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Abstract: Power systems face adequacy risks because of the high integration of renewable energy. It is
urgent to develop efficient methods for power system operational reliability assessment. Conventional
power system reliability assessment methods cannot achieve real-time assessment of system risk
because of the high computational complexity and long calculation time. The high computational
complexity is mainly caused by a large number of optimal power flow (OPF) calculations. To reduce
the computational complexity, this paper transfers the optimal power flow model as a multiparameter
linear programming model. Then, the optimal power flow can be obtained by linear calculations.
Furthermore, this paper proposes a state reduction method considering the importance index of
transmission lines for further improving the calculation efficiency. Case studies are carried out on
IEEE standard systems and a provincial power grid in China. Compared with the conventional
reliability assessment method, the reliability assessment efficiency of the proposed method increases
by 10–40 times, and the assessment error is less than 1%.

Keywords: power system reliability; state reduction; multiparameter linear programming; optimal
power flow; computational complexity

1. Introduction

To cope with environmental and climate challenges, vigorously developing renewable
energy such as wind and solar power has become a popular choice for countries around
the world in formulating energy policies and promoting clean energy transitions [1,2].

With the high penetration of renewable energy integrating into the power system,
the operational risk of the power system is prominent [3]. Risk evaluation becomes more
complex, and they include not only the occasional failure of power equipment but also
random fluctuations on the supply side and uncertainty on the demand side [4]. These
factors easily induce a reliability risk for the power supply and demand mismatch in the
power system. Therefore, the real-time evaluation of power system reliability levels is
particularly important.

Existing reliability assessment methods are mainly used to carry out reliability assess-
ments in traditional power systems’ medium- or long-term planning stage and they cannot
meet the time requirements of real-time reliability assessments of power systems [5,6]. In
addition, due to the more complex risk incentives of power systems, equipment failure,
and other sudden disturbances cannot be accurately described in a medium- or long-term
reliability assessment [7]. Therefore, it is urgent to propose a fast reliability assessment
algorithm for power systems to determine the system’s reliability levels real-time.

To improve the efficiency of the reliability assessment, the problems of high compu-
tational complexity and long computing time must be addressed. These problems arise
because of the large number of system states required for reliability assessment and the
high computational complexity of each system state [8]. Thus, system state reduction and
state analysis simplification are the main methods for efficiency improvement.
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In terms of reducing the number of system states, some scholars have proposed
event truncation [9], event screening [10–12], significance sampling [13–15], event segmen-
tation [16], cross-entropy sampling [17–21], Latin hypercube sampling [22–24], uniform
sampling [25,26] and other methods to improve the efficiency of sampling events.

In these methods, the system state is regarded as an entirety and the classic system
states are generated based on a set of rules. However, these methods still have difficulty
achieving the desired significant reduction in the number of events, and the characteristic of
the system state is ignored. Note that the system states studied in the reliability evaluation
mainly include generator output state, load demand state, and transmission line state.
Generally, the generator unit output state and load demand state can be obtained based
on historical data, while the transmission line state has strong randomness. It is the
transmission line state that highly increases the number of system state. Nevertheless, to
the best of our knowledge, few works have paid attention to the state reduction considering
the random transmission line reliability.

In terms of system state analysis, many studies have been conducted to improve
reliability evaluation efficiency. Examples include nonparametric decomposition based on
dimensionality reduction [27], artificial intelligence [28], neural network [29,30], stochastic
network flow models [31], minimum cut sets [32], and Bayesian networks [33]. However,
the aforementioned methods still need to accomplish highly nonlinear calculations, which
is computationally time-consuming.

This paper proposes a modified multiparameter linear programming (MPLP) method
for power system reliability assessment efficiency improvement. It is studied from the
two perspectives of system state reduction and system state simplification analysis. For
system state reduction, the randomness characteristic of the transmission line is stressed.
The significant transmission line state which contributes most to the reliability index is
sampled. For state analysis simplification, it should be noted that the optimal power
flow calculation is the main reason for the high computational complexity in system state
analysis. This paper transfers the optimal power flow model to a modified MPLP model.
Under this condition, the optimal power flow solution can be obtained through linear
calculations, thus greatly improving the efficiency of system state analysis. Thus, the
contradiction between system reliability assessment efficiency and accuracy is solved. Case
studies of reliability test systems are carried out on the Roy Billinton test system (RBTS),
IEEE-RTS 79, IEEE-RTS 96, and a provincial power grid in China to show the effectiveness
of the proposed method.

2. System State Generation Method Considering Transmission Line Importance

This section introduces the transmission line importance-based system state generation
method. The importance index of transmission line status is proposed. The influence of
different transmission line states on the power flow distribution of the system is calculated
and analyzed to select the critical transmission line status that contributes greatly to the
reliability index.

2.1. Transmission Line Status Importance Index

This subsection quantifies the influence of the transmission lines on the power flow
through the importance index of the transmission lines and generates the statuses of critical
transmission lines. If a transmission line fault leads to a great change in the power flow
distribution of the system, the line is more important, and it has a larger importance index.

The importance index of transmission lines includes the traditional importance index
of transmission lines and the importance index of transmission lines considering the fault
probability. Details are described below.

