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Abstract: The benzene alkylation reactor using the dry gas is the most significant equipment in
the ethylbenzene manufacturing process. In this paper, a two-dimensional homogeneous model is
developed for steady state simulation of the industrial multi-stage catalytic reactor for ethylbenzene.
The model validation on a practical benzene alkylation reactor shows the model is accurate and can
calculate the hot spot temperatures. The composition of dry gas from upstream process varies with the
operating conditions, which can cause unexpected hot spots in the reactor and catalyst deactivation.
Considering the uncertainty in dry gas composition, a robust multi-objective optimization framework
is proposed: first, the back-off in constraints is introduced to the multi-objective optimization problem
to hedge against the worst case; then the optimal operating point can be selected using the multi-
criteria decision-making. The reactor optimization objectives are maximizing selectivity of ethylene
and conversion of ethylbenzene, and the distribution ratios of dry gas are defined as decision variables.
Results of robust multi-objective optimization show the selectivity and conversion at the optimal
operating point are 90.88% (decreased by 0.24% compared to the practical condition) and 99.94%
(increased by 0.72%). Importantly, the proportion of violations of the hot spot constraints decreases
from 13.7% of the traditional method to 3.8% by applying the proposed robust multi-objective
optimization method.

Keywords: mathematical modeling; robust multi-objective optimization; multistage reactor;
ethylbenzene; dry gas

1. Introduction

Ethylbenzene (EB) is an important chemical material to produce textile fabric, plastics,
detergents, etc. Meanwhile, it is also an intermediate in the production of styrene [1].
The output and consumption of global ethylbenzene continue to increase with the improve-
ment of industrial production [2]. Almost all ethylbenzene is converted from the alkylation
of benzene and ethylene.

In order to maximize the use of refinery resources, ethylene in dry gas from fluid
catalytic cracking (FCC) process has been one of the main raw materials of ethylbenzene.
The FCC process produces a large amount of dry gas, which contains 10–30% ethylene [3,4].
The recovery of ethylene in dry gas is of great significance to resource utilization and
environmental protection. Some studies were carried out on the process development
and optimization of dry gas to ethylbenzene. Chen et al. [5] has developed five genera-
tions process technologies of dry gas to ethylbenzene. With each generation of technology
update, different processes or technical combinations are adopted to improve the life of
the catalyst and the selectivity of ethylbenzene. Zhu et al. [6] designed a new process
for producing ethylbenzene from FCC dry gas by combining gas phase alkylation and
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liquid phase transalkylation. Through optimizing the operating conditions of the reactor,
the ethylbenzene selectivity can be increased from about 90% to more than 99%. Liu et al. [7]
used dilute ethylene, benzene, and transalkylation streams as reactor feeds to improve
ethylbenzene selectivity. In the reactor, liquid benzene and gaseous benzene can coexist,
so that the alkylation process and the transalkylation process can occur simultaneously.
Qian et al. [8] have studied catalyst deactivation in dry gas to ethylbenzene reactor. A cata-
lyst deactivation model was established based on the on-site data and those from laboratory
analysis. The real-time online dynamic simulation of the reactor is carried out, which can
provide timely and reasonable guidance for the equipment operators.

However, the reactor models in the process optimization have been simplified, which
may lead to deviations in temperature and composition. Therefore, it is necessary to study
the model and optimal operation of the alkylation reactor, which is the critical equipment in
the ethylbenzene manufacturing process [9]. Hamid et al. [10] developed a one-dimensional
alkylation and transalkylation reactor model for the factory, which provided a basis for
subsequent optimization. Ivashkina et al. [11] established a mathematical model for the
liquid-phase benzene alkylation batch reactor to study the influence of heavy hydrocarbon
concentration on catalyst activity. Additionally, through optimization, the impact of catalyst
deactivation can be offset by adjusting operating conditions.

