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Abstract: For locating the source of leaking gas in various engineering fields, several issues remain
in the immediate estimation of the location of diffusion sources from limited observation data,
because of the nonlinearity of turbulence. This study investigated the practical applicability of
diffusion source-location prediction using a convolutional neural network (CNN) from leaking gas
instantaneous distribution images captured by infrared cameras. We performed direct numerical
simulation of a turbulent flow past a cylinder to provide training and test images, which are scalar
concentration distribution fields integrated along the view direction, mimicking actual camera images.
We discussed the effects of the direction in which the leaking gas flows into the camera’s view and the
distance between the camera and the leaking gas on the accuracy of inference. A single learner created
by all images provided an inference accuracy exceeding 85%, regardless of the inflow direction or the
distance between the camera and the leaking gas within the trained range. This indicated that, with
sufficient training images, a high-inference accuracy can be achieved, regardless of the direction of
gas leakage or the distance between the camera and the leaking gas.

Keywords: turbulence; passive scalar; machine learning; convolutional neural network; estimating
diffusion source distance; leaking gas detection

1. Introduction

In petroleum and chemical plants, many measurement systems (mainly of the fixed-
point type) are installed on piping and equipment to constantly monitor plant operations.
Although the installation of numerous measurement systems enables closer data interval
measurement, the balance between safety and economy dictates that an optimised number
of instruments should be installed. In gas leak detectors, fixed-point sensors are installed
according to laws and regulations. An alarm at preset gas concentrations indicates the
measured values that are necessary for maintaining plant safety. In addition to the measured
data, a detailed analysis of flow states based on these data enables us to understand the
behavior of gas clouds in two or three dimensions, which is difficult using only fixed-point
observations. This technology is expected to be useful for safe operations. In addition,
as the diffusion of highly toxic substances is more dangerous when approaching a leak
source, it is important to identify the leak source location based on the information from
conventional gas leak detectors and analysis.

Against this background, to estimate the flow field using limited measurement data,
the adjoint approach (data assimilation) has recently been studied to predict the initial
turbulent flow conditions [1]. Wang et al. [2] stated that the data resolution in the stream-
wise or time direction should satisfy the criteria, based on the Taylor microscale in the
streamwise direction. Tsukahara et al. [3] evaluated a simple method based on the Taylor
diffusion theory for the turbulent transport of a passive scalar from a fixed-point source.
As the Taylor diffusion theory is essentially based on the statistical properties of turbulence,
their estimation from instantaneous information resulted in large errors. The time history
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of the source intensity, based on sensor measurements at different locations downstream
from the source by adopting an adjoint approach or data assimilation, was estimated by
Cerizza et al. [4]. They showed that the estimation performance remains an issue even with
multiple sensors when the scalar source is located near the wall. However, owing to the
strong nonlinearity of turbulence, several issues remain for the practical application of data
assimilation, including numerical stability and quick prediction.

In addition, in rapidly predicting the source of mass diffusion, sequential unsteady
three-dimensional simulations based on the convective diffusion equation and the Navier–
Stokes equation, together with their associated equations, are not practically applicable,
given the current computer performance and computational methods.

Therefore, we focused on the application of machine learning (deep artificial neural
networks) for the quick estimation of physical quantities based on observed information.
Fukami et al. [5] successfully reconstructed a three-dimensional eddy flow from limited
pressure data by using machine learning. Several studies have applied machine learning
to predict the concentration of air pollutants in urban areas [6], detect oil spills [7], and
estimate the hazardousness of leaking gases [8]. Tan et al. [9] developed a sound-source
localization model, which consisted of a convolutional neural network and a regression
model. Their experiments in simulated acoustic scenarios showed that the proposed model
effectively estimated the angles and distances even in multiple acoustic environments
under different spatial conditions. Zhou et al. [10] proposed a gas identification framework
based on a sensor array for high-temperature applications. They showed the enhanced
accuracy and robustness of such a framework, compared with a multilayer perceptron
and support vector machine. Shi et al. [11] proposed a hybrid probabilistic deep learning
model to conduct a probabilistic real-time simulation of natural gas hydrate dispersion
in a deep-water marine environment. Their advanced hybrid deep learning model with
variation inference and physical constraint forecast spatiotemporal concentration evolution
of natural gas, compared with the point-estimation deep learning model [12].

