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Abstract: Pyrolysis temperature and application rate of biochar to soil can influence herbicide
behavior and soil fertility. The objective was to investigate the effect of soil amendments with
application rates of sugarcane straw biochar, produced at different pyrolysis temperatures, on the
sorption–desorption of metribuzin in soil. The analysis was performed using high-performance
liquid chromatography (HPLC). The treatments were three pyrolysis temperatures (BC350, BC550
and BC750 ◦C) and seven application rates (0, 0.1, 0.5, 1, 1.5, 5 and 10% w w−1). Amended soil
with different application rates decreased H + Al and increased pH, OC, P, K, Ca, Mg, Fe, Mn, CEC
and BS contents. Kf values of sorption and desorption of metribuzin were 1.42 and 0.78 mg(1−1/n)

L1/n Kg−1, respectively, in the unamended soil. Application rates < 1% of biochar sorbed ~23% and
desorbed ~15% of metribuzin, similar to unamended soil, for all pyrolysis temperatures. Amended
soil with 10% of BC350, BC550 and BC750 sorbed 63.8, 75.5 and 89.4% and desorbed 8.3, 5.8 and 3.7%
of metribuzin, respectively. High pyrolysis temperature and application rates of sugarcane straw
biochar show an ability to immobilize metribuzin and improve soil fertility, which may influence the
effectiveness in weed control.

Keywords: carbonaceous material; soil fertility; herbicide behavior; residual in soil; environmental
contamination

1. Introduction

Biochar (BC) is defined as a carbon-rich product, produced by thermal conversion of
organic material, with limited oxygen (O2) supply and controlled temperatures, consisting
mainly of carbon (C) and a variable proportion of oxygen (O) and hydrogen (H) [1]. BC has
been used for many years as a corrective in general soil applications. BC has been shown to
increase porosity, specific surface area (SSA), soil water holding capacity [2,3], availability of
basic cations (Ca2+, Mg2+, K+) [4,5], increased pH and cation exchange capacity (CEC) [3], in
addition to its significant content of recalcitrant C that offers the possibility of long-term C
sequestration [6]. Corn residue BC produced at different pyrolysis temperatures was added
to two different soils [7]. These authors observed that increasing the pyrolysis temperature
of biochar added to sandy loam soil improved the pH (0.46 units), electrical conductivity
(EC) (0.38 dS m−1), N (120%) and K (41%), but decreased plant-available P (−86%), relative
to unamended soil. Differently, a corn BC produced at a pyrolysis temperature of 200 ◦C
and applied at a rate of 2% (w w−1) in calcareous soil was more efficient in the availability
of nutrients to the soil [8]. The effects on soil fertility and consequently on crop productivity
are related to the physicochemical properties of soil, biochar, application rates and pyrolysis
temperature of biochar production, which can provide different results in soil fertility [9].

Over the years, biochar has also proven to be a material capable of removing pollutants
(herbicides, fungicides, insecticides, heavy metals, antibiotics, industrial chemicals, among
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others) from soil and water through sorption–desorption and degradation processes [10].
The distinct characteristics of biochar related to surface chemistry (surface functional groups
and cation exchange) and morphological structure (e.g., high SSA and microporosity) [11]
enables biochar to have high sorptive capacity. The variability in the physical and chemical
properties of biochar depends on the raw material and the conditions used during the
pyrolysis process [1].

The potential to sorb herbicides in soil has been evidenced by different authors [12–16].
The high sorption of the herbicide in the biochar-amended soil generally decreases its
bioavailability for uptake by plants, degradation by microorganisms and leaching into the
soil profile [17]. As opposed to the sorption, there is usually a decrease in the desorption of
the herbicide and, in some cases, it may become irreversible [18]. The increased sorption
of herbicides by biochar decreases their loss through dissipation into the environment,
decreasing the risk of human exposure and environmental pollution. However, it can have
a high sorption capacity for residual herbicide-applied PRE emergence (directly to the soil),
such as metribuzin and reduce the residual effect on weed control.

