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Abstract: Dengue hemorrhagic fever (DHF) is one of the most widespread and deadly diseases in
several parts of Indonesia. An accurate forecast-based model is required to reduce the incidence rate
of this disease. Time-series methods such as autoregressive integrated moving average (ARIMA)
models are used in epidemiology as statistical tools to study and forecast DHF and other infectious
diseases. The present study attempted to forecast the monthly confirmed DHF cases via a time-series
approach. The ARIMA, seasonal ARIMA (SARIMA), and long short-term memory (LSTM) models
were compared to select the most accurate forecasting method for the deadly disease. The data were
obtained from the Surabaya Health Office covering January 2014 to December 2016. The data were
partitioned into the training and testing sets. The best forecasting model was selected based on
the lowest values of accuracy metrics such as the root mean square error (RMSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE). The findings demonstrated that the
SARIMA (2,1,1) (1,0,0) model was able to forecast the DHF outbreaks in Surabaya City compared to
the ARIMA (2,1,1) and LSTM models. We further forecasted the DHF cases for 12 month horizons
starting from January 2017 to December 2017 using the SARIMA (2,1,1) (1,0,0), ARIMA (2,1,1), and
LSTM models. The results revealed that the SARIMA (2,1,1) (1,0,0) model outperformed the ARIMA
(2,1,1) and LSTM models based on the goodness-of-fit measure. The results showed significant
seasonal outbreaks of DHF, particularly from March to September. The highest cases observed in
May suggested a significant seasonal correlation between DHF and air temperature. This research
is the first attempt to analyze the time-series model for DHF cases in Surabaya City and forecast
future outbreaks. The findings could help policymakers and public health specialists develop efficient
public health strategies to detect and control the disease, especially in the early phases of outbreaks.

Keywords: ARIMA model; SARIMA model; forecasting; dengue fever; time-series analysis

1. Introduction

Dengue is a mosquito-borne disease caused by the dengue virus, affecting most
tropical regions worldwide [1]. According to [2], dengue infection has been defined as
dengue without warning signs, dengue with warning signs, and severe dengue. There-
fore, dengue fever is more likely to be dengue without warning signs, however, a few
cases of dengue fever may present warning signs. DHF will include dengue with warn-
ing signs, especially plasma leakage and severe dengue. It is estimated that between
50 and 500 million people worldwide are infected with dengue each year [3,4]. Between
10,000 and 20,000 people die each year, and about two and a half billion people are in danger
of infection [5–7]. Recent figures have shown that 60% of the world’s population would be
susceptible to dengue disease by 2080 [8]. According to this estimation, 10,000 people have
died from dengue in more than 125 countries worldwide. Even though dengue deaths are 99%
preventable, case fatality rates significantly greater than 1% have been recorded globally [9].
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Dengue fever is one of the most severe and common health problems in Indonesia.
Since 1968, the number of cases and the transmission of dengue fever have been rising [10].
The growing population, rapid urbanization, and modern transportation have significantly
contributed to the spread of the disease. Indonesia is a tropical country with a high
population density, especially in urban areas, which could serve as a habitat for dengue
viruses. Dengue viruses are transmitted through the bite of the Aedes aegypti and Ae.
Albopictus causes a high fever, red spots on the skin, and pain in the muscles. There is no
vaccine available for preventing DHF. The current disease prevention plan is not effective
as the only available treatments for DHF patients are supportive symptomatic care such as
antipyretics, antiemetics, and IV fluids [11]. According to information from the Surabaya
Health Office, Surabaya City is a dengue-endemic area. In 2010, there were 3379 cases of
dengue, with an incidence rate (IR) of 116.03 per 100,000 people and a case fatality rate
(CFR) of 0.8%. In 2011, there were 1008 dengue cases with 36.22 IR and 0.3% CFR. In
2012, there were 1091 dengue cases with 38.60 IR and 0.55% CFR. In 2013, there were 2207
dengue cases with 78.35 IR and 0.86% CFR. The government has implemented a variety
of initiatives through a variety of programs to prevent the rise in incidence including
preventive and promotive efforts. Preventive efforts can be described by instilling clean
living habits (such as not littering, hoarding junks, and not allowing any containers to be
the breeding ground for larvae). This activity is known as mosquito nest eradication (MNE).
This approach, however, cannot appropriately recognize changes in prevalence [12].

