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Abstract: Range anxiety is a problem that restricts the development of pure electric vehicles. For this
reason, much research starts from a shift schedule and strives to improve mileage. However, the
proposed shift schedules have poor adaptive ability and are not suitable for dynamic conditions. In
this paper, a shift schedule based on reinforcement learning (RL) is proposed, which uses Q-learning
for optimization. However, the massive state variables and huge Q table in the state space put forward
higher requirements on the computing power and storage space of the controller. Traditionally, the
application of RL algorithms needs to rely on expensive GPU devices. To reduce high costs, we use
an innovative treatment method, the optimal Latin hypercube design (Opt LHD), which is used for
sampling, and state reduction is performed on the state space. Based on the above, the mileage is
effectively improved by applying the shift schedule based on RL.

Keywords: pure electric vehicle; shift schedule; reinforcement learning; Q-learning; optimal Latin
hypercube design

1. Introduction

The shift schedule affects the performance of the pure electric vehicle, such as power
consumption economy and driving comfort. Research on shift schedule is conducive to
further tapping the energy-saving potential of the pure electric vehicle, reducing the energy
consumption and increasing the cruising range. Therefore, the study of the shift schedule
plays an important role in pure electric vehicles.

J. Ruan et al. designed two customized shift schedules for DCT and CVT to improve
economic performance [1]. Han K et al. proposed a collaborative optimization method for
transmission design and shift schedule, which can effectively reduce energy consumption
and improve the regenerative braking energy recovery efficiency [2]. Nguyen CT et al.
developed an optimal shift schedule for acceleration and braking conditions based on a four-
gear transmission with two motors. This shift schedule considers the motor efficiency and
torque distribution, and also considers the influence of transmission ratio between different
gears. Aiming at the hysteresis zone of the upshift and downshift curves, they developed
a coordinated control strategy, which can achieve simultaneous upshift and downshift,
effectively eliminating the shift interval and improving the shift quality [3]. To improve
energy consumption, Kolmanovsky I et al. proposed a method for hierarchical optimization
of the vehicle speed and shift schedule by using short-range traffic information flow. In this
method, the integrated control problem is decomposed into pure continuous and discrete
sub-problems, which overcomes the problem of calculating the integrated variable speed
optimal control due to the different signal types of the vehicle speed signal and the gear
signal [4]. Sujan VA et al. invented an adjustable shift schedule. The specific principle is to
determine the loss power to overcome vehicle resistance according to the vehicle operation
data. Based on the determined loss power, the vehicle operation parameters are optimized
to compensate the loss of power. The shift schedule is dynamically adjusted to achieve the
optimal shift and improve the adaptability to the dynamic unknown working conditions [5].
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Jiang et al. used the volume Kalman filter estimation algorithm to accurately identify
vehicle mass and road slope of the pure electric bus and use them as shift parameters.
They proposed a four-parameter economical (EC) shift schedule considering vehicle speed,
throttle opening, vehicle mass and road slope. The shift schedule not only considers the
state of the vehicle itself, but also considers the influence of the vehicle mass change and the
road slope on the driving gear, which further reduces the energy consumption of the vehicle,
effectively avoids the frequent shift, and improves the riding comfort [6]. To integrate the
power performance and economy of the vehicle, Huang et al. used the NSGA-II algorithm
to conduct multi-objective optimization of transmission ratio of each gear, and solved
the pareto optimal solution of the combination of transmission ratio. They designed a
shift schedule based on dynamic programming (DP) with the goal of minimizing power
consumption [7]. Sun et al. formulated a dynamic shift schedule according to the load
characteristic diagram of the motor, which can significantly improve the working efficiency
of the motor [8]. Lin et al. proposed a hybrid shift schedule for mechanical automatic
transmission of pure electric city buses. By collecting and analyzing relevant data through
bench test and real vehicle road test, the difference of driving conditions, shift characteristic
points, and actual simplified transmission efficiency of urban routes are extracted. From
the off-line global optimization results solved by DP algorithm, the comprehensive shift
curve is extracted, and the typical features are fused together in a compatible way, so that it
has better energy consumption performance under different working conditions in the city,
and the universality of shift schedule is improved [9]. Qin et al. designed a shift schedule
based on model predictive control. The changing trend of future working conditions is
considered in the shift schedule, and the future vehicle speed change is predicted by neural
network, and the trained neural network is used as the prediction model. Based on the
optimal shift schedule designed by DP algorithm, and taking the shift schedule as the
rolling optimization part of the model predicted shift schedule, the model predicted shift
schedule was established. It not only saves energy consumption, but also reduces the shift
frequency [10]. Li et al. proposed an algorithm to identify vehicle mass and road slope
using the recursive least squares method, and based on this, designed a five-parameter shift
schedule considering vehicle speed, acceleration, accelerator pedal (AP) opening, vehicle
mass, and road slope. In addition to considering vehicle state and external environmental
factors, the shift schedule also introduces the acceleration, which can reflect the dynamic
performance of the vehicle, fully considers the driving intention of the driver, effectively
improves the energy consumption performance, and realizes intelligent shift [11].

