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Abstract: Saccharomyces cerevisiae is an important microbial organization involved in ethanol synthe‑
sis. Mutant strains that can withstandmultiple pressures during this process are critical to the indus‑
trial development of biofuels. In this study, a dual high‑throughput screening method of Triphenyl‑
2H‑tetrazoliumchloride (TTC)‑based macroscopic observation and the reaction of ferric nitrate with
pyruvate (or pyruvate radical ion) in fermentation broth was used. Using this, an S. cerevisiaemutant
library that could tolerate 381 g/L sucrose was established by ARTP random mutation and adaptive
evolution to select the best strain; its ethanol yield was increased by an additional 20.48%; and the
sucrose utilization rate was 81.64%. This method is specific to the selection of strains with increased
ethanol production.
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1. Introduction
The fossil fuel‑based chemical industry is associated with serious air pollution, in

part through the emission of carbon dioxide gas; the main factor affecting climate change.
The traditional fossil fuel‑based chemical industry with its high energy consumption and
emissions is in the process of transitioning to green and low‑carbon bio‑manufacturing
technologies [1]. Replacing fossil fuels with bio‑based chemicals can achieve a “biomass‑
recycling‑CO2‑biomass” closed‑loop that helps to reduce greenhouse gas emissions. There‑
fore, developing bio‑based products from their source to achieve low‑carbon economic op‑
erations is an effective tool to combat climate change. Bioethanol is widely used in the
world because of its high octane number and ability to burn cleaner and cooler than regu‑
lar gasoline [2]. Of the top 10 forecasts for the advanced bioeconomy by 2022 (https://www.
biofuelsdigest.com/bdigest/2022/01/02/top‑10‑predictions‑for‑the‑advanced‑bioeconomy‑
in‑2022/ (2 January 2022)), about half are directly or indirectly related to the alcohol indus‑
try. During the COVID‑19 pandemic, the consumption of ethanol for epidemic control
and medical disinfection doubled. In addition to the increasing demand for ethanol in
food and medical applications, it is necessary to accelerate the research and development
of bioethanol.

Ethanol synthesis by Saccharomyces cerevisiae (S. cerevisiae) is a rapid, green, and eco‑
nomical way to produce bioethanol [3]. However, it remains a challenge to fully utilize the
characteristics of S. cerevisiae to achieve a high ethanol yield and production
efficiency [4–7]. According to the “alert level” theory of yeast cell growth and fermen‑
tation factors proposed by Abbott et al. [8], changes in relevant factors of the fermenta‑
tion environment beyond a certain threshold will cause negative effects. First, increasing
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the sugar concentration in the fermentation liquid to improve ethanol synthesis causes os‑
motic pressure. Second, as ethanol continuously accumulates in the fermentation environ‑
ment, organic solvent stress also occurs at the late fermentation stage. Third, temperature
changes in the fermentation environment cause temperature stress. Fourth, a high con‑
centration of ions in fermentation broth causes ion stress. Fifth, reactive oxygen species
in the fermentation environment result in reactive oxygen free radical accumulation that
can lead to oxidative stress and other negative effects. To overcome these stresses, a series
of physical, chemical, and molecular biological methods have been rapidly developed to
enhance yeast robustness, including Ethidium bromide (EB) chemical treatment [9], UV‑
Nitroguanidine (UV‑NTG) treatment [10], atmospheric room temperature plasma (ARTP)
mutagenesis [11], γ‑ray mutagenesis [12], protoplast fusion technology [13], adoptive evo‑
lution engineering [14], global transcription machinery engineering technology
(gTME) [15] multiplex genome engineering using CRISPR/Cas9 [16], and RNAi‑assisted
genome evolution engineering [17]. Some S. cerevisiaemutant strains with higher ethanol
synthesis ability were obtained. However, because of a lack of high‑throughput screen‑
ing methods that can rapidly characterize ethanol synthesis, researchers were only able
to make preliminary screening using indicators that do not indicate ethanol synthesis ca‑
pacity, such as growth indicators; a process that maybe inaccurate. Use of HPLC for direct
measurements can also be time‑consuming and intensive. Thus, it is necessary to develop a
higher throughput and more accurate screening method for S. cerevisiae
ethanol fermentation.