A forecast-based early warning system is required to reduce the incidence rate of this
disease. There are several other forecasting models in use globally and even in Indonesia.
However, these models are not efficient enough to accommodate all the characteristics of the
DHF data. Hence, there is a dire need to develop more flexible forecasting models that can
provide better results than the existing ones. This will assist policymakers to make better
decisions. Time-series forecasting is a statistical method that has been used extensively
in numerous fields, particularly in the study of infectious disease epidemiology [13,14].
Several studies have used statistical models developed with the aim of forecasting dengue in
various settings [15–23]. Due to the time-varying behavior, seasonal pattern, secular trend,
and rapid fluctuations in time-series exhibited by DHF data, it is feasible to forecast the
incidence of DHF with time-series methods to enable an early response to the disease [24].
Autoregressive integrated moving average (ARIMA) is a popular time-series forecasting
technique in health science research [25]. It enables us to identify hidden behaviors in
the data. However, the ARIMA model is inappropriate for time-series data containing
seasonality [10]. The ARIMA model is also a tedious method requiring computational
skill, despite producing efficient results [7]. Consequently, the ARIMA method is modified
for seasonal data and is known as SARIMA. The SARIMA model combines seasonal and
non-seasonal autoregressive and moving average models [3,5]. The SARIMA is a method
for identifying the patterns from seasonal time-series data for forecasting future values
of the time-series and has received the most attention in recent years [26,27]. DHF data
exhibit both linear and nonlinear behavior [28]. However, the SARIMA model is only used
for modeling linear time-series data and cannot handle nonlinear behavior. A modern
method of deep learning algorithms has been developed for prediction applications. This
method can handle nonlinearity and complexity in time-series forecasting. LSTM is one
deep learning method that allows for the processing of longer temporal sequences.

Time-series analysis can be used to examine past trends of DHF outbreaks and improve
the present prevention and control measures. This approach is one of the most accurate
statistical models that can be developed using the data to predict future DHF epidemics.
The time-series forecasting approach has not previously been considered to forecast DHF
prevalence in Surabaya City. Hence, this research aimed to propose time-series models that
can forecast future values of DHF outbreaks in Surabaya City.
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2. Materials and Methods

In this section, we highlighted the study area where the data on DHF cases were
collected. Next, the concepts and main definitions of the ARIMA, SARIMA, and LSTM
models are introduced. In addition, the non-stationary models test is presented and
followed by the algorithm of the proposed method.

2.1. Study Area

Surabaya is the capital city of the Indonesian province of East Java and the second-
largest city in Indonesia after Jakarta, located at 7◦14′45′′ S, 112◦44′16′′ E, and covers an
area of 911/km2. It has a total population of 2,874,314 (2020) and a density of 7134/km2.
Surabaya is an endemic area for DHF cases with the highest incidence of dengue in the
country. Figure 1 shows a map of the study area.
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Figure 1. A map of the study area showing Surabaya City, East Java, Indonesia.

2.2. Data Collection

This study used monthly DHF cases from January 2014 to December 2016 obtained
from the Surabaya Health Office. The monthly dataset contains a total of 36 monthly
observations. We used the DHF cases covering 2014–2016 due to the availability of these
datasets recorded from the Surabaya Health Office at the time of this project and their
sufficient size for model testing to validate this research. The data were processed, coded,
and entered into R-studio version 4.2.1 and evaluated for normality. The R software was
created by Ross Ihaka and Robert Gentleman at the University of Auckland, New Zealand,
and is currently developed by the R Development Core Team. The data were partitioned
into training and testing sets. The training set was applied for the model development,
while the testing set was applied for the validation of the developed model. The best model
was selected and used for out-of-sample forecasting.

