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Abstract: This work explores for the first time the use of a fed-batch and continuous packed-
bed millibioreactor for the chemoenzymatic oxidation of 2,5-furandicarboxaldehyde (DFF) to 2,5-
furandicarboxylic acid (FDCA). Different operational variables were studied: temperature, substrate
concentration, and flow rate using different reactors (batch, fed-batch, and a continuous packed-bed
bioreactor). The best yield (100%) was achieved using the fed-batch reactor at an H2O2 flow rate of
3 µL/min with a substrate concentration (DFF) of 100 mM. Regarding the specific productivity, the
highest values (>0.05 mg product/min g biocatalyst) were reached with the operation in the fed-batch
bioreactor and the continuous packed-bed bioreactor. The yield of the biocatalyst decreased by 98%
after the first reaction cycle during the operational stability tests, due to a substantial inactivation of
the biocatalyst by H2O2 and peracid. In this study, it is possible to select the operational variables
in fed-batch and continuous reactors for chemoenzymatic oxidation that can increase the yield and
specific productivity; however, the stability of the biocatalyst should be improved in future research.

Keywords: 2,5-furandicarboxaldehyde; 2,5-furandicarboxylic acid; chemoenzymatic oxidation; con-
tinuous oxidation; fed-batch oxidation

1. Introduction

Due to the depletion of non-renewable natural resources such as petroleum-based oil,
biorefineries are expected to be central in the manufacturing of biogenic raw materials, such as
chemical products and fuels. Numerous investigations in the academic and industrial fields
give an account of the efforts to replace non-renewable sources with renewable ones [1–4].

Lignocellulosic residues are an essential raw biomass source for obtaining highly func-
tionalized building blocks using different valorization strategies [1–3]. These compounds
of great interest are furfural (FF) and 5-hydroxymethylfurfural (HMF), which correspond
to byproducts of lignocellulosic pre-treatments [5,6]. The conventional way of synthesizing
FF and HMF is by triple acid-dehydration of pentoses to obtain FF and hexoses to produce
HMF [7,8]. The interest is that these molecules can be functionalized in different ways to
obtain building blocks for creating new products [9–13].

Complete oxidation of HMF results in a 2,5-furandicarboxylic acid (FDCA). FDCA is a
compound of lavish attention because through its polymerization with ethane 1,2 diol, it
forms polyethylene furoate (PEF), which may replace the petroleum-based PET [14–16] and
is considered within the top twelve building blocks. In addition, a promising application
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of FDCA has been reported as a biobased acid catalyst for the biphasic fractionation of
lignocellulose [17].

The complete oxidation of HMF to FDCA is not trivial; it involves three consecutive
oxidation steps (Figure 1a). Because the classical synthesis of FDCA is expensive for
using metals as catalysts [18,19] and environmentally unfriendly due to the use of high
pressure, high temperatures, and volatile and hazardous organic solvents [19–23], new
techniques have been developed as inexpensive inorganic bases [24], lithium hydroxide [25],
oxygen [26], enzymes [14,27–31], and whole cells [32,33].
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Figure 1. The pathway to produce FDCA. (a) From HMF and (b) chemoenzymatic oxidation of
2,5-furandicarboxaldehyde (DFF) to 2,5-furandicarboxylic acid (FDCA). HMFCA: 5-hydroxymethyl-
2- furan carboxylic acid, FFCA: 5-formyl-2- furancarboxylic acid.

Direct bio-oxidation of HMF to FDCA is challenging to carry out. For this reason, and
because the biotransformation of HMF to DFF is selective and is well documented [30], an
exciting alternative is to oxidize chemoenzymatically the DFF to FDCA [29,34] (Figure 1b).
This type of oxidation has already been reported in batch mode with yields close to
100% [29,35]. However, to our knowledge, fed-batch and continuous mode operation
has not been yet carried out. The control of the operational variables and the operation
of reactors in different modalities can increase the yield of the reaction, reducing the
inactivation by substrate (H2O2) and product (peracid) of the biocatalyst [36,37]. Because
the enzymatic reactions carried out in fed-batch and continuous bioreactors reach higher
specific productivities [38–42], the main objective of this work is to study for the first
time the effect of operational variables, such as flow, temperature, and concentration of
substrates (DFF and H2O2) on the yield of the chemoenzymatic oxidation of DFF to FDCA
in a fed-batch and continuous packed-bed millibioreactor.
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2. Material and Methods
2.1. Chemicals

