatic sensor (CCHS) laser
technology is effective and suitable to verify the integrity parameters of machined surfaces in terms
of cutting tool damage. In this paper, the optimization and effects of five factors (cutting speed,
feed, depth of cut, attachment length of the workpiece, and tip radius) on the roundness deviation
measured by CCHS and, at the same time, on the amount of wear on the back side of the cutting part
of the tool were studied according to ISO 3685, which was measured with a microscope. The results
obtained were evaluated using the gray relational analysis method (GRA), in conjunction with the
Taguchi method, and the significance of the factors was demonstrated using the analysis of variance
(ANOVA) method.

Keywords: confocal chromatic sensor (CCHS); cutting tool wear; turning; gray relational analysis;
Taguchi method; ANOVA

1. Introduction

Machining (turning) still holds importance, and its replacement with other technolo-
gies has not always been successful. The ideal turning process can be characterized as the
process of manufacturing a product following attachment. The ideal turning process is also
a process through which we can manufacture a product in compliance with the specified
criteria. The cutting tool plays a key role in understanding the behavior of machining
operations [1]. We can also apply the ideal measurement during inspection. The ideal
measurement of the product is a process through which we can measure the parameter
following attachment and simultaneously measure the parameter during the attachment
after the last operation of the cutting process in the working zone of the machine. The use
of intelligent systems for identifying tool wear during turning was investigated by [2]. In
this article, we present the results for the hypothesis that it is possible to apply CCHS to
measure the quality parameters for a product after turning. The mentioned hypothesis is
supported by previously conducted research with a triangulation laser sensor, and some
results are presented in the article. The main thesis of this research is that we can use a
laser beam to check the quality parameters after the cutting process. It is important to
pay attention to the correct definition of the conditions for measurement with CCHS. In
addition, this research focuses on the implementation of a new sensor for measuring the
parameters of a machined surface.

When measuring the parameters of the machined surface, we identify the various
errors that must be analyzed and evaluated realistically and these should be suppressed
in the results as much as possible. In order to eliminate some measurement errors and
also minimize the influence of the human factor, we verified a new-generation CCHS
application. The laser sensor CCHS (CL-P070) from Keyence (Osaka, Japan) was used
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for this research. Since the research results are important not only for theory but also for
practice, measurement systems used in companies were used to measure the functional
parameters. The main focus of the research was the use of the CCHS to measure the
roundness deviation (DR) and the analysis of the influence of the change in the roundness
deviation on the flank wear parameter (VBN) of the cutting insert. Another focus of the
research was the design and optimization of the input factors during turning and the
determination of their significance of influence, the verification of the holder design for
the CCHS and the data transfer algorithm design for the CCHS. The obtained data will
form the basis for the design of models for the implementation of laser sensors in the
working zone of the machines. Another part of the investigation was the comparison
of the measured values of roundness deviation with the measured values from (DR) on
the ROUNDTEST RA 120 device from Mitutoyo (Kanagawa, Japan). At the end of the
investigation, a comparative test was carried out to verify the findings of the investigation
and the effect on the optimization of the input factors in the interpretation of the importance
of the proposed input factors and the comparison of data between the conventional and
the progressive measurement system [3].

In the context of elimination, due to the human-caused errors in product control, new
control methods are gaining attention in which a person merely performs the function of
an operator. Several researchers have conducted research in this area. Zhou et al. used
laser sensors for active control during the turning process and for the identification of
defects [4]. Muszynski et al. studied laser sensors primarily for different types of control,
be it operational or output control [5]. Similar studies were conducted by You et al. using
blue laser technology, which has high measurement accuracy [6]. Laser sensors for position
measurement are also widely used in the transportation industry. Yu et al. in their study
used a confocal sensor to measure the thickness of transparent materials [7]. Another
important application of laser sensors is the control of elements in the working area of the
machine and the detection of geometry errors [8]. The advantages and disadvantages of
laser sensors are presented in the study of Jaworski et al. [9]. Other authors have dealt
with the conditions for using CCHS to measure machined surfaces. The main advantages
of non-contact measurement systems based on optical methods are high scanning speed
and measurement accuracy [10]. The proper setting of conditions for the use of CCHS
was studied by Chen and Bai et al. [11,12]. The determination of the input factors is very
important when using CCHS. In their research, Li, Berkovic, Yu et al. dealt with the analysis
of the obtained data, the determination of the start of the measurement of the sensors, and
the effect of the illumination angle on the surface [13–16]. Despite the various published
studies on the application of laser sensors, there are few areas that have been explored.
Machining technology and, in particular, the control of the accuracy of products through
the use of laser sensors are among the areas that require experimentation to clearly define
the conditions for their application. The authors presented the research results of several
studies in which they verified and proposed the possibilities of using CCHS in machining.
One of the most important factors in machining is the vibration in the working area of the
machine and in the cutting zone. If the machine tool works within the prescribed vibration
tolerances (established by the manufacturer or through diagnostic verification), we can
effectively use laser sensors. The use of laser sensors to measure the roughness parameters
of the machined surface was studied by Fu, Grochalski, Yuan, Liu and Wang et al. [17–21].
Non-contact measurement of surface roughness parameters was studied by Fu et al. [22].