2.3. ARIMA Model

The ARIMA model is suitable for modeling stationary time-series data, although most
time-series data from real-life phenomena exhibit non-stationary patterns. However, the
model assumes that a non-stationary series could become stationary through a differencing
approach [29–31]. The generic version of the ARIMA model is given in Equation (1):

Yt = C + φ1Yt−1 + φ2Yt−2 + . . . + φpYt−p + θ1εt−1 + θ2εt−2 + . . . + θqεt−q + εt (1)
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This model is denoted by
ARIMA (p, d, q) (2)

where Yt is a dependent variable on t that might have been differenced once or more; p is
the order of the autoregressive part; d is the degree of differencing; q is the order of the
moving average part; εt is the error term; C is the constant number of the model.

2.4. SARIMA Model

SARIMA means the seasonal ARIMA. In time-series analysis, seasonality is a regular
pattern of variations that repeats over s periods, where s denotes the number of periods
until the pattern repeats. For instance, there is seasonality in the monthly data for which
high values tend to occur in some months, while low values tend to occur in other months.
The general form of the SARIMA model is given in Equation (3):

ΦP(Bs)ϕ(B)∇D
s ∇dxt = ΘQ(Bs)θ(B)wt (3)

This model can be denoted by

SARIMA (p, d, q)(P, D, Q)s (4)

where xt is the nonstationary time-series; wt is the usual Gaussian white noise process; and
s is the period of the time-series. The autoregressive and moving average components are
represented by polynomials ΦP and ΘQ of orders p and q. The seasonal autoregressive and
moving average components are ΦP(Bs) and ΘQ(Bs), where P and Q are their orders. ∇d

and ∇D
s are the ordinary and seasonal difference components. B is the backshift operator.

The expressions are shown as follows:

ϕ(B) = 1− ϕ1B− ϕ2B2 − . . .− ϕpBp

ΦP(Bs) = 1−Φ1Bs −Φ2B2s − . . .−ΦPBPs

θ(B) = 1 + θ1B + θ2B2 + . . . + θqBq

ΘQ(Bs) = 1 + Θ1Bs + Θ2B2s + ΘQBQs

∇d = (1− B)d

∇D
s = (1− Bs)D

Bkxt = xt−1

This study focused on the monthly confirmed DHF cases. If the seasonal period of the
series s = 12, then we can rewrite Equation (3) as:

ΦP

(
B12
)

ϕ(B)∇D
12∇dxt = ΘQ

(
B12
)

θ(B)wt (5)

2.5. LSTM Model

One of the advancements in neural networks that can learn long-term dependence
is known as LSTM. The architecture of an LSTM is composed of three gates: forget gates,
input gates, and output gates [32].

The forget gate Gt determines the specific information that is deleted from the memory
cells (cell state). Forget gates use a sigmoid activation function as their activation function,
where the result is between 0 and 1. If the output is 1, all the information will be retained.
If it is 0, all the information will be discarded. It is given by

Gt = σ
(
WgPt−1 + WgXt

)
(6)

where Wg is the forget gate weight; Pt−1 represents the previous state or state at time t− 1;
Xt denotes the input at time t; and σ denotes the sigmoid activation function.

The input gate Vt is responsible for determining the information that is added to the
cell state (st). This process is broken down into two distinct processes. In the first step of
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the process, the candidate value Ψ, which can be added to the cell states, is calculated. The
activation values Vt of the input and gates are determined in the second step in the process,
where Wv denotes the input gate weight and Ws denotes the cell state weight. The two
processes are, respectively, given by

Vt = σ(WvPt−1 + WvXt) (7)

ψ = tanh(WsPt−1 + WsXt) (8)

The new cell states St−1 are determined based on the outcomes of the previous pro-
cesses. The formula can be broken down as follows:

st = (Gt ∗ st−1 + vt ∗ ψ) (9)