The research on the shift schedule of the pure electric vehicle mainly focuses on
optimization, and a few shift schedules increase the shift parameters to improve the
identification of the vehicle to the working condition, so that the ECU can make the optimal
shift decision. The studies mentioned above improved vehicle performance. However,
their essence does not get rid of the limitation of schedule-based shifts. Under the dynamic
conditions, its energy consumption performance depends on the model prediction accuracy
and identification accuracy. If the model is inaccurate or not accurate enough, the effect of
shifting gears according to the shift schedule will be greatly reduced, which will inevitably
lead to an increase in energy consumption.

Thus, this paper proposes a shift schedule based on RL to solve the problem of poor
energy consumption under dynamic conditions. The principle of RL is that in an unknown
environment, an agent can continuously improve its own behavior through continuous
interaction with the external environment. The optimal control of the system can be realized
by this operation, which is not limited by model accuracy and identification accuracy [12].
Although the RL using Q-learning can achieve the optimal learning effect, the massive
state variables in the state space and the huge Q table put forward higher requirements
on the computing power and storage space of the controller. Applications need to rely on
expensive GPU devices, so the cost is high and the requirements are not met. Thus, the
Opt LHD is used for sampling and state reduction is performed on the state space. Using
Opt LHD sampling can reduce the number of tests, relieve the computational burden of
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the computer, and effectively reduce the computing power requirement on the premise of
ensuring the uniformity and stability of the sampling.

The main research contents of this paper are as follows: The construction of the
longitudinal dynamics model of the pure electric vehicle, the design of the EC shift schedule
based on the vehicle speed and the AP opening, the design of the intelligent shift schedule
based on RL, and the hardware of the pure electric vehicle in-loop simulation test. The
remaining part of the paper is organized as follows. In Section 2, the vehicle dynamics
model is built. Section 3 illustrates the design of the shift schedule based on RL. In Section 4,
the in-loop simulation experiments are introduced. Finally, the conclusions are drawn in
Section 5.

2. Modeling of the Pure Electric Vehicle

Modeling plays an important role in reducing R&D costs and improving development
efficiency to build the pure electric vehicle model. The more accurate the model, the
higher the reliability of the simulation experiment. The model of the pure electric vehicle
includes the battery model, motor model, power train model, vehicle dynamics model, and
driver model.

2.1. Driver Model

The driver model is mainly used to simulate the driver’s AP and brake pedal. The
operating conditions are used as a reference, and the vehicle speed of the model simulation
is used as a feedback. The AP opening and the brake pedal (BP) opening are the output in
real time, and the driver model is based on PID control theory.

2.2. Motor Model

This paper adopts experimental data modeling [13]. The data modeling is based
on the efficiency MAP of the motor and the external characteristic curves of the motor
under different loads. In addition, the method of interpolation look-up table is used to
determine the output of the motor under different working conditions. Figure 1 shows
a MAP diagram of the motor efficiency. Figure 2 shows a graph of the motor speed and
torque external characteristic curve.

In the modeling process, the input torque of the motor is related to the pedal opening.
In general, the output torque of the motor has a linear relationship with the pedal opening,
which is

Tin = f1(α, nm) (1)

where Tin denotes the output torque of the motor, and the unit is Nm; α is the AP opening,
and the range is 0–1; nm is the meaning of the motor speed, and the unit is rpm; f1 presents
the torque interpolation function of the motor.

The input power of the motor can be expressed as

Pin =
Tinnm

9550
(2)

where Pin is the input power of the motor, and the unit is kW.
In addition, because the motor has a certain power loss, its input power and output

power are different. Moreover, the efficiency of the motor is different, and the degree of
power loss is also different. The efficiency of the motor can be expressed as a function of
the motor speed and motor torque, which is

ηm = f2(Tin, nm) (3)

where ηm denotes the efficiency of the motor; f2 represents the efficiency interpolation
function of the motor.
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The output power of the motor is

Pout = Pinηm (4)

where Pout is the output power of the motor, and the unit is kW.
When the vehicle is braking, the braking energy recovery of the motor also needs to

be considered. Driving the motor can be regarded as doing negative work, which can be
regarded as a process of charging the battery, and the tentative charging efficiency is 0.3.
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Figure 2. External characteristic curve.