The metribuzin [4-amino-6-tert-butyl-4,5-dihydro-3-methylthio-1,2,4-triazin-5-one]
belongs to the triazinone chemical group and acts in the inhibition of photosystem II
(PSII), in the photochemical phase of photosynthesis [19]. The characteristics of high
solubility (Sw = 10,700 mg L−1 at 20 ◦C), high mobility in soil (sorption coefficient nor-
malized by organic carbon content = Koc of 38 mg L−1), high leaching capacity (GUS
index-Groundwater Ubiquity Score = 2.96) and low persistence (half-life degradation
time, DT50 = ~20 d) [20–22], make the herbicide a product with potential for environmen-
tal contamination. Metribuzin was frequently detected at a maximum concentration of
0.351 µg L−1 in surface and groundwater in untreated human consumption sites in the
region of Primavera do Leste, Mato Grosso (Midwestern Brazil) [23]. Metribuzin appli-
cation contaminated groundwater with its metabolites when applied to sandy soil in
Denmark [24]. The authors detected diketometribuzin and desaminodiketometribuzin in
soil samples at concentrations exceeding the maximum residue limit set by the European
Union (0.1 µg L−1).

The behavior of metribuzin in biochar-amended soils brought positive results for
immobilization and decreased leaching [25–27]. However, the sorption–desorption results
are distinct among authors and depend on the temperature in the pyrolysis process, soil
application rate and feedstock used. Feedstocks with lower presence of lignin and cellulose
(vegetable wastes) produce biochar with low bulk density, high pH and lower C stability
than feedstocks with high lignin and cellulose content (wood) [28,29]. Higher pyrolysis
temperatures, in general, increase the sorptive capacity of biochar [30]. The use of biochar
in agriculture has usually been reported as a soil conditioner and can contribute to the
lasting improvement in the chemical, physical, hydric and biological attributes of the soil.
The addition of high application rates of biochar can directly interfere in the sorption and
desorption of the herbicide-applied pre-emergence directly to the soil. The application of
biochar must be carefully determined for its remediation and soil conditioning potential,
since increased sorption can lead to decreased efficacy of PRE herbicides, decreasing their
residual action.

The objective of this study was to investigate the effect of soil amendments with
application rates of sugarcane straw biochar produced at different pyrolysis temperatures
on the sorption–desorption processes of metribuzin in soil. The results of this study will
determine the best pyrolysis temperature and application rate of sugarcane straw biochar
to immobilize metribuzin, thus, reducing its leaching potential into the soil profile. It also
seeks to determine, based on the sorptive capacity of biochar, the application rates that will
positively influence the chemical attributes of the soil.
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2. Materials and Methods
2.1. Sugarcane Straw Biochar

Sugarcane (Saccharum officinarum) straw waste was used as a source of raw material
because it is a promising alternative for biochar production [31,32]. Straw is a residue from
the mechanical harvesting of sugarcane, grown in abundance in Brazil. The sugarcane
straw was crushed, sieved (mesh size 10 mesh, <2.0 mm) and dried in an oven with forced
air circulation at 103 ± 2 ◦C. The straw was placed in a sealed reactor to prevent the ingress
of O2. The reactor furnace was heated at a rate of 5 ◦C min−1, in slow pyrolysis (4–6 h)
at temperatures of 350◦, 550◦ and 750 ◦C. The elemental composition and ash content of
biochar was performed according to EPA 3051A [33]. The content of C, N and the C/N ratio
was determined by combustion using an elemental analyzer (LECO CS-600, Shimadzu,
Japan). The pH was determined according to the guidelines of the analytical methods
guide for biochar [34], in which 5 g biochar samples were stirred with 50 mL deionized
water (1:10 w v−1) in a horizontal shaker for 1 h at 21 ± 2 ◦C. The specific surface area
(SSA) was obtained using the N2-Brunauer–Emmett–Teller (BET) method [35] (Table 1).

Table 1. Selected properties of sugarcane straw biochar at different pyrolysis temperatures.