Pyruvate is a keymetabolite of cell metabolism [18] that is not only involved in energy
metabolism but is also a precursor of ethanol synthesis. During normal pyruvate (or pyru‑
vic acid radical ion)metabolism, excess product is expelled from the cell. Yeast strainswith
high pyruvate yields have been developed [19]; measuring extracellular pyruvate (or pyru‑
vic acid radical ion) concentration can be a more reliable gauge of ethanol synthesis. Fe3+
can react with pyruvate or pyruvic acid radical ions, but no other organic acids, to form
a yellow complex ([Fe3O(CH3COCO2)6(H2O)3]+) (Supplement Figure S1) that is visible at
520 nm [20].

Thus, in this study, a dual high‑throughput screening method of
Tri‑phenyl‑2H‑tetrazoliumchloride (TTC)‑basedmacroscopic observation and the reaction
of ferric nitrate with pyruvate (or pyruvate radical ion) in fermentation broth was used.
The TTC‑based macroscopic observation could be used for rapid initial screening. The re‑
action of ferric nitrate with pyruvate (or pyruvate radical ion) in fermentation broth was
inversely related to the ethanol synthesis ability of the S. cerevisiae derived strains; there
was a strong linear relationship at OD520 nm (Py‑Fe3+ method). This method is specific to
the selection of strains with increased ethanol production.

2. Materials and Methods
2.1. Strain and Medium

S. cerevisiae strain GJ2008 (MATa; his3∆1; leu2∆0; met15∆0; ura3∆0) was used as the
original strain in this study. S. cerevisiae GJ2009, GJ2010, GJ2011, GJ2012, and NT‑F1 were
derived fromGJ2008 byARTPmutagenesiswith different ethanol synthesis capacities. The
YPD medium (10 g/L yeast extract, 20 g/L peptone, and 310 g/L sucrose) was used for
cell growth.

2.2. ARTP‑Based Random Mutagenesis and Adaptive Evolution
A 5mL cell broth cultured for about 12 hwas harvested by centrifugation andwashed

twice with ice‑cold water. Then, atmospheric and room temperature plasma (ARTP) mu‑
tagenesis was carried out using an ARTPmutation system (ARTP‑C2‑5, Tmaxtree Biotech‑
nology Co., Ltd., Wuxi, China) as described by Niu et al. [21]. The parameters were set as
follows: (1) the radio frequency power input was set at 100 w, the flow of helium was set
at 10 SLM; (2) the distance between the plasma torch nozzle exit and the slide was set at
2 mm; (3) the different treatment times were selected as 80, 100, 120, 140, 160, 180 and 200 s.
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After treatment, slides were washed with ice‑cold water to generate the ARTP mutant li‑
brary. The mutant strains were transferred to 10 mL YPD medium with 286 g/L sucrose
and cultivated at 30 ◦C and 200 rpm for 24 h. The number of cells was measured with
a blood counting plate until the number of cells stabilized, then ARTP mutagenesis was
performed again and the passage was gradually increased to higher concentrations (286,
310, 333, 357 and 381 g/L sucrose).

2.3. TTC‑Based Screening
A library of S. cerevisiae submitted to ARTP mutagenesis that could grow on 381 g/L

of sucrose was diluted with sterile water and then coated on a solid medium containing
381 g/L sucrose. 24 h later, about 20 mL Triphenyl‑2H‑tetrazoliumchloride (TTC) solution
was introduced to react for 5 min and the yeast strains with the earliest red and darkest
colorwere selected (5 g/L glucosewas prepared for sterilization and 0.5 g/L TTCwas added
when it was cooled to 55 ◦C). The selected S. cerevisiae colonies were then placed on new
plates for growth before the next experiment.

