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Abstract: An unreasonable allocation of resources has led to a low rate of output in the industry–
university–research collaboration network. A solution to this problem is to control and predict the
input and output. However, the network has the characteristics of strong nonlinearity and insuffi-
cient samples. It is difficult for the existing control methods to migrate to collaboration networks
because the traditional control methods, including Proportional–Integral–Derivative (PID) control
and Model Predictive Control (MPC), are usually not applied to the system with strong nonlinearity
and the controlled system needs to have specific parameters, while the modern control methods,
including feedforward control and feedback control, have their limitations in both parameters and
other aspects. In addition, there is a lack of research on the control and output prediction of col-
laboration networks, and there is no effective and applicable scheme for the control and prediction.
Considering the nonlinearity and insufficient samples of the collaboration network, a Feedforward
Control–Feedback Control Model based on the Multi-Layer Perceptron (FCFCM-MLP) is proposed in
this paper. Adopting the controller structure of the Grid Search-Multilayer Perceptron (GS-MLP), a
control block diagram, a feedforward controller, a feedback controller, and prediction methods such as
Harris Hawk Optimization-Support Vector Regression (HHO-SVR) are designed for the FCFCM-MLP,
which effectively realizes the feedforward control, feedback control, and prediction of inputs and
outputs. In this paper, simulation tests on output-feedback tracking control are conducted with real
statistics of papers jointly produced by the industry–university–research collaboration network in the
construction industry. The results show that the proposed model has obvious effectiveness. Specifi-
cally, compared with the model composed of other controller structures and prediction methods, the
optimal model Particle Dynamic Multiple Perturbation_Butterfly Optimization Algorithm-Support
Vector Regression_Grid Search-Multi-Layer Perceptron (PDM_BOA-SVR_GS-MLP) obtained in this
paper can minimize the predictive control error and effectively improve the control accuracy.

Keywords: feedforward controller; feedback controller; multi-layer perceptron

1. Introduction

Since the beginning of the 21st century, the industry–university–research cooperation
and innovation have sparked heated scientific competitions, which have promoted the
development of the global scientific revolution and greatly changed the global industry
patterns. The industry–university–research collaboration means that the universities, the
enterprises, and the scientific research institutes work together based on principles of risk
sharing, advantage complementing, mutual benefit, and mutual development during inno-
vation [1]. It is now faced with challenges such as the unreasonable allocation of resources,
a lack of collaboration motivation, and a small number of innovation achievements [2–4],
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falling into a paradox that the output in terms of patent achievements and market share
does not correspond to its investment of talents and capital [5]. Meanwhile, the unreason-
able allocation of resources has become a major obstacle of the in-depth development of
the collaboration network [6,7]. To solve these problems and improve the performance of
the network, predicting the input to control the output is a way out.

The industry–university–research collaboration in the construction industry means
that several construction enterprises, universities, and institutes with different strengths
pool their human, material, and financial resources together and build long-term coop-
eration in technology for the purpose of making technology breakthroughs in a short
time, reducing redundant research, and achieving continuous innovation. However, some
negative factors, such as information asymmetry, information flow barriers, and low output
ratio, have hindered the innovation and lowered the distribution efficiency of resources of
the construction enterprises in the long run.

The birth of cybernetics has given rise to theories such as PID control, MPC control, and
feedback control, which developed rapidly and were soon applied to many fields other than
engineering technology such as economy, management, and society. However, the linear
combination of PID control variables including the proportional, integral, and derivative of
errors is not optimal, and when the system is free from interference, the integral feedback
of errors in PID would reduce the dynamic performance of the closed-loop system [8–10].
As for the MPC controller, it is limited by the accuracy of the controlled object model. When
the controlled system is strongly nonlinear, the MPC controller often fails to work due to
the low accuracy of the model [11]. In addition, PID and MPC controllers are usually used
in systems with fixed parameters, while some other existing equations are only applicable
to particular nonlinear systems [12–15].