All aforementioned studies on the reactor consider the case of pure ethylene as a raw
material. However, the open literature lacks studies on dry gas based ethylbenzene reactors.
The dry gas comes from the catalytic cracking unit, which contains many impurities.
Additionally, the composition of the dry gas can vary depending on the cracking process.
Uncertainty in dry gas composition can lead to unexpected hot spots, which can result
in catalyst deactivation. Hot spot constraint violations can be avoided by optimizing the
operating conditions. To address hot spot constraint violations under feed uncertainty,
a back-off to the hot spot constraints has been introduced and validated [12,13]. In order
to address the above problems, in this work, a two-dimensional alkylation multistage
reactor model is developed to simulate the process of benzene with dry gas to ethylbenzene.
A two-dimensional reactor model can more accurately describe the hotspots within the
reactor [14]. The model consists of energy and mass balances considering the radial transfer
and hyperbolic reaction kinetics. In addition, the Soave–Redlich–Kwong equation of
state (SRK-EoS) is used to calculate the physical properties of the mixture to improve the
model accuracy. Considering the hot spot constraint violations, a robust multi-objective
optimization framework is proposed: the strategy of introducing back-off [15] in constraints
is combined with the multi-objective optimization algorithm to hedge against the worst
case, and then multi-criteria decision-making (MCDM) [16] is introduced to select the
optimal operating point. The reactor optimization objectives considered are maximizing
selectivity of ethylene and conversion of ethylbenzene. Additionally, the distribution ratios
of dry gas are defined as decision variables, which are important operating conditions for
the performance of the reactor.

The key contributions of this paper are listed below:

• A two-dimensional homogeneous alkylation reactor model is established to describe
a dry gas-based ethylbenzene production process. This model can obtain the tempera-
ture distribution in the reactor, and then observe the hot spots.

• A robust multi-objective optimization framework is proposed by combining back-off
in constraints, multi-objective optimization algorithm and multi-criteria decision-
making. The proposed framework can effectively handle the hotspot temperature
violation caused by uncertain dry gas composition.

• The effectiveness of the proposed robust multi-objective optimization framework is
verified through an industrial case study.

The rest of the paper is organized as follows. Section 2 presents the process description
and detailed information on the process simulation. In Section 3, model equations, as well
as physical properties, parameter calculation methods are introduced. Section 4 illustrates
the optimization problem and the robust multi-objective optimization method. The reactor
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model validation and robust multi-objective optimization results are provided in Section 5.
Finally, the conclusions are drawn in Section 6.

2. Industrial Process

The reactor studied is based on a practical alkylation reactor consisting of a five-stage
adiabatic fixed bed. The first four stages are used as the bed of the main reaction zone.
The fifth stage is used to ensure the complete conversion of ethylene at the outlet of the
reactor. Dry gas enters the reactor from the inlet of the first four stages according to
certain ratios. Therefore, the high concentrations of ethylene and ethylbenzene will not
coexist, which will avoid the progress of side reactions. The alkylation reaction is a strongly
exothermic reaction. However, a high temperature will cause the catalyst to deactivate [17].
The staged entry of dry gas can keep the temperature in the reactor within a certain range.
Figure 1 shows a simple diagram of the alkylation reactor of EB production.

Dry gas
Benzene

Ethylbenzene

Figure 1. The alkylation reactor of EB production.

The gas-phase alkylation of benzene with ethylene for ethylbenzene manufacture is
studied in this paper: the main reaction of benzene (BZ) with ethylene (ET) alkylation
into ethylbenzene (EB), and the side reactions producing diethylbenzene (DEB). The other
side effects are much smaller and, therefore, neglected in this study [18]. Two reactions in
Equations (1) and (2) are considered, which describe the overall process.



Processes 2022, 10, 2271 4 of 15

C2H4 + C6H6 → C8H10 (1)

C2H4 + C8H10 → C10H14 (2)

The reaction rates [10] are presented in Equations (3) and (4). Kinetic parameters are
obtained by fitting real production data. For non-linear parameter optimization, a pattern
search method has been applied. The kinetic coefficients follow the Arrhenius equation
with parameters presented in Table 1.

r1 =
k1 · CET · CBZ
1 + kEB · CEB

(3)

r2 = k2 · CET · CEB (4)

rj is reaction rate for the reaction j in mol ·m−3 · s−1, R is universal gas constant in
J ·mol−1 ·K−1, T is the absolute temperature in K. CET , CBZ and CEB represent, respectively,
ethylene, benzene, and ethylbenzene concentrations in mol ·m−3.

Table 1. Kinetic parameters for reactions.

