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Abstract: Advanced measurement technology on boundary layer transition is an effective means to
study the flow mechanism and the performance of the cascade. In this research, to investigate the
boundary layer transition of transonic VKI-RG turbine cascade, a noncontact measurement technique
named temperature-sensitive paint (TSP) that is capable of quantitatively measuring the surface
temperature of a model is used. Under the conditions of outlet Mach number (Ma2) = 0.4, 1.03, and
1.2, the transitional location of a cascade is accurately measured by TSP technique. Moreover, a
numerical study on the transitional location of a planar cascade was conducted with the conditions
of Mach number (Ma) and attack angle (α). The numerical results show that the transitional location
moved forward with the increase in Ma2 and α at Ma2 < 1; otherwise, the transitional location moved
backward with increasing Ma2 (Ma2 > 1). Lastly, a strong adverse pressure gradient was formed
behind the shock wave, which led to the beginning of the transition.

Keywords: transonic planar cascade; transition prediction; TSP technique; numerical simulation

1. Introduction

Aeroengines are not only the power source of aircraft, but also an important driving
force for the development of the aviation industry. The turbine cascade is a major part of the
aeroengine, and its performance directly affects the performance index of the aeroengine.
The complex flow field structure and loss mechanism of cascades have become important
research content to improve the performance of aeroengines. The state of the boundary layer
on the cascade surface and the transitional location are an important basis for describing
the flow mechanism of the cascade and analyzing its performance.

Although the basic theory and occurrence mechanism of boundary layer transition are
still under research and development, its importance in engineering practice has become
increasingly prominent, and has received extensive and sustained attention [1–3]. For
example, the transitional location and development process have a significant impact on
the lift–drag characteristics, boundary layer separation, and surface aerodynamic heating of
the aircraft in aerospace engineering [4–6]. Some research on the measurement method and
numerical method of the transitional location of the cascade boundary layer was carried out,
and it is of great value to further understand the flow mechanism of aeroengine cascades
and improve the design level of China’s aeroengines.

In recent years, scholars have carried out a lot of work on flow display technology
and measurement methods [7–13]. Hausmann et al. [12] used the hot-film technique to
measure the flow separation and transition on the airfoil surface. Halstead et al. [14] also
used hot-film technology to detect the boundary layer state of compressor blades. For
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the particle image velocimetry (PIV) technique [15], Medina et al. [16] investigated the
flow mechanism of the pulsating transition jet. Horstmann et al. [17,18] performed tran-
sitional measurements on the boundary layer of airfoils with infrared image technology.
Holmes et al. [19] confirmed that shear-sensitive liquid crystal technology can be applied
well under different wind-tunnel test conditions of airfoils, and Mee et al. [20] accurately
measured the boundary layer transition with this technology. Pressure-sensitive paint (PSP)
is a well-established optical pressure measurement technique that can provide qualitative
and quantitative surface pressure distributions on models with high spatial resolution.
Kameda et al. [21], and Gregory et al. [22] have applications in the flow field and acoustic
diagnosis. Although the above-mentioned testing techniques have unique advantages in
certain scenarios, they are difficult to operate and cost-limited. For example, infrared ther-
mal imaging equipment is expensive, has low spatial resolution, and has a large influence
on background radiation signals in a normal temperature environment. Shear-sensitive
liquid crystal technology cannot obtain quantitative temperature field data. Therefore, their
applications to cascade transitional measurement are still relatively limited. TSP is used
as a similar optical measurement technology to PSP by some researchers [23,24], but is
relatively rarely used in the boundary layer transition of the cascade. In addition, some
researchers [25,26] used numerical methods to predict the transitional location, and their
results were in good agreement with the experimental data.

This paper combines the TSP technique, wind tunnel tests, and computational fluid
dynamics (CFD) simulation to carry out predictive research on the boundary layer transition
of a cascade. First, a TSP measurement method for the boundary layer transition of the
cascade was constructed through the TSP technique and wind-tunnel test devices. Second,
the wind-tunnel test of the transonic planar cascade turbine was carried out under different
inflow conditions, and the transitional location was obtained. Lastly, the boundary layer
transition location was verified by comparing the numerical calculation results. To analyze
the variation in the transitional location under different inflow conditions, a large number
of numerical simulation calculations of a planar cascade were further carried out.