However, the traditional PID control and MPC control cannot be simply applied to the
industry–university–research collaboration network, as it is dynamic and nonlinear and has
no existing formula or fixed parameters. With the rise of machine learning, researchers have
gradually turned their attention away from traditional control and toward feedforward
control, feedback control, and machine learning, which provides another way to optimize
resource allocation. According to feedback control theory, feedback changes the system
input based on the observation of the output. Nevertheless, the feedback controller cannot
generate the first output without the feedforward controller, and the output prediction
is usually hindered by insufficient test samples and missing data. Therefore, no existing
theory model that could be directly applied to the prediction and control of the industry–
university–research network has been found so far.

Inspired by feedforward control, feedback control, PID control, machine learning, and
error learning based on feedback, a model of multilayer-perceptron-based feedforward
control–feedback control is proposed in this paper and the three main contributions made by
this paper are as follows: (1) a model of feedforward control–feedback control is proposed
that could be used to predict the output and control the input of the industry–university–
research collaboration network accurately; (2) a grid-search-based multilayer perceptron
is originally used as the structure of the feedforward and feedback controllers; (3) the
applicability and practicability of the model are validated by empirical tests.

The remaining parts of this paper are organized as follows. Section 2 introduces the
existing research related to control. Section 3 proposes the feedforward control–feedback
control model, including the theory, design, and control process of the model. Section 4
displays the empirical tests and analyzes the test results, and Section 5 concludes the paper.

2. Related Work

As the model of the feedforward control–feedback control mainly refers to the design
of the feedforward controller, the feedback controller, the structure of the controllers, and
the prediction model, this section introduces research work related to the four aspects.
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2.1. Feedback Control and Feedforward Control

Some scholars have designed feedback controllers in fields such as high-speed motors
of electromagnetic bearings [16], tires [17], and a tracking system for upper limb rehabilita-
tion [18]. Some other scholars have applied the feedforward control strategy in the stack
power demand [19] and joint-space robot [20]. Although the feedback control model is
simple to design and performs well in controlling, it fails to work when the control system
is affected by latency, which would degrade the control performance of the system and
lead to instability [21,22]. Unlike the feedback controller, the feedforward controller could
detect the change in reference signal beforehand and tell the control system how to work.
As there is no need for a feedback signal, the feedforward controller would not suffer from
instability. However, the design of the feedforward controller relies on an accurate inverse
model, which is particularly difficult to build when the system is complex and nonlinear.
Error learning based on feedback can be applied to control the loading frequency of a
reconstructed power system [23,24]. As for the feedback controller designed by a mixed
sensibility approach, it relies on linear control technology, and is, hence, not applicable to
complicated and nonlinear systems. Considering that all of the existing control approaches
have their disadvantages that may affect the accuracy of systems, it is significant to build a
control model that is applicable to the industry–university–research network.

2.2. Innovation Output Prediction

There are two approaches for output prediction with a small number of samples:
patent prediction based on SVR [25] and scientific output prediction based on the BP
neural network [26]. However, the prediction accuracy by SVR with only 77.27% is not
high. The BP neural network tends to overfit, converge slowly, easily fall into a local
extremum, and adjust its parameters, which is complicated [27]. In addition, it is difficult
to determine the number of hidden layers for the single BP neural network. As there have
been no suitable prediction approaches to innovation output, this paper aims to design
an applicable prediction approach based on the sample and output characteristics of the
industry–university–research network and apply it in the control model [28–30].

2.3. Controller Structure

As an important intelligent computing technology, the artificial neural network is
usually used for solving various recognition and control problems. Therefore, neural
networks, such as BPNN, RBF, Hopfield, CNN, GNN, WNN, and MLP, can be used as
the structure of the feedforward and feedback controllers. The multi-layer perceptron,
abbreviated MLP, is widely used for processing nonlinear objects with multiple inputs
and complicated coupling due to its good performance in processing nonlinear data and
good fitness in nonlinear systems. Nevertheless, the MLP tends to overfit and is difficult to
explain, and its computing complicity rises in complicated systems.

3. FCFCM-MLP

Resource-based theory emphasizes the ability to control and manage resources because
high-quality resources are necessary for good performance [31–33]. Feedback changes the
system input based on the observation of the output. According to control theory, the
control system needs the output or error to make responses.