When processing data obtained from measurements with sensors, it is important to
analyze and possibly separate the data from errors due to various other influences. This
factor is always important, especially when the measurements are taken on a machine that
is not calibrated. In their study, Gao et al. present several algorithms to separate these
errors [23]. Hrehova et al. describe the application of non-contact sensors using a neural
network to detect points on the surface of the workpiece [24]. A new device to analyze the
real-time deformation behavior of materials was studied by Singh et al. [25].
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The study of the relationship between the parameters of surface integrity and tool dam-
age is an area in which we cannot give an exact result. In another study, the authors were
concerned with the study of tool damage [26,27]. The results of the indirect measurement of
tool wear using the VBN parameter regarding the deviations from the average values were
presented in the study of Jurko et al. [3]. The quality parameters of a machined surface
often depend on the cutting tool damage, and it is influenced by factors and phenomena in
the cutting zone, such as cutting conditions, cutting forces, vibrations, temperature, process
medium, etc. Predicting the wear of the cutting part of the tool is particularly important, as
pointed out by several researchers and according to Brillinger, Tabaszewski and Uhlmann,
the methods and tools used for processing the obtained data are also important [28–37].
Wilkowski et al. developed a model to evaluate tool life [38]. Other authors have dealt with
the effects of machined surface parameters on tool life [39,40].

From the study of the literature, it appears that the research on surface integrity
with the application of new technologies generates new solutions that need to be studied.
The study of the control of the roundness deviation parameter according to (ISO-12181-
1), using CCHS on a reference sample of C45 steel, is the basis for other materials. A
systematic study of the effects of process factors on machined surfaces proves that we
can also influence the results of the control of the input factors to achieve the desired
values by changing these factors. The way to improve surface integrity parameters is to
optimize the combination of important input factors, such as cutting speed, feed, depth of
cut, workpiece attachment length, and tip radius of the cutting edge. On the one hand, the
input factors—the conditions of the machining process—and on the other hand, the CCHS
factors must be matched. These input factors can be adjusted during machining, which is
advantageous for automation and intelligent machining.

We can understand the GRA method as a system into which we input information
that we know, and receive information that we do not know [41,42]. By combining the
GRA method with the Taguchi method, we can achieve multi-optimization. The Taguchi
method with the GRA method has been applied by many researchers, and it has also been
used in the field of machining to perform multi-objective optimization [43,44]. Authors
such as Mia, Jamil, Pu, Khan and Akhtar et al. optimized the turning constraints using
the L27 OA model and ANOVA [45–50]. Singh dealt with turning optimization using the
L18OA model and ANOVA [51]. In addition, Vora et al. dealt with optimization when
cutting with the L9OA model and ANOVA [52]. Selvan et al. dealt with optimization using
the L27OA model and the GRA and ANOVA methods. [53]. Achuthamenon and Sap et al.
were concerned with optimization [54,55] when machining composites with the L8OA
model and the response surface methodology (RSM) and ANOVA methods.

In our study, we present the evaluation of roundness deviation and the analysis of
the effect of roundness deviation on the tool wear parameter and the effect of the quality
parameter on the damage parameter of the cutting part of the tool (VBN), in accordance
with ISO 3685 [56]. Based on the above literature review and analysis, the motivation of
this article is to present the design of a mobile measurement system (MMS) with the new
generation of CCHS from the Keyence company (Osaka, Japan), whose use is possible
in several production machines [57,58]. Part of the research included the design and
manufacture of a holder for CCHS using 3D printing technology. Due to the variety
in information on the measurement of surface integrity parameters, we focused on the
application of CCHS in the measurement of roundness deviations and linked the results
with the VBN notch wear parameter of the back surface (according to ISO 3685) of the
cutting insert when turning C45 steel, as a benchmark of the steel group and at the same
time, as one of the most important materials used in the production of shafts for garden
equipment [59]. Based on the obtained results, we want to create an information database
for the application of CCHS in practice, including the use of the comparison method for
machining other materials. Therefore, one of the reasons for choosing the material standard
steel C45 is the information obtained from manufacturers who produce products from C45
steel [60,61].
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2. Materials and Methods
2.1. The Experimental System with Confocal Chromatic Sensor (CCHS)