2. Transitional Measurement Experiment on TSP
2.1. TSP Principle

The TSP technique is a modern optical measurement technology for the measurement
of the surface temperature field distribution, and its basic principle is the thermal quenching
effect of TSP fluorescent probe molecules. TSP uses luminescent molecules as probes that
are mixed into suitable polymer coatings and coated on the surface of the aerodynamic
model. Luminescent molecules are sensitive to temperature, and luminescent quantum
efficiency decreases with increasing temperature. However, the heat transfer coefficients
in the laminar boundary layer and the turbulent boundary layer are different, resulting in
differences in the temperature distribution in the laminar and turbulent regions.

In this study, the technique was used to spray temperature-sensitive paint on the
surface of a cascade, which is produced by ISSI Inc. in the United States. The specific
parameters are shown in Table 1. Laminar and turbulent flow areas showed different
luminous characteristics when the light source illuminated the model surface paint. The
light-intensity distribution on the surface is captured with a IMPERX B4020 CCD Camera.
The camera lens was 50 mm fixed-focus, and a 580 nm high-pass filter was installed in
front of the lens to eliminate the influence of excitation light. The light sources were two
sets of 400 nm LEDs that were arranged on both sides of the camera. A 400 nm LED light
source was used to illuminate the surface of the model sprayed with TSP. At that time, the
TSP was excited by the excitation light and emitted red light with a peak wavelength of
around 610 nm. Then, a CCD camera was used, and a 580 nm high-pass filter was installed
in front of the camera lens to eliminate the influence of excitation light and collect TSP
luminous intensity images under different working conditions. The relationship between
light intensity I and temperature T can be described by the Arrhenius formula [27]. Using
the above collected temperature and light intensity data, the TSP calibration data were
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fitted on the basis of Equation (1) to obtain the relationship curve between I/Iref and
temperature (T) under different pressure conditions; the calibration curve is shown in
Figure 1. Therefore, the light intensity distribution could be converted into temperature
distribution, and the transitional location could be observed.

I
Iref

= f
(

T
Tref

)
(1)

where Iref is light intensity under the normal temperature (Tref) and pressure.

Table 1. Parameters of UNT-200 one-component TSP.

Items Value

Pressure sensitivity 0.0%/kPa
Pressure range 1 kPa~10 MPa

Temperature sensitivity 1.4%/◦C
Temperature range 10 ◦C to 80 ◦C

Response time 750 ms
Excitation wavelength 400 to 550 nm (peak, 470 nm)
Emission wavelength 600 to 750 nm (peak, 620 nm)
Photodegradation rate 1%/h

Expiration date 12 months
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Figure 1. TSP calibration curve.

2.2. Wind-Tunnel Test Device

The TSP transitional test was carried out in the turbine cascade test section of the
variable density planar cascade wind tunnel, as shown in Figure 2a, where the test section
size (width × height) was 190 × 445 mm. The cascade model was placed in the wind-
tunnel test section. The camera and excitation light source were integrated into a specially
designed collection box and installed above the back of the test section.
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Figure 2. Diagram of wind tunnel test device. (a) Experimental chamber; (b) cascade (backward sight).

This study takes the transonic VKI-RG turbine blade as the research object, as shown
in Figure 2b, and the cascade consisted of seven blades. The distance from the leading edge
of the blade to the front of the cascade was 75 mm, the distance from the trailing edge to
the rear of the cascade was 43 mm, and its specific parameters are shown in Table 2. The
observation blade is a nonmetallic model produced out of epoxy resin material, and the
blade surface was sprayed with temperature-sensitive paint. The specific operation was to
first clean the surface of the blade with anhydrous alcohol and then spray the primer on the
surface of the blade cascade. In order to prevent the induced transition from occurring in
advance due to large particles on the surface, the surface was polished with fine sandpaper
after the primer had been completely dried and cured, and a luminous topcoat was applied.
The schematic diagram of the coating structure is shown in Figure 3a. The excitation light
source in the collection box irradiates the temperature-sensitive paint on the blade surface
for excitation and then uses a high-speed camera to capture the light intensity. To facilitate
the accurate calibration of a transitional location, a schematic diagram of the blade size
captured by the high-speed camera is shown in Figure 3b. Lax refers to the length of the
blade in the direction perpendicular to the incoming flow when the cascade is set at a
position where the vertical line of the forehead line is 30 degrees from the incoming flow.