2.3. Battery Model

This paper involves the study of the shift schedule of the pure electric vehicle, and
the battery model considers parameters such as battery current, voltage, and SOC state
estimation. Therefore, it is decided to use a relatively simple electrical model that is
convenient for simulation analysis as a theoretical reference for modeling. Its equivalent
circuit is shown in Figure 3.
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According to Figure 3, the output voltage of the battery can be expressed as

Uout = U0 − IR (5)

where Uout denotes the output voltage of the battery, and the unit is V; U0 is the voltage of
the battery, and the unit is V; I is the meaning of the output current of the battery pack; R
represents the internal resistance of the battery, and the unit is Ω.

The output power of the battery is the input power of the motor. Combined with the
output voltage of the battery, the output current of the battery can be calculated as{

Pout = Pin

I = U0−
√

U0
2−4RPin

2R

(6)

Assuming that the initial SOC value of the battery is 0.8, the SOC estimation of the
battery adopts the ampere-hour integral method [14], which can be expressed as

SOCt+1 = SOCt −
I

3600Q0
(7)

where SOCt+1 is the meaning of the battery SOC in the next second, and the unit is %; SOCt
represents the battery SOC at the current moment, and the unit is %; t is the time, and the
unit is s; Q0 denotes the battery capacity, and the unit is AH.

2.4. Power Train Model

The motor involved in this paper is mechanically connected to the AMT without
a clutch. Therefore, it can be considered that there is no loss in the process of torque
transmission, and the output torque of the motor is the input torque of the power train.
Therefore, the output torque of the power train can be expressed as

Ttrans = Tinigi0η (8)

where Ttrans is the output torque of the transmission, and the unit is Nm; ig denotes the
transmission ratio of each gear; i0 is the meaning of the main reducer transmission ratio; η
represents the transmission efficiency of the AMT system.

The output speed can be expressed as

ntrans =
nm

igi0
(9)

The gear selection and the transmission ratio of each gear are given by the shift
schedule in the function module.

2.5. Vehicle Dynamics Model

The tractive force of the vehicle is

Ft = Ff + Fw + Fj + Fi (10)

where Ft denotes the traction required for driving; Ff is the rolling resistance; Fw is the
meaning of the air resistance; Fj represents the acceleration resistance; Fi is the slope
resistance.

The driving resistance, air resistance, acceleration resistance, and gradient resistance
can be expressed as: 

Ff = mg f

Fw = CD Av2

21.15
Fj = δm dv

dt
Fi = mg sin θ

(11)
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where m denotes the vehicle mass, and the unit is kg; g is the gravitational acceleration,
and the unit is m/s2; f is the meaning of the rolling resistance coefficient; CD represents
the air drag coefficient; A is the vehicle windward area, the unit is m2; δ represents the
automobile rotating mass conversion factor; θ is the slope angle.

The true vehicle speed can be derived from the combination of Equations (11) and (12).

v =
∫ Fq − Ff − Fw − Fi

δm
dt (12)

3. Design of Shift Schedules
3.1. Design of EC Shift Schedule

The EC shift schedule is designed with economy as the goal, and the working efficiency
of the motor is maintained in the high-efficiency region by selecting the appropriate shift
point, so as to improve the driving range [15]. The current EC shift schedule control
parameters generally use a pedal opening and vehicle speed. The design principle is
to compare the working efficiency of the motor in different gears under the same pedal
opening, and the efficiency intersection point of adjacent gears is the shift point at the pedal
opening. The efficiency point is obtained as follows.

The relationship between the motor speed and the vehicle speed is

u =
0.377nmr

igi0
(13)

Simultaneous Equations (1), (3), and (13) can obtain the relationship between motor
efficiency and AP opening, vehicle speed, and transmission ratio.

