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Abstract: The antibiotic azithromycin (AZM) is one of the most persistent in the environment,
with potential to cause serious health and environmental problems. As some polluting discharges
containing this antibiotic can reach the soil, it is clearly relevant determining the ability of soils with
different characteristics to retain it. In this research, AZM adsorption and desorption were studied
for a variety of soils, using batch-type experiments. The results show that, at low doses of antibiotic
added (less than or equal to 50 umol L™1), the adsorption always reached 100%, while when higher
concentrations were added (between 200 and 600 pmol L~') the highest adsorption corresponded to
soils with higher pH values. Adsorption data were fitted to the Linear, Langmuir and Freundlich
models, with the latter showing the best fit, in view of the determination coefficient. No desorption
was detected, indicating that AZM is strongly adsorbed to the soils evaluated, suggesting that the
risks of environmental problems due to this contaminant are minimized for these edaphic media.
These results can be considered relevant with respect to risk assessment and possible programming
of measures aimed at controlling environmental contamination by emerging contaminants, especially

from the group of antibiotics, and in particular from AZM.
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1. Introduction

Azithromycin (AZM) is a semi-synthetic broad spectrum antibiotic belonging to the
subclass of second-generation macrolides [1]. It is used to treat bacterial infections in infants
and in people with weaker immune systems, among other diseases [2]. In the US, AZM is
among the first-line agents prescribed for infectious diseases [3]. In 30 European countries,
this group of antimicrobials together with beta-lactams, lincosamides, streptogramins and
tetracyclines accounted for 83.5% of total antibiotic sales in 2013 [4]. This antibiotic is on
the DUY75 list (among the 75% of the most consumed antibiotics) in 24 of 46 countries in
the European area [5]. In addition, during 2020 the use of AZM increased significantly in
Spain [6].

When AZM, as well as other antibiotics and other emerging contaminants, reach the
environment through polluting discharges, it is considered a cause of concern, especially
taking into account the high concentrations detected in aquatic environments [7-10]. In
fact, there are several routes for antibiotics to reach the environment as pollutants, but the
main one is through wastewater [11]. The cause is that, after their administration as drugs,
these antimicrobials are partially metabolized and released through urine and feces [12].
Specifically regarding AZM, 75% of it is excreted after being administered [13], reaching
wastewater treatment plants.

The efficacy of these treatment plants is dependent on factors such as the type of
treatment, or the nature and properties of the antibiotic to be treated. Specifically, AZM
belongs to a group of antibiotics of special relevance in view of its prevalence in the
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environment, due to its persistence and resistance to biological degradation [14]. The
effectiveness of different treatments applied in wastewater treatment plants to retain this
antibiotic was studied by Mirzaei et al. [15], finding that the efficiency of one of the
treatments ranged from 0% to 74.9%, while another treatment was not effective in removing
AZM. In addition, in a study carried out in twelve wastewater plants in China [16], it
was found that AZM was one of the antibiotics that appeared most frequently, and it was
affected by the lowest elimination rate efficiency, specifically 6.3%.

Antibiotics that cannot be eliminated after wastewater treatment persist in these waters
and/or end up in the sludge generated by this treatment, reaching agricultural soils through
the application of irrigation wastewaters and/or biosolids [17]. In a study by Rodriguez-
Mozaz et al. [18], the authors found the presence of AZM in a range of 45.2-597.5 ng L1,
with Portugal showing the highest concentrations of this antibiotic, while the minimum
values were obtained in Cyprus. In North America, Europe and elsewhere, the use of
biosolids as agricultural soil amendment is permitted [19], and specifically, in the EU-27,
53% of the total sludge produced is recycled in agriculture directly or after composting [20].
In some countries such as Denmark, France, the Walloon region of Belgium, Ireland, Spain
and the United Kingdom, more than half of the sludge production ends up on agricultural
land, while in other countries such as Finland, the Netherlands, Slovakia, Greece and
Slovenia, the amounts are less than 5% [21].

The persistence of antibiotics in these sludges can lead to contamination of the soil and
other environmental compartments, such as surface water and groundwater by leaching or
runoff processes, or even enter the food chain through vegetables grown in contaminated
soils [22]. Walters et al. [23] carried out a study on the persistence of antibiotics in mixtures
of biosolids with soils and found that AZM had a half-life of 408-3466 days. Of special
concern as regards health risks related to the presence of antibiotics in soil are the emergence
and spread of antibiotic resistance in pathogenic bacteria [24].