Table 2. Design parameters of transonic VKI-RG turbine.

Parameters Value

Inlet flow angle (β) 30◦

Blade angle relative to cascade axis (θ) 33.3◦

Chord length (c) 95 mm
Ratio of chord length to grating pitch (σ) 1.40845

Aspect ratio (h/c) 2.0
Number of blades in the cascade (N) 7
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Figure 3. Schematic diagram of blade coating and blade shape. (a) TSP coating structure;
(b) dimensional marking of blade shape.

2.3. Experimental Data Processing and Result Analysis

The wind tunnel test uses a fixed cascade α of 0◦ to conduct the blowing test, and the
inflow conditions include the Ma and Re, whose calculation formula is as follows:

Ma =

√
5
[(

pt1

ps1

)
− 1.0

]2/7
(2)

Re= 0.04766

[(
1 + 0.2Ma2)−1

+ 114
Tt1

]
Ma

(1 + 0.2Ma2)
1.5Tt1

pt1 × 106 (3)

where pt1 is the total pressure of the stable section; ps1 is the average static pressure; Tt1 is
the average total temperature of the stable section.

As shown in Table 3, four blowing tests were carried out in which specific test parame-
ters such as outlet Mach number (Ma2) and inlet Reynolds number (Re1), inlet turbulence
intensity (TIin), and Ma2 and Re1 were calculated with Equations (2) and (3), respectively.

Table 3. Wind-tunnel tests.

Test pt1 ps1 Ma2 Re1 TIin

1 172 kPa 86.7 kPa 1.03 8.6 × 105 0.3%
2 170 kPa 72.1 kPa 1.2 8.6 × 105 0.3%
3 59.1 kPa 53.1 kPa 0.4 3.1 × 105 0.3%
4 103 kPa 51.1 kPa 1.03 5.1 × 105 0.3%

The TSP measurement results at different outlet Mach numbers and inlet Reynolds
numbers are shown in Figure 4. The temperature ratio (T/Tref) distribution at both ends
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of the blade was significantly larger, which was caused by the wall effect. Due to the
difference in the heat transfer coefficients of laminar and turbulent flow, there was a
significant temperature difference. The slight unevenness of the temperature-sensitive
paint spraying on the blade surface and the air flowing through the blade may have been
mixed with tiny particles, hitting the blade surface and causing the transition to occur
earlier, resulting in a sharp temperature distribution, but the temperature ratio (T/Tref)
distribution on the suction surface of the blade changed significantly as a whole, and the
occurrence of the transition could be determined. The transitional location was about
0.63 Lax at Ma2 = 0.4, Re1 = 3.1 × 105, as shown in Figure 4a. When Ma2 and Re1 increased
to 1.03 and 8.6 × 105, respectively, the boundary layer transition occurred at approximately
0.42 Lax, as shown in Figure 4b. However, with the decrease in Re1, as shown in Figure 4c,
the transitional location was moved backward, to about 0.47 Lax. Compared with Figure 4b,
the transitional location shifted backward with the increase in Ma2, which occurred at about
0.49 Lax in Figure 4d.
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3. Numerical Prediction of Transition
3.1. Numerical Method and Validation

The geometric model of numerical calculation was the transonic VKI-RG cascade,
which is the same as the wind-tunnel test model. Since transitional calculation had a high
requirement for the mesh refinement of the normal and tangential directions near the
wall, the total number of subsequent meshes increased sharply, and the requirements for
computing resources were further increased. In addition, the purpose of this study was
mainly to focus on the flow of a single blade, so the cascade composed of seven blades
was simplified into a single blade, as shown in Figure 5. The inlet was set at 3c from the
leading edge of the blade, and the outlet was set at 8c from the trailing edge to ensure the
full development of the wake.