ηm = f2( f1(α,
uigi0

0.377r
),

uigi0
0.377r

) (14)

The efficiency surface of each gear is shown in Figure 4. The shift points of each gear
are the points where the motor efficiency of the previous gear decreases and the motor
efficiency of the next gear increases.
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By changing the pedal opening within 0 and 1, the shift points at different openings
can be extracted. To prevent the frequent shift problem caused by the pedal opening or
vehicle speed near the shift point, 5 km/h is used as the shift speed difference. The EC
shift schedule curve can be obtained, as shown in Figure 5. The six curves in the figure
represent the downshift curve from 2nd gear to 1st gear, the upshift curve from 1st gear to
2nd gear, the downshift curve from 3rd gear to 2nd gear, the upshift curve from 2nd gear
to 3rd gear, the downshift curve from 4th gear to 3rd gear, and the upshift curve from 3rd
gear to 4th gear.
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As can be seen from Figure 4, although the EC shift schedule meets the requirements
of the long battery life, the motor efficiency at the shift point is low (about 80%).

3.2. Design of the Shift Schedule Based on RL
3.2.1. Establishment of States and Actions of RL Algorithms

Energy consumption is directly related to the efficiency of the motor, and the efficiency
of the motor is directly related to its speed and torque. According to Equation (13), the
motor speed is directly related to the vehicle speed. Therefore, the vehicle speed needs to
be designed as one of the state variables. To describe the vehicle state finely and consider
the representation of the state variables in the later stage, the vehicle speed range from 0 to
100 km/h is uniformly discretized into 99 specific states, which is

v(t) = [0, 1.02, . . . , 100] (15)

where v(t) is the vehicle speed at time t.
Secondly, the motor speed is also related to the transmission ratio, so the current gear

is also selected as a state variable. Since the research object is equipped with a 4-gear AMT,
the first gear transmission ratio is extremely large, which is only used for large torque
output, and is generally used for heavy loads and climbing. In normal driving conditions,
the 2nd gear can be used to meet the needs. This paper does not consider the change of the
slope and the mass of the vehicle, so it is decided to use three gears. The gear state can be
described as

gear(t) = [2, 3, 4] (16)

where gear(t) is the gear at time t.
In addition, the energy consumption of the vehicle depends to a large extent on the

proficiency of a person’s driving skills. In the absence of unexpected emergencies, frequent
rapid acceleration or rapid deceleration will lead to poor energy efficiency. Therefore,
the acceleration also needs to be designed as a state variable. According to the offline
measurement of a large number of urban working conditions, the acceleration interval is
taken as −2 to 2 m/s, and it is also uniformly discretized into 99 state points, which is

acc(t) = [−2,−1.96, . . . , 0, . . . , 1.96, 2] (17)

where acc(t) is the acceleration at time t.
In summary, the state set can be expressed as

S = s(t) = [gear(t), v(t), acc(t)] (18)

The state set S can be expressed as a three-dimensional state space, and the number of
states in the state space reaches 99 × 3 × 99 = 29,403.
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To realize intelligent shift, the action of the RL is designed as the target gear, and it
is designed as a discrete one-dimensional space; that is, the target gear is discrete in three
points, which is

A = a(t) = [2, 3, 4] (19)

where a(t) represents the target gear at time t.
Each state variable in the state space corresponds to three different Q values. Therefore,

the number of Q values in the Q table is 29,403 × 3 = 88,209. The state-action value function
is stored by the Q table learned, and its state-action will be on the order of tens of thousands.

In addition, the Opt LHD sampling is adopted to reduce the state space.

3.2.2. RL State Space Reduction

When there is a lot of experimental data, Opt LHD sampling can reduce the number of
experiments, relieve the computational burden of the computer, and effectively reduce the
computing power requirement under the premise of ensuring the uniformity and stability
of the sampling. To make the state variables of the shift schedule based on RL fill the
entire state space as much as possible, this paper conducts sampling based on the idea of
maximizing and minimizing distance. The specific steps are as follows: First, the scope
of the state space is determined. Secondly, the minimum distance between each state
variable and adjacent state variables is used as the characteristic distance, and the number
of states in the state space after sampling is determined according to the requirements of the
experimental design. Then, based on the number of states in the state space after sampling,
the maximum distance between adjacent state variables is determined and sampled, so as
to reduce the state space, and the maximum and minimum distance can be expressed as

min
1≤i,j≤n,i 6=j

d(xi, xj)

d(xi, xj) = dij =

[
m
∑

k=1

∣∣∣xik − xjk

∣∣∣t]1/t (20)

where d(xi, xj) represents the distance between two sample points (xi, xj).
The principle of determining the number of samples in this paper is to ensure the

normal operation of the TCU, and the maximum number that can be programmed into the
TCU shall prevail. The sampling results are shown in Figure 6.
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Figure 6. Opt LHD sampling diagram.