Coefficient Expression

k1 207.8 exp(−61,206/R/T)
k2 33.5 exp(−51,449/R/T)

kEB 23 exp(−438,512/R/T)

3. Mathematical Model

The model of the alkylation reactor is composed of three parts, namely physical prop-
erty calculation, transfer parameters and balance equations. The physical behavior of the
mixture includes the residual enthalpy, the residual heat capacity, and the viscosity, which
is obtained by the SRK-EoS. The transfer parameters used to describe the radial transfer
process are the radial effective thermal conductivity and the effective radial diffusion coeffi-
cient. Balance equations are composed of material balance equation and energy balance
equation to describe the energy and material change process inside the reactor. In addition
to the equations of the reactor, there are also the material balance equations to calculate
mixing process between the reactor stages.

3.1. Mixture Behavior with SRK-EoS

The dry gas contains many impurities, and the composition is also uncertain. There-
fore, ideal gas behavior is not accurate to describe the thermodynamic properties of the
mixture. The SRK-EoS, mainly used in gas and refining processes, is appropriate to describe
its thermodynamic properties, which was proposed by Soave to improve the RK-EoS [19].
The equation is expressed as follows.

p =
RT

ν− b
− a

ν(ν + b)
(5)

Meanwhile, the SRK-EoS can also be expressed in the form of a compression factor.

z3 − z2 + z
(

A− B− B2
)
− AB = 0 (6)

where A and B are given by Equations (7) and (8).

A = ap/(R2T2) (7)

B = bp/(RT) (8)
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Residual variables are calculated to modify the behavior of the mixture by adding
residual items in the model. The residual variables used are residual enthalpy and residual
heat capacity [20]. The residual enthalpy of mixture, hR, can be calculated as:

hR

RT
= (z− 1)− ln

(
1 +

B
z

)(
A
B
+

√
a

RTb ∑
i

yiκi
√

aciTri

)
(9)

where yi is the mole fraction of component i. ac. is the same as defined by Soave. The corre-
lation between κ and the eccentricity factor ω is given by Equation (10).

κ = 0.480 + 1.574ω− 0.1715ω2 (10)

The residual heat capacity of mixture, CpR, can be calculated as:

CpR = R(z− 1) + RTz′T +
1

bT

[
a + a1/2 ∑

i
yiκi

√
aciTri

]
·
[

1
2
√

a
ln
(

1 +
B
z

)
∑

i
yiκi

√
aciTri +

B(z + Tz′T)
z(z + B)

]
(11)

where z′T is calculated as:

z′T =
B
T
· (Ta′T − 2a)(1− z/B)A/a− z− 2Bz− A

3z2 − 2z + A− B− B2 (12)

where Ta′T is given by Equation (13),

Ta′T = −a1/2 ∑
i

xiκi
√

aciTri (13)

3.2. Transfer Parameter

The radial effective thermal conductivity of fixed reactor is affected by the convection
heat exchange of particle and fluid, the heat conduction of particle and fluid and the
heat exchanged by radiation. Thermal conductivity of the mixture can be calculated by
Equation (14) [21]:

λ f =
n

∑
i=1

λi

1 +
n
∑

j=1
j 6=i

(Mj
Mi

) 1
3 yj

yi

(14)

Here, λi is thermal conductivity of component i in w ·m−1 ·K−1. Mi is molar mass of
component i in g ·mol−1.

The effective thermal conductivity can be calculated by Equation (15) [22]:

λer = λ f × 10

(
0.785−0.057×lg λs

λ f

)
×lg λs

λ f (15)

where λs is thermal conductivity of catalyst in W ·m−1 ·K−1.
The molecular diffusion coefficient for each component i in the multicomponent gas

mixture can be obtained by Equation (16) [23]:

Dim =
1− yi

∑
j 6=i

yj
Dij

(16)

Here, Dij is the binary molecular diffusion coefficient for component i in component j.
The binary molecular diffusion coefficient Dij can be calculated using Equation (17) [24]:
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Dij =
0.001T1.75

P
[
(∑ υ)1/3

i + (∑ υ)1/3
j

]2

(
1

Mi
+

1
Mj

) 1
2

(17)

where υ is the atomic diffusion volumes in m3 ·mol−1. The effective radial diffusion
coefficient of the component i is calculated as [14]:

Dr,i = (1−
√

1− ε)Dim +
uzdp

8
(18)

Here, ε is the bed void fraction.

3.3. Balances for the Reactor

The continuity equations and energy balance equations are defined considering the
system operating in steady-state. The continuity equations for each component follow the
basic format presented by Equation (19).