An experimental system (ES) was designed for the study, consisting of a technical sys-
tem (TS) and a mobile measurement system (MMS), as shown in Figure 1. The TS consisted
of a Leadwell T5 CNC machine tool (Leadwell CNC Machines, Taichung City, Taiwan)
with a FANUC Oi-MATE-TC control system (FANUC, Yamanashi, Japan). This lathe has a
certified maximum runout accuracy of 0.030 mm and a maximum axial runout accuracy
of 0.020 mm. A cutting tool with an SSDCN1212K12-M-A holder and SCMTT09T308 TTR
cutting insert made of sintered carbide without coating with the following geometry was
designed for turning: nose angle εr = 90◦, main cutting edge setting angle κr = 45◦, clearance
angle major α = 7◦ and nose radius rε = 0.4, 0.8 and 1.2 mm).
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Figure 1. Experimental system for turning.

To obtain measurements with a confocal sensor, polychromatic white light from the
sensor is projected onto the measured machined surface through a multi-lens system. The
lenses are arranged in a confocal arrangement; therefore, when the beam hits the measured
object, the radiation is a natural chromatic aberration (deviation of light radiation), divided
into monochromatic colors with different wavelengths. The radiation is reflected back to
the confocal aperture of the sensor, through which only focused radiation with a specific
wavelength passes to the electro-optical sensor. The amount of light that returns to the
electro-optical receiver varies significantly, depending on the position of the measured
object [62].

MMS consists of a CL-P070 head. The sensor head CL-P070 acquires data from the
machined surface. The optical unit CL-P070N is used to process the measured light. The
ultra-high-brightness LPD light source produces stable light in all wavelength ranges. The
light is received by four high-resolution CMOS crisps, enabling high-precision measure-
ments for all types of materials. The received light is divided by the wavelength per unit
distance. The CL-3000 controller transmits the information from the optical unit to external
devices, such as a display unit or PC software, using individual ports, such as Profinet,
Ethernet and EtherCAT for PLC, or USB for the classic PC connection.

Data transfer from PLC to PC is realized by TCP communication with the TCP server
and client. The software on the PC must be started first and must create a TCP server for
data acquisition (and wait for data flow). To stream data to the TCP server at a defined
interval, the PLC must be started later. The data will be stored in CSV format for later
processing.

The C# software starts the TCP server and waits for the connection from the PLC
device, retrieves the analyzed data in bytes, and converts the value to the measured value
in mm. An example of the main loop of the algorithm with an explanation of the basic
principle is shown in Figure 2.
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The measured values are displayed in real-time in the form of a curve, as shown in
Figure 3. The communication between the PC and the CL-3000 series Navigator software is
carried out via USB.
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The C45 steel with a diameter of 50 mm and a length of 120 mm was chosen for the
experiment. The properties and chemical composition of the steel are listed in Table 1.

Table 1. Chemical composition of the C45 steel.

Steel C45 (%)

C 0.51
Mn 0.69
Si 0.25
Cr Max. 0.15
Ni Max. 0.10
P 0.023
S 0.017

The specimen was mounted at a distance of 55 mm from the face in a 3-jaw chuck. The
properties of the material are listed in Table 2 and were verified before the products were
manufactured.

Table 2. Verified properties of C45 steel products.

Steel C45 Values

Density (g/cm3) 7.85
Hardness HB Max. 225

Elastic modulus (GPa) 79
Flexural strength (MPa) 606

Thermal conductivity (W/mK) 50

The flank wear value (VBN) of the insert was measured and analyzed using a Carl
Zeiss Primotech D/A ESD microscope (Zeiss Group, Oberkochen, Germany), as shown in
Figure 4.
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Figure 4. Analysis and measurement of the flank wear of the insert (VBN) using a Carl Zeiss Primotech
D/A ESD microscope (Zeiss Group, Oberkochen, Germany).

Part of the research included the design and fabrication of a holder for CCHS using
3D printing technology, as shown in Figure 5. The 3D printing technology was developed
for the following conditions: printer: Creality Ender 3 (Creality, Shenzhen, China), material:
PLA, hot end temperature: 200 ◦C, infill: 100%, layer height: 0.2 mm, nozzle diameter:
0.4 mm; wall line count: 3 [63].
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2.2. Experimental Matrix and Conditions of Experiments

The use of orthogonal arrays helps to maximize test coverage by combining inputs
and testing the system with comparatively fewer test cases to save time and detect bugs.
Based on the analysis of various authors and our research, five input factors at three levels
were determined for the L27 orthogonal array.