(1) Traditional importance index of transmission lines
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The traditional importance index of transmission lines, denoted as Itra, quantifies the
relationship between the actual active power flowing on the transmission line and the
transmission capacity, which is expressed as

Itra =
Nl

∑
i=1

wi

(
Fi

Fmax
i

)2m
(1)

where Fi is the actual active power flow of line i, Fi
max is the upper limit of the active power

capacity of line i, and wi is the weighting factor of line i reflecting the relative importance of
each line, which can be determined according to engineering experience. Nl is the number
of transmission lines in the system, and m is the integer index of Itra.

(2) Importance index of transmission lines considering the fault probability

The fault probability of transmission lines is taken into account, and the influence of
the fault probability and active power on the power flow is quantified. Suppose there are
Nl transmission lines in the system. The fault probability importance index denoted as Ipro,
can be expressed as

Ipro = Pc ·
Nl

∑
i=1

wi

(
Fi

Fmax
i

)2m
(2)

where Pc is the probability of failure of the Nd transmission lines (Nd = 1, 2, . . . , Nl) such that

Pc =
Nd

∏
i=1

Ui ·
Nl−Nd

∏
j=1

(
1−Uj

)
(3)

where Ui and Uj are the forced outage rate of the transmission lines with and without
failures, respectively.

2.2. Calculation of Transmission Line Status Importance Index

In this subsection, the importance indices of different transmission line states are
calculated by given system operation scenarios. The critical transmission line states are
selected by summarizing and sorting the importance indices. Furthermore, this paper uses
the K-means algorithm to generate representative typical system operation scenarios and
calculate their occurrence probability. The K-means algorithm used here is replaceable and
other methods can also be used to give system operation scenarios to ensure the rationality
of the calculation results of importance indices.

The calculation steps of the transmission line status importance index are as follows:
Step 1: Input the historical annual generator output curve and historical annual load

curve. The length of the historical time series of generation and load curves both are a year;
namely, there are 8760 points for each curve.

Step 2: Determine the number of clusters as NL according to the system size. Determine
the initial clustering center Mij, where i (I = 1~NL) represents the cluster after clustering
and j represents the clustering curve, which can include the generator output curve, load
curve, or generator output-load curve.

Step 3: Calculate the average value of the Euclidean distance between points on the
curve and each cluster center for each hour; the formula is as follows:

Dki =

[
Nc

∑
j=1

[(
Mij − Gkj

)2
]]1/2

(4)

where Dki is the Euclidean distance from the kth point to the ith cluster center, Gkj is the
value of the kth point on curve j, and Nc is the number of curves.
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Step 4: Assign each point on the curve to the nearest cluster to regroup them to form a
new cluster, and calculate the center Mij of the new cluster, as shown in Formula (5).

Mij =
Ni

∑
k=1

Lki/Ni (5)

where Ni is the number of points in the ith cluster, and Lki is the value of the kth point in
the ith cluster on curve j.

Step 5: Repeat Step 3 and Step 4 until the clustering centers of all clusters remain un-
changed between the two iterations, yielding the clustering results of the running scenarios.

Step 6: The probability of obtaining the selected running scenario after clustering can
be calculated by the following formula:

Pl = Nc/N (6)

where Pl is the probability of the lth operating scenario, Nc is the number of points clustered
in the lth operating scenario, and N is the total number of points on the curve.

Step 7: The importance index for a given operation scenario is calculated according to
(1)–(2). Considering all the operation scenarios selected after clustering, the comprehensive
importance index of the system state denoted as R, can be calculated by

R =
NS

∑
l=1

Pl · Il (7)

where Il is the importance index of operation scenario l (including the traditional importance
index of transmission lines and the importance index of transmission lines considering
the fault probability), Pl is the probability of operation scenario l, and NS is the number of
system operation scenarios selected after clustering.

Step 8: According to the value of the comprehensive importance index R, the critical
transmission line status can be determined with different priorities.

2.3. Generating Critical Transmission Line State Set

Based on the above contents, this section summarizes the steps to generate the critical
transmission line state set based on the transmission line state importance index. Details
are presented below.

Step 1: Input the generator output curve and load curve.
Step 2: Select the operation scenario of the power system by the clustering algorithm.
Step 3: Enumerate the transmission line statuses in the system for each selected

operation scenario.
Step 4: Calculate the importance index of each transmission line status. These indices

are calculated by considering all selected operation scenarios.
Step 5: Rank the importance of the transmission lines according to the importance

index from high to low.
Step 6: Select the required transmission line statuses according to the importance

ranking results to determine the critical transmission line statuses.
Step 7: According to the engineers’ own experience, the fault statuses of transmission

lines with greater impact can be selected as the critical line statuses.
Step 8: Combine the collections obtained in Steps 6 and 7 to establish the final critical

transmission line status set.
The proposed method avoids the enumeration of a large number of system states

by generating important system states, reduces the number of system states, and ensures
reliability assessment accuracy.
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3. System State Analysis Method Based on MPLP

The optimal power flow (OPF) calculation is the most time-consuming part of power
system reliability evaluation. OPF is a highly nonlinear optimization problem with expo-
nential complexity [34]. To reduce the computational complexity of system state analysis,
the OPF model is rewritten as an MPLP model based on the similarity between the OPF
model and the MPLP model. The OPF solution can be obtained through linear calculations
under certain conditions.