2,5-furandicarboxaldehyde (DFF) and 2,5-furandicarboxylic acid (FDCA) were pur-
chased from Sigma-Aldrich and were used without modification. Ethyl acetate, HPLC-
grade methanol, formic acid, and H2O2 (30%) were purchased by Merck, Chile S.A. The
immobilized lipase B from Candida antarctica (Novozym 435®) was kindly donated by Blu-
mos S.A. (Chile). The enzymatic activities reported by the manufacturers in the tributyrin
hydrolysis reaction are 2000 U/g.

2.2. Analytical Method for the Quantification of FDCA

The reaction products were quantified by HPLC (JASCO LC- 4000 with a diode array
detector) with a GL Sciences C18 HPLC column (100 × 4.6 mm I.D) at 264 nm under the
following conditions: mobile phase was composed of solutions A and B at a volume ratio
A/B = 85/15, where A = water/formic acid (99.5/0.5) and B = methanol (100). The flow rate
was 0.6 mL/min at 25 ◦C and the retention time for DFF was 4.5 min and FDCA 7.5 min.

2.3. Chemoenzymatic Synthesis of FDCA in a Batch Bioreactor

The chemoenzymatic oxidation of DFF to furnish FDCA in batch operation was carried
out in a sealed reactor (20 mL) in a shaker at 165 rpm and 40 ◦C. The reaction media was
prepared by mixing DFF (10 mM) with 0.2 mL of 30% H2O2 in 9.8 mL of ethyl acetate for
48 h. The reaction conditions to be evaluated are detailed in Table 1.

Table 1. Reaction conditions are to be evaluated.

Reaction Conditions Range

Concentration of DFF (mM) 10–50 mM

Biocatalyst loading (mg)/Activity (U) 100–835 mg/20–167 U

Amount of H2O2 30% (µL) 120–1021 µL

The reaction started by adding 0.167 g of Novozym 435®, which has already been
used in perhydrolysis reactions [37]. Reaction samples were taken at different times and
they were diluted with a mobile phase before analysing the reaction products on HPLC.
The experimental tests were carried out in duplicate. The yield was calculated with the
following Equation (1):

Yield (%) =

[
np − npo

nso
· vs

vp

]
∗ 100 (1)

where p = product; nPo = amount of product P at the start of the reaction (mol); nSo = amount
of substrate S at the start of the reaction (mol); nP = amount of product P at the end of the
reaction (mol); vS = stoichiometric factor for substrate S; and vP = stoichiometric factor
for product P.

2.4. Chemoenzymatic Synthesis of FDCA in Fed-Batch Bioreactor

The chemoenzymatic oxidation of DFF to FDCA was carried out in a sealed reactor
(20 mL) using 1 g of Novozym® 435. The H2O2 (2043 µL) was fed using a syringe pump
at a flow of 1 to 5 µL/min. The reaction volume was 10 mL, and the reaction media were
prepared by mixing 10 mL of ethyl acetate and DFF (100 mM). The reaction was carried out
in a rotary incubator at 160 rpm and 40 ◦C (to prevent the decomposition of H2O2). Reaction
samples were taken at different times to analyze the reaction products. The conversion was
calculated according to Equation (1). The experimental tests were carried out in duplicate.

2.5. Chemoenzymatic Synthesis of FDCA in a Continuous Packed-Bed Millibioreactor

The chemoenzymatic synthesis of FDCA in a continuous packed-bed reactor was
carried out in a column (0.4 cm of diameter × 12.6 cm of length) filled with 0.5 g of
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biocatalyst, as shown the Figure S1. The reaction media was formed by 50 mM of DFF
and 1021 µL of H2O2. The reaction operation was carried out at a flow of 7–20 µL/min at
30 ◦C. The samples were withdrawn/extracted at different times to analyze the reaction
products and the experimental tests were carried out in duplicate. The residence time (τ)
was determined according to Equation (2).

τ =
ε Vt

q
(2)

where ε denotes the void fraction, Vt is the total bed volume, and q is the substrate flow rate.
The void fraction of the packed-bed reactor was calculated with Equation (S1), resulting in
c.a 0.42 [43].