The conditions of the cutting process are shown in Table 3, with the cutting speed as
factor A, feed as factor B, depth of cut as factor C, workpiece attachment length as factor
D, and tip radius as factor E. The measurement of roundness deviation was performed
using the new-generation CCHS application of CL-P070 [64]. The evaluation of machining
conditions for roundness deviation and the effect on tool wear was performed based on the
GRA method, in conjunction with the Taguchi method, for the L27 orthogonal array.

The experimental matrix and the results of the initial responses as average values from
the measurement are shown in Table 4. The cutting process conditions were recommended
based on consultations with product manufacturers and based on experience from previous
studies [3]. The parameters for CCHS were set as follows: reference distance of 70 mm,
measurement range of ±10.0 mm, spot diameter of 600.0 µm, linearity of ±2.0 µm, resolu-
tion of 0.25 µm, optical head weight of 200.0 g, repeatability; number of measurements of
1000 per second.

The roundness deviation DR of the machined surface was measured and analyzed
directly in the working zone of the machine tool with CCHS, i.e., after machining a 50 mm
long workpiece without removing it, using a mobile measuring system for CCHS. The
roundness deviation was measured along the length of the machined surface (50 mm) in
3 local zones of 5 mm, 25 mm and 45 mm on the cylindrical surface from the end face. The
VBN wear was measured after each test. The resulting value of roundness deviation for
a given local location was calculated as an average value. The resulting average values
of surface roundness deviation (DR) and back surface wear of the cutting insert (VBN)
were obtained from 10 repeated measurements, with the minimum and maximum values
removed. For each test, a cutting insert with a new cutting edge and without the use of a
process medium was used.

Table 3. The main machining conditions.

Factors Name of Factors
Levels

1 2 3

A Cutting speed (m/min) 80 160 240
B Feed (mm) 0.1 0.2 0.3
C Depth of cut (mm) 0.05 0.1 1.0
D Workpiece attachment length (mm) 5 25 45
E Nose radius (mm) 0.4 0.8 1.2
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Table 4. The experimental parameters and results.

No.

Factors Flank Tool Wear (mm) Roundness Deviation (mm)

A B C D E Mean Value
(mm)

S/N
Ratio

Mean Value
(mm) S/N Ratio

1 1 1 1 1 1 0.121 18.3443 0.020 33.9794
2 1 1 1 2 1 0.136 17.3292 0.031 30.1728
3 1 1 1 3 1 0.122 18.2728 0.032 29.8970
4 1 2 2 1 2 0.142 16.9542 0.033 29.6297
5 1 2 2 2 2 0.139 17.1397 0.034 29.3704
6 1 2 2 3 2 0.138 17.2024 0.032 29.8970
7 1 3 3 1 3 0.156 16.1375 0.031 30.1728
8 1 3 3 2 3 0.157 16.0820 0.033 29.3704
9 1 3 3 3 3 0.155 16.1934 0.033 29.3704
10 2 1 2 1 3 0.145 16.7726 0.029 30.7520
11 2 1 2 2 3 0.147 16.6537 0.030 30.4576
12 2 1 2 3 3 0.148 16.5948 0.031 30.1728
13 2 2 3 1 1 0.151 16.4205 0.026 31.7005
14 2 2 3 2 1 0.155 16.1934 0.032 29.8970
15 2 2 3 3 1 0.161 15.8635 0.032 29.8970
16 2 3 1 1 2 0.144 16.8328 0.028 31.0568
17 2 3 1 2 2 0.129 17.7882 0.030 30.4576
18 2 3 1 3 2 0.137 17.2656 0.030 30.4576
19 3 1 3 1 2 0.162 15.8097 0.029 30.7520
20 3 1 3 2 2 0.164 15.7031 0.027 31.3727
21 3 1 3 3 2 0.165 15.6503 0.031 30.1728
22 3 2 1 1 3 0.157 16.0820 0.023 32.7654
23 3 2 1 2 3 0.159 15.9721 0.022 33.1515
24 3 2 1 3 3 0.158 16.0269 0.021 33.5556
25 3 3 2 1 1 0.171 15.3401 0.022 33.1515
26 3 3 2 2 1 0.162 15.8097 0.021 33.5556
27 3 3 2 3 1 0.169 15.4423 0.021 33.5556

2.3. Optimalization of Turning Conditions—Input Factors

The S/N ratio (Equation (1)) was used as a quantitative tool. The higher the ratio, the
better. As an output parameter, we proposed a qualitative parameter of the machined
surface, namely the roundness deviation. This deviation should be minimal. The following
equation applies to the S/N ratio:

S/N = −10 log
[

1
n

(
y2

1 + y2
2 + . . . + y2

n

)]
(1)

where

S/N stands for the values of the responses (unit dB);
a y1, y2, . . . , yn are the observed output values for the test condition repeated n times.