3.1. Basic Principles of Multiparameter Linear Programming

In general, MPLP problems can be described with

min z = cx
s.t. A1x = b1 + ∆b1 = b1 + E1θ

A2x ≤ b2 + ∆b2 = b2 + E2θ
(8)

where z is the objective function, x is the decision variable, and c is a constant coefficient. In
the constraint conditions, A1 and A2 are constant coefficient matrices, and θ is a parameter
vector. ∆b1 and ∆b2 are the uncertainties of the right part of the linear constraint. They are
denoted by E1θ and E2θ.

When the parameter vector θ changes, the right part of the linear constraint changes,
and the optimal value z∗(θ) and the optimal solution x∗(θ) change correspondingly. When

θ changes within a certain range
^
θ = θ± ∆θ, the change in the optimal solution x∗(θ) has

an obvious linear relationship with the change in θ: x∗(
^
θ) = a

^
θ + b, where a and b are

linear parameters related to θ. In this paper, the range of variation is called the critical
region, and the linear relationship within the critical region is called the mapping relation.
Figure 1 is a schematic diagram of the critical regions of a two-dimensional parameter
vector θ = (θx, θy).
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In the MPLP model, for a constraint f (x)≤ 0, if the optimal solution x* satisfies f (x∗) = 0,
the constraint f (x) is called a “strong constraint”. Otherwise, it is a “weak constraint”.
Assuming that the MPLP problem is neither primitive nor dual degenerate, the set of all
parameters with constraints of the same strength for the optimal solution constitutes a
critical region Θ [35].

In (8), for each parameter θ and its corresponding optimal solution x∗(θ), the con-
straints are divided into two parts: Ãx∗(θ) = b̃ + Ẽθ contains strong constraints and
Ax∗(θ) < b + E θ contains weak constraints. θ1 and θ2 are in the same critical region Θ

only if Ã, b̃, Ẽ and A, b, E are equal.
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For example, consider a given parameter θ0 and the corresponding optimal solution x∗(θ0).

Let Ã0x∗(θ0) =
~
b0 +

~
E0θ0 be the strong constraint and

¯
A0x∗(θ0) <

¯
b0 +

¯
E0θ0 be the

weak constraint. The formula of the critical region Θ0 containing the given parameter θ0 is
as follows

Θ0 =

{
θ0 |

(
¯
A0

~
A0
−1 ~

E0 −
¯
E0

)
θ0 <

¯
b0 −

¯
A0

~
A0
−1

~
b0

}
(9)

For any θ ∈ Θ0, the optimal solution can be obtained directly from the mapping
relation of Formula (10)

x∗(θ) =
~
A0
−1(

~
b0+

~
E0θ) (10)

3.2. OPF Model Reconstruction Based on Modified MPLP

The DC OPF model is a linear programming problem and is expressed as

min z = cT ·Dd
s.t. 1T · P = 0

F = G · P
P = C · Pg − (D−Dd)
0 ≤ Pg ≤ Pgmax
Fmin ≤ F ≤ Fmax
0 ≤ Dd ≤ D

(11)

The objective function of the model is to minimize the system cutting load. The
decision variable is the bus cutting load Dd, and c is a constant vector whose elements
represent the weight of each bus. The constraint conditions include the power balance
constraint, transmission line capacity constraint, and nodal load constraint. P represents the
net active power injected into the bus, the elements of F represent the active power of each
branch, and G is the substitution distribution factor matrix, which reflects the relationship
between the net injected active power of the buses and the active power of the branches. C
is the generator-bus connection matrix: if generator k is connected to bus i, then C(k,i) = 1;
otherwise, C(k,i) = 0. The elements of D represent the load demand of each bus. Pg is the
output power of the generator, and Pgmax is the rated power of the generator. Fmin and Fmax
represent the upper and lower limits of the active power flow on each transmission line.

The DC OPF model is transformed into the MPLP model according to the objective
function and constraint conditions. For the objective function, the decision variables are
Dd and P. To satisfy the assumption that the MPLP problem is neither primitive nor dual
degenerate, vectors c1 and c2 are added to the objective function, and the ith components
of the two vectors are defined as c1(i) = n + i and c2(i) = i, where n is a number much
larger than i. The modified DC OPF model can be regarded as an MPLP problem, as shown
in Formula (12)

min z = c1
T ·Dd + c2

T · P
s.t. 1T · P = 0

Fmin ≤ G · P ≤ Fmax
0 ≤ Dd ≤ D
P−Dd ≤ C · Pgmax −D

(12)
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To consider generator failure and load variation, the generator state vector Sg and load
vector D are selected to construct the parameter vector θ of the MPLP problem. Compared
with the standard MPLP form (8), the DC OPF model (12) is expressed as

min
[

cT
1 cT

2
][ Dd

P

]
s.t. [

0 1T ][ Dd
P

]
= [0] + [0]θ

0 G
0 −G
−I I
I 0
−I 0


[

Dd
P

]
≤


Fmax
−Fmin

0
0
0

+


0 0
0 0
M −I
0
0

I
0

θ

θ =

[
Sg
D

]
M = C · diag

(
Pgmax

)