2.6. Operational Stability of the Biocatalyst

The stability of the biocatalyst under operating conditions was carried out in fed-batch
mode. In fed-batch mode, the reaction was started by adding 2043 µL of H2O2 using
a syringe pump at a flow of 1.46 µL/min. After 24 h, the biocatalyst was recovered by
filtration. The biocatalyst was washed three times with a 100 mM phosphate buffer of pH
seven and samples of the reaction medium were taken to determine the concentration of
FDCA by HPLC (details in Section 2.2 “Analytic method for the quantification of FDCA”).
The yield was calculated using Equation (1).

3. Results and Discussion
3.1. Chemoenzymatic Synthesis of FDCA in a Batch Reactor

Figure 2 details the chemoenzymatic oxidations in a batch reactor at different condi-
tions. The mg of biocatalyst and volume of H2O2 in each graph of Figure 2 are different for
the purpose of evaluating different conditions. For example, Figure 2A shows the results of
the effect of the biocatalyst load and the amount of H2O2 over the yield at a concentration
of 10 mM of DFF, reaching the highest yield (80%) with 167 mg (33 U) of biocatalyst and
200 µL of H2O2. Here, it can be seen that an increase in the amount of H2O2 decreases the
yield of the reaction due to the inactivation of the biocatalysis. The peracid also causes the
inactivation of the biocatalyst in the reaction media formed by the perhydrolysis reaction
of ethyl acetate with H2O2 catalyzed by the lipase immobilized. This behavior has already
been reported in several investigations related to the inactivation of the biocatalyst due
to the high concentrations of H2O2 and peracid [34,36,37]. The researchers point out that
these drawbacks can be improved by selecting the reaction’s operational conditions [36],
such as the modification of the biocatalyst by immobilization and protein engineering [34].

Figure 2B details the study’s results of the effect of biocatalyst loading on reaction yield
at a substrate concentration of 30 mM. An increase in the amount of biocatalyst reduces
the yield of the reaction, probably due to the rise in peracid that causes the inactivation of
the biocatalyst. Figure 2C details the results of the study of the effect of biocatalyst loading
on reaction yield at a substrate concentration of 50 mM. In this case, the behavior of the
reaction kinetics is similar to that in Figure 2B, since an increase in the amount of biocatalyst
decreases the reaction yield. Comparing the three graphs in Figure 2, the highest yield is
reached at a substrate concentration of 10 mM.

We evaluated different operational variables for fed-batch and continuous bioreactors
in this work. According to previous research, these variables were selected because they
were the most relevant [36,37]. The results are detailed in the following sections.
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3.2. Chemoenzymatic Synthesis of FDCA in Fed-Batch Bioreactor

One of the alternatives to increase the yield of the reaction is the operation of a fed-
batch reactor. In this mode of operation, hydrogen peroxide is fed gradually with the help
of a pump to reduce the inactivation of the biocatalyst, unlike the batch bioreactor, in which
the entire volume of H2O2 is added to the reaction media, inactivating the biocatalyst faster.

Figure 3 shows the behavior of the chemoenzymatic oxidation in stepwise mode.
Under the conditions of 50 mM DFF, 500 mg biocatalyst, and 1021 µL H2O2 added at the
beginning, after 6 h and after 24 h, the yield of the reaction increased by 20% compared to
the operation in batch mode. These results are due to the reduction in the inactivation of
the biocatalyst, due to the gradual addition of the oxidant.
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Figure 3. Chemoenzymatic synthesis of FDCA with stepwise addition of H2O2. Operational condi-
tions: 10 mL of reaction volume and 40 ◦C. The H2O2 addition was divided into three portions along
the reaction: at the beginning, 6 h, and at 24 h.

To further increase the yield of the reaction, experimental tests were carried out in a
fed-batch reactor using different flows of H2O2. Figure 4A details the results of the effect
of the DFF concentration in a fed-batch bioreactor at an H2O2 flow rate of 1 µL/min. This
graph shows a slight difference in the yield of the reaction kinetics carried out at 50 mM and
100 mM. Figure 4B shows the results of the effect of the DFF concentration on the reaction
yield at a flow rate of 3 µL/min. As in Figure 4A, the behavior of the reaction kinetics is
similar for both concentrations. However, at the end of 50 h, the reaction at 100 mM of
DFF reaches a higher yield (100%) than that carried out at 50 mM of DFF. Using a flow
of 5 µL/min (Figure 4C), there is no marked effect of the substrate concentrations (DFF)
on the yield, which reached almost 100% at 30 h of reaction. Using a flow rate of 1 and
5 µL/min, the yield was 20% lower than at 3 µL/min. This could be because at 1 µL/min,
there is a longer residence time of H2O2 and peracid in the catalytic bed, inactivating the
biocatalyst. In comparison, at 5 µL/min, the residence time of the substrates in the catalytic
bed is minor, decreasing the reaction yield.
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3.3. Chemoenzymatic Synthesis of FDCA in a Continuous Packed-Bed (CPBR) Bioreactor