Although the degree of refinement of the state description after sampling is reduced,
the requirements for controller computing power and storage space are greatly reduced,
and the uniformity and stability of sampling also ensure that the reduced state variables
are representative.
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3.2.3. Return Function of the Shift Schedule Based on RL

The reward function R(s(t), a(t)) in this paper is as follows

R(s(t), a(t)) =



100
E f f icient(t)−e f f icient(t) +

1
SOC1(t)−SOC2(t)

, E f f icient(t)− e f f icient(t) ≥ 0.05&&SOC1(t) > SOC2(t);
100

E f f icient(t)−e f f icient(t) +
1

SOC1(k)−SOC2(t)
, E f f icient(t)− e f f icient(t) ≥ 0.05&&SOC1(t) < SOC2(t);

1000 ∗ (E f f icient(t)− e f f icient(t)) + 1
SOC1(t)−SOC2(t)

, E f f icient(t) > e f f icient(t)&&E f f icient(t)− e f f icient(t) < 0.05&&SOC1(t) > SOC2(t);

1000 ∗ (E f f icient(t)− e f f icient(t)) + 10
SOC2(t)−SOC1(t)

, E f f icient(t) > e f f icient(t)&&E f f icient(t)− e f f icient(t) < 0.05&&SOC1(t) < SOC2(t);

0, E f f icient(t) = e f f icient(t)&&SOC1(t) = SOC2(t);
10

SOC1(t)−SOC2(t)
, E f f icient(t) = e f f icient(t)&&SOC1(t) > SOC2(t);

10
SOC1(t)−SOC2(t)

, E f f icient(t) = e f f icient(t)&&SOC1(t) < SOC2(t);
10

E f f icient(t)−e f f icient(t) +
1

SOC1(t)−SOC2(t)
, E f f icient(t) < e f f icient(t)&&SOC1(t) < SOC2(t);

10
E f f icient(t)−e f f icient(t) +

1
SOC1(t)−SOC2(t)

, E f f icient(t) < e f f icient(t)&&SOC1(t) > SOC2(t);

(21)

where E f f icient(t) denotes the efficiency of the motor after shifting at time t; e f f icient(t)
is the meaning of the motor efficiency that keeps the original gear at time t; SOC1(t) is the
battery SOC after shifting at time t; SOC2(t) represents the battery SOC of the original gear
and is maintained at time t.

From Figure 5, it can be seen that the difference between the efficiency at the motor
shift point and the maximum efficiency of the motor is about 15%. Under the premise of
considering the economy and taking into account the shift frequency at the same time, after
many tests, the efficiency difference is finally designed to be 5%.

3.2.4. Establishment of the Shift Schedule Based on RL

In this paper, the action set is designed as the target gear, so the RL algorithms of
Q-learning are mainly used to find the best target gear. Therefore, under each time step,
the optimal control strategy π∗(s(t), a(t)) can be expressed as

π∗(s(t)) = argmax
at

Q(s(t), a(t)) (22)

where Q(s(t), a(t)) is the meaning of the Q value to perform the action a(t) in the current
state s(t). In this paper, the optimal Q value is defined as

Q∗(s(t), a(t)) = R(s(t), a(t)) + γmax
at∈A

Q∗(s′(t), a′(t)) (23)

where R(s(t), a(t)) is the meaning of the reward obtained after performing the current
action a(t); γ denotes the discount factor, γ ∈ [0, 1]; max

at∈A
Q∗(s′(t), a′(t)) represents the

maximum value of all actions at the next moment corresponding to the Q table in the next
state s′(t).

Furthermore, the update of the Q table can be expressed as

Q(s(t), a(t)) = Q(s(t), a(t)) + α•(R(s(t), a(t)) + γmax
at

Q(s′(t), a′(t))−Q(s(t), a(t))) (24)

where α is the recession factor, α ∈ [0, 1].
This paper adopts the more common strategy ε− greedy in RL to select actions. To

put it simply, strategy ε− greedy is a regulation strategy for the tendency of an agent to
choose two optimization methods when choosing an action [16], which can be specifically
expressed as

π∗(a(t)|s(t)) =
{

a = random(A) i f ee ≤ ε

a = max
a

Q(s(t), a(t)) i f ee > ε
(25)

where ε is the random exploration probability, ee is the meaning of the random number,
and the unit is [0~1].