2.4. Py‑Fe3+‑Based Screening
Single S. cerevisiae colonies on the slant plates were transferred to 48‑deep‑well mi‑

crotiter plates (DWMP) containing 1 mL YPD with 381 g/L sucrose and cultivated with
30 ◦C and 200 rpm for 72 h. After the fermentation, DWMPs were left to rest for 30 min
to allow S. cerevisiae strains to sink automatically. The fermentation broth was used for
determination. Yeast cells were removed either by standing or by brief centrifugation. The
next reaction system was configured as described by Luo et al. [19]. Then, 120 µL of the
fermentation supernatant (five times dilution) was transferred to a 96‑well enzyme label
plate and 80 µL 1 M Fe(NO3)3 was added for reaction at room temperature for 10 min.
Then, the absorbance was measured at OD520 nm. Finally, several strains with low OD520
values were selected for subsequent shake‑flask fermentation and re‑screening.

2.5. Shake‑Flask Fermentation
Colonies from YPD plates were used to inoculate the YPD medium and incubated

overnight with shaking at 30 ◦C and 200 rpm. The overnight seed solution was transferred
at 10% inoculum to a new YPDmedium containing 310 g/L sucrose (each plate was sealed
with plastic film and kraft paper to prevent ethanol volatilization). The cultures were in‑
cubated at 30 ◦C and 150 rpm for 36 h.

2.6. GC Analysis and Cell Growth Assay
Culture turbidity was monitored at 600 nm and the number of cells was measured

with a blood counting plate. Ethanol production was analyzed by GC‑FID (Techcomp
Scion 456‑GC, Shanghai, China). The inlet temperature was set to 200 ◦C with the flow
at 1 mL/min and the oven at 40 ◦C for 0 s, 40–80 ◦C for 5 min, and 80–150 ◦C for 10 min.

2.7. Statistical Analysis
All experiments were conducted in triplicate and the data were averaged and pre‑

sented as the means ± standard deviation. The OriginPro (version 9.0) was used for
data processing.

3. Results and Discussion
3.1. The Feasibility of Using Py‑Fe3+ to Identify High‑Titer Ethanol Production

While the determination of ethanol concentration using GC is highly accurate, it is
cumbersome, time‑consuming, and not always suitable for high‑throughput screening. In
addition, pyruvate testing kits are expensive and the pyruvic acid radical ion is difficult
to measure. Thus, establishing a cheap, efficient screening method is critical. S. cerevisiae
uses carbon metabolism to synthesize pyruvate, which reacts with pyruvate decarboxy‑
lase to form acetaldehyde, which then reacts with ethanol dehydrogenase to form ethanol
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(Figure 1). Ferric nitrate can react with the pyruvate or pyruvic acid radical ion, but no
other organic acids, to forma yellow complex [20]. To characterize the reaction relationship
in more detail, 120 µL pyruvate standard at different concentrations was added to 80 µL
ferric nitrate (1 M). There was a linear relationship between different pyruvate concentra‑
tions and theOD520 (Figure 2). A strong linear relationship of R2 = 0.996was demonstrated,
ensuring the accuracy of data filtering.
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Four S. cerevisiae strains, GJ2009, GJ2010, GJ2011, and GJ2012 (derived from GJ2008
by ARTP mutagenesis (data not shown)), with different ethanol synthesis capacities, were
verified by fermentation under 190 g/L sucrose after 30 h (Figure 3). While the ethanol yield
of GJ2010, GJ2012, GJ2011, and GJ2009 increased successively, the OD520 value of fermen‑
tation broth measured using the Py‑Fe3+ method decreased successively. The real‑time
detection from the ethanol synthesis curve was shown in Supplement Figure S2. More re‑
search is needed to reveal themechanism. Thus, the ethanol synthesis ability of S. cerevisiae‑
derived strains was inversely proportional to the concentration of pyruvate (or pyruvate
radical ions) in the fermentation broth. Pyruvate is one of the important precursors in mi‑
croorganisms. The amount of pyruvate synthesized by microorganisms and its utilization
rate will largely determine the growth and performance of cells. Therefore, we speculated
that the pyruvate content produced by S. cerevisiae cells of the same derivative strain at
the same period was comparable, but the yeast strain with stronger metabolic transforma‑
tion ability would accelerate its utilization. Therefore, it was concluded that the amount
of ethanol synthesis in the paper was inversely proportional to the pyruvate (or pyruvate
radical ions) content in the fermentation broth. Moreover, as can be seen in Figure 3, with
the increase of ethanol content the OD520 value did not significantly decrease, which may
be the result of the increase of the volume of the yeast. Genomic resequencing and compar‑
ative transcriptomic analysis may be ideal means to reveal the results of this experiment,
which will be published in a subsequent paper.