T ◦C pH C N C/N Ash SSA

H2O % m2 g−1

350 8.6 48.7 0.832 58.51 5.0 17
550 9.3 49.1 0.647 75.83 10.3 129
750 9.8 59.0 0.403 146.36 11.6 223

Temperature (T); Hydrogen Potential (pH), Carbon (C), Nitrogen (N), Carbon/Nitrogen Ratio (C/N), Specific
Surface Area (SSA).

Surface morphology and elemental analysis of biochar were carried out by scanning
electron microscopy (SEM) coupled with an X-ray energy dispersive spectrometer (EDS),
in an SEM, brand JEOL (JSM-6010LA, Akishima, Tokyo, Japan). This microscope has a
resolution of 4 nm (with beam at 20 kV), magnification from 8× to 300,000× and acceleration
voltage from 500 V to 20 kV. Also used was an electron gun with pre-centered tungsten
filament. Everhart–Thornley detector for secondary electron images and solid-state detector
for retro-scattered electrons with contrast of topography, composition and variable shading.
Silicon Drift detector for EDS analysis with 133 eV resolution was used. The biochar
particles were attached to a metal stub by conductive carbon tape (PELCO Tabs™, Ted
Pella, Inc., Redding, CA, USA) and sputter coated (Leica EM ACE 600, Buffalo Grove, IL,
USA) with a 120 nm thick layer of gold.

Changes in biochar functional groups were analyzed by Fourier-transform infrared
spectroscopy (FTIR), in a Bruker VERTEX 70 instrument (Bruker, Bremen, Germany), using
the attenuated total reflectance (ATR) method in a range of 350–4000 cm−1. Raman spec-
troscopy was carried out in a micro-Raman spectrometer (Renishaw InVia, Gloucestershire,
England) equipped with an Nd-YAG la (λ = 514 nm) and a 50× objective lens (Olympus
B × 41) and the Raman spectrum acquisition time for each sample was defined as 10 s.

2.2. Soil Collection and Analysis

The agricultural soil samples were collected from the top layer (0–10 cm) in Viçosa,
MG, Brazil (20◦46′05′′ S; 42◦52′08′′ W), being an area that has not been treated with her-
bicides for the last three years. The soil samples were air dried for 10 d, then sieved on
5.0 mm mesh and stored at room temperature. The soil was classified as Oxisol (Latossolo
Vermelho-Amarelo).

The soil was amended with sugarcane straw biochar produced at different pyrolysis
temperatures (BC350, BC550 and BC750 ◦C) in application rates of 0, 0.1, 0.5, 1, 1.5, 5 and
10% (w w−1) representing 0, 1, 5, 10, 15, 50 and 100 Mg ha−1, respectively, assuming a
soil density of 1 g cm−3 and incorporation depth of 0.10 m. The analyses of P, Na, K, Fe,
Zn, Mn and Cu were performed with the Mehlich 1 Extractor. For Ca, Mg and Al the KCl
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extractor was used (1 mol L−1). Potential acidity (H + Al) was extracted in calcium acetate
(0.5 mol L−1) at pH 7.0. For the determination of BS, hot water was used as an extractor
and for S, monocalcium phosphate in acetic acid. Organic matter (OM) was quantified
by the Walkley-Black titration method after wet oxireduction. The conversion of OM into
organic carbon (OC) was performed using the correction factor 1.72 (Table 2).

Table 2. Physicochemical attributes of the soil amended with sugarcane straw biochar and una-
mended soil used in this study.

Pyrolysis
Temperature

Application
Rate

Chemical Attributes

pH OC P K Ca Mg H +
Al Zn Fe Mn Cu B CEC BS

(◦C) (%) w w−1 H2O % mg kg−1 mmolc kg−1 mg kg−1 mmolc
kg−1 %

- unamended 5.5 1.2 1.3 77.0 15.9 5.4 33.0 3.0 129.8 91.0 3.9 0.1 23.3 41.0

350

0.1 5.5 1.2 1.5 97.0 16.0 5.7 33.3 2.9 129.6 99.1 3.8 0.1 24.2 40.0
0.5 5.5 1.2 2.0 111.0 17.9 6.5 33.0 3.1 123.6 127.0 3.6 0.1 27.8 46.0
1 5.8 1.2 3.3 125.0 17.5 6.8 26.4 2.8 148.1 130.0 3.7 0.1 29.3 52.0