After the memory cell has passed the input gate and the forget gate, the output gate mt
will generate output (nt). Two gates will be implemented at the output gates. The first gates
will use a sigmoid layer to determine which parts of the cell state will be output. Utilizing
the tanh activation function will result in the storage of a value within the memory cell.
Finally, the two gates are multiplied together to produce a value that will be distributed
(nt). Applying the following formula, we have

mt = σ(WmPt−1 + WmXt) (10)

nt = mt ∗ tanh(st) (11)

2.6. Non-Stationary Test

The statistical check was performed using the Augmented Dickey–Fuller (ADF) test
and the Kwiatkowski–Phillips-Perron Unit Root (KPSS) test to assess stationarity in both
the original dataset and the differenced time-series. The null hypothesis of both ADF and
KPSS assumed that the time-series was non-stationary. In the ADF and KPSS tests, if the
p-value was less than 5% or there was a 0.05 level of significance for a time-series, then we
rejected the null hypothesis and inferred that the series was assumed to be stationary.

The proposed model consists of five steps, as shown in Figure 2. The first step is data
processing, the second step is model identification, the third step is model development,
the fourth step is evaluating models, and the last step is forecasting.
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3. The Proposed Model

This section discusses the descriptive statistics of the DHF cases, model identification,
stationarity testing as well as training and testing models.

3.1. Descriptive Statistics

Table 1 displays the DHF reported cases from 2014 to 2016. The maximum (164)
number of cases was reported in April 2016, while the minimum (4) number of cases were
obtained each in November 2015 and 2016, respectively. Table 2 provides a descriptive
summary of the Surabaya City dengue time data. From Table 2, there was a rise in the
incidence in 2016. Table 2 also shows that the dataset was positively and negatively skewed,
indicating non-normality. Graphical inspection of the disease indicated time-varying
patterns in Figure 3. The series tended to rise and fall gradually, with no noticeable outliers.
Higher numbers showed a trend, especially in April, when the rate was at its maximum
in 2016. Regular fluctuations and the time-varying behavior of the trend revealed that the
ARIMA models were appropriate [7].
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Table 1. Average of DHF cases in Surabaya City from 2014 to 2016.

Month 2016 2015 2014 Total Mean

January 60 46 36 142 12
February 114 109 46 269 23

March 134 107 71 312 26
April 164 119 94 377 33
May 141 95 127 363 31
June 119 78 110 307 26
July 89 40 82 211 18

August 66 21 71 158 14
September 24 9 71 104 9

October 18 5 42 65 6
November 4 4 37 45 4
December 5 7 29 41 4

Grand Total 640 640 816 2394 200

Table 2. Descriptive statistics of the annual confirmed DHF cases in Surabaya from 2014 to 2016.

Years Min. Max. Q1 Q2 Q3 Mean S.D. Skewness Kurtosis

2016 4.00 164.00 22.50 77.50 122.75 78.17 56.71914 −0.00655 −1.6732
2015 4.00 119.00 8.50 43.00 98.00 53.33 45.52189 0.213275 −1.8190
2014 29.00 127.00 40.75 71.00 85.00 68.00 31.34848 0.4051189 −1.2137
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3.2. Model Identification

To identify a suitable ARIMA model for time-series forecasting, it must be free of trend
and seasonality. A time-series may be influenced by the trend and seasonality components
at distinct periods [33]. The time-series data must be stationary to develop a model that
is effective in forecasting future values. Several tests can be used to determine whether a
series is stationary [34]. These tests include the Augmented Dickey–Fuller unit root test
(ADF test), the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test, the partial correlation
function (PACF), and the autocorrelation function (ACF) [32]. A time-series is assumed to
be stationary in the ADF test if the p-value is less than a 5% level of significance. On the
other hand, if the time-series is non-stationary, then it is necessary to look at the time-series
graph and differentiate the data appropriately [35].
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The time-series had a seasonality effect, as shown by the repeating cycles in Figure 4.
The ACF and PACF of the original dataset are shown in Figure 5. Observing the ACF in
Figure 5, it is reasonable to see that the worst outbreaks occurred every six months, which
indicates a seasonal pattern. This suggests that the incidence of DHF in Surabaya City was
strongly affected by the seasons. Using a differencing approach, non-stationarity in the
time-series data can be corrected [36]. A similar seasonal effect was seen in the original
dataset after the first differencing, necessitating the second differencing. The ACF and
PACF plots of second-order differenced time-series are shown in Figure 6. It can be seen
that the ACF decreased to zero exponentially, indicating stationary behavior [37]. Therefore,
the SARIMA model could be used to fit the deseasonalized data [36].