Processes 2022, 10, x FOR PEER REVIEW 6 of 13 
 

 

GJ2010 GJ2012 GJ2009 GJ2011
0

20

40

60

80

100
 Ethanol concentration

E
th

a
n

o
l(

g
/L

)

Strain

0.160

0.162

0.164

0.166

0.168

0.170

0.172
 OD520

O
D

5
2

0

 

Figure 3. (☐ Ethanol concentration) Four S. cerevisiae strains, GJ2009, GJ2010, GJ2011, and GJ2012 

(derived from GJ2008), with different ethanol synthesis capacities, were verified by fermentation 

under 190 g/L sucrose after 30 h. (-OD520) 120 µL of these four S. cerevisiae strains’ fermentation 

supernatant (five times dilution) was transferred to a 96-well enzyme label plate and 80 µL 1M 

Fe(NO3)3 was added for reaction at room temperature for 10 min. Then the absorbance was meas-

ured at OD520 nm. 

3.2. Tolerance Engineering Improves Tolerance to High Sucrose Levels 

Increasing the sugar concentration in fermentation broth is a direct way to increase 

ethanol production. However, high sugar concentrations cause increased osmotic pres-

sure and stress cell growth and vitality which in turn leads to a further decrease in yield. 

Thus, ARTP mutagenesis and adaptive evolution are used to improve the robustness of 

S. cerevisiae in the presence of high concentration sucrose. To find an appropriate inhibi-

tory concentration of sucrose for the initiation of mutagenesis, we first tested the effect of 

different sucrose concentrations on the growth of Saccharomyces cerevisiae GJ2008 (Figure 4) 

and found that S. cerevisiae cell numbers peaked at 238 g/L sucrose. Thus, after ARTP mu-

tagenesis, the mutant yeast library was cultured and subcultured in a 286 g/L sucrose fer-

mentation medium. After stable growth was achieved, another round of mutagenesis was 

carried out at a sucrose concentration of 381 g/L (Supplement Figure S3). The cell mor-

phology also changed from a state of initial inhibition (Supplement Figure S4A; cells were 

shriveled and sticky) to a state of release (Supplement Figure S4B; cells were scattered and 

plump), which may be the reason for improved tolerance and increased yield. 

Figure 3. (

Processes 2022, 10, x FOR PEER REVIEW 6 of 13 
 

 

GJ2010 GJ2012 GJ2009 GJ2011
0

20

40

60

80

100
 Ethanol concentration

E
th

a
n

o
l(

g
/L

)

Strain

0.160

0.162

0.164

0.166

0.168

0.170

0.172
 OD520

O
D

5
2

0

 

Figure 3. (☐ Ethanol concentration) Four S. cerevisiae strains, GJ2009, GJ2010, GJ2011, and GJ2012 

(derived from GJ2008), with different ethanol synthesis capacities, were verified by fermentation 

under 190 g/L sucrose after 30 h. (-OD520) 120 µL of these four S. cerevisiae strains’ fermentation 

supernatant (five times dilution) was transferred to a 96-well enzyme label plate and 80 µL 1M 

Fe(NO3)3 was added for reaction at room temperature for 10 min. Then the absorbance was meas-

ured at OD520 nm. 

3.2. Tolerance Engineering Improves Tolerance to High Sucrose Levels 

Increasing the sugar concentration in fermentation broth is a direct way to increase 

ethanol production. However, high sugar concentrations cause increased osmotic pres-

sure and stress cell growth and vitality which in turn leads to a further decrease in yield. 