The characterization of the retention and release processes of these antibiotics in soils
amended with biosolids is essential to evaluate their transport and the risks associated
with their presence [25]. The behavior of these contaminants in the soil depends on edaphic
characteristics, such as organic carbon and clay contents, texture and pH [26] and on
antibiotics properties, such as hydrophobicity, solubility and molecular structure [27] and
their degrees of ionization [28]. The dissociation constant (pK,) is a parameter to predict
the ionization state of a molecule with respect to pH [29]. The antibiotic AZM has two
pka values, pka1 = 8.74 and pkgy = 9.45, causing that in most soils the molecule behaves as
cation [30], however, some authors indicate only one pk, value, being 7.25 [31] or 8.96 [32].
This antibiotic presents multi-basic amines, having pk, values that could allow suffering
protonation in a rather specific (physiological) pH range [33].

It is also interesting to determine and bear in mind the sensitivity of these molecules
to different environmental conditions that could affect their degradation [34].

Taking all of the above into account, the objective of this work is to determine AZM
adsorption and desorption on/from soils with different physical-chemical properties. This
will be key to evaluating the risk that the presence of this antibiotic may pose in the soil
environment, as well as, due to its eventual mobility, the risk of pollution affecting to other
different environmental compartments.

2. Materials and Methods
2.1. Soils

A total of 21 soils were selected for the study, all of them previously sampled at
different areas of Galicia (NW Spain). Six of the soils correspond to plots planted with
corn/maize (designated with codes from M1 to M6), while twelve soils were from vineyards
(from VOI1 to VO5 -Ourense province-, and from VP1 to VP7 -Pontevedra province), and
three were forest soils, of which one was pine forest (FP), another eucalyptus (FE) and
another oak (Q. robur) (FR). These soils were selected based on their pH values and organic
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matter contents. Table S1 (Supplementary Material) shows some characteristics of the areas
where the soil samples were collected.

Each soil sample was made up of 10 subsamples collected in a zig-zag pattern in
the surface layer (0—20 cm). Once collected, the samples were dried at 40 °C to constant
weight, and then sieved through a 2 mm diameter sieve and stored until analysis. The
soils used in this work were previously characterized by Cela-Dablanca et al. [35]. Table S2
(Supplementary Material) shows the main physical-chemical properties of the selected soils.

2.2. Chemical Reagents

The AZM used was supplied by Sigma-Aldrich (Barcelona, Spain). Figure S1 (Sup-
plementary Material) shows the molecular structure of AZM. Potassium phosphate (pu-
rity > 99.5%) and acetonitrile (purity > 99.9%) used for HPLC were supplied by Fisher
Scientific (Madrid, Spain) and CaCl, (95% purity) by Panreac (Barcelona, Spain). To
carry out HPLC determinations, all solutions were prepared with milliQ water (Millipore,
Madrid, Spain).

2.3. Sorption and Desorption Experiments

Batch-type experiments were carried out to study the adsorption/desorption of AZM
on/from the different soils. For this, 2 g of each sample were weighed, then adding 5 mL of a
solution with different concentrations of the antibiotic (2.5, 5, 10, 20, 30, 40, 50, 200, 400, and
600 umol L), also containing 0.005 M CaCl, as background electrolyte. The suspensions
were shaken in the dark for 48 h (time enough to reach equilibrium, according to previous
kinetic tests) using a rotary shaker. These suspensions were then centrifuged at 4000 rpm
for 15 min (G force: 1931.91). The resulting supernatants were filtered through 0.45 pm
nylon syringe filters. Finally, the antibiotic concentrations in the equilibrium solution
were determined by HPLC-UV with a LPG 3400 SD equipment (Thermo-Fisher, Waltham,
MA, USA). The quantification method, as well as further details regarding adsorption and
desorption experiments, are shown in Supplementary Material.

2.4. Data Treatment

The experimental data obtained in the adsorption/desorption tests were adjusted to the
Freundlich (Equation (1)), Langmuir (Equation (2)) and Linear (Equation (3)) models [36].

e = KFng @
_ Kp Ceq‘]m

‘ST Ky ?
Je = cheq 3)

where g, (expressed in pmol kg~!) is the amount of antibiotic retained onto the soil (cal-
culated as the difference between the concentration added and that remaining in the
equilibrium solution); K¢ (Ln umol " kg’l) is the Freundlich constant related to the ad-
sorption capacity; Cey (umol L™!) is the concentration of antibiotic present in the solution
at equilibrium; n (dimensionless) is a parameter of the Freundlich model associated with
the degree of heterogeneity of the adsorption; K; (L umol~1) is the Langmuir adsorption
constant; g, (umol kg 1) is the maximum adsorption capacity according to the Langmuir
model; and K, (L kg_l) is the partition coefficient in the linear model.