There has been no research focusing on the study of feedback control of an industry–
university–research collaboration and innovation network. The existing research has
ignored the dynamic and nonlinear feature of the collaborative network and, hence, has
failed to make an accurate prediction and control of the input of human and capital
resources. However, the feedforward–feedback control model proposed in this paper
is able to predict the future output and then adjust the actual input according to the
predicted result, which provides new theoretical support for optimizing the redistribution
of innovation resources.
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Thus, in this paper, a model that takes advantage of the feedforward controller, feed-
back controller, and prediction approach is proposed to predict the output and control the
input of the collaborative network. The main ideas of this model include: (1) prediction
of future output of innovation; (2) iteration in the feedforward–feedback control system
to generate the smallest error according to the output; (3) output of the innovation input
value when the error reaches the minimum.

The feedforward–feedback control model and its control process are illustrated
as follows.

3.1. FCFCM-MLP and Its Components

Notations used in this paper are defined in Table 1 before the structure of the feedforward–
feedback control is proposed.

Table 1. Notations of Control Model.

Symbols Definitions

y(k)
Output value, namely, the composite value of papers jointly produced by

universities, enterprises, and scientific research institutes; k indicates
which year

r(k) Expected output value

e(k)
Control error, namely, the error between the expected output and the real

output; k indicates which year

uff(k)
Output of the feedforward controller; ff means feedforward control; k

indicates which year

ufb(k)
Output of the feedback controller; fb means feedback control; k indicates

which year

u(k)
GS
MLP

uff(k) + ufb(k), total output of the controller, and part of inputs of the
prediction model

Grid Search
Multilayer Perceptron

GS−MLP Structure of the feedforward controller and the feedback controller based on
MLP, and GS is used to improve control accuracy

FFC Feedforward Controller
FBC Feedback Controller

FCFC
FCFCM−MLP
X
Y

Feedforward Controller–Feedback Controller: a controller based on FFC
and FBC

Feedforward-Control–Feedback-Control-Model-based Multilayer Perceptron,
namely, the name of the control model

Innovation input value including x1, x2, and x3; according to actual needs, the
network structure value x4–x7 can also be includedInnovation output

representing a y (k)

The control block diagram of FCFCM-MLP is shown in Figure 1.
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+
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Figure 1. FCFCM-MLP control block diagram.

As shown in Figure 1, FCFCM-MLP is composed of a feedforward controller, a feed-
back controller, and a prediction model, and the structure of the controllers is a GS-MLP.



Processes 2022, 10, 2037 5 of 17

“+” means to simply add the input, and “−”means to add the negative signal to form an
output signal. As the MLP is applied in both the FFC and the FBC, the following part first
gives a brief introduction to the MLP, and then details the prediction model, the FFC, and
the FBC.

(1) Structure of the controllers—GS-MLP

The MLP supports multiple inputs and multiple outputs while general machine
learning approaches only allow a single input and single output, which is not applicable to
the sample data of the industry–university–research collaboration network. On account
of the number of samples, inputs, and outputs, the MLP is adopted as the structure of the
controllers instead of other complicated models in this paper. The input and output of the
FFC and the FBC are illustrated in their parts. The number of hidden layers of MLP should
be determined by the data structure. More layers need more network parameters and the
demand of training data increases correspondingly. Otherwise, insufficient layers may
result in bad fitness between the network and the target function. Considering the number
of inputs, outputs, and samples, an MLP control structure with four layers is designed,
including an input layer, two hidden layers, and an output layer.

As a hyper-parameter optimization technology, grid search, abbreviated GS, is usually
used for optimizing hyper-parameters with fewer than three values. In this paper, the GS
is used for optimizing the number of layers and the structure of the MLP and searching the
number of nodes of every hidden layer to make the MLP optimal and reduce overfitting.

(2) Prediction model

Future output is predicted based on the existing human and capital input, as well as
the existing output. The data used for prediction are derived from the previous n years,
while the input data are from the previous m years. In addition, the m may differ from
the n.

y(k + 1) = f(y(k), y(k− 1), . . . , y(k− n), u(k), u(k− 1), . . . , u(k−m)) (1)

where y(k) is the innovation output of the kth year, y(k + 1) is the predicted output of the
(k + 1)th year, u(k) is the output of the controller, f is a nonlinear function, n refers to the
prediction based on the samples of the first n years, and m indicates the control based on
the samples of the first m years.