However, to the best of the authors’ knowledge, diffusion source estimation using
convolutional neural networks (CNNs) has not yet been examined. Focusing on gas
measurement techniques, the background-oriented schlieren method [13] and imaging
methods using infrared cameras [14,15] have been developed in recent years as imaging
techniques for gas leaks.

Our previous study [16] demonstrated the feasibility of applying machine learning,
specifically CNNs, to estimate the diffusion distance from a point source, based on two-
dimensional, instantaneous images of diffused-substance distributions downstream from
the source, which was photographed by the planar laser-induced fluorescence (PLIF)
method. It was found that for dye diffusion from a point source in typical parallel-plate
turbulence (i.e., turbulent channel flow), the distance from the downstream image to the
upstream was estimated with more than 90% accuracy. However, the flow as a test platform
was limited to a single condition in terms of the Reynolds and Schmidt numbers and to a
wall-bounded, fully developed turbulence. In actual engineering plants, there are various
turbulent flows due to the influence of wind condition and/or obstacles, such as piping
and equipment. The resulting turbulent intensity affects the degree of scalar turbulent
diffusion. Thus, the applicability of our method needs to be investigated with not only
a specific turbulent intensity but also under various turbulent-intensity conditions. The
Schmidt number is also a key parameter for the scalar diffusion in turbulent flow. The
Schmidt number of the previous experimental data [16] should be as high as O(100), which
would have resulted in scalar distributions with a strong effect of turbulent diffusion and
worked well for image recognition. At low Schmidt numbers, the molecular diffusion
should dissipate the effective information more rapidly. In such cases, potential features in
the downstream scalar distribution are lost, and the estimation of an upstream diffusion
source is expected to be difficult. Thus, studies at a lower Schmidt number for typical
gas are necessary to confirm the applicability of our method. In addition, the test images
of our previous study were based on the concentration distribution of a plane sliced
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from a certain cross-sectional area. In actual plants, the aforementioned infrared camera
image is a distribution image in which the concentration is integrated along the viewpoint
direction. In this image, it was assumed that small-scale concentration gradients and
micro-scale fluid dynamics are not clearly captured by the integration, and relatively large-
scale concentration distributions dominate the image. It is considered that the eliminated
information for micro-scale fluid dynamics, which includes the scalar diffusion information,
affects the inference accuracy. Therefore, the image simulating an infrared camera should
be evaluated for the application.

In this study, we investigated the practical applicability of instantaneous diffusion
source-location prediction using a CNN from leaking gas distribution images captured
by infrared cameras. The images were obtained from direct numerical simulation of a
turbulent flow with a typical Schmidt number of gas past a cylinder assuming gas leakage
from surface on a piping. To consider the application in an actual plant, this study further
investigated the effects of the direction in which the leaking gas flows into the camera’s
view and the distance between the camera and the leaking gas on the accuracy of inference.
To investigate the effect of the direction of gas inflow into the camera view and the distance
between the camera and the leaking gas on the accuracy of inference, we examined the effect
of geometric changes (rotation, zoom-in, and zoom-out) on the generalization performance
of a concentration distribution image in which the concentration is integrated along the
viewpoint direction.