− u
∂Ci
∂l

+ Dr,i

(
∂2Ci
∂r2 +

1
r

∂Ci
∂r

)
= ∑

j
−rij (19)

Here, u is the fluid velocity only in the flow direction in m · s−1. Ci is concentration
of component i. l is the length of the reactor in m. Dr,i is the effective radial diffusion
coefficient of component i in m2 · s−1. r is the radius of the reactor in m. rij is the rate of
generation of component i in reaction j in mol ·m−3 · s−1.

There is a velocity gradient in the reactor. The relationship between the velocity
gradient and the radius is as follow [25].

u = umax ·
(

1− r
Rt

) 1
9

(20)

where umax is the maximum flow rate at the center of the reactor. Rt is the reactor radius.
Due to the addition of the residual heat capacity, the energy balance equation will add

a term F · CpR. The energy balance is expressed by Equation (21).(
−∑

i
Fi · Cpi + F · CpR

)
∂T

At∂l
+ λer

(
∂2T
∂r2 +

1
r

∂T
∂r

)
= ∑

i,j

(
−rij

)(
−∆Hj

)
(21)

where Fi is the molar flow rate of component i in mol · s−1. Cpi is ideal isobaric heat
capacity of component i in J ·mol−1 ·K−1. T is the reactor temperature in K. At is reactor
cross-sectional area in m2. λer is effective diffusion coefficient of the reactor in W ·m−1 ·K−1.
∆Hj is reaction heat of reaction j in J ·mol−1.

The boundary conditions are rewritten as follows:

l = 0 : Ci = Ci0, T = T0 (22)

r = 0 :
∂Ci
∂r

= 0,
∂T
∂r

= 0 (23)

r =
dt

2
:

∂Ci
∂r

= 0,
∂T
∂r

= 0 (24)

Here, dt is reactor diameter in m.
Between the stages, the cold shock heat exchange method is used by directly mixing

the dry gas with the export materials of the previous stage. The material balance formula is
as follows.

Fi,pre + YkFi,ini = Fi,cur (25)
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Fi,pre, Fi,ini, Fi,cur is the molar flow rate, respectively, of previous stage, dry gas raw
material and current stage of component i, Yk is the dry gas ratio of stage k.

Because the temperature of the dry gas feed is lower than the outlet temperature of
the stage, the energy balance between stages expressed by Equation (26) is used to find the
inlet temperature of the next stage.

hR
ini(Tini) + ∑

i

∫ Tpre

Tini

Cpi · Fi,predT + hR
pre
(
Tpre

)
= ∑

i

∫ Tcur

Tini

Cpi · Fi,curdT + hR
cur(Tcur) (26)

3.4. Numerical Methods

The alkylation reactor model is composed of Equations (19)–(26), which are a set
of coupled, linear partial differential and algebraic equations. The partial differential
equations (PDEs) are solved with the method of lines. The radial coordinate is discretized
by applying orthogonal collocation. Ordinary differential equations are solved using
Runge–Kutta method (ode45) in MATLAB R2020a.

4. Robust Multi-Objective Optimization

The source of dry gas is the upstream catalytic cracking unit. The composition of the
dry gas is affected by the catalytic cracking process. Uncertainty in dry gas composition
can result in a violation of hot spot temperatures. This causes catalyst deactivation and
exacerbates side reactions. A robust multi-objective optimization framework is proposed
by introducing the back-off in the constraints of general multi-objective optimization
problems. Since the multi-objective algorithm will generate a series of non-dominated
solutions, which is not conducive to the iteration of constrained back-off. Multi-criteria
decision-making can select a non-dominated solution from the Pareto front for iteration of
constrained back-off. This section will introduce the optimization problem, multi-criteria
decision-making, and the strategy of constrained back-off in this study.