Support vector regression, abbreviated SVR, is an important application of support
vector machine. It performs well in processing a small amount of sample data and is able
to make nonlinear predictions, which is applicable to the innovation output prediction.
In this paper, algorithms such as HHO-SVR, BOA-SVR, ALO-SVR, and ELM are used
for prediction.

The Root-Mean-Square Error equation, abbreviated RMSE, is shown as follows:

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (2)

where yi is the real value anI ŷi is the prediction value generated by the prediction model.

(3) Feedforward controller

The uff(k) is generated by the feedforward controller with the r(k), which is computed
based on the existing y(k) and u(k). Parameters of functions are determined by algorithms
and data characteristics.

The FFC relies on an accurate reverse model. Its control output u(k) is shown as the
following equation:

u(k) = f−1(y(k), y(k− 1), . . . , y(k− n), u(k− 1), . . . , u(k−m + 1)) (3)

where f−1 is a reverse nonlinear function.
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The MLP optimized with GS is used as the structure of the FFC. When training the
FFC, parameters of MLP are adjusted to minimize the RMSE.

(4) Feedback controller

The FBC is used for generating the control error signal between the expected output
and the real output of the system. The action of the control error is determined by the FBC
to make the system output in line with the expected output. The signals of the control error
e(k), the above-mentioned u(k), and all of the existing y(k) are put into the GS-MLP to
generate the output ufb(k) of the FBC.

The control output of the FBC is shown as the following equation:

u(k) = f−1(y(k), y(k− 1), e(k + 1), . . . , y(k− n), u(k− 1), . . . , u(k−m + 1)) (4)

where e(k + 1) is the error between the real y(k) and the predicted y(k).
Therefore, the input of the FCFCM-MLP includes the current, previous y(k), and

previous u(k), while the output of the model is u(k) when the error is stable. In later
empirical tests, the input can be either a composite of investment of capital and personnel,
or the composite of capital investment, personnel investment, network connection density,
and network centrality, which depends on the actual needs.

3.2. Control Process

The control process of the FCFC mainly includes the following steps:

(1) Feedforward control, to generate u(k), namely, the uff(k), according to Equation (3);
(2) Predict, to generate y(k + 1) according to Equation (1);
(3) Calculate the control error e(k), put it into the FCFC, and then repeat the follow-

ing procedures:

a. Put r(k) into the FFC to generate the uff(k);
b. Put the e(k) and the r(k) into the FBC to generate the ufb(k);
c. ufb(k) + uff(k)→ u(k) and take the u(k) as the input of the prediction model.

In detail, the feedforward–feedback control goes through a training process and a
predict-control process. The training process aims to determine the relationship between
the u(k) and the y(k), while the predict-control process aims to make the predicted output
close to the expected output. To begin with, the test data are made dimensionless. Then,
the processed data are divided into a training set and a test set, and the data of the test
set are from the last two years. The control procedures of the FCFC based on Figure 1 are
shown as follows:

Part I Training Process—to train the model and the controllers:

(1) Train the prediction model:

Input X into the prediction model to generate the output Y;
Optimize and train the prediction models (HHO-SVR, ELM, etc.);
Calculate the training error of the prediction model.

(2) Train the FFC:

Input X into the FFC to generate the output Y;
Optimize and train the FFC (GS-MLP).

(3) Train the FBC:

Input X into the FBC to generate the output Y;
Optimize and train the FBC (GS-MLP).

Part II Predict Control Process—to predict and control with the trained model and
controllers:

(1) Predict X with the trained FFC;
(2) Predict Y with the trained prediction model;
(3) Compute the error between the real Y and the predicted Y;
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(4) Put the error into the FCFC to predict X;
(5) Compute the mean value of the output generated in Step (1) and Step (4) and take it

as the input of the prediction model in the next step;
(6) Input the control signal obtained in the previous step to generate a new output Y;

Repeat steps (4), (5), and (6) until the predicted error remains stable.