To ensure the accuracy of the subsequent numerical calculations, the structured meshes
of the geometric model shown in Figure 5 were generated with ICEM CFD software. The
blade-shaped part was divided by an O-shaped mesh, and there were 50 mesh nodes along
the circumferential direction near the wall. The first-layer height of the mesh was set to
1 × 10−6 m, which led to y+ < 1 for all test cases. The normal mesh growth ratio is 1.2, and
the elements of the 3D computational domain were about 8.01 million. Figure 6 shows the
local mesh distribution of the blade cascade. To improve the numerical accuracy of the flow
along the flow direction, 240 nodes were arranged along the flow direction, and 120 nodes
were arranged along the blade span. Mesh refinement was performed on the trailing part
of the edge.
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Figure 6. Mesh distribution around the blade.

ANSYS CFX software was used to solve the flow field in the computational domain,
and all numerical simulations adopted the three-dimensional compressible Reynolds-
averaged Navier–Stokes (RANS) equations. The transitional model was the γ-Reθt model
proposed by Langtry [28] based on the SST k-ω turbulence model [29], which considers
the natural, bypass, and separation-bubble transitions, and can more accurately predict
the transitional location [30,31]. Figure 7 shows the boundary condition settings with total
pressure at the inlet and static pressure at the outlet, and the specific boundary conditions
and solver settings are shown in Table 4.
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Table 4. Numerical calculation settings.

Item Setting

Inlet boundary condition Total pressure
Inlet total temperature 300 K

Inlet turbulence intensity 1%
Outlet boundary condition Static pressure

Blade wall condition No-slip wall
Upper and lower surfaces No-slip wall

Advection scheme High-resolution
Turbulence numeric High-resolution

Residual convergence criterion 1 × 10−5

The reliability of the numerical method was verified by comparing the experimental
results of the isentropic Mach number (Mais) and the transitional location on the blade
surface. Figure 8 shows the Mais distribution on the surface at 50% blade height when
the angle of attack was 0◦ and the outlet Mach number was 0.78. Overall, the numerical
results of the Mais were in good agreement with the experimental results. Figure 9 is a
comparison of the transitional location between numerical simulation and experiment, and
the transitional locations were basically the same, about 0.42 Lax.
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Figure 9. Comparison of transitions on the blade surface. (a) Experiment; (b) numerical simulation.

3.2. Numerical Results

Wall shear and intermittency are more accurate methods to determine the transitional
location of the boundary layer. The location where the wall shear begins to increase
sharply is the beginning of the transition. Intermittency represents the percentage of time
turbulence occurring. When the intermittency is 0, it represents a fully laminar state, and
1 represents a fully turbulent state. The intermittency increases from 0, which represents
the beginning of the transition.

3.2.1. Influence of Ma2

To study the effect of the Ma2 on the transitional location of the blade boundary layer,
numerical calculations were carried out for Ma2 < 1 and Ma2 > 1 by adjusting the outlet
static pressure. Figure 10 shows the distribution of wall shear and intermittency on the
suction side of the blade at Ma2 < 1, and the transitional location moved forward with
the increase in Ma2. In Figure 10a, the transition occurred at about 60% Lx at Ma2 = 0.56.
The transitional location was significantly moved forward, which occurred at 51%Lx at
Ma2 = 0.78. With the further increase in Ma2, the transitional location was about 48%Lx
at Ma2 = 0.98. Furthermore, the wall shear in the laminar and turbulent parts increased
with increasing Ma2. The same transitional location and its variation with Ma2 could be
obtained from the intermittency distribution shown in Figure 10b.
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Figure 10. Intermittency and wall shear distribution of blade suction surface (Ma < 1). (a) Wall shear;
(b) intermittency.