4.1. Multi-Objective Optimization Problem

This study considers the operating optimization of an existing reactor. The optimiza-
tion process is to find the best dry gas feed ratios. The size of the reactor, the total amount of
feed, and the composition of the feed are all taken under standard conditions (the average
value of the plant data). The goals of the multi-objective optimization are to maximize
ethylene conversion (XET), and ethylbenzene selectivity (SEB):

max SEB =
FEB,out

FET,in−FET,out
(27)

max XET =
FET,in−FET,out

FET,in
(28)

In Equations (27) and (28), Fi,in is the outlet molar flow rate of component i in mol · s−1

and Fi,out is the inlet molar flow rate of component i in mol · s−1.
The decision variables are defined as the distribution ratios of dry gas in the first four

stages. The distribution ratios of dry gas are related to the temperature inside the reactor
and affect the performance of the reaction, which are a very important operating condition.
The decision variable constraints are:

0 < Yk ≤ 1 (29)

∑
k=1

Yk = 1 (30)

Furthermore, this optimization also subject to the hot spot constraints. Because exces-
sive temperature will aggravate side reaction and reduce the selectivity of ethylbenzene.
In addition, the deactivation of the catalyst will be accelerated at high temperature, and the
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life of the catalyst will be reduced. Frequent catalyst replacement increases production
costs and is undesirable. There are the constraints for the temperature of each stage k:

Thotspot,k ≤ 658K (31)

The multi-objective optimization problem of the benzene alkylation reactor with dry
gas can be stated as:

max
Yk

SEB, XET

s.t.


Mass and Energy Constraints Equations (19)–(26)

Variables range constraints Equations (29) and (30)
Temerature constrains of each stage Equation (31)

(32)

The non-dominated sorting genetic algorithm II (NSGA-II is used to solve the multi-
objective optimization problem. The algorithm NSGA-II is a classic multi-objective opti-
mization algorithm, which is often used for multi-objective optimization of reactor mod-
els [26,27].

4.2. Multi-Criteria Decision-Making

Multi-objective optimization will obtain a series of non-dominated solutions, and some
studies are devoted to select an optimal solution from them. Here multi-criteria decision-
making will be introduced and the specific steps are as follows [28]. The objective matrix is
obtained by the optimization method. The target matrix contains m rows and n columns,
representing m solutions and n targets, respectively. Common symbols used are fij, which
refers to the value of objective j at the solution i in the objective matrix; Fij is the value of fij
after normalization and wj is the weightage for the objective j.

Step 1. Normalization Methods. The normalization method adopts the vector
normalization.

Fij =
fij√
m
∑

k=1
f2
kj

(33)

Step 2. Weighting Methods. The weighting method adopts the entropy method. First,
the entropy value of each objective will be calculated, and then the weight of each objective
will be determined.

Ej = −
1

ln(m)

m

∑
i=1

(Fij ln Fij) (34)

wj =
1− Ej

n
∑

j=1
(1− Ej)

(35)

Step 3. Selection Methods. The selection method is the multi-attributive border ap-
proximation area comparison. First, the weighted normalization matrix will be constructed,
and then the approximate boundary region of each objective will be determined. Finally,
the evaluation score of each non-dominated solution will be calculated.

vij = (1 + Fij)×wj (36)

bj =

(
m

∏
i=1

vij

)1/m

(37)

Qi =
n

∑
j=1

(vij − bj) (38)
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Finally, non-dominated solution having the largest Qi is recommended as the opti-
mal solution.

4.3. Robust Optimization Method

A robust optimization method by introducing a back-off to the hot spot constraints has
been applied and verified in reactor optimization under uncertainty [29]. Hence, the hot
spot constraints Equation (39) will be modified to:

Thotspot,k(θ) + bg ≤ 658K (39)

where θ is the vector of nθ uncertain parameters, b is a back-off for the hot spot constraints.
The back-off is given according to Srinivasan et al. [30] as:

bg = η

√
σ
[

Thotspot,k(θ)
]

(40)

where η is a positive constant and σ
[

Thotspot,k(θ)
]

is the variance of the hot spot constraints
of stage k. Scalar η can be minorly adjusted for different robustness. The reactor is simulated
for each sample of uncertain parameters to obtain the hot spot temperature. The expectation
and variance of the hot spot constraints can be approximately obtained as:

µ
[

Thotspot,k(θ)
]
≈ 1

N

N

∑
i=1

Thotspot,k(θi) (41)

σ
[

Thotspot,k(θ)
]
≈ 1

N − 1

N

∑
i=1

(
Thotspot,k(θi)− µ

[
Thotspot,k(θi)

])2
(42)

where N is the number of samples.
The proposed robust multi-objective optimization framework is shown in Figure 2.