(13)

In the matrix form of the DC optimal power flow model proposed in this paper, the
decision variable x consists of Dd and P. M represents the distribution of generators’ output
on buses. In the same transmission line status, the matrix G is a constant coefficient matrix,
which meets the requirements of the standard formulation of the MPLP problem. This
is also the theoretical core of the combination of the modified DC OPF model and the
critical transmission line status proposed in this paper. When the parameter θ changes
due to a change in the generator fault state or load state, the optimal solution x may be
adjusted accordingly. According to the critical region of the MPLP problem, if θ is within a
known critical region Θ, the optimal solution x∗(θ) can be calculated using the mapping in
Formula (10) instead of solving the general DC optimal power flow problem, which can
save considerable calculation time.

To quickly generate critical regions with the MPLP method, this paper proposes a
dynamic search method for critical regions. The specific steps are as follows:

First, a collection Φ is introduced, and this collection includes the entire critical region
of space containing parameter θ; initially, the set Φ is empty. An initial sampling parameter
θ0 is introduced, and (7) is used to solve the general DC optimal power flow problem; then,
according to Formula (9), the critical region Θ0 can be calculated, including θ0, and Θ0 is
added to the collection Φ.

Then, for each parameter θi sampled, the set Φ is traversed, and Formula (9) is used
to determine whether the parameter belongs to the known critical region in the parameter
space. If the parameter θi belongs to the known critical region Θk, the optimal solution
x∗(θi) corresponding to the parameter can be calculated directly by using the mapping
relation of Formula (10). If it does not belong to any known critical region, the general DC
optimal power flow is determined, and a new critical region Θi containing θi is generated
and added to the set Φ. Following this logic, all parameters θ are searched, and the critical
regions contained in the parameter space are generated.

4. Efficient Reliability Assessment Method

In this paper, the loss of load probability (LOLP) and expected energy not supplied
(EENS) are chosen to describe the system reliability level. LOLP represents the average
annual power shortage probability; EENS is the average number of kilowatt-hours of
electricity lost per year. The calculation formulas are as follows

LOLP = ∑
S∈Ωd

ProbS (14)
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where Ωd is the set of system fault states with load loss, that is sum(DdS) > 0. ProbS is the
probability of system fault state S.

EENS = 8760 ∗ ∑
s∈Ωd

ProbS · sum(DdS) (15)

where sum(DdS) is the total load loss of system fault state S.
The proposed method reduces the number of system states by using the randomness

characteristic of the transmission line and generates critical transmission line status based
on the transmission line status importance index. The complexity of system state analy-
sis is reduced using the modified MPLP method. The proposed method first generates
the set of critical transmission lines states offline before reliability assessment and then
performs an online reliability assessment to meet the time requirement of short-term real-
time assessment of power system reliability. The reliability assessment process is shown
in Figure 2.
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5. Case Study

In this section, the RBTS system, the IEEE-RTS 79 system, the IEEE-RTS 96 system,
and a practical provincial power system in China are used to test the performance of
the proposed method. All experiments are carried out on a desktop computer equipped
with a 3.10 GHz Intel Core i5-10500C CPU and 16 GB RAM. The proposed method is
compared with the traditional enumeration method, nonsequential Monte Carlo method,
and conventional MPLP method. System parameters are given based on the actual system
operation set. In particular, the impacts of different types of faults that might happen in the
transmission lines are considered in the actual system operation data set. The settings are
as follows:
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(1) Proposed method: in the system state generation process, the critical transmission
line status is generated based on the importance index. The generator unit status is
enumerated to third-order fault statuses and the load status is the peak load. In the state
analysis process, the improved MPLP model is used for state analysis to calculate reliability
indices. Then, the complete system reliability assessment is completed.

(2) Enumeration method: in the system state generation process, both the generator
status and transmission line status are enumerated to third-order fault statuses. Consider
a fixed peak load. Let the load reduction model adopt the ordinary DC optimal power
flow model.

(3) Nonsequential Monte Carlo method: nonsequential Monte Carlo sampling is used
to generate the system state. The load is a fixed peak load. The ordinary DC optimal power
flow model is employed for load shedding calculation. The variance coefficient of LOLP is
used as the assessment standard of calculation accuracy. Set the confidence level as α = 0.95
and the convergence condition of the assessment results as β ≤ 1%.

(4) General MPLP method: in the state generation, the system state is generated by
nonsequential Monte Carlo sampling. The load is a fixed peak load. In the state analysis,
judge whether the sampled state meets the requirements of the MPLP problem. If it does,
use the mapping relationship in the MPLP problem to solve it. If it does not, calculate the
general DC optimal power flow model. The variance coefficient of LOLP is used as the
assessment standard of calculation accuracy. Set the confidence level as to α = 0.95. Let the
convergence condition of the assessment results be β ≤ 1%.