Figure 5 shows the results of the chemoenzymatic synthesis of FDCA in a continuous
packed-bed bioreactor (CPBR). Figure 5A shows the effect of flow rate and the amount of
H2O2 on the yield in a continuous packed-bed bioreactor at 40 ◦C. In this case, the condition
that maximizes the yield is using 200 µL of H2O2 and a flow rate of 20 µL/min. Figure 5B
shows the effect of the flow rate and the amount of H2O2 on the yield at 30 ◦C. With the use
of an intermediated flow rate of 10 µL/min and 511 µL of H2O2, it is possible to achieve a
stable yield behavior, approaching the steady state in the bioreactor.
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Figure 5. Chemoenzymatic synthesis of FDCA in a continuous packed-bed bioreactor catalyzed by
Novozym 435 at a different flow rate. (A) 40 ◦C; (B) 30 ◦C. Reactions conditions: 50 mM of DFF,
500 mg of biocatalyst, and 10 mL of reaction volume except (x) reaction with 5 mL of reaction volume.

Under this mode of operation, the inactivation of the biocatalyst becomes evident,
which causes the behavior to deviate from the ideal; it is not reaching a steady state. For
example, at 40 ◦C, 10 µL/min, and 2043 µL of H2O2, a maximum yield of 100% is reached
after 5 h; then, it decreases to 0% after 24 h. The best result (20%) was achieved at a flow
rate of 20 µL/min and 200 µL of H2O2 for approximately 7 h of reaction.

Due to the synergistic effect of temperature with hydrogen peroxide and peracid [36,37],
the reaction was carried out at 30 ◦C at 10 µL/min for 7 h (Figure 5B).

As can be seen in Figure 5, the reaction in the continuous packed-bed bioreactor at
30 ◦C increases the yield by 20% at 10 µL/min and 511 µL of H2O2. In similar reactions at
40 ◦C, yields remain stable for almost 7 h.
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The ideal operation in a continuous packed-bed bioreactor is that the steady state is
reached within three or six residence times. One of the conditions by which the steady state
is not achieved is the inactivation of the biocatalyst. For example, Figure S2 shows that the
residence times are longer below 20 µL/min because the biocatalyst is more exposed to
inactivation by the substrate and products.

It was also tested by feeding the biocatalytic column’s two inlets (Figure S1B): one
for the ethyl acetate and DFF feed at 10 µL/min; and the other for the hydrogen peroxide
feed at 1 µL/min. Figure 6 indicates a deviation from ideality during the first 5 h to reach
approximately 50% of the yield at 7 h. The yield at 24 h was also verified, which decreased
by 98% (data not shown).
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Figure 6. Chemoenzymatic synthesis of FDCA in a continuous packed-bed bioreactor catalyzed by
Novozym 435 with two feeds. Reaction conditions: 30 ◦C, 5 mL of ethyl acetate at 50 mM of DFF at
10 µL/min, and 511µL of H2O2 at 1 µL/min.

According to the results, the chemoenzymatic oxidation in continuous mode should
be carried out for 8 h to approach the steady state.

Specific productivities for the chemoenzymatic reactions using 50 mM of DFF were
compared (Figure 7); the continuous and semi-continuous reactors reached twice the pro-
ductivity of the batch reactor. This behavior may be due to reduced biocatalyst inactivation
by the presence of H2O2 and peracid.

Processes 2022, 10, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 7. Comparison of productivities of chemoenzymatic oxidation to produce FDCA in different 
reactors, using a substrate concentration of 50 mM of DFF, 40 °C, 500 mg of biocatalyst, and 1021 µL 
of H2O2. 