First the value of the scalar η is set. Multi-objective optimization of the model under
standard conditions can obtain the Pareto front. Multi-criteria decision making is used to
select a solution in the Pareto front and the solution is the deterministic multi-objective
optimization result. Through the Equations (40)–(42), the back-off of the temperature
constraints are calculated. Then, the multi-objective optimization problem with constraints
including the back-off is repeated until a suitable back-off value is obtained. Finally, samples
of uncertain dry gas composition over a one-year period collected from an actual plant are
used to calculate the proportion of violating the constraints (%CV) in the sample simulation
part. The robust multi-objective optimization result will be obtained with an acceptable
proportion of violation, otherwise the value of the scalar η will be adjusted.
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Set value for η 

Deterministic optimization

Initial constraint back-off

Optimization with back-off 

Update back-off

Change ≤ 

ε？
No

Yes

Sample simulation

Multi-criteria decision making

%CV

acceptable
No

Robust Result

Multi-criteria decision making

Figure 2. Schematic diagram of the proposed robust multi-objective optimization method.

5. Results and Discussion
5.1. Model Validation

The existing alkylation reactor dimensions and constant feed variables collected from
the industry are presented in Table 2. Five operating conditions of the actual device
are randomly selected to verify numeric solution consistency. The material flow data of
these five cases are shown in Table 3. The standard case takes the average value of the
factory data.

Table 2. Reactor constant parameters.

Parameter Value

Reactor diameter, m 3
Catalyst filling length in each reactor stage, m 4.2

Dry gas temperature, K 292.65
Dry gas pressure, pa 0.86× 106

Benzene temperature, K 628.95
Benzene pressure, pa 0.78× 106

Pressure inside the reactor, pa 0.699× 106
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Table 3. Reactor constant parameters.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Standard

Benzene flow, mol · s−1 250.6 240.5 234.7 250.2 282.6 260.3
Dry gas flow, mol · s−1 187.6 194.8 171.4 186.4 200.4 196.7

Dry gas Composition, %(mole)
CH4 27.775 25.973 27.267 27.765 29.083 27.770
C2H6 8.714 7.955 8.655 9.008 9.244 8.646
C2H4 26.197 25.229 28.66 26.355 24.521 25.22
C3H8 0.004 0.004 0.005 0.004 0.005 0.005
C3H6 0.03 0.028 0.02 0.031 0.034 0.066
C4 and above 0.005 0.01 0.014 0.003 0.005 0.014
O2 0.787 1.224 0.466 0.655 0.438 0.664
N2 7.537 8.824 6.92 7.239 5.645 6.969
CO2 0.442 0.406 0.48 1.057 0.498 0.572
CO 0.517 0.541 0.547 0.55 0.557 0.495
H2 27.992 29.806 26.966 27.333 29.97 29.579

Dry gas distribution ratio
first stage 0.2278 0.2183 0.2225 0.2295 0.2286 0.2274
second stage 0.2469 0.2589 0.2418 0.2406 0.2545 0.2524
third stage 0.2721 0.2749 0.2811 0.2808 0.2683 0.2710
fourth stage 0.2532 0.2479 0.2546 0.2491 0.2486 0.2492

Five case studies on the developed two-dimensional reactor model are performed and
the test results are presented in Table 4. The model results of product mass fraction are in
good agreement with actual device data, which made the model suitable for performance
improvement study. Although the temperature has a deviation of a few degrees, it is within
the acceptable range.

Table 4. Reactor model test results.

Item Output Temperature, K
Product Mass Fraction, % (Mass)

C6H6 C8H10 C10H14

Case 1 Unit 657.0 76.81 20.44 2.75
Model 658.6 76.90 20.25 2.85

Case 2 Unit 656.9 75.95 21.11 2.94
Model 655.6 76.11 20.82 3.07

Case 3 Unit 658.2 75.59 21.72 2.69
Model 663.1 75.48 21.3 3.22

Case 4 Unit 654.0 76.33 20.92 2.75
Model 658.7 76.86 20.28 2.86

Case 5 Unit 657.2 78.99 18.59 2.42
Model 656.7 79.27 18.46 2.27

5.2. Temperature Distribution of the Reactor

The reactor is simulated at the standard operating conditions with the reactor constant
parameters and material flow presented in Tables 2 and 3 to calculate the temperature
distribution of each stage of the reactor, which is shown in Figure 3.
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Figure 3. The temperature distribution of each stage of the reactor. (a) Temperature distribution
of the first stage, (b) Temperature distribution of the second stage, (c) Temperature distribution of
the third stage, (d) Temperature distribution of the fourth stage, (e) Temperature distribution of the
fifth stage.