5.1. Case I: RBTS

The RBTS adopted in this paper consists of 6 buses, 9 transmission lines, and 11 generators
with a total installed capacity of 240 MW and a peak load of 185 MW. The system parameters
are shown in [36]. The single-line diagram of RBTS is shown in Figure 3.
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The efficiency of reliability assessment based on the enumeration method, the nonse-
quential Monte Carlo method, the conventional MPLP method, and the proposed method
is shown in Table 1.
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Table 1. Reliability assessment results of the RBTS.

Methods Sample
Number LOLP EENS

(MWh/a)
Calculation

Time (s)

Enumeration 30,160 0.0104 1167.8 125.02
Nonsequential
Monte Carlo 1,011,999 0.0098 1056.0 4194.82

Conventional MPLP 913,414 0.0107 1254.3 3578.45
Proposed method 5336 0.0103 1164.2 11.47

It can be seen from Table 1 that the error of the proposed method is less than 1%
compared with the reliability assessment results of the enumeration method. However, the
proposed method only needs 11.47 s to accomplish the reliability evaluation, which is 9%
of the time required by the enumeration method, 0.2% of the time required by the nonse-
quential Monte Carlo method, and 0.3% of the general conventional method. Therefore,
the proposed method can significantly improve the efficiency of reliability assessment.

As seen from Table 1, the method proposed in this paper considers only 5336 system
states, while the enumeration method needs to consider 30,160 system states. Based on the
critical transmission line status generating method, the sampled number of system states is
reduced by 82.3%, the reliability assessment efficiency is improved by 10.8 times, and the
accuracy error is less than 1%. However, the nonsequential Monte Carlo method requires
1,011,999 systems because it has a poor convergence effect in the RBTS system, resulting
in a large number of samples, a long calculation time, and low assessment accuracy. The
conventional MPLP method, in contrast to the non-sequential Monte Carlo method, has
slightly improved the speed of state analysis and evaluation efficiency. Nevertheless, the
conventional MPLP method has weak convergence ability when the number of system
states increases.

5.2. Case II: IEEE-RTS 79 System

The IEEE-RTS 79 system adopted in this paper consists of 24 buses, 38 transmission
lines, and 32 generators, with a total installed capacity of 3405 MW and a peak load of
2850 MW. The system parameters are shown in [37]. The single-line diagram of IEEE-RTS
79 system is shown in Figure 4.

The comparison results are shown in Table 2.
It is clear from Table 2 that the absolute error of the system loss of load probability is

0.0001. The relative error is as low as 0.1%. The absolute error of the system power shortage
expectation is 971 MWh/a. The relative error is 0.7%. The proposed method can ensure
a reliability assessment error within 1%. In addition, the proposed method converges in
25.81 s, which is 1.09% of the time required by the enumeration method and 3.9% of the
time required by the nonsequential Monte Carlo method and 4.2% of the conventional
MPLP method. Therefore, the proposed method can significantly improve the reliability
assessment efficiency by at least 23 times. In contrast with the enumeration method, the
nonsequential Monte Carlo method, and the conventional MPLP method, the number of
system states required for analysis is respectively reduced by 97.4%, 90.3%, and 91.8%.
This is mainly due to the reduction that the proposed method affects in the number of
system states and the complexity of system state analysis. Although the conventional
MPLP method also reduces the number of system states and the time for system analysis,
due to the strong randomness of sampling system states. Fewer system states can meet the
requirements of the MPLP problem and the mapping relationship cannot be fully used to
avoid the optimal power flow calculation.
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Figure 4. The single-line diagram of IEEE-RTS 79 system.

Table 2. Reliability assessment results of the IEEE-RTS 79 system.

Methods Sample
Number LOLP EENS

(MWh/a)
Calculation

Time/(s)

Enumeration 392,518 0.0853 129,561 2355.11
Nonsequential
Monte Carlo 108,222 0.0846 127,549 649.33

Conventional MPLP 127,612 0.0937 148,921 607.49
Proposed method 10,580 0.0852 128,590 25.81

5.3. Case III: IEEE-RTS 96 System

The IEEE-RTS 96 system adopted in this paper consists of 73 buses, 120 transmission
lines, and 99 generators with a total installed capacity of 10,215 MW and a peak load of
8550 MW. The system parameters are shown in [38].

The comparison results are shown in Table 3.
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Table 3. Reliability assessment results of the IEEE-RTS 96 system.

Methods Sample
Number LOLP EENS

(MWh/a)
Calculation

Time(h)

Enumeration 35,949,211 0.0144 24,876 9374.42
Nonsequential
Monte Carlo 709,173 0.0139 24,704 145.33

Conventional MPLP 849,610 0.0160 27,521 123.68
Proposed method 99,020 0.0142 24,848 3.67

According to the results in Table 3, the proposed method reduces the sampled number
of system states by 99.7% and the assessment accuracy error is less than 1% than the enu-
meration method. Compared with the nonsequential Monte Carlo method, the efficiency
of the reliability assessment is improved by 39.6 times. The efficiency of the reliability
assessment is improved by 33.7 times in contrast to the conventional MPLP method. It can
be found that as the system scale increases, the proposed method will more significantly
improve the assessment efficiency. This is because an increasing number of system states
can be analyzed by using the mapping relationship in the modified MPLP method as the
system scale increases, which avoids time-consuming OPF calculations.