2. Methodology

To create the training images, an incompressible direct numerical simulation (DNS)
was conducted using the commercial computational fluid dynamics simulation software
STAR-CCM+ (ver. 2021, developed by SIEMENS, Munich and Berlin, Germany). The
dimensionless governing equations are expressed as follows:

the continuity equation,
∂u∗i
∂x∗j

= 0;

the Navier–Stokes equation,

∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

= −∂p∗

∂x∗i
+

1
Re

∂2u∗i
∂x∗j ∂x∗j

;

and the advection–diffusion equation,

∂φ

∂t∗
+ u∗j

∂φ

∂x∗j
=

1
Sc·Re

∂2φ

∂x∗j ∂x∗j
+ Sφ;

where Re is the Reynolds number (defined later), t is the time, p is the pressure, and i is
the direction of three-dimensional Cartesian coordinate system: x1 = x, x2 = y, and x3 = z.
Einstein’s summation convention is used. Sφ is the passive scalar source term and φ is the
scalar value. The symbol * indicates normalisation by u, ρ, and d.

The computational domain is shown in Figure 1a. An image of the passive scalar
behavior is shown in Figure 1b. There was a background flow inlet at x = −80 with
Re = 1000 (made dimensionless with cylinder diameter d, background flow velocity U, and
kinematic viscosity ν). The cylinder was installed downstream at 80d from the background
flow inlet (x = 0), and a certain amount of a passive scalar was continuously emitted from
the source location, with an area of 0.01d2 at y, z = 0 on the cylinder surface. Training,
validation, and testing images were obtained from a fully developed flow field. The
same fluid and passive scalar flowed from the source at the volumetric background flow
rate of 7 × 10−3% and the Schmidt number of Sc = 0.9. The flow analysis meshes were
approximately 9 million hexahedral meshes, and the wall meshes were set as y+ = 1.2 in
average (min: 0.04; max: 4.42). The Strouhal number of the Karman vortices generated in
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the wake of the cylinder was confirmed to be approximately 0.2, and the computational
model was thus verified. It should be noted that the spatial-discretisation accuracy of a
typical DNS is of the fourth order, and STAR-CCM+ has second-order accuracy [17–19]. In
this case, although its accuracy was not fully verified as the DNS standards would require,
reasonable results were nevertheless obtained, thus making this simulation method suitable
for preparing image data for the objective of machine learning for relatively complicated
shapes, similar to this study. Figure 2a shows the mean profile of concentration at y = 0
in the x direction at several points (3d, 9d, 15d, 21d, 27d, 33d, and 39d from the source
location), and Figure 2b denotes the root-mean-square of concentration for the same points
as (a). It can be confirmed that the high-concentration passive scalar diffuses downstream,
and the maximum value is near the center. The concentration becomes uniform along the
x-direction, such that the concentration becomes completely uniform and no characteristic
image of concentration is obtained. In this study, the concentration profile still existed at
39d downstream.
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The image data used in this study were concentration distributions affected by the
turbulent motion of the transport medium. These image data were prepared by the
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aforementioned DNS. Assuming that the infrared camera images for detecting leaking
gas were realistic, the images were distribution images of Sintegral = ∑Nr

n=1 Sn·Vn, where
Nr is the number of radial divisions, Sn is a scalar value, and Vn is the volume. Thus, the
image is a distribution image, in which the concentration is integrated along the viewpoint
direction. Figure 3a shows a conceptual diagram. In this image, it can be assumed that
small-scale concentration gradients and microscale features of fluid dynamics are not
clearly captured by the integration, and relatively large-scale concentration distributions
dominate the image. As shown in Figure 3b, images were prepared for seven points with
viewing angles of 60◦ and 90◦, and viewpoints shifted downstream from the cylinder to 0d,
6.5d, 13d, 19.5d, 26d, 32.5d, and 39d. Figure 3c shows the comparison between an infrared
camera sample image [20] and CFD simulation image used in this study. Infrared camera
and simulation images show the small-scale concentration gradients, but micro-scale fluid
dynamics are not clearly captured. Figure 4 lists sample images for each class obtained
from these viewpoints.
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One image, as indicated in Figure 4a, has a resolution of 200 px × 200 px. Here, one
pixel is equivalent to approximately 0.05d. To check the generalization performance for
rotation, the original image was at 0◦, and the images were rotated clockwise to 90◦, 180◦,
and 270◦, respectively (Figure 4a). The time interval between image acquisitions was longer
than the turbulence time scale, so that a variety of scalar distributions were captured in
images acquired under the same conditions, as shown in Figure 4b. This provides a dataset
that is less prone to overlearning. The relative positions of the camera and the gas clouds
are shown in Figure 4c. To simulate the difference in the relative positions of the camera
and a gas cloud, images of different sizes were created using the original image. As shown
in Figure 4c, low-zoom-in (100 px × 100 px) and high-zoom-in (50 px × 50 px) images were
prepared for the original size (200 px × 200 px). Hereafter, these images are called “large
size,” “middle size,” and “small size,” respectively. Table 1 lists the learners selected for
this study.