4. Tests and Analysis
4.1. Datasets and the Index System

The statistics of papers jointly produced by universities, enterprises, and scientific re-
search institutes are from the core library of Web of Science. As the SCI paper is a reflection
of the fundamental scientific research ability of a country, the test of this paper was based on
SCI papers jointly produced by 45 American universities and 30 enterprises and institutes
researching subjects such as civil engineering, architecture, interior architecture, urban
planning, and landscape design during the period between 2008 and 2016 from the core
library of Web of Science. With seven properties of the papers, including publishing time,
publishing address (from which the collaboration institutes as nodes of the collaboration
network were extracted), research field, number of citations (core libraries), number of cita-
tions (all libraries), and journal influence factors as the major fields, a total of 82,744 records
were derived from the core database. Generated by year, the industry–university–research
collaboration network was composed of nodes represented by universities, enterprises,
and scientific research institutes and edges represented by the numbers of collaboration.
The closeness centrality, betweenness centrality, degree centrality, and network connection
density of the collaboration network could be extracted with the help of big data processing
techniques. Meanwhile, the government capital input, R&D expenditures, and the num-
ber of postgraduates of universities could be obtained from the US government’s official
website. Excluding non-U.S. colleges and universities, the number of samples reached 405.

With innovation input, network connection density, and network centrality as inde-
pendent variables and the quality and quantity of papers jointly published by different
institutes as dependent variables, the index system built for the feedforward–feedback
control model is shown in Table 2.

Table 2. Index system of feedforward–feedback structure.

Variables Indexes Sources

Innovation input

x1: capital input Government capital

x2: capital input R&D expenditures

x3: personnel input Number of postgraduates

Network centrality

x4: closeness centrality Processed collaboration
network built by year

with Python
x5: betweenness centrality

x6: degree centrality

Network connection density x7: connection density Processed with Python

Innovation output
y: composite value of papers

jointly produced by
different institutes

Composite value of
influence factors

The innovation performances could be divided into two types, namely, quantity-driven
performance and quality-driven performance, which emphasizes the quantity and quality
of the innovation output, respectively. When selecting the innovation output, both quantity
and quality should be taken into consideration because the value of a high-quality academic
paper is much higher than the total value of a large number of low-quality academic papers.
Therefore, journals on which the papers were jointly published by different institutes and
the influence factors were used to evaluate the quantity and quality of the papers in order
to produce the index of innovation output and improve the accuracy of the test results.
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4.2. Tests of Output—Track Control Performance

Based on the design of the feedforward–feedback controller that adopted the structure
of the MLP and the GS-MLP, the simulation tests of models in this paper combined the
extreme learning machine (ELM), support vector regression (SVR), Harris-Eagle-based sup-
port vector regression (HHO-SVR), Butterfly-optimization-algorithm-based support vector
regression (BOA-SVR), and prediction models such as PSO_BOA-SVR and PDM_BOA-
SVR to track the output in real time and obtain the corresponding input value. The
composite value of influence factors (IFs) of jointly produced papers was taken as the
innovation output.

The training samples and test samples were selected from two periods, 2008–2014 and
2015–2016. The output of this year was predicted from the data of the first three years. The
predicted output y of year 2015–2016 and the predicted control value of innovation input
x of year 2014–2015 were generated according to Figure 2 and Equations (1)–(4). Several
combinations of prediction models and controllers were tested, and the control result of
PDM_BOA-SVR_GS-MLP is shown below.

(1) The prediction performance of the prediction-control model on the test set.

Figure 2 displays the fitting curve between the predicted values and the real values of
innovation output of 90 samples from 45 universities in 2015 and 2016.
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Figure 2. A comparison of predicted values and real values of innovation output.

Figure 2 shows the fitting result of predicted values and real values of the innovation
output of the INPM prediction model. The predicted values are close to the real values
except for those of the 20th, 43rd, and 44th samples.

By training the prediction model, feedforward controller, and feedback controller, the
relationship between innovation input u(k) and innovation output y(k) was acquired. The
performance of feedback prediction based on PDM_BOA-SVR and GS-MLP on the test set
is shown in Figures 3–5, and the prediction control results of the feedforward–feedback
controller are displayed in Figures 6–8.

(2) The prediction performance of the feedback controller on the test set.