Optimization study and the main effect plots for the S/N ratio of roundness deviation
and the flank tool wear were performed using MINITAB 20 software. Lower values of
DR surface roundness deviation can improve the operational reliability of the investigated
functional surface of the product. At the same time, after the measurement, we received the
information that the cutting tool meets the desired technical requirements for the product
and does not show undesirable wear. However, a change in the size of the roundness
deviation may indicate a change in the cutting tool. Based on this measurement method,
we can quickly and accurately detect a localized spot on the functional surface and, at the
same time, detect a change in the wear dimension of the cutting tool. These average values
of responses depend on specific conditions, so it is necessary to repeat the tests for other
materials. We can use the results of the measurements of the machined surfaces on the
reference sample of C45 steel to check the surfaces when machining other materials using
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the comparative method. These conclusions and results will be reported in the forthcoming
publication.

Figures 6 and 7 show the dependence of the mean values of roundness deviation and
tool wear. The most important factor that affects the roundness deviation is the cutting
speed (as observed in Figure 6a), followed by the depth of cut. Similarly, tool wear was
found to be most affected by cutting speed (as shown in Figure 7a), followed by depth of cut.
As the depth of cut increases, the roundness deviation increases, causing the surface quality
to deteriorate and tool wear to increase. As the cutting speed increases, the roundness
deviation decreases, but the risk of damage to the tool increases and wear also increases.
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Figure 6. Main effects plots: (a) the effects of input factors on roundness deviation and (b) the mean.

S/N Ratios Correspond to Roundness Deviation

The ranges between the cutting speed steps 1 and 2 are optimal, which can also
be observed in Figures 6b and 7b. Figures 6a and 7a show that the optimal factors and
their levels for achieving the responses for roundness deviation are A3B3C1D1E1 and
for backside wear are A1B1C1D2E2, which is also shown by the S/N ratio values in
Figures 6b and 7b.
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Figure 7. Main effects plots: (a) the effects of input factors on the tool wear of the flank and (b) the
mean S/N ratios corresponding to the tool wear of the flank.

From the results of ANOVA in Table 5, it can be observed that the cutting speed, the
depth of cut, and the attachment length of the workpiece are the factors that affect the
roundness deviation at the 95% confidence level, as their p-values are less than 0.05, with
the cutting speed demonstrating the largest contribution of 45.684%. From Table 6, it can be
observed that cutting speed, feed, depth of cut and workpiece attachment length are factors
that influence tool wear at the 95% confidence level, with cutting speed demonstrating the
largest contribution of 50.584%. The offset and tip radius factors have no significant effect
on roundness deviation, and the tip radius factor has no significant effect on the amount of
tool wear.
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Table 5. Results of the ANOVA for roundness deviation.

Source Design of
Freedom (DF)

Sum of
Square (SS)

Means of
Square (MS) F-Value p-Value Contribution

(%) Remarks

A 2 0.000254 0.000127 20.09 0.002 45.684 Significant
B 2 0.000005 0.000002 0.36 0.705 0.899 Insignificant
C 2 0.000085 0.000043 6.75 0.007 15.288 Significant
D 2 0.000076 0.000038 6.01 0.011 13.669 Significant
E 2 0.000035 0.000017 2.74 0.094 6.295 Insignificant

Error 16 0.000101 0.000006

Total 26 0.000556

Table 6. Results of the ANOVA for flank tool wear.

Source Design of
Freedom (DF)

Sum of
Square (SS)

Means of
Square (MS) F-Value p-Value Contribution

(%) Remarks

A 2 0.002426 0.001213 52.582 0.004 50.584 Significant
B 2 0.000289 0.000144 6.264 0.010 6.026 Significant
C 2 0.001496 0.000748 32.432 0.008 31.193 Significant
D 2 0.000214 0.000107 4.641 0.026 4.462 Significant
E 2 0.000002 0.000001 0.032 0.967 0.042 Insignificant