Table 1. List of the created learners.

Training Image

Size Large Middle Small

Rotation 0◦ 90◦ 180◦ 270◦ 0◦ 90◦ 180◦ 270◦ 0◦ 90◦ 180◦ 270◦

Learner A X
Learner B X X
Learner C X X X X
Learner D X
Learner E X X X
Learner F X X X X X X X X X X X X

We prepared 1800 training images, 600 validation images, and 100 testing images for
each class to ensure that there was no duplication. A learner was created for each image to
infer an unknown testing image for the evaluation. As previous research confirmed that
Inception-ResNet-v2 [21] conducted inference with a high accuracy of at least 90% [16],
Inception-ResNet-v2 was used in this study to conduct a classification problem using a
CNN. The architecture of Inception-ResNet-v2 is presented in Appendix A. The input
sequence, activation function, and hyperparameters were set according to the values from
the existing literature, and each image was resized prior to entering the network to match
the input image sequence size to that of the literature. The input image was a 24-bit red–
green–blue (RGB) image, and the input array was resized to be (299 × 299 × 3), where
the first and second elements signified the vertical and horizontal pixels, respectively, and
the third element reflected the RGB configuration. Although not shown here, preliminary
research confirmed that a smaller size of the input array, compared to that of the original
image (200 × 200), leads to lower inference accuracy. The current array size to enter the
network allows for high inference accuracy, as reported later. Adam was used as the solver
of the gradient for the mini-batch in the network.

In this study, the accuracy rate Ac was used to evaluate the inference accuracy. Ac
was obtained by setting the total number of data in each class as Ndi (i = 1, 2, . . . , and
7) and the number of correct answers as Nci (i = 1, 2, . . . , and Nmax), and the accuracy
rate at each position was set as Aci = Nci/Ndi or the accuracy rate for all cases was set as
Ac_total = ∑7

i=1 Nci/ ∑7
i=1 Ndi.

3. Results

To check the generalization performance for the direction in which the leaking gas
flows into the camera’s view, four different rotated testing images were input to each
learner: a learner trained by only 0◦ images (Learner A), a learner trained by only 0◦ and
270◦ images (Learner B), and a learner trained by all rotated images, i.e., 0◦, 90◦, 180◦, and
270◦ (Learner C). Figure 5 shows the Ac_total for each learner. When the same image as
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the trained rotated image was used as the testing image for inference, it was confirmed
that Ac_total was 100%. The applicability of this method to the immediate prediction of
diffuse sources was confirmed by extracting the features of each location from the assumed
infrared camera image.
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In contrast to Learner C, Learners A and B showed inference accuracies of 25% to
60% when the untrained rotated images were input. As CNN is robust to the parallel
displacement of features by the pooling process, it was considered that the robustness
to rotation was not very strong, and the reduction in inference accuracy for untrained
rotated images was a reasonable result. It is known that turbulence has isotropic microscale
regions, where microscale features eliminate anisotropy in fluid dynamics. It is difficult to
extract rigorously the isotropic features because of the images in which the concentration is
integrated along the viewpoint direction, leading to lower inference accuracy for rotational
images. However, the learner that is trained with more variations in rotated images has
a higher inference accuracy. For example, a learner created with images rotated by 0◦