5.4. Case IV: Scalability Test

A provincial power grid in China adopted in this paper consists of 1393 buses,
2033 transmission lines, and 220 generators with a total installed capacity of 64,702.61
MW and a peak load of 39,009.29 MW. The generator states and transmission line states are
enumerated as first-order fault states.

The result is shown in Table 4.

Table 4. Reliability assessment results of a provincial power grid in China.

Methods Sample
Number LOLP EENS

(MWh/a)
Calculation

Time/(h)

Enumeration 449,514 0.0017 93.73 26.85
Nonsequential
Monte Carlo 93,928 0.0016 92.97 5.67

Conventional MPLP 101,756 0.0018 94.02 4.99
Proposed method 4420 0.0017 93.33 0.14

According to the results in Table 4, the proposed method can be successfully used
in the actual power system, which has good accuracy and high efficiency compared with
the others.

6. Conclusions

This paper proposes a modified MPLP method for improving the efficiency of power
system reliability assessment. On the one hand, this method reduces the number of samples
by generating critical system states based on the importance index of the transmission lines.
On the other hand, to reduce the complexity of system state analysis, the optimal power flow
model is modified to the multiparameter linear programming method, and the optimal
solution can be calculated by linear operations under certain conditions. Case studies
show that compared with the conventional methods, the proposed method can improve
reliability assessment efficiency by 10–40 times without losing accuracy. Furthermore, with
the increase in the system size, the improvement in efficiency increases. This fully verifies
the effectiveness and superiority of the proposed method.
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Nomenclature

OPF Optimal power flow
MPLP Multiparameter linear programming
RBTS Roy Billinton test system
LOLP Loss of load probability
EENS Expected energy not supplied
Itra Traditional importance index of transmission lines
Ipro Fault probability importance index of transmission lines
Fi Actual active power flow of line i
Fi

max Upper limit of the active power capacity of line i
wi Weighting factor of line i
Nl Number of transmission lines in the system
Nd Number of fault transmission lines in the system
m Integer index of Itra
Pc Probability of failure of the Nd transmission line
Ui Forced outage rate of the transmission lines with failures
Uj Forced outage rate of the transmission lines without failures
Mij Initial clustering center
NL Number of clusters
Dki Euclidean distance from the kth point to the ith cluster center
Gkj Value of the kth point on curve j
Nc Number of curves
Ni Number of points in the ith cluster
Lki Value of the kth point in the ith cluster on curve j
Pl Probability of the lth operating scenario
Nc Number of points clustered in the lth operating scenario
N Total number of points on the curve
R Comprehensive importance index of the system state
Il Importance index of operation scenario l
NS Number of system operation scenarios selected after clustering
z Objective function
x Decision variable
c Constant coefficient
θ Parameter vector
Θ Critical region
Φ Critical region set
Dd Bus cutting load
P Net active power injected into the bus
F Active power of each branch
G Substitution distribution factor matrix
C Generator-bus connection matrix
D Load demand of each bus
Pg Output power of the generators
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Pgmax Rated power of the generators
Fmin Lower limits of the active power flow on each transmission line
Fmax Upper limits of the active power flow on each transmission line
Sg Generator state vector
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2. Širá, E.; Kotulič, R.; Kravčáková Vozárová, I.; Daňová, M. Sustainable development in EU countries in the framework of the

europe 2020 strategy. Processes 2021, 9, 443. [CrossRef]
3. Yang, L.; Huang, W.; Guo, C.; Zhang, D.; Xiang, C.; Yang, L.; Wang, Q. Multi-objective optimal scheduling for multi-renewable

energy power system considering flexibility constraints. Processes 2022, 10, 1401. [CrossRef]
4. Zhironkin, S.; Rybár, R. Sustainable development processes for renewable energy technology. Processes 2022, 10, 1363. [CrossRef]
5. Naik, J.; Bisoi, R.; Dash, P. Prediction interval forecasting of wind speed and wind power using modes decomposition based low

rank multi-kernel ridge regression. Renew. Energy 2018, 129, 357–383. [CrossRef]
6. Ericsson, G.N. Information security for electric power utilities (EPUs)—CIGRE developments on frameworks, risk assessment,

and technology. IEEE Trans. Power Delivery 2009, 24, 1174–1181. [CrossRef]
7. Aghaei, J.; Barani, M.; Shafie-Khah, M.; De La Nieta, A.A.S.; Catalão, J.P. Risk-constrained offering strategy for aggregated hybrid

power plant including wind power producer and demand response provider. IEEE Trans. Sustain. Energy 2015, 7, 513–525.
[CrossRef]

8. Prajapati, V.K.; Mahajan, V. Reliability assessment and congestion management of power system with energy storage system and
uncertain renewable resources. Energy 2021, 215, 119134. [CrossRef]

9. Liu, H.; Sun, Y.; Wang, P.; Cheng, L.; Goel, L. A novel state selection technique for power system reliability evaluation. Electr.
Power Syst. Res. 2008, 78, 1019–1027. [CrossRef]