Error 16 0.000369 0.000023

Total 26 0.004796

When data from technological processes are processed with different output parame-
ters, the dependence and mutual relationship are complex and very often incomprehensible.
We refer to this relationship as gray and it expresses a characteristic of the information
that describes this relationship. For the processing of selected results from our research, a
procedure was proposed according to the GRA method (Deng [41]). By applying the GRA
method, we can express and optimize the incomprehensible relationship of the system
for multiple output parameters with the help of a single parameter. This parameter is
denoted as GRG (grey relational grade) and is calculated as an average for each output
parameter. The result of the optimization of complex multiple factors can be the conver-
sion to a separate (individual) single gray relational grade. Optimizing input machining
factors to achieve output parameters using the GRA method requires following the defined
procedure in the work of Lin [42]. Gray relational analysis (GRA) was used to optimize
the input factors according to [41,42]. After determining the input factors, their levels,
and the responses, the design of the factorial matrix (Table 3) and the preprocessing of the
data (normalization of the data) follow to reduce their variability. For our responses to
be normalized to bring them within an acceptable range, we proposed the method “the
smaller the better” and analyzed the data using Equation (2).

x∗i (k) =
maxx0

i (k)− x0
i (k)

maxx0
i (k)−minx0

i (k)
(2)

where

i = 1, . . . , m and k = 1, . . . , n,
m—the number of experimental data,
n—the number of response characteristics,
x0

i (k)—indicates the original sequence,
x∗i (k)—indicates a sequence after data processing,
maxx0

i (k)—highest value of x0
i (k),

minx0
i (k)—lowest value of x0

i (k),
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x0
i —is the required value of x0

i (k).

The next step is to calculate the deviation of the sequence according to (Equation (3)).

∆oi(k) = |x∗o (k)− x∗i (k)| (3)

where

∆oi (k) is the sequence deviation between the reference sequence x∗0(k) and the comparison
sequence x∗i (k).

In this study, the reference values of roundness deviation and wear values on the
backside of the cutting insert are equal to 1.0. The next step is to calculate the gray relational
coefficient (GRC), denoted ξ, according to (Equation (4)). It is an identification coefficient
defined in the range 0 ≤ ξ ≤ 1 and depends on the requirements of the system. The
determination of this coefficient is important to show the degree of relatedness between
the reference sequence x∗0(k) and the comparison sequences x∗i (k). Usually, the value of (ξ)
is assumed to be 0.5.

ξi(k) =
∆min + ξ.∆max

∆oi(k) + ξ.∆max
(4)

where

i = 1, 2, . . . , m and k = 1, 2, . . . , n;
∆max = 1.00 ∆min = 0.00.

In this step, we calculate the significant indicator gray relational grade (GRG) accord-
ing to (Equation (5)).

γi =
n

∑
k=1

ω1.ξi(k) (5)

where

ωi is the weight of the (i) input variable,
γi is the required GRG for the (i) experiment,
n is the number of output parameters.

Table 7 shows the resulting values for the GRC and GRG indicators. The multiple
optimization problem with multiple responses was transformed into a single optimization
indicator (GRG) of the objective function by a combination of the Taguchi method and the
GRA method. When the value of the GRG is higher, the corresponding combination of
input factors is considered to be near optimal.

Table 7. GRC and GRG results for the GRA method.

Experiment No.
GRC

GRG Rank
Roundness Deviation Flank Tool Wear

1 1.0000 1.0000 1.0000 1
2 0.3889 0.6250 0.2493 12
3 0.3684 0.9615 0.3220 4
4 0.3500 0.5435 0.2200 18
5 0.3333 0.5814 0.2243 16
6 0.3684 0.5952 0.2369 14
7 0.3889 0.4167 0.2009 22
8 0.3500 0.4098 0.1889 25
9 0.3500 0.4237 0.1921 24
0 0.4375 0.5102 0.2356 15

11 0.4118 0.4902 0.2241 17
12 0.3889 0.4808 0.2158 20
13 0.5385 0.4545 0.2497 11
14 0.3684 0.4237 0.1971 23
15 0.3684 0.3846 0.1880 27
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Table 7. Cont.

Experiment No.
GRC

GRG Rank
Roundness Deviation Flank Tool Wear

16 0.4667 0.5208 0.2459 13
17 0.4118 0.7576 0.2862 7
18 0.4118 0.6098 0.2519 10
19 0.4375 0.3788 0.2051 21
20 0.5000 0.3676 0.2193 19
21 0.3889 0.3623 0.1883 26
22 0.7000 0.4098 0.2826 9
23 0.7778 0.3968 0.3004 6
24 0.8750 0.4032 0.3279 2
25 0.7778 0.3333 0.2856 8
26 0.8750 0.3788 0.3222 3
27 0.8750 0.3425 0.3138 5

To determine the optimal parameters, the GRA method was used in combination
with the Taguchi method for the orthogonal array L27. Table 8 lists the optimal factors for
achieving higher accuracy of the machined surface (indicated by the roundness deviation)
and the effects of each factor on the responses.