Decomposing the time-series data assists in discovering various hidden behavior
within the time-series. In general, a time-series consists of four components: random,
seasonal, trend, and cyclic. Three of these components are indicated in Figure 7. It can
be observed that the seasonal component exhibited seasonal fluctuations in the dataset.
However, the trend and random components seemed to be stationary.
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3.3. Non-Stationary Test

Table 3 presents the results of the ADF for both the original and second-order differ-
enced datasets. It can be observed that the p-value for the original dataset was greater than
0.05, and we can say that we failed to reject the null hypothesis and concluded that the
original dataset was nonstationary. In contrast, the p-value for the second differenced time-
series was less than 0.05, so we can say that the time-series is stationary. Similarly, it can be
observed in Table 4 that the p-value obtained from the KPSS test for the second differenced
dataset was less than 0.05, which means that the time-series is stationary. Interestingly, the
time-series data under consideration is non-stationary in its original form and becomes
stationary when it is second differenced. The level of significance of the ADF and KPSS
tests for the second differenced series were 5% and 1%, respectively. Therefore, the data
can be suitable for time-series analysis.
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Table 3. Augmented Dickey–Fuller test for the original and second differenced of the Surabaya City
monthly DHF case time-series data.

Dataset Critical Value p-Value

Original −3.2892 0.08936
Second-order differencing −3.7968 0.03287

Table 4. Kwiatkowski–Phillips–Perron unit root test for the original and second differenced of the
Surabaya City monthly DHF case time-series data.

Dataset Critical Value p-Value

Original −12.042 0.3605
Second-order differencing −43.200 0.0100

3.4. Training and Test Models

It is important to determine that the models are adequate to forecast l future values
with high accuracy. Therefore, our first step is to split the sample into training and test
sets. We selected the data points from January 2014 to December 2015 for model training,
consisting of 24 data points. The data points from January 2016 to December 2016 were for
model testing.

Fitting the ARIMA model to the training data point will enable the model to learn
from the time-series dataset. We used an ARIMA diagnosis plot on the training dataset
to determine what lag to use in the model. We examined the properties of the data using
residuals plots of the ACF and PACF. The statistical criteria used to evaluate these models
are the root mean square error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE), which are expressed in Equations (12)–(14), respectively. More
details on these measures can be found in [38,39].

RMSE =

√√√√√ N
∑

i=1
(Yi − Fi)

2

N
(12)

MAE =

N
∑

i=1
|Yi − Fi|

N
(13)

MAPE =
1
N

N

∑
i=1

∣∣∣∣Yi − Fi
Yi

∣∣∣∣× 100% (14)

where Yi is the actual data; Fi is the forecasted values; and N is the total number of
observations in the data.

It can be observed from Figure 8 that the ACF geometrically declined, indicating a
signal of the error process. The PACF in the plot had two significant lags. As a result,
we developed an ARIMA (2,1,1) model, which means that we included two AR lags, one
difference, and one MA lag. Thus, ARIMA (2,1,1) passed this test. Next, we tested the
residuals of the model. The residuals plot in Figure 9 indicates that there was one lag at the
12 periods that was significant. This suggests that there is seasonality in the model.
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4. Results and Discussion

In this section, we discuss the results obtained from the model development. The
results of the ARIMA (2,1,1), SARIMA (2,1,1) (1,0,0), and LSTM models were compared.
The out-of-sample forecast for the twelve month horizons were obtained based on the three
competitive models.