In the early stages of offline training, to improve the learning efficiency, ε takes a larger
value, so that the optimization method is more inclined to random exploration, so as to
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find as many better actions as possible. With the continuous progress of offline training,
the value of ε gradually decreases, so that the optimization method gradually tends to the
optimal method of the Q table until the Q table converges. The offline training process of
the Q table is shown in Figure 7.
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At each step, the RL agent determines the current state with the current gear, accel-
eration, and vehicle speed. Next, select the corresponding action based on the ε− greedy
strategy and execute it to obtain the reward value in the current state. Then, calculate the
Q value under the current action and update the Q table according to the reward value
and the historical cumulative reward. Finally, the next state is updated based on the state
parameters such as the current gear, and the above steps are repeated to update the Q value
under the next state and action until the training ends, and the Q table is derived.

The purpose of offline training is to ensure that the vehicle can drive in the most
economical gear in different states as much as possible. Therefore, the working conditions
of the offline training should cover the entire state space as much as possible to ensure
that the vehicle can drive in the optimal gear in any state. In this paper, four sets of
internationally recognized test conditions are used to train the Q meter offline. The four
groups of working conditions are the urban working condition WVUCITY for low-speed
driving, the suburban working condition WVUSUB for medium-speed driving, the high-
speed working condition HWFET for high-speed driving, and the mixed working condition
UDDS [17]. The main eigenvalues are shown in Table 1.

Table 1. Characteristic values of each working condition.

Working
Condition Time Distance vmax amax

WVUCITY 1408 s 5.29 km 57.65 km/h 1.14 m/s2

WVUSUB 1665 s 24.81 km 72.10 km/h 1.30 m/s2

HWFET 766 s 16.41 km 96.40 km/h 1.43 m/s2

UDDS 1370 s 11.99 km 91.25 km/h 1.48 m/s2

It can be seen from Table 1 that the four groups of operating conditions almost cover the
state of the full speed section. Therefore, using four sets of working conditions as training
conditions can ensure that the coverage of the state space can reach the expectation.
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Figures 8–11 shows the results obtained by training the four groups of working
conditions in the order of urban working conditions→ suburban working conditions→
high-speed working conditions→mixed working conditions.
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In Figure 8a, for the front and rear of the WVUCITY condition, the vehicle speed
is generally lower. In the middle section, there are several violent accelerations and
decelerations, and the vehicle speed is high. Therefore, in Figure 8b, the front and rear
are mostly driven in 2nd/3rd gear, and sometimes it is raised to 4th gear in the middle.
However, due to the large change in vehicle speed at this stage, the gear is not maintained
for a long time. The urban training Q table is taken as a reference, the suburban working
conditions are trained, and the results are shown in Figure 9. In Figure 9a, at around 200 s,
there are two periods when the vehicle speed exceeds 50 km/h in the WVUSUB condition.
The gear in Figure 9b is also raised to 4th gear. However, at 400~600 s, according to the
operating condition information in Figure 9a, when the vehicle speed exceeds 50 km/h, it
does not shift to 4th gear. It may be because the corresponding state point is not collected
when Opt LHD is used for sampling, so that in this state, the AMT selects the operation to
maintain the original gear.

The results of continuing to train the high-speed case are shown in Figure 10. Under
high-speed conditions, the frequency of shift is significantly reduced because the vehicle
runs at a high speed throughout the entire journey, and there is almost no rapid acceleration
or rapid deceleration.

After the training of the first three working conditions, as shown in Figure 11, it is
the training result under the mixed working conditions. It can be found that although the
vehicle speed fluctuation is relatively severe, the real-time performance of the gear is better
in the low, medium, and high speed stages.

3.2.5. Model Simulation Verification

To test the performance of the shift schedule based on RL in terms of energy consump-
tion economy, the next step is to conduct software-in-the-loop simulation tests for two
shift schedules based on the pure electric vehicle model. Considering the usage scenarios
and uses of the research object, it was decided to adopt the China light vehicle test cycle
(CLTC) specified in the national standard of the People’s Republic of China as the test
condition [18]. The CLTC is shown in Figure 12.
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Figure 12. CLTC condition.

The CLTC working condition information is taken as the expected vehicle speed.
After it is given to the driver model, the output AP opening is shown in Figure 13, and
the acceleration and vehicle speed following output by the driving model are shown in
Figures 14 and 15 respectively.
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Figure 15. Speed following situation.