Table 8. Response table for GRG.

Process Parameter
GRG—γi

Level 1 Level 2 Level 3

A 0.3149 0.2327 0.2717
B 0.3177 0.2474 0.2542
C 0.3629 0.2531 0.2033
D 0.3251 0.2457 0.2485
E 0.3475 0.2309 0.2409

Based on the results of the GRG indicator, the order of influence of the levels of
individual input factors on the responses is clear and is shown in Table 9. Based on the
results (also shown in Table 9), the optimal setting of the input factors is A1B1C1D1E1.

Table 9. The order of influence of the level of input factors A, B, C, D, E on the responses—DR, VBN.

Input Factor
Order of Influence of Factor

Steps on Roundness
Deviation—DR

Order of Influence of Factor
Steps on Wear of Cutting
Insert Back Side—VBN

Order of Influence of Factor
Steps on Total

GRG

Cutting speed
A (m/min) A3 > A1 > A2 A1 > A2 > A3 A1 > A3 > A2

Feed
B (mm) B3 > B2 > B1 B1 > B3 > B2 B1 > B3 > B2

Depth of cut
C (mm) C1 > C2 > C3 C1 > C2 > C3 C1 > C2 > C3

Workpiece unloading length
D (mm) D1 > D2 > D3 D1 > D3 > D2 D1 > D3 > D2

Tip radius E (mm) E1 > E3 > E2 E1 > E2 > E3 E1 > E3 > E2

3. Results

The average values from the measurement of the roundness deviation with the CCHS
application were compared with the average values of the roundness deviation obtained
during the measurement with the device ROUNDTEST RA-120 (Mitutoyo, Kanagawa,
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Japan) (Figure 8a,b). The machined surface was measured for the optimum setting of the
A1B1C1D1E1 input factors.
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Figure 8. (a) Measurement of roundness deviation using the Roundest RA-120; (b) device display
with measured curve.

Figure 9a shows the measurement results of the ROUNDTEST RA-120 device (Mi-
tutoyo, Kanagawa, Japan), and Figure 9b shows the measurement results of the CCHS.
The measurements have a repeatability value of 5, and the results are average values with
subtraction of the minimum and maximum values.
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Figure 9. (a) The measurement results from the ROUNDTEST RA-120 device; (b) the measurement
results from the CCHS.

From the results of the measurement with the CCHS, which are obtained from ANOVA
according to Tables 5 and 6, the cutting speed, the depth of cut, and the attachment
length of the workpiece are among the most important factors. Therefore, we focused on
these important factors in the comparison of the results, and this comparison is shown in
Figure 10a–c.
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Figure 10. Comparison of the resulting values of roundness deviation with the CCHS and on the
Roundtest RA-120 device (Mitutoyo, Kanagawa, Japan).

From the results of the comparison of the measurement of the deviation of the round-
ness of the machined surface, it can be observed that the interval of the values is larger
for the measurement with the CCHS than with the RA-120, according to Figure 10a–c.
This result was observed for all input factors, such as cutting speed, cutting depth, and
workpiece attachment length. The results show that the measurement with CCHS is more
accurate and very fast, which was also reported by other authors [10]. The results inform us
more accurately about the machined surface, and we can quickly identify local spots where
the roundness deviation is outside the specified technical requirements. The quick identifi-
cation of the accuracy of the local spot is very important, as it reduces the time needed to
eliminate possible negative phenomena that can cause a change in the measured deviations.
Undesirable phenomena during turning, which can lead to incorrect information about the
control of the functional surfaces, mainly include defects on the machined surface (such as
particles of stuck chips, cracks, surfaces after friction, traces due to chips coming off, and
traces due to a worn tool, etc.), as shown in Figure 11a,b. In this way, we can effectively
propose corrections to the technological processes and prevent or avoid the occurrence of
defects.
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Figure 11. Machined surface after turning and negative phenomena: (a) turning surface, (b) traces
due to chips coming off, (80 m/min, feed: 0.1 mm, depth of cut: 0.05 mm, workpiece attachment
length: 5 mm, and tip radius: 0.4 mm).