3.4. Operationalss Stability of the Biocatalyst in a Fed-Batch Bioreactor 
Operational stability is essential for the operation of robust continuous reactors and 

for reducing the costs of the process associated with the biocatalyst. The operational sta-
bility of the biocatalyst in the fed-batch bioreactor was determined because it is compara-
ble with the continuous packed-bed bioreactor; that is, if the biocatalyst is inactivated in 
a fed-batch bioreactor, the biocatalyst will also be inactivated in a continuous packed-bed 
bioreactor. Figure 8 details the reuse of the biocatalyst. As can be seen, the biocatalyst 
activity decreases sharply (98%) after the first cycle, due to the presence of H2O2 and per-
acid for both the bio-oxidation at 50 mM and 100 mM of DFF. 

The activity decay is more pronounced in the reaction carried out at 50 mM DFF at 
an H2O2 flow of 3 µL/min, possibly because the residence time of the substrates and prod-
ucts inside the column are more significant, generating the inactivation of the biocatalyst. 
According to these results, the biocatalyst in batch and fed-batch modes can only be used 
in one reaction cycle and in continuous mode for approximately 8 h of reaction. 

 
Figure 8. Operational stability of the biocatalyst in the chemoenzymatic oxidation for the synthesis 
of FDCA in fed-batch mode. Operating conditions: 10 mL of the reaction medium, 2043 µL of H2O2 
at a flow of 1.46 µL/min, and 24 h of reaction. 

0

0.01

0.02

0.03

0.04

0.05

0.06

Batch Fed-Batch CPBR

Sp
ec

ifi
c p

ro
du

ct
iv

ity
 

(m
g 

pr
od

uc
t/

m
in

 *
gB

io
ca

t.)

0

20

40

60

80

100

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Yi
el

d 
(%

)

40°C, 100 mM, 1 gBiocat. and 3 µL/min 30°C , 50 mM DFF, 0.5 gBiocat. and 3 µL/min

Figure 7. Comparison of productivities of chemoenzymatic oxidation to produce FDCA in different
reactors, using a substrate concentration of 50 mM of DFF, 40 ◦C, 500 mg of biocatalyst, and 1021 µL
of H2O2.
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3.4. Operationalss Stability of the Biocatalyst in a Fed-Batch Bioreactor

Operational stability is essential for the operation of robust continuous reactors and for
reducing the costs of the process associated with the biocatalyst. The operational stability
of the biocatalyst in the fed-batch bioreactor was determined because it is comparable with
the continuous packed-bed bioreactor; that is, if the biocatalyst is inactivated in a fed-batch
bioreactor, the biocatalyst will also be inactivated in a continuous packed-bed bioreactor.
Figure 8 details the reuse of the biocatalyst. As can be seen, the biocatalyst activity decreases
sharply (98%) after the first cycle, due to the presence of H2O2 and peracid for both the
bio-oxidation at 50 mM and 100 mM of DFF.
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Figure 8. Operational stability of the biocatalyst in the chemoenzymatic oxidation for the synthesis
of FDCA in fed-batch mode. Operating conditions: 10 mL of the reaction medium, 2043 µL of H2O2

at a flow of 1.46 µL/min, and 24 h of reaction.

The activity decay is more pronounced in the reaction carried out at 50 mM DFF at an
H2O2 flow of 3 µL/min, possibly because the residence time of the substrates and products
inside the column are more significant, generating the inactivation of the biocatalyst.
According to these results, the biocatalyst in batch and fed-batch modes can only be used
in one reaction cycle and in continuous mode for approximately 8 h of reaction.

4. Conclusions

The operation of the chemoenzymatic oxidation of DFF to produce FDCA in a fed-
batch and continuous packed-bed millireactor was successfully demonstrated for the first
time. The fed-batch process led to yields of 54% higher compared to the batch bioreac-
tor. In terms of productivity, the fed-batch and packed-bed bioreactor achieved similar
results. The biocatalyst stability in the fed-batch mode decreased by approximately 98%
after the first cycle. In contrast, in the continuous packed-bed millireactor, the biocatalyst
stability remained stable during 8 h of reaction at a flow of 10 µL/min. This work demon-
strates that continuous and fed-batch reactors can increase yield and productivity in the
chemoenzymatic synthesis of FDCA.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr10102095/s1, Figure S1: continuous packed-bed reactor to
produce FDCA; Figure S2: Residence times in operation with continuously packed bed bioreactor.
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