Thus, ARTP mutagenesis and adaptive evolution are used to improve the robustness of 

S. cerevisiae in the presence of high concentration sucrose. To find an appropriate inhibi-

tory concentration of sucrose for the initiation of mutagenesis, we first tested the effect of 

different sucrose concentrations on the growth of Saccharomyces cerevisiae GJ2008 (Figure 4) 

and found that S. cerevisiae cell numbers peaked at 238 g/L sucrose. Thus, after ARTP mu-

tagenesis, the mutant yeast library was cultured and subcultured in a 286 g/L sucrose fer-

mentation medium. After stable growth was achieved, another round of mutagenesis was 

carried out at a sucrose concentration of 381 g/L (Supplement Figure S3). The cell mor-

phology also changed from a state of initial inhibition (Supplement Figure S4A; cells were 

shriveled and sticky) to a state of release (Supplement Figure S4B; cells were scattered and 

plump), which may be the reason for improved tolerance and increased yield. 

Ethanol concentration) Four S. cerevisiae strains, GJ2009, GJ2010, GJ2011, andGJ2012 (de‑
rived from GJ2008), with different ethanol synthesis capacities, were verified by fermentation under
190 g/L sucrose after 30 h. (‑OD520) 120 µL of these four S. cerevisiae strains’ fermentation supernatant
(five times dilution) was transferred to a 96‑well enzyme label plate and 80 µL 1M Fe(NO3)3 was
added for reaction at room temperature for 10min. Then the absorbancewasmeasured at OD520 nm.

3.2. Tolerance Engineering Improves Tolerance to High Sucrose Levels
Increasing the sugar concentration in fermentation broth is a direct way to increase

ethanol production. However, high sugar concentrations cause increased osmotic pres‑
sure and stress cell growth and vitality which in turn leads to a further decrease in yield.
Thus, ARTP mutagenesis and adaptive evolution are used to improve the robustness of
S. cerevisiae in the presence of high concentration sucrose. To find an appropriate inhibitory
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concentration of sucrose for the initiation of mutagenesis, we first tested the effect of dif‑
ferent sucrose concentrations on the growth of Saccharomyces cerevisiae GJ2008 (Figure 4)
and found that S. cerevisiae cell numbers peaked at 238 g/L sucrose. Thus, after ARTP
mutagenesis, the mutant yeast library was cultured and subcultured in a 286 g/L sucrose
fermentation medium. After stable growth was achieved, another round of mutagenesis
was carried out at a sucrose concentration of 381 g/L (Supplement Figure S3). The cell mor‑
phology also changed from a state of initial inhibition (Supplement Figure S4A; cells were
shriveled and sticky) to a state of release (Supplement Figure S4B; cells were scattered and
plump), which may be the reason for improved tolerance and increased yield.
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3.3. Isolation of Mutant Strains by TTC and Py‑Fe3+
Triphenyl‑2H‑tetrazoliumchloride (TTC) reacts with yeast metabolites and is reduced

by hydrogen into insoluble red tribenzoate (TTF) [22], which is a measure of cell vitality.
Mutant yeast cells that could tolerate 381 g/L sucrose were diluted on the coating plate,
TTC solution was added for initial screening, and 380 strains with the first and deepest
reddening were selected for subsequent screening using the Py‑Fe3+ method.