The feedback prediction performance of variables x1, x2, and x3 generated in Step (4)
of the predict-control process (namely, input the error into the FCFC to predict the control
variables x1, x2, and x3, respectively) is shown in Figures 3–5.
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Figure 3 shows the fitting result between the predicted values and the real values of
government capital input (x1) in 2014 and 2015 generated by the feedforward–feedback
controller (FCFC) designed in this paper. The predicted values are very close to the true
values except for that of the 74th sample.
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Figure 5 shows the fitting result between the predicted values and the real values
of the number of postgraduates (x3) generated by the FCFC designed in this paper. The
predicted values are very close to the true values except for those of the 22nd, 40th, and
41st samples.



Processes 2022, 10, 2037 10 of 17Processes 2022, 9, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 5. Prediction performance of trained FBC of the number of postgraduates on the test set. 

(3) The control performance of the prediction-control model on the test set. 
(1) Feedback control with capital input and personnel input as independent varia-

bles. 
Figure 6 is a comparison of the real value and the control value of the government 

capital input of 45 universities from 2014 to 2015. The control value is the innovation input 
x1 generated by the FCFC. Adjusting the government capital input of different universi-
ties according to the control value could not only cut unnecessary expenditures, but also 
reserve capital for the universities in need, which makes contributions to improve the col-
laboration innovation performance of the industry–university–research collaboration net-
work and produce high-quality papers collaborated by different institutes. 

 
Figure 6. Control performance of government capital input. 

Figure 7 shows a comparison of the real value and the control value of the R&D ex-
penditures of 45 universities from 2014 to 2015. The control value is the innovation input 
x2 generated by the FCFC. 

Figure 5. Prediction performance of trained FBC of the number of postgraduates on the test set.

(3) The control performance of the prediction-control model on the test set.

(i) Feedback control with capital input and personnel input as independent
variables.

Figure 6 is a comparison of the real value and the control value of the government
capital input of 45 universities from 2014 to 2015. The control value is the innovation input
x1 generated by the FCFC. Adjusting the government capital input of different universities
according to the control value could not only cut unnecessary expenditures, but also reserve
capital for the universities in need, which makes contributions to improve the collaboration
innovation performance of the industry–university–research collaboration network and
produce high-quality papers collaborated by different institutes.
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Figure 7 shows a comparison of the real value and the control value of the R&D
expenditures of 45 universities from 2014 to 2015. The control value is the innovation input
x2 generated by the FCFC.
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Figure 8 shows a comparison of the true value and the control value of the number
of postgraduates of 45 universities from 2014 to 2015. The control value is the innovation
input x3 generated by the FCFC.
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As shown in Figure 9, the error e(k) remains stable after 100 iterations, at which the
value of innovation input x was needed in the test.
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(ii) Feedback control with network connection density.

Adding the independent variable of network connection density, the performance of
the control system is shown as follows:

Figure 10 shows a comparison of the real value and the control value of the network
connection density from 2014 to 2015. The control value is the network structure x7 of 45
universities generated by the FCFC.
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Figure 10. Control performance of the network connection density.

The result of the control test shows that the FCFCM-MLP performs well in prediction
and control on real datasets. Applying the proposed model to more nonlinear systems with
a small number of data samples is an ongoing research issue.

Figures 11–13, respectively, show the simulation value of the government capital input,
R&D expenditures, and the number of postgraduates that are needed to increase future
output by 5%.

Figure 11 shows the simulation value of capital input after increasing the innovation
output by 5%. The ordinate indicates the government capital input of each institute. That is
to say, adjusting the input could achieve the purpose of increasing the future output by 5%.
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As shown in Figure 12, by adjusting the R&D expenditures, the future output would
be increased by 5% according to the FCFC.
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As shown in Figure 13, by adjusting the personnel input represented by the number
of postgraduates, the future output would be increased by 5% according to the FCFC.
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(4) Comparison results of performance of models.

As shown in Table 3, seven algorithms were used in prediction models, including
ELM, SVR, ALO-SVR, HHO-SVR, BOA-SVR, PSO_BOA-SVR, and PDM_BOA-SVR. Two
structures, multi-layer perceptron (MLP) and multi-layer perceptron optimized with grid
search (GS-MLP), were built for the feedforward and feedback controllers, respectively. The
errors (RMSE) of prediction and control of different feedforward–feedback control models
are shown in Table 3.