4. Discussion

In this paper, the suitability of using a confocal chromatic sensor (CCHS) for evaluating
the quality of a machined surface, in particular the accuracy of the roundness deviation of
the cylindrical surface, was demonstrated. The results obtained were evaluated using the
gray relational analysis method (GRA) in conjunction with the Taguchi method, and the
significance of the factors was demonstrated using the ANOVA method. Part of the study
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also included a comparison of the data on the circular shape deviation measured with the
device Roundtest RA 120 (Mitutoyo, Kanagawa, Japan) and with the CCHS. The results
with the reference material C45 steel show that the factors of cutting speed, depth of cut
and workpiece attachment length influence the roundness deviation and that the factors
of cutting speed, feed, depth of cut, and workpiece attachment length, in conjunction
with each other, influence the wear on the back of the tool. The roundness deviation
is smaller with increasing cutting speed and feed and decreasing depth of cut. Larger
values of roundness deviation were found at lower cutting speeds and feeds and lower
values of depth of cut. The VBN parameter is mainly negatively affected by higher cutting
speeds, higher feeds, and greater depths of cut. In connection with the research on negative
phenomena, such as the wear of the cutting tool and its effect on the circularity deviation,
the GRA Taguchi method was applied, and the result of the optimization (according to
Tables 7 and 8) for the circularity deviation and tool wear was the determination of the
optimal input factors for C45 steel. The results show the validity of conducting tests of
various combinations of input factors, as well as the proposal of a combination of various
output parameters for the determination of theoretical models for practical needs.

5. Conclusions

The following conclusions can be drawn from the research analysis. The Taguchi
method for the L27 orthogonal array was used to optimize the following input factors:
cutting speed, denoted as factor A, feed as factor B, depth of cut as factor C, workpiece
attachment length as factor D, and tip radius as factor E. It was also used to investigate the
effect on the output factors (roundness deviation and cutting tool wear on the back surface)
separately. Figures 6 and 7 present the result of the input parameters for the individual
output factors. The ANOVA method was used to analyze the significance of the input
parameters, and the results are shown in Table 5 for roundness deviation and in Table 6
for the cutting tool wear on the back surface. The result of the optimization of the Taguchi
method for the L27 orthogonal array was the design of the input parameters A3B3C1D1E1
for the roundness deviation and A1B1C1D2E2 for the cutting tool wear on the back surface.
The effects of process input factors, such as cutting speed, feed, depth of cut, workpiece
attachment length, and tip radius, on the responses for roundness deviation DR and cutting
tool wear VBN, measured after turning the machined surface of C45 steel with CCHS,
were investigated using GRA, in conjunction with the Taguchi method, and the following
conclusions were drawn. From the main effect diagrams and S/N ratios, it can be observed
that the most influential factor for VBN is cutting speed, followed by the depth of cut, feed,
and workpiece attachment length. The most influential factor for DR is the cutting speed,
followed by the depth of cut and the workpiece attachment length. A reduction in DR and
VBN can be achieved with a shallower depth of cut (i.e., a smaller allowance or cross-section
of the removed layer) and a higher cutting speed. From the analysis of the ANOVA, it
is clear that the influence of process factors on DR is different. The influence of cutting
speed and depth of cut is 50.584% and 31.193% for VBN, respectively. The influence of
feed and attachment length of the workpiece is less than 8%. The percentage of influence
of the cutting speed, depth of cut and attachment length for DR is 45.684%, 15.288% and
13.669%, respectively. The influence of displacement and tip radius is less than 8%. For
VBN wear, the influence of tip radius is small and for roundness deviation, the influence
of feed is small. The optimum condition for achieving lower VBN and DR wear is based
on the results of the GRA in conjunction with the Taguchi method and is A1B1C1D1E1,
i.e., a cutting speed of 80 m/min, feed of 0.1 mm, depth of cut of 0.05 mm, workpiece
attachment length of 5 mm and tip radius of 0.4 mm. The difference in the optimization
process using the GRA method is that we examined two output factors together (between
which the relationship is incomprehensible and unclear) and the result of the optimization
is the degree of GRG, which expresses this relationship. The result of optimization using
the GRA method is the design of the input parameters as A1B1C1D1E1. A combination
of factors determines the damage mode on the back side of the cutting insert and then
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influences the roundness deviation and the turning process. Provided that the turning
conditions (setting of optimum conditions), the conditions of the technological system (i.e.,
the prescribed tolerances of deviations due to vibrations), and the measurement conditions
(i.e., the reference and optimum conditions for measurement) are maintained, it is possible
to use the CCHS for measuring qualitative parameters of the machined surface. Based on
the obtained results, our intention is to use these data to create a model for the application
of laser sensors in practice, and in further research, to use the comparison method for
measuring surface integrity parameters when machining other materials. The use of laser
sensors for product measurement directly in the work zone after machining is of great
importance and brings many advantages, such as product measurement directly on the
machine, high measurement speed and comprehensive information about the machined
surface. Examining the obtained results on the machined surface profile (defined by
different curves) and determining the conditions for achieving accuracy with determined
repeatability of the data are other areas of current research.
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