As can be seen from Figure 13, due to the rapid fluctuation of operating conditions,
the change of the AP opening is also more frequent. Figure 14 also proves that there will be
rapid acceleration during driving. The pedal opening will appear to be deeply depressed
to ensure the power of the vehicle. It can be seen from Figure 15 that the actual vehicle
speed can follow the target vehicle speed well, which further ensures the reliability and
accuracy of the subsequent simulation. Based on the above working condition information,
the two shift schedules are brought into the vehicle model for simulation [19]. The gear
comparison diagram is shown in Figure 16, and the SOC result comparison diagram is
shown in Figure 17.
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Combined with the simulation conditions, it can be seen from Figure 16 that in the
low-speed road section, the vehicle speed is generally low, and the vehicle is driven in
a low gear under the EC shift schedule. The shift schedule based on RL adopts shifting
gears to deal with the change of working conditions. This is due to the change of the
state of the vehicle resulting in the change of the optimal gear, which shows that the shift
schedule based on RL has a certain adaptability [20]. In the medium-speed section, due
to the severe fluctuation of working conditions, frequent shift occurs under the EC shift
schedule, while the problem of frequent shift does not occur under the shift schedule based
on RL, which also proves the rationality of the design of return function in the previous
paper. In the high-speed road section, due to the sudden deceleration in the second half of
the high-speed working condition, the shift schedule based on RL and the EC shift schedule
are adopted to change the gear position. Combining with Figure 17, it can be seen that both
of them have different degrees of braking energy recovery, which is in line with practical
applications. At the same time, the whole cycle is about 16.4 km in length. In terms of data,
under the EC shift schedule, the SOC remains 65.79%. Under the shift schedule based on
RL, the SOC remains 73.04%, and the energy consumption is reduced by about 7.27%.

On the whole, shift schedule based on RL can effectively reduce the energy consump-
tion of the pure electric vehicle and improve the cruising range.

4. Hardware-in-the-Loop Experiment
4.1. Introduction to Hardware-in-the-Loop Platforms

The pure electric vehicle performance comprehensive test platform takes PXI as the
core, and integrates six hardware modules: Driving simulator (Modified version based
on cs75 console, Chang’an Automobile, Chongqing, China), battery pack (RiseSun MGL,
Beijing, China), wheel speed simulator, motor, AMT (self-development) and chassis dy-
namometer. The human-computer interaction platform developed based on LabVIEW
and the virtual environment built based on CarSim together constitute the software sys-
tem of the hardware-in-the-loop experimental platform [21]. The experimental platform
architecture is shown in Figure 18.
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The platform is mainly divided into three parts, which are the host computer, the
lower computer and the underlying actuator. The host computer is the PC side of the
computer and runs the human-computer interaction software written by LabVIEW. The
communication function between the PC and PXI is realized through the local area network
to ensure the real-time transmission and display of data. In addition, the virtual environ-
ment built based on CarSim is also displayed and runs on the PC side. The lower computer
is PXI, which realizes the signal interaction with the underlying actuator through CAN
communication, and feeds back the signal of the underlying actuator to the host computer.
The longitudinal dynamics model of the vehicle runs in the lower computer.

The underlying actuator mainly uses the AMT’s gear selection motor and drive motor.
According to the obtained vehicle status signal, the TCU judges the target gear, coordinates
and controls the response of the motor and the gear selection motor, and then realizes the
switching of gears. The TCU feeds back real-time signals to the lower computer through
CAN communication, and the host computer reads the real-time data fed back to the lower
computer by the underlying actuator through the local area network to realize the closed-
loop simulation of the system. In addition, driving simulators, battery packs, wheel speed
simulators, and chassis dynamometers can also be considered as categories of underlying
actuator. The driving simulator is used to output the AP/BP opening signal and the shift
handle position signal. The power battery pack provides power for the entire hardware-
in-the-loop test platform, and feeds back the SOC to the host computer in real time. The
wheel speed simulator is used to simulate the wheel speed. The chassis dynamometers are
used to simulate the driving resistance of the car during driving.

4.2. Hardware-in-the-loop Experiments and Analysis
Dynamic Shift Experiment

This section compares and verifies the two shift schedules through dynamic shift
experiments.

To ensure the consistency of the experimental conditions and eliminate the interference
of human factors on the experimental results as much as possible, this paper conducts
experiments based on fixed operating conditions, and comprehensively considers the
application scenarios of vehicles mainly in China. Therefore, the experiment is carried
out using China Typica, a typical domestic working condition. The China Typica working
condition is shown in Figure 19.
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In this test, the driver model running on the lower computer outputs the AP/BP
opening, and the driving simulator is only used to realize the position control of the
shift handle.

Figures 20–25 show the experimental results of the EC shift schedule based on the
hardware-in-the-loop platform and the experimental results of the shift schedule based
on RL. The two state parameters of the EC shift schedule are vehicle speed and pedal
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opening. When the hardware in the loop platform is tested, the working condition is read
by the host computer software and directly sent to the driver model of the lower computer
for operation.