In addition, soil properties were correlated with the parameters obtained in the adjust-
ments to the adsorption models, determining the Pearson correlation coefficients.

The SPSS Statistics 21 software was used to carry out the adjustment of the data
derived from the adsorption experiments to the Langmuir, Freundlich and Linear models,
as well as any further statistical analysis.
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3. Results and Discussion
3.1. Adsorption

Figure 1 shows relations among equilibrium concentrations and AZM adsorption
for the different soils. The results indicate that the corn/maize soils have a maximum
adsorption value of 1256.77 umol kg~!, similar to that found in vineyard soils, which
specifically reach 1229.38 and 1318.21 umol kg ! in granite soils and in slate /schist soils,
respectively. Regarding forest soils, AZM adsorption is much lower than in crop soils,
with maximum value (228.84 umol kg ') found in the eucalyptus soil sample. Regarding
the minimum adsorption scores, for the highest AZM concentration added they were the
following: 754.04 umol kg ! in soils with corn cultivation, 690.96 pmol kg ! in granite
vineyard soils, 401.27 pmol kg ! in slate/schist vineyard soils, and 187.29 umol kg ! in
forest soils.
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Figure 1. AZM adsorption curves for the different soils studied. M: corn/maize soils, VO: vineyard

soils (Ourense Province), VP: vineyard soils (Pontevedra province), FP: forest soil (P. pinaster), FE:

forest soil (E. nitens), FR: forest soil (Q. robur), 1-7: different soil samples. Error bars indicate

standard deviation.
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Figure 2 shows that the percentage adsorption values were 100% for all the soils when
the antibiotic concentrations added were in the range of 2.5-50 umol L~!, while marked
differences are observed among the different soils when the highest AZM concentrations
(200-600 pmol L~1) were added. To note that, in general, in this last range of concentrations
added the percentage of adsorption decreases as the concentration of antibiotic added
increases, probably due to the saturation of the adsorption sites [37]. Considering specific
values, most maize soils show high adsorption percentages, ranging between 52.29% and
100%, very close to those obtained in granite vineyard soils, which range between 47.92%
and 100%. Adsorption on slate/schists vineyard soils varied over a broader range (from
26.12% to 100%). On the other hand, forest soils were those that presented the lowest
adsorption scores (between 13.25% and 37.27%).
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Figure 2. AZM adsorption percentages for the soils studied, as a function of the AZM concentration
added. M: corn/maize soils, VO: vineyard soils (Ourense Province), VP: vineyard soils (Pontevedra
province), FP: forest soil (P. pinaster), FE: forest soil (E. nitens), FR: forest soil (Q. robur), 1-7: different
soil samples. Error bars indicate standard deviation.
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When comparing adsorption data with soil characteristics (Table S2, Supplementary
Material) it is clear that the soils showing higher adsorption were those having higher
pH values (M5, M6, VP6 and VP7). In fact, adsorption data were correlated with soil
properties, indicating that AZM adsorption correlates positively and significantly with
soil pH (r = 0.562 and p < 0.01) (Table 1). To note that pH is one of the parameters having
greater influence on antibiotic-adsorbent interactions, since it simultaneously affects the
chemical speciation of the pollutants and adsorbent surfaces [38]. Both antibiotics and soil
components have functional groups that may suffer protonation/deprotonation, depending
on the pH of the solution. This makes it possible for there to have positive, negative or
neutral charges on the reactive surfaces, and therefore allows the formation of different
types of bonds [39]. The pK, of AZM is approximately between 8.6-9.5, so in an acid
medium this antibiotic is protonated [40]. In the pH range of the soils included in this
study (4.68-8.02), AZM has positively charged functional groups, thus favoring electrostatic
interactions with the negatively charged surfaces of minerals and organic matter [41,42].

Table 1. Correlations between AZM adsorption values and soil properties. OM: organic matter; Aloy:
Non-crystalline aluminum (extracted with ammonium oxalate).