10. Jia, Y.; Wang, P.; Han, X.; Tian, J.; Singh, C. A fast contingency screening technique for generation system reliability evaluation.
IEEE Trans. Power Syst. 2013, 28, 4127–4133. [CrossRef]

11. Thompson, D.R.; Green, R.O.; Keymeulen, D.; Lundeen, S.K.; Mouradi, Y.; Nunes, D.C.; Castaño, R.; Chien, S.A. Rapid spectral
cloud screening onboard aircraft and spacecraft. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6779–6792. [CrossRef]

12. Dai, H.; Zhang, H.; Wang, W. A support vector density-based importance sampling for reliability assessment. Reliab. Eng. Syst.
Saf. 2012, 106, 86–93. [CrossRef]

13. Guo, Y.; Chen, Z.; Zhang, X.; Pan, E. Reliability modeling and maintenance optimization of manufacturing system based on
stochastic flow network and markov process. J. Shanghai Jiaotong Univ. 2021, 55, 229.

14. Schweitzer, E.O.; Whitehead, D.; Zweigle, G.; Ravikumar, K.G. Synchrophasor-based power system protection and control
applications. In Proceedings of the 63rd Annual Conference for Protective Relay Engineers, College Station, TX, USA, 29 March–1
April 2010; pp. 1–10.

15. He, J.; Sun, Y.; Kirschen, D.; Singh, C.; Cheng, L. State-space partitioning method for composite power system reliability
assessment. IET Gener. Transm. Distrib. 2010, 4, 780–792. [CrossRef]

16. Huang, W.; Du, E.; Capuder, T.; Zhang, X.; Zhang, N.; Strbac, G.; Kang, C. Reliability and vulnerability assessment of multi-energy
systems: An energy hub based method. IEEE Trans. Power Syst. 2021, 36, 3948–3959. [CrossRef]

17. Wang, Y.; Guo, C.; Wu, Q. A cross-entropy-based three-stage sequential importance sampling for composite power system
short-term reliability evaluation. IEEE Trans. Power Syst. 2013, 28, 4254–4263. [CrossRef]

18. Da Silva, A.M.L.; González-Fernández, R.A.; Flávio, S.A.; Manso, L.A. Composite reliability evaluation with renewable sources
based on quasi-sequential monte carlo and cross entropy methods. In Proceedings of the 2014 International Conference on
Probabilistic Methods Applied to Power Systems (PMAPS), Durham, UK, 7–10 July 2014; pp. 1–6.

19. Bao, M.; Ding, Y.; Singh, C.; Shao, C. A multi-state model for reliability assessment of integrated gas and power systems utilizing
universal generating function techniques. IEEE Trans. Smart Grid. 2019, 10, 6271–6283. [CrossRef]

20. Song, G.; Chen, H.; Guo, B. A layered fault tree model for reliability evaluation of smart grids. Energies 2014, 7, 4835–4857.
[CrossRef]

21. Shu, Z.; Jirutitijaroen, P.; da Silva, A.M.L.; Singh, C. Accelerated state evaluation and latin hypercube sequential sampling for
composite system reliability assessment. IEEE Trans. Power Syst. 2014, 29, 1692–1700. [CrossRef]

22. Anghel, M.; Werley, K.A.; Motter, A.E. Stochastic model for power grid dynamics. In Proceedings of the 2007 40th Annual Hawaii
International Conference on System Sciences (HICSS’07), Big Island, HI, USA, 3–6 January 2007; p. 113.

23. Lin, C.; Hu, B.; Shao, C.; Li, W.; Li, C.; Xie, K. Delay-dependent optimal load frequency control for sampling systems with demand
response. IEEE Trans. Power Syst. 2022, 37, 4310–4324. [CrossRef]

24. Xu, Q.; Yang, Y.; Liu, Y.; Wang, X. An improved latin hypercube sampling method to enhance numerical stability considering the
correlation of input variables. IEEE Access 2017, 5, 15197–15205. [CrossRef]

25. Xu, C.; Yonggang, G.; Wenpeng, Z.; Cheng, T. Diagnosis method on the mechanical failure of high voltage circuit breakers based
on factor analysis and SVM. Trans. China Electro Tech. Soc. 2005, 27, 26–32.

26. Zhao, Y.; Kuang, J.; Xie, K.; Li, W.; Yu, J. Dimension reduction based non-parametric disaggregation for dependence modeling in
composite system reliability evaluation. IEEE Trans. Power Syst. 2020, 36, 159–168. [CrossRef]

http://doi.org/10.1109/TPWRS.2022.3186333
http://doi.org/10.3390/pr9030443
http://doi.org/10.3390/pr10071401
http://doi.org/10.3390/pr10071363
http://doi.org/10.1016/j.renene.2018.05.031
http://doi.org/10.1109/TPWRD.2008.2008470
http://doi.org/10.1109/TSTE.2015.2500539
http://doi.org/10.1016/j.energy.2020.119134
http://doi.org/10.1016/j.epsr.2007.08.002
http://doi.org/10.1109/TPWRS.2013.2263534
http://doi.org/10.1109/TGRS.2014.2302587
http://doi.org/10.1016/j.ress.2012.04.011
http://doi.org/10.1049/iet-gtd.2009.0281
http://doi.org/10.1109/TPWRS.2021.3057724
http://doi.org/10.1109/TPWRS.2013.2276001
http://doi.org/10.1109/TSG.2019.2900796
http://doi.org/10.3390/en7084835
http://doi.org/10.1109/TPWRS.2013.2295113
http://doi.org/10.1109/TPWRS.2022.3154429
http://doi.org/10.1109/ACCESS.2017.2731992
http://doi.org/10.1109/TPWRS.2020.3007692