and 270◦ (Learner B) obtained higher inference accuracy for angles (between 180◦ and
90◦) than a learner trained only on images at 0◦ (Learner A). This result implies that a
data augmentation method, such as rotation, successfully improves the inference accuracy
for our approach without overfitting. When all rotation images (0◦, 90◦, 180◦, and 270◦)
were trained (Learner C), it was confirmed that Ac_total was 100% correct, regardless of the
rotation angle. This suggests that a deep architecture such as Inception-ResNet-v2 may
result in a high inference accuracy, independent of the direction of gas cloud inflow, if
training images from all angles are available.

To investigate the effect of the distance between the camera and diffused substances
on inference accuracy, the dependence of the inference accuracy on the image size was
determined, as shown in Figure 4c. Here, “middle size” images were used to create Learner
D, and Ac in each class was estimated by using the input image sizes “large size” and
“small size”, which were different from the training images. The confusion matrices are
shown in Figure 6a–c. For the middle-sized image, which had the same size as the training
image, the accuracy was higher than 95% at all locations (Figure 6b), while for the large-
sized image, the diffusion source distance tended to be underestimated upstream from
the correct solution (Figure 6a). For small-sized images, the diffusion source distance was
overestimated downstream from the correct solution (Figure 6c). This is consistent with the
fact that the smaller the size of the image, the greater the diffusion of the substance in the
longitudinal direction of the cylinder (z-direction) along the downstream direction; thus,
the greater the diffusion of the substance, the smaller the size of the image. Conversely, in
larger images, it was recognised that the substance was not diffused. From the results, the
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z-direction diffusion of the substances against the training image size was also inferred as
a feature.
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A single trainee (Learner E) was created with all three sizes as training images, and
the confusion matrix for each size is shown in Figure 6d–f. The inference accuracy was
approximately 80% for small images at 26d downstream, and more than 90% for the other
locations. This suggests that, similar to image rotation, if sufficient training images can be
prepared for the image size, a high inference accuracy can be obtained for the application
camera, regardless of the distance between the gas cloud and the camera. However,
the slight drop in inference accuracy downstream from 26d for the small size may have
occurred because the camera was significantly close (the gas cloud was magnified) and did
not adequately capture the scale that is characteristic of turbulent mixing [10]. To confirm
the characteristic scale in the Sintegral distribution, the autocorrelation coefficient, RBB, for
the x-direction of luminance relative to the image’s center, is shown in Figure 7.

RBB(r) =
B′(x)B′(x + r)

B′(x)B′(x)
,

where r is a spatial two-point distance vector and B(x) is the brightness fluctuation value
of each pixel calculated from the image data of the distribution of Sintegral . The overbar
denotes the ensemble average. The fluctuating component B

′
(x) denotes the brightness

value of each pixel minus the average brightness, which was obtained in advance from
all the image data points. As the autocorrelation coefficient is based on the image’s center
point, half of the image width pixels are at the edge of the image. Here, RBB ≈ 0.2 at 100 px
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downstream for the large size and RBB ≈ 0.4 at 50 px downstream for the middle size.
However, for small sizes downstream from more than 13d, RBB ≈ 0.7 at the edge of the
image (25 px), which is relatively higher. This means that a small-sized image captured
only a part of the fluid motion dynamics, but not all motions and, therefore, it is difficult to
make inferences from such limited information. Therefore, a large-sized image that can
capture the overall gas cloud is necessary to improve the accuracy of inference.
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To improve the generalizability in both rotation direction and distance between the
camera and leaking gas, a single trainee (Learner F) was created by training a total of
12 different images, where each image was a combination of four different rotation images
(0◦, 90◦, 180◦, and 270◦), and three different image sizes: small, middle, and large. The
Ac_total inferred for each of the 12 unknown images is shown in Figure 8. The accuracy rate
exceeded 85%, regardless of image rotation and size. This indicated that when sufficient
training images are prepared by data augmentation, the inference accuracy is high, regard-
less of the direction of the leaking gas flow into the camera’s field of view or the distance
from the camera.
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4. Conclusions