Figure 11 is the distribution of wall shear and intermittency on the suction side of the
blade at Ma2 > 1, and the transitional location moved backward with the increase in Ma2.
In Figure 11a, the transition occurred at about 86% Lx at Ma2 = 1.1. The transitional location
was significantly moved backward, which occurred at 88%Lx at Ma2 = 1.2. As Ma2 further
increased, the transitional location was about 94% Lx at Ma2 = 1.4. Furthermore, the shear
stress in the laminar remained constant, while the wall shear in the turbulent part increased
with increasing Ma2. Figure 10b shows the intermittency distribution with different Ma2.
The variation trend of intermittency was the same as that of the wall shear.
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Figure 11. Intermittency and wall shear distribution of blade suction surface (Ma > 1). (a) Wall shear;
(b) intermittency.

3.2.2. Influence of Attack Angle

Figure 12 shows the distribution of wall shear and intermittency on the suction side of
the blade under different attack angles, and the transitional location moved forward with the
increase of α. In Figure 12a, the transition occurred at about 54%Lx at α = −10◦. The transitional
location was significantly moved forward, which occurred at 51%Lx at α = 0◦. With a further
increase in the angle of attack, the transitional location was about 37%Lx at α = 10◦.
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Figure 12. Intermittency and wall shear distribution of blade suction surface. (a) Wall shear;
(b) intermittency.

In addition, the shear stress in the laminar remained constant, while the wall shear in the
turbulent part decreased slightly with an increased attack angle. The same transitional location
and its variation trend with α could be obtained from the intermittency distribution in Figure 12b.

3.2.3. Shock-Wave Influence

When the Mach number of the flow field is greater than 1, strong disturbances often
occur in flows, such as the sudden compression of supersonic airflow. At that time, sudden
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changes in flow parameters often occur, that is, shock waves. Figure 13 shows the Mach
number distribution of the flow field. The airflow flowed into the leading edge and
out of the trailing edge. When flowing through the suction side, it first passed through
the expansion wave, which caused the pressure here to drop sharply, and then passed
through the shock wave, that is, the compression wave, causing the pressure to increase
sharply. Moreover, the wake was formed behind the base pressure of the trailing edge, and
interference between shock and wake could be seen.
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Figure 13. Mach number distribution of flow field.

The wall shear distribution at 50% of the blade height in Figure 14 also shows that an
expansion wave was generated near 0.8 Lx. The shear stress dropped sharply at the chord
length of 80–83%, and the pressure suddenly increased after the shock wave, resulting in a
strong reverse pressure gradient that eventually led to laminar boundary layer separation.
The local streamlines of the suction side in Figure 15 show the existence of a separation
bubble. The laminar separation trigger transition occurred at 0.85 Lx, and the wall shear
increased rapidly at 85% Lx.
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4. Conclusions

In this paper, to study the transitional prediction of the planar cascade and the variation
law of the transitional location, TSP transitional measurement tests were carried out under
the conditions of Ma2 = 0.4, 1.03, and 1.2. The numerical simulations of plane cascade
transition with different Ma2 (Ma2 = 0.56, 0.78, 0.98, 1.1, 1.2, 1.4) and α (α = −10◦, 0◦, 10◦)
were investigated. The main obtained conclusions are as follows:

(1) TSP transitional measurement results show that the transitional location was about
0.63 Lax at Ma2 = 0.4, Re1 = 3.1 × 105, and transition occurred at approximately
0.42 Lax at Ma2 = 1.03 Re1 = 8.6 × 105. As Re1 decreased, the transitional location
moved backward, about 0.47 Lax at Ma2 = 1.03, Re1 = 3.1 × 105. The transitional
location shifted backward with the increase in Ma2, occurring at about 0.49 Lax at
Ma2 = 1.2, Re1 = 8.6 × 105.

(2) The numerical calculations of the planar cascade with Ma2 < 1 (Ma2 = 0.56, 0.78, 0.98)
and α (α = −10◦, 0◦, 10◦) were completed. The boundary layer transition of the planar
cascade moved forward with the increase in Ma2 and α.

(3) Numerical calculations of the planar cascade with Ma2 > 1 (Ma2 = 1.1, 1.2, 1.4) were
carried out. The transitional location of the boundary layer moved backward with the
increase in Ma2, which was consistent with the experimental results. In addition, the
generation of shock waves formed a large adverse pressure gradient that led to the
onset of transition.
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