Processes 2022, 10, 2188 15 of 15

27. Urgun, D.; Singh, C. A hybrid Monte Carlo simulation and multi label classification method for composite system reliability
evaluation. IEEE Trans. Power Syst. 2018, 34, 908–917. [CrossRef]

28. Lin, C.; Hu, B.; Shao, C.; Niu, T.; Cheng, Q.; Li, C.; Xie, K. An analysis of delay-constrained consensus-based optimal algorithms
in virtual power plants. ISA Trans. 2015, 125, 189–197. [CrossRef]

29. Sildir, H.; Sarrafi, S.; Aydin, E. Uncertainty Propagation Based MINLP approach for artificial neural network structure reduction.
Processes 2022, 10, 1716. [CrossRef]

30. Guo, J.; Han, M.; Zhan, G.; Liu, S. A Spatio-Temporal Deep Learning Network for the Short-Term Energy Consumption Prediction
of Multiple Nodes in Manufacturing Systems. Processes 2022, 10, 476. [CrossRef]

31. Liu, Z.; Hou, K.; Jia, H.; Zhao, J.; Wang, D.; Mu, Y.; Zhu, L. A Lagrange multiplier based state enumeration reliability assessment
for power systems with multiple types of loads and renewable generations. IEEE Trans. Power Syst. 2020, 36, 3260–3270. [CrossRef]

32. Lukashevich, A.; Maximov, Y. Power Grid Reliability Estimation via Adaptive Importance Sampling. IEEE Control Syst. Lett. 2021,
6, 1010–1015. [CrossRef]

33. Zhu, T. A New Methodology of Analytical Formula Deduction and Sensitivity Analysis of EENS in Bulk Power System Reliability
Assessment. In Proceedings of the 2006 IEEE PES Power Systems Conference and Exposition, Atlanta, GA, USA, 29 October–1
November 2006; pp. 825–831.

34. Silva, P.R.D.; Aragão, M.E.; Trierweiler, J.O.; Trierweiler, L.F. MILP Formulation for Solving and Initializing MINLP Problems
Applied to Retrofit and Synthesis of Hydrogen Networks. Processes 2022, 8, 1102. [CrossRef]

35. Ji, Y.; Thomas, R.J.; Tong, L. Probabilistic forecasting of real-time LMP and network congestion. IEEE Trans. Power Syst. 2016, 32,
831–841. [CrossRef]

36. Billinton, R.; Kumar, S.; Chowdhury, N.; Chu, K.; Debnath, K.; Goel, L.; Khan, E.; Kos, P.; Nourbakhsh, G.; Oteng-Adjei, J. A
reliability test system for educational purposes-basic data. IEEE Trans. Power Syst. 1989, 4, 1238–1244. [CrossRef]

37. Subcommittee, P.M. IEEE reliability test system. IEEE Trans. Power Appar. Syst. 1979, PAS-98, 2047–2054. [CrossRef]
38. Grigg, C.; Wong, P.; Albrecht, P.; Allan, R.; Bhavaraju, M.; Billinton, R.; Chen, Q.; Fong, C.; Haddad, S.; Kuruganty, S. The IEEE

reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods
subcommittee. IEEE Trans. Power Syst. 1999, 14, 1010–1020. [CrossRef]

http://doi.org/10.1109/TPWRS.2018.2878535
http://doi.org/10.1016/j.isatra.2021.06.035
http://doi.org/10.3390/pr10091716
http://doi.org/10.3390/pr10030476
http://doi.org/10.1109/TPWRS.2020.3045021
http://doi.org/10.1109/LCSYS.2021.3088402
http://doi.org/10.3390/pr8091102
http://doi.org/10.1109/TPWRS.2016.2592380
http://doi.org/10.1109/59.32623
http://doi.org/10.1109/TPAS.1979.319398
http://doi.org/10.1109/59.780914

	Introduction 
	System State Generation Method Considering Transmission Line Importance 
	Transmission Line Status Importance Index 
	Calculation of Transmission Line Status Importance Index 
	Generating Critical Transmission Line State Set 

	System State Analysis Method Based on MPLP 
	Basic Principles of Multiparameter Linear Programming 
	OPF Model Reconstruction Based on Modified MPLP 

	Efficient Reliability Assessment Method 
	Case Study 
	Case I: RBTS 
	Case II: IEEE-RTS 79 System 
	Case III: IEEE-RTS 96 System 
	Case IV: Scalability Test 

	Conclusions 
	References