After identifying and evaluating each parameter, the ARIMA (2,1,1), SARIMA (2,1,1)
(1,0,0), and LSTM models can be used to predict future values for both the training and
test datasets. We found that the SARIMA (2,1,1) (1,0,0) model outperformed the ARIMA
(2,1,1) and LSTM models in terms of the accuracy metrics reported in Tables 5 and 6,
respectively. Figures 10–12 depict the predicted dengue outbreaks based on the training
datasets. From these figures, we can note that the SERIMA (2,1,1) (1,0,0) model predicts the
dengue outbreak values more accurately than the ARIMA (2,1,1) and LSTM models.
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Table 5. Comparison of ARIMA (2,1,1), SARIMA (2,1,1) (1,0,0), and LSTM models on the training
dataset using accuracy metrics.

Model. RMSE MAE MAPE

ARIMA (2,1,1) 19.66198 15.10929 60.09833
SARIMA (2,1,1)

(1,0,0) 13.07250 10.27440 53.47647

LSTM 15.35412 12.54872 56.67457

Table 6. Comparison of the ARIMA (2,1,1), SARIMA (2,1,1) (1,0,0), and LSTM models on the
testingdataset using accuracy metrics.

Model RMSE MAE MAPE

ARIMA (2,1,1) 77.42119 71.02259 104.95288
SARIMA (2,1,1)

(1,0,0) 38.00313 33.54329 54.565850

LSTM 45.37822 41.45632 76.983421
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The results of the training set indicate that the SARIMA (2,1,1) (1,0,0) is more appro-
priate to perform the out-of-sample forecasting of dengue outbreaks in Surabaya City in
the next 12 months.

Out-of-Sample Forecasting

Finally, a 12-month out-of-sample forecasting of dengue cases was conducted from
January 2017 to December 2017. According to the findings, SARIMA (2,1,1) (1,0,0) per-
formed well in forecasting future outbreaks. Figure 13 shows that this model is stable
since all the data points lie within the unit root circle. The findings of the monthly future
values of the outbreaks from January 2017 to December 2017 are presented in Table 7.
From this table, the SARIMA (2,1,1) (1,0,0) model revealed the smallest value of the RMSE
metric in comparison to the ARIMA (2,1,1) and LSTM models. Thus, the SARIMA (2,1,1)
(1,0,0) model can be selected as the best forecasting model for the monthly DHF cases in
Surabaya City.

From Table 7, the forecasted results showed that the number of monthly dengue out-
breaks began to increase in March and continued through September, with the maximum
incidence occurring in May. This time-dynamic pattern suggested that there was a signifi-
cant seasonal effect in the forecast. It is noteworthy that the highest forecasted incidence in
May was like the outbreaks that occurred in 2014, which had the highest incidence in May.
Figure 14 confirms the findings of Table 7 to show the trend pattern in the number of DHF
cases across the forecasting horizons. Therefore, this forecast using the SARIMA (2,1,1)
(1,0,0) model provides the future values of dengue outbreaks and could be used to assist
authorities and public health professionals in designing effective public health measures to
prevent and control the disease, particularly during the early stages of the outbreaks.

Table 7. The out-of-sample forecasted value for monthly DHF outbreaks in Surabaya City from
January 2017 to December 2017 using ARIMA (2,1,1), SARIMA (2,1,1) (1,0,0), and LSTM models.