Table 3. A comparison of final errors of different models.

Model RMSE Model RMSE

ELM_MLP 1408.991751 HHO-SVR_GS-MLP 1092.937662

ELM_GS-MLP 1383.816101 BOA-SVR_GS-MLP 1106.277331

SVR_MLP 1169.163554 PSO_BOA-SVR_GS-MLP 1084.636205

SVR_GS-MLP 1160.010254 PDM_BOA-SVR_GS-MLP 1075.364392

ALO-SVR_GS-MLP 1113.07555

It is shown in Table 3 that the error of the GS-MLP model is smaller than that of the
MLP according to the RMSE. The control models with different prediction methods sorted
by errors in ascending order are as follows: PDM_BOA-SVR, PSO_BOA-SVR, HHO-SVR,
BOA-SVR, ALO-SVR, SVR, and ELM. The error of the feedforward–feedback model built by
PDM_BOA-SVR and GS-MLP is smallest, followed by the model composed of PSO_BOA-
SVR and GS-MLP. The HHO was not further optimized, but the model composed of HHO-
SVR and GS-MLP performed well in prediction and control. Thus, the GS-MLP controller
combining the PDM_BOA-SVR prediction model would make the optimal control model.

5. Conclusions

There is no domestic research focusing on the study of feedback control of the industry–
university–research collaboration and innovation network, yet this paper initiated the
feedforward–feedback control model based on the dynamic and nonlinear feature of the
collaborative network. The model, which is based on the feedforward controller, the
feedback controller, and the multi-layer perceptron learning, has been proven universal
and practical. It can be applied in accurate prediction and control on the collaboration and
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innovation network, helping with decision making about the network. Supposing that the
model would be practiced in the collaborative network, it may not only contribute to the
improvement of input–output rate, but bring actual benefits to society.

A FCFCM-MLP model composed of a feedforward controller FFC, feedback controller
FBC, and a prediction model is proposed in this paper, which effectively alleviates the
problem of unreasonable resource allocation of the industry–university–research collabora-
tion network and improves innovation performance. The proposed control model has the
following advantages: (i) it performs well in real-time tracking; (ii) the inverse function
and controller are suitable for collaboration networks with strong nonlinearity; (iii) the
optimal model PDM_BOA-SVR_GS-MLP can minimize the prediction and control error
and effectively improve the control accuracy.

To highlight the orientation and purpose of the research, this paper takes innovation
input, centrality, and connection density of the network as the major affected factors of
the innovation output mechanism while ignoring the influence of the trust mechanism,
culture of organizations, culture of societies, and communication mechanism, which is the
limitation of the paper. In the future, the authors will adopt more measuring tools and
methodologies to ensure the accuracy and validity of the research. On the other hand,
because prediction and control have a certain predictive ability for the development trend
of the system state, the model presented in this paper does not consider the operation state
of the innovation network. Thus, in the future, we can consider combining the operation
state monitoring and fault diagnosis of an innovation network with the prediction and
control of the system model, as well as using intelligent model prediction and a control
method to diagnose and control the fault tolerance and malfunction state of the innovation
network, to improve the stable operation level of the cooperative innovation network.
In addition, the result of the control test shows that the FCFCM-MLP performs well in
prediction and control on real datasets. Applying the proposed model to more nonlinear
systems with a small number of data samples is also an ongoing research issue.

The resource allocation efficiency of the industry–university–research cooperation
innovation network has been continuously improved, and there is still great development
potential. Optimizing the distribution of innovation resources means achieving the most
of resources by provoking the initiative and creativity of universities, enterprises, and
scientific research institutes, maximizing their innovation potentials, strengthening the
leading position of the government, and improving the resource availability and input–
output ratio.

The feedforward–feedback control theoretical model lays a foundation for policy-
making of reasonable resource allocation. On the one hand, innovation resources, which
have been estimated by regular procedures and a scientific mechanism based on future
output prediction, can be invested directly and efficiently to R&D activities, aiming for the
most scientific output with limited resource input. On the other hand, the model provides
a reference for the government on deciding resource input control to improve output in
the future.
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