We investigated the applicability of CNNs for predicting the diffusion sources of
turbulent substances using leaking gas detection images from infrared cameras. The image
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data prepared by DNS are concentration distributions affected by the turbulent motion
of the transport medium. A concentration distribution image was used, in which the
concentration was integrated along the view direction, assuming an actual camera image.
In this image, the small-scale concentration gradients and small-scale features of fluid
dynamics are difficult to capture clearly because of the integration along the view direction,
and relatively large-scale concentration distributions dominate the image. The estimation
of the distance from the leakage source was performed as a classification problem, divided
into seven classes according to the distance downstream from the leakage source.

The effects of the direction in which the leaking gas flows into the camera’s view and
the distance between the camera and the leaking gas on the accuracy of the inference were
examined. The images were prepared for data augmentation by rotating and scaling the
original images. The inference accuracy for unknown images was examined.

For the rotated images, 100% accuracy was obtained for the same rotated image as the
training image. However, for rotated images that were different from the training image,
the inference accuracy was 25–60%, thereby resulting in poor generalization performance.

As CNN is robust to the parallel displacement of features by the pooling process,
it was considered that the robustness to rotation was not very strong, and the reduction
in inference accuracy for untrained rotated images was a reasonable result. It is known
that turbulence has isotropic microscale regions, where microscale features eliminate
anisotropy in fluid dynamics. It is difficult to extract rigorously the isotropic micro-scale
features because of the images in which the concentration is integrated along the viewpoint
direction, leading to lower inference accuracy for rotational images. However, when all
rotation images (0◦, 90◦, 180◦, and 270◦) were trained, it was confirmed that Ac_total was
100% correct regardless of the rotation angle.

To investigate the effect of the distance between the camera and diffused substances
on the inference accuracy, the inference accuracy for different image sizes was examined.
For images that were different in size from the training image, the inference accuracy was
lower, resulting in a poor generalization performance, similar to the image rotation case.
However, it was found that a high inference accuracy could be obtained if the data were
trained with all images, regardless of the distance between the gas cloud and the camera.

To improve the generalizability in both rotation direction and distance between the
camera and leaking gas, a single trainer was created by training all images, and the inference
accuracy exceeded 85%, regardless of the image rotation and size. This indicated that when
sufficient training images are prepared by data augmentation, the inference accuracy is
high, regardless of the direction of the leaking gas flow into the camera’s field of view or
the distance from the camera.

In the future, when the so-called digital twin is realized and training data can be
obtained from the digital simulation data of the plant, many leakage scenarios can be run
in such simulations, and a trainer can be created based on snapshot images obtained from
camera arrangements in an actual plant. This study showed that a data augmentation
method, such as rotation and image size, successfully improves the inference accuracy for
our approach without overfitting. This implies that by utilizing data augmentation for
image data, it may be possible to improve inference accuracy not only for a specific plant
situation. For further practical applications for example, disaster prevention, pollution
control, etc., the gas diffusivity caused by actual fluctuations in wind conditions should
be considered.
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Appendix A

Architecture for Inception-ResNet-v2 is shown in Figure A1a. Inception-ResNet-v2
implements 164 layers by adopting residual inception blocks (Figure A1b), which was
developed in ResNet (2015) [22] as the breakthrough. Three types of residual inception
blocks (A, B, and C) were introduced, and multiple layers were created by repeating A,
B, and C five, ten, and five times, respectively. With the residual inception block, efficient
learning was possible, even in deep networks, via the dimensionality reduction given by
inserting a 1 × 1 convolution layer, convolutions of different sizes in the branched network,
and the operation of passing input directly to the next layer by shortcutting the bias.
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