Model Month January February March April May June July August September October November December RMSE

ARIMA Forecast 6 9 26 18 37 33 25 16 13 8 6 4 31.21
SARIMA Forecast 47 46 63 71 91 80 67 59 61 44 43 38 11.35

LSTM Forecast 13 14 46 101 99 109 89 74 41 26 16 13 20.13
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DHF is a serious public health issue in Surabaya. This is mostly due to an unprece-
dented rise in the number of cases recorded each year. Consequently, only a few preven-
tative measures have been implemented to prevent outbreaks. Instead of responding in
advance to safeguard against disease, the health sector responds after it emerges. The
present research attempted to forecast the DHF incidence using an effective forecasting
method to assist the public and authorities in properly adjusting to outbreak and provide
enough preparations in creating public awareness. The objective was to forecast the DHF
outbreaks using a time-series model from 2014 to 2016 for twelve months covering January
2017 to December 2017 using time-series analysis consisting of monthly confirmed DHF
cases from 2014 to 2016. The series showed that the disease had a strong seasonal effect
with the maximum rates occurring between March and September. The forecast showed
peaks of incidence in May with the highest incidence forecasted to be 91 cases in May 2017.
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Similarly, researchers from Rajasthan designed a forecasting model for DHF using time-
series data from the past decade to forecast monthly dengue fever/dengue hemorrhagic
incidence for 2011. The SARIMA model was employed for statistical modeling. Dengue
fever/dengue hemorrhagic cases that were reported between January 2001 and December
2010 displayed a cyclical pattern with seasonal variation. The forecast for 2011 indicated
a seasonal peak in October with a predicted 546 cases [12]. Another study conducted in
Ribeirao Preto, Sao Paulo State, Brazil also applied SARIMA to fit in a model of monthly
reported cases of DHF from 2000 to 2008. The forecasted values for the incidence for
2009 were obtained and compared with the results of the original number of cases. The
researchers found that the SARIMA model effectively forecast the number of DHF cases and
is a reliable approach for disease control and prevention [40]. In a study recently conducted
in Jeddah, Saudi Arabia, the SARIMA model was used to forecast DHF mortality and
morbidity using time-series from 2006 to 2016 for the years 2017 to 2019. According to the
study, incidence rates increased from May to September, having the highest rate in 2012,
suggesting a strong seasonality [7].

The prevalence of DHF has been associated with climate variations. High temperatures
promote mosquito reproduction, while an increase in rainfall contributes to the availability
of vector habitat [41,42]. DHF epidemics often occur seasonally and tend to spike in the
summer and spring when the weather is hot and humid. However, the association between
incidence and climate remains poorly understood and typically varies among locations due
to local climate heterogeneity and virus–host interactions, which are all factors in the spread
of the disease. Globally, every year, 50–100 million humans are infected by a female Aedes
aegypti mosquito that has fed on infected human blood. In many tropical and subtropical
countries, dengue disease is seasonal. This is because rainfall provides breeding sites and
stimulates egg hatching, and temperature affects the mosquito’s survival, development,
and reproduction. Temperature enhances the mosquitoes’ capacity to spread the dengue
virus; higher temperatures boost transmission rates.

5. Conclusions

Dengue is the fastest-spreading vector-borne disease in the world. Monthly confirmed
DHF cases in Surabaya City were obtained from 2014 to 2016 for this study to forecast
disease outbreaks in the early phases and enable quick response. To develop effective
forecasting models, monthly DHF occurrence patterns were studied. The prevalence of
DHF in 2017 was then forecast using the best models. The results of DHF incidence revealed
a significant seasonal effect. These findings showed an increase in DHF cases from March
to September. Additionally, the dengue outbreaks appeared to spike more in May every
three years, in 2014 and 2017. The air temperature is suspected to be the significant factor
associated with DHF cases in Surabaya City.

6. Recommendations

To help with health care planning, public health officials want a means to forecast
when epidemics will occur. To develop such a system, they need to understand the factors
that lead to epidemics. The presence of mosquito larvae is the most important risk factor for
dengue fever in several parts of Surabaya City. Hence, it is necessary for the government
to exercise early efforts to eradicate and minimize DHF cases by conducting dengue
surveillance, which aims to monitor the trends. In future studies, we will incorporate
correlation studies of DHF cases with meteorological data, explore more current data for
DHF cases, and consider several models for dengue incidence forecasting.
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