As shown in Figure 20, the change of the pedal opening is in line with the changing
trend of the working conditions. There is good feedback in the rapid acceleration and
rapid deceleration segments, indicating that the output parameters of the driver model are
accurate and real-time.

The reliable driver model ensures the smooth progress of the dynamic shift schedule
experiment, and its gear map and SOC change map are shown in Figures 21 and 22. In the
low-speed section, although the vehicle speed fluctuates violently, the two state parameters
do not reach the shift threshold, the AMT does not shift under the EC shift schedule. In the
medium-speed section, when the vehicle speed exceeds 30 km/h, the AP opening exceeds
at 50%, and the AMT will shift to the 3rd gear. Only when the vehicle speed exceeds 50
km/h and the AP opening exceeds 70%, the AMT will shift to the 4th gear. There were only
three times of driving in 4th gear during the whole journey, and in high probability cases,
they were all in low gears and driving with a large AP opening. Figure 22 reflects the SOC
change under the EC shift schedule. The SOC change under this condition is 4.87%. The
acceleration is calculated comprehensively based on the virtual load dynamically imposed
by the chassis dynamometer, and the output is shown in Figure 23. It can be seen from the
figure that the acceleration varies between−1 and 1 m/s. At the same time, the acceleration
shows an instantaneous sudden change and short-term maintenance. The comparative
analysis shows that this is also consistent with the characteristics of rapid acceleration and
rapid deceleration under the China Typica working condition, which can reflect the state
change of the vehicle to a certain extent.

Figure 24 reflects the gear map under the shift schedule based on RL. It is not difficult
to see that the shift frequency is significantly increased compared with the EC shift schedule,
and the frequency of switching back and forth between 2nd/3rd gear is mostly increased.
This is because the Q table that stores the reinforcement learning shift rule defines the
optimal gear in each vehicle state based on the motor efficiency. By analyzing the China
Typica working condition, it is not difficult to find that the vehicle speed in this working
condition mostly fluctuates between 0 and 40 km/h, and switching between 2nd/3rd gear
is a normal phenomenon. In addition, in the range of 1200~1300 s, there is a maximum
vehicle speed (60 km/h) under this working condition, but during the experiment, it did
not increase to 4th gear in this state. Through the collected vehicle state parameters, the
state of the vehicle is not found by searching the Q table. The reason for this situation is
that the Opt LHD sampling results in the reduction of state variables, so when the vehicle
reaches this state, the operation of maintaining the original gear is adopted by default.

The shift schedule based on RL designed in this paper is based on economy. The
SOC change map as shown in Figure 25. The change of SOC is 1.69%. Compared with the
EC shift schedule, the energy consumption is reduced by about 3.18%, which proves the
feasibility and application potential of the shift schedule based on RL.

Experiment results of the EC shift schedule:
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5. Conclusions

In this paper, a multi-speed AMT pure electric vehicle is taken as the research object,
and a shift schedule based on RL is proposed to improve vehicle energy performance. The
main conclusions are as listed as follows:

(1) The proposed shift schedule can continuously self-learn according to the reward
and punishment mechanism designed by the reward function and match the best
gear according to the principle of economy. It solves the problem of high energy
consumption caused by poor adaptability of traditional shift schedules.
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(2) The Opt LHD was introduced to reduce the state space of the Q table of the shift
schedule, and solved the problem that the shift schedule could not be embedded
in the TCU due to the “dimension disaster”. Using Opt LHD sampling can reduce
the number of trials, ease the computational burden of the computer, and effectively
reduce the computing power demand.

(3) Compared with the EC shift schedule, energy consumption is reduced by about 3.18%
by using the shift schedule based on RL. The feasibility and application potential of
the shift schedule based on RL have been proven.

Overall, the method proposed in this paper taps the energy economy potential of
multi-speed pure electric vehicles. The shift schedule based on RL proposed in this paper
provides a new case for the combination of machine learning and shift schedule, and also
provides a new idea for reducing the energy consumption of electric vehicles. Researchers
can use other machine learning methods to optimize the shift schedule, which is not limited
to RL. However, the proposed method has some shortcomings. First of all, due to the
consideration of the impact of shift frequency on ride comfort, the design of the reward
function is not based on the highest efficiency, but is designed in the form of a difference.
Although shift frequency is reduced, energy consumption has been improved. Secondly,
due to the problem of controller computing power, the state space of the Q table should not
be too large. Therefore, the number of state variables is limited, and the accuracy of the
Q table to describe the vehicle state needs to be further improved. In the future, through
continuous research, the above problems will be solved.
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