Soil Property Correlation Coefficient (r) Significance Level (p)
pH 0.562 0.01
oM 0.530 0.05
Alox —0.43 0.05

Soil organic matter and the non-crystalline Fe and Al components have variable charge,
with negative charge increasing as the pH rises, favoring higher AZM adsorption to these
charged surfaces, as AZM is mainly present as a divalent cation. For this reason, forest soils,
despite the fact that they have a high content of both organic matter and non-crystalline
minerals, present low AZM adsorption when the antibiotic is added at concentrations
above 200 umol L. This is due to the fact that their pH is very low and there are few
negative charges. However, soils having lower organic matter and non-crystalline minerals
contents (M5, M6, VO4, VP6, VP7), show higher adsorption than forest soils, because they
have a pH >5.8 and higher presence of negative charges. This would explain the significant
(p < 0.05) and negative correlation obtained between the maximum adsorption of each soil
with the organic matter content (r = —0.53) and the total non-crystalline Al extracted with
ammonium oxalate (r = —0.43) (Table 1). Other authors also found no positive correlations
between non-crystalline Fe components and AZM adsorption [43]. However, in our study
we not found any correlations (positive or negative) with this parameter. The high AZM
adsorption obtained in the current study for various agricultural soils (Figures 1and 2) is
consistent with that found in other researches carried out with high concentrations of this
antibiotic in amended crop soils, which on the other hand showed that this drug does not
cause toxicity in crops or soil microorganisms [44,45].

The adsorption data were fitted to the Linear, Freundlich and Langmuir models, which
are the most commonly used to establish equilibrium relations between an adsorbent and
an adsorbate, or between the amount adsorbed to a solid phase and that which remains in
solution at a given temperature under equilibrium conditions [30].

Table 2 shows the adsorption parameters obtained from the fit of the experimental
data to the Freundlich, Langmuir and Linear adsorption models.

Taking into account the values of the coefficient of determination (Rz), it can be
considered that the model showing a better fit was the Freundlich equation, with R? greater
than 0.85 for the 33% soils, while the Langmuir model obtained a R? value > 0.85 for 23%
of the soils, and for the Linear model this porcentage decrease until 9%. However, in the
Freundlich and in the Langmuir model, very high error values were associated with the
estimation of the parameters in many cases, so they would not satisfactorily explain AZM
adsorption in these soils. To note that some authors indicate that AZM follows linear
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adsorption models in soils amended with biosolids [46], although the soils in the current
study have higher pH values.

Table 2. Fitting of the adsorption data to the Freundlich, Langmuir and Linear models. Kr expressed
inL" umoll—" kg_1 ; n is dimensionless; Ky, expressed in L pmol—1; gm expressed in umol kg_1 s Ky
expressed in L kg~!; -: error values too high for fitting.

Freundlich Langmuir Linear

Soil Kr Error n Error R? K Error Gm Error R? K, Error R?

M1 95986 50.522  0.387 0.103 0.89 0.028 0.012  901.315  100.849 0.94 3403 055 0.67
M2 341.346 94.081  0.161 0.057 0.95 0.097 0.037  852.124 60.454 0.96 3653 077 052
M3 354449 72119  0.159 0.042 0.97 0.167 0.058  837.409 49.227 0.97 4.026 072 0.62

M4 - - - - - - - - - - 3.787 0.9 0.44
M5 - - - - - - - 995.768  258.357 0.8 6309 142 049
M6 9.471 0 1.136 0.073 0.31 - - 1600 0 0.31 1697 5.08 031
VO1 - - - - - - - - - - 5456 143 0.39
VO2 314979 91.637 0.128 0.057 0.94 0.143 0.085 - - 0.94 2532 041 0.66
VO3 - - - - - - - - - - 5376 135 042
VO4 9.219 0 1.101 0.072 0.31 - - 1600 0 0.31 1446 436 0.31
VO5 8.87 0 1.066 0.073 0.27 - - 1554.29 0 0.27 1199 378 0.27
VP1 - - 0.829 0.365 0.79 - - - - - 1.08 013 0.79
VP2 203771 95973  0.178 0.089 0.93 0.041 0.026  608.522 66.977 0.93 1952 032 0.65
VP3 - - 0.552 0.182 0.91 - - - - - 2546 026 0.86
VP4 - - 0.872 0.418 0.77 - - - - - 2149 029 077
VP5 - - 1.326 0.213 0.98 - - - - - 8.274 0.4 0.97
VPé6 10.24 0 1.327 0.082 0.36 - - 1600 0 0.36 33.87 959 0.36
vp7 - - - - - - - 1099.382  190.379 0.84 8.581  2.56 0.3
FP - - - - - - - 209.883 80.292 0.44 0493 0.11 0.2
FR - - - - - - - 192.928 73.297 0.4 0466  0.11 0.1
FE - - - - - - - 242.635 87.674 0.54 0559 011 033