The 380 mutant strains were selected and cultured on 48‑well plates. Fermentation
broth supernatant (120 µL) and 80 µL ferric nitrate (1 M) were reacted at room temper‑
ature for 10 min and OD520 measurements were performed. A small number of strains
had a significantly lower OD520 value in the fermentation broth (Figure 5). The six strains
(Shown by arrows in Figure 5) with the lowest OD520 value were selected for shaking and
the dominant NT‑F1 strain with the highest ethanol synthesis was obtained (Supplement
Table S1). To verify the feasibility of this method, two OD520 strains (NT‑FX and NT‑FY)
with higher values were randomly selected for fermentation from the 380 strains, but their
ethanol yield remained at about 80 g/L (Supplement Figure S5). The results illustrated
that it is not accurate to rely solely on respiratory intensity as a screening mechanism and
a more accurate screening method is necessary.
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Figure 5. Isolation of mutant strains by Py‑Fe3+. (A,B) The 380 mutant strains were selected and cul‑
tured on 48‑well plates. Fermentation broth supernatant (120 µL) and 80 µL ferric nitrate (1 M) were
reacted at room temperature for 10min andOD520 measurements were performed. (—‑) The dashed
line represents the OD520 value of S. cerevisiae GJ2008 fermentation under the same conditions(The
arrows indicate the selected strains).

3.4. Comparison of Ethanol Fermentation Capacity and Growth Capacity of Mutant and
Non‑Mutant Strains

Sucrose fermentation media of 286, 310, 333, 357, and 381 g/L were used to deter‑
mine the conditions for optimal ethanol production (Figure 6). In media with a 310 g/L
sucrose concentration, the ethanol yield by the mutant strain of NT‑F1 reached 135.58 g/L
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(17.18% (vol)) and the production efficiency was 81.64%. The ethanol yield of the par‑
ent strain GJ2008 reached the highest at 286 g/L sucrose concentration, which was only
112.55 g/L (the production efficiency was only 70.25%) (Figure 7). The ethanol yield of
NT‑F1 was 20.48% higher than that of parent strain GJ2008. In addition, the mutant strain
NT‑F1 had a higher growth performance in a high‑sugar environment than the parent
strain GJ2008 (Figure 8). This may explain the increase in ethanol production.
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4. Conclusions
This study established and implemented a new screening strategy for S. cerevisiae

mutagenesis. The yellow substance formed by the reaction of ferric nitrate with pyru‑
vate (or pyruvic acid radical ions) in the fermentation medium had a strong linear rela‑
tionship at OD520. The ethanol fermentation capacity of the derived yeast from the same
S. cerevisiae was inversely proportional to the concentration of pyruvate (or pyruvate rad‑
ical ions) in the fermentation broth. By establishing a high‑throughput Py‑Fe3+ screening
method, mutant S. cerevisiae strains with a high sugar tolerance were selected. The ethanol
yield of evolved S. cerevisiae NT‑F1 reached 135.58 g/L (17.18% (vol)) and the production
efficiency reached 81.64%, which was 20.46% higher than that of the non‑mutant strain
(GJ2008). While the mutant strain had an improved rate of sugar utilization and ability to
withstand a high osmotic pressure environment, organic solvent (ethanol), temperature,
oxidativion, and other stresseswere also involved in the ethanol fermentation process. The
design of new methods that are able to effectively remove these stresses from S. cerevisiae
cultures is needed. While it is difficult to separate and measure the amount of pyruvate or
pyruvic acid radical ions that react with ferric nitrate in this study, the established method
and its application will effectively promote high‑precision screening of S. cerevisiae culture
and promote the efficiency of ethanol synthesis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr10112186/s1, Figure S1: Structure of [Fe3O(CH3COCO2)6
(H2O)3]+ [23]; Figure S2: (A) Four S. cerevisiae strains, GJ2009, GJ2010, GJ2011, and GJ2012 (derived
fromGJ2008)with different ethanol synthesis capacities, were verified by fermentation under 190 g/L
sucrose. (B) 120 µL of these four S. cerevisiae strains’ fermentation supernatant (Five times dilution)
was transferred to a 96‑well enzyme label plate, and 80 µL 1M Fe(NO3)3 was added for reaction at
room temperature for 10min. Then the absorbancewasmeasured at OD520 nm; Figure S3: ARTPmu‑
tation and adaptive evolution; Figure S4 Comparison of cell morphology between mutant bacteria
and non‑mutant bacteria at sucrose concentration of 381 g/L after 24 h; Figure S5 Ethanol production
of the selected mutants with higher OD520; Table S1 Optimum strain fermentation and screening.
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