As the reaction progresses, the temperature in the reactor gradually increases. Be-
cause raw dry gas enters between stages, the reactor is cooled by cold shock. Side reaction
and catalyst life are both affected by reactor temperature. In each stage of the reactor there
will be a hot spot in the center of the reactor. At hot spots, the above two phenomena are
more obvious. In adiabatic reactors, the presence of hot spots is mainly due to velocity
gradients in the reactor. The velocity of the fluid in the center of the reactor is the fastest, so
the hot spots appear in the center of the reactor.

5.3. Robust Multi-Objective Optimization

The Pareto preface of the robust multi-objective optimization is obtained as Figure 4a.
The obtained non-dominated solutions are in the range of 90.87% to 91.02% for selectivity,
and 99.0% to 99.9% for conversion. The deterministic multi-objective optimization results
are shown in Figure 4b. The obtained non-dominated solutions are in the range of 90.95% to
91.8% for selectivity, and 86.9% to 99.9% for conversion. Therefore, the addition of hot spot
temperature back-off decreases the number of feasible solutions, making the Pareto front
shorter. Table 5 lists the standard condition and optimal solutions selected by multi-criteria
decision-making. The optimization results show that the first three-stage dry gas feed is
more advantageous than the four-stage dry gas feed. Meanwhile, the conversion of the
reactor is higher when there is more dry gas feed at the front end of the reactor. This is
because the residence time of dry gas becomes longer in that case. When the distribution
ratios of dry gas are more uniform, the selectivity of the reactor is higher. This avoids the
coexistence of ethylbenzene and higher concentrations of ethylene, causing side reactions
to become significant.

Table 5. Standard condition and multi-objective optimization results.

Item
Dry Gas Distribution Ratios

SEB XET
Stage 1 Stage 2 Stage 3 Stage 4

Standard condition 0.2279 0.2469 0.2721 0.2532 91.1191 99.2150
Deterministic optimization results 0.5208 0.3010 0.1176 0.0005 90.9812 99.8900
Robust optimization results 0.7438 0.2234 0.0325 0.0003 90.8802 99.9372
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Figure 4. Pareto front of the selectivity and conversion. (a) Robust multi-objective optimization
results, (b) Deterministic multi-objective optimization results.

Next, the optimized dry gas distribution ratios of the robust and deterministic multi-
objective optimization result are applied in the 262 real conditions, and the sample sim-
ulations are performed to demonstrate the robustness of the proposed method using the
proportion of violating the constraints. In the case of different optimization results, the vi-
olation of temperature constraints is shown in Figure 5. In the figure, (a) represents the
sample simulation under robust multi-objective optimization results, and (b) represents the
sample simulation under deterministic multi-objective optimization results. The proportion
of temperature constraint violations decreases from 13.7% to 3.8% under the proposed
robust multi-objective optimization method. Therefore, the reactor will be more stable
applying the optimal operating condition obtained by the proposed method.
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Figure 5. The sample simulation under different results. (a) Cases under robust multi-objective
optimization results, (b) cases under deterministic multi-objective optimization results.

6. Conclusions

In this paper, a two-dimensional homogeneous model is developed and implemented
in Matlab, for steady state simulation of an industrial multi-stage catalytic reactor for
ethylbenzene. Through the validation procedure, it is proven that the developed model is
accurate. The establishment of a two-dimensional reactor model can calculate the hot spots
inside the reactor. The hot spots appear in the center of the reactor. A robust multi-objective
optimization method is proposed by introducing a back-off to the hot spot constraints,
which can drastically reduce constraint violations and provide a trade-off of conversion
and selectivity. The distribution ratios of dry gas are defined as decision variables, which is
related to the temperature inside the reactor and affects the performance of the reaction.
After robust multi-objective optimization, the robust result is obtained. The ratios of the first
four stages of dry gas are, respectively, 0.7438, 0.2234, 0.0325, and 0.0003. The conversion
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and selectivity can be, respectively, achieved as 99.94% and 90.88%. In addition, robust
optimization methods reduce the impact of dry feed composition uncertainty. Compared
with the general optimization method, the robust optimization results show that the
proportion of temperature constraint violations decreases from 13.7% to 3.8%.
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