The values of the distribution coefficient of the linear model (K;), a parameter related
to the adsorption intensity, range between 3.403 and 16.973 L kg~ in maize soils, between
2532 and 14.463 L kg~ ! in vineyard granite soils, between 1.080 and 33.867 L kg ! in
slate/schists vineyards, and between 0.466 and 0.599 L kg’l in forest soils. The lower
values of forest soils indicate greater AZM mobility in them [47]. These values are higher
than those obtained in previous studies for sulfonamides [48], but lower than those obtained
for tetracyclines [49], indicating that interactions with these soils that give rise to AZM
adsorption are stronger than those of sulfonamides and weaker than those of tetracyclines.
As for the values of the Freundlich affinity coefficient (Kr), related to the soil adsorption
capacity, they indicate that corn and vineyard soils on granite are the ones with the highest
affinity for AZM adsorption.

Bearing in mind that the lower the value of 11, the more heterogeneous the adsorption
surface [50], and also that values of this parameter being between 1 and 10 indicate favorable
conditions for adsorption [51], the fact that some of the maize and vineyard soils in this
study are the ones with the lowest n values would indicate that they are the ones with a
more heterogeneous surface. As comparison, Bao et al. [52] obtained lower n values for
tetracycline in forest than in agricultural soils. Regarding the Langmuir model, the lowest
values of the g, parameter (the maximum Langmuir’s adsorption capacity) corresponded
to some of the forest soils, which would confirm that these soils are the ones with the lowest
adsorption capacity.

3.2. Desorption

The desorbed AZM concentrations were lower than the detection limit in all the soils
studied and for all the antibiotic concentrations added. These results indicate that AZM
is adsorbed very strongly onto these soils, causing that the retention process could be
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considered almost not reversible under the conditions of this study. These results are
consistent with previous research indicating strong AZM adsorption in both biosolids [42]
and biosolids-amended soils [30].

4. Conclusions

When AZM concentrations of up to 50 umol L~! are added to the soils used in this
research, its adsorption was 100% in all of them, while when the concentration added
was equal to or greater than 200 pmol L}, some differences were observed, with those
soils having higher pH showing higher adsorption. Adsorption data fitted better to the
Freundlich model, in the sense of presenting higher determination coefficients. Regarding
AZM desorption, its concentrations were always lower than the detection limit, indicating
that the antibiotic was adsorbed in a very strong manner to the soils studied. These
results can be considered relevant in terms of assessment of risks of pollution due to
AZM, both in soils and in other environmental compartments to which the antibiotic could
migrate. It should be noted that, although AZM is present in the environment at lower
concentrations than those found in this research, its consumption has clearly increased in
recent years, which makes the current work relevant as regard increasing the knowledge
on the factors that influence this fact, and facilitating the future development of solutions
to the problem. In addition, taking into account that desorption is practically absent from
the soils studied, it is suggested that these edaphic environments could help to prevent
AZM leaching/transportation to other environmental compartments such as water bodies,
especially in case that the adsorption capacity of these soils could be increased by means of
low-cost sorbents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr10122565/s1. Table S1: Basic details corresponding to the
different soils used in this work. M: maize (corn) soils; VO: vineyard soils (Ourense province); VP:
vineyard soils (Pontevedra province); F: forest soils; Table S2: Values corresponding to the basic
parameters determined in the various soils studied. M: maize (corn) soils; VO: vineyard soils (Ourense
province); VP: vineyard soils (Pontevedra province); F: forest soils. OC: organic carbon; OM: organic
matter; N: nitrogen; eCEC: effective cation exchange capacity; Alox and Feox: Al and Fe extracted
with ammonium oxalate; Alpir and Fepir: Al and Fe extracted with sodium pyrophosphate. Average
values (n = 3), with coefficients of variation always <5%; Table S3: AZM adsorption expressed in pmol
kg{1 (and in percentage between brackets), for the soils studied, as a function of the concentration of
antibiotic added. M: maize (corn) soils; VO: vineyard soils (Ourense province); VP: vineyard soils
(Pontevedra province); F: forest soils. Average values (n = 3), with coefficients of variation always
<5%; Figure S1: Molecular structure of AZM; Figure S2. Molecular structure of AZM with amine
groups selected; Figure S3: Selected chromatograms corresponding to AZM adsorption onto soils.
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