1.5 5.9 1.2 6.3 139.0 17.1 7.2 23.1 2.9 154.7 144.0 4.1 0.1 29.4 56.0
5 6.8 1.2 10.0 240.0 17.7 8.3 13.3 2.9 234.4 155.0 3.8 0.1 36.7 73.0
10 7.2 1.2 30.0 290.0 17.4 9.6 6.6 2.8 245.5 212.0 3.6 0.1 37.1 85.0

550

0.1 5.4 1.2 2.2 99.0 16.5 5.7 29.4 2.8 128.5 94.5 3.6 0.1 24.7 48.0
0.5 5.6 1.2 2.7 132.0 16.2 5.8 29.7 3.1 157.4 97.9 4.1 0.1 24.8 45.0
1 5.8 1.2 4.4 158.0 17.3 6.1 29.7 3.0 228.5 91.2 4.0 0.1 26.6 47.0

1.5 5.9 1.2 8.7 161.0 17.8 5.8 19.8 2.8 266.5 157.0 3.4 0.1 25.2 56.0
5 7.0 1.2 15.0 250.0 17.7 7.6 9.9 2.7 273.5 183.0 3.1 0.1 33.2 77.0
10 7.3 1.3 33.0 340.0 18.1 8.4 3.3 2.9 297.5 202.0 3.6 0.1 38.5 90.0

750

0.1 5.4 1.2 2.9 108.0 16.8 5.6 33.0 2.7 135.0 96.6 3.6 0.1 25.2 43.0
0.5 5.5 1.2 3.7 144.0 17.4 6.8 29.7 3.0 148.8 135.0 3.9 0.1 27.6 48.0
1 5.8 1.2 7.8 178.0 17.8 7.0 29.7 2.8 147.6 122.0 4.0 0.1 29.4 49.0

1.5 6.2 1.2 12.0 240.0 18.1 7.1 13.2 2.5 238.5 123.0 3.8 0.1 30.6 70.0
5 7.2 1.3 55.0 500.0 19.7 9.8 3.3 2.9 267.5 177.0 3.7 0.1 39.3 92.0
10 7.6 1.4 65.0 550.0 20.0 11.1 0.0 2.9 294.5 178.0 3.8 0.1 40.6 100.0

Physical Attributes (g kg−1)

Sand Silt Clay Texture class
Soil unamended 500 120 380 sandy clay

Source: Laboratory of Soil Analysis Viçosa LTDA, Viçosa, MG, Brazil. Hydrogen Potential (pH), Organic Carbon
(OC), Phosphorus (P), Potassium (K), Calcium (Ca), Magnesium (Mg), Potential acidity (H + Al), Zinc (Zn), Iron
(Fe), Manganese (Mn), Copper (Cu), Boron (B), Cation Exchange Capacity (effective) (CEC), Base Saturation (BS).

2.3. Sorption–Desorption Studies

The methodology for the sorption and desorption study was established according to
the guidelines “106, Adsorption–Desorption Using a Batch Equilibrium Method” [36,37].
The stock solution was prepared at a concentration of 500 mg L−1 of the standard Metribuzin-
Pestanal™ (Analytical Standard, 98.8% purity Sigma-Aldrich, San Luis, MO, USA) and the
working solution at a concentration of 100 mg L−1, both in acetonitrile (99.9% purity). From
the working solution, five concentrations of metribuzin were prepared in 0.01 mol L−1

CaCl2 solution. The concentrations were 0.5, 1, 2, 4 and 8 mg L−1, where the concentration of
2 mg L−1 corresponds to the highest recommended dose of the herbicide (1920 g a.i. ha−1)
for the sugarcane crop, assuming a soil density of 1 g cm−3 and incorporation depth of
0.10 m.

In Falcon tubes 2 g of soil from each treatment with biochar-amended and unamended
soils were added and 10 mL of 0.01 mol L−1 CaCl2 solution was added, in triplicate for
each treatment. The tubes were then subjected to rotary shaking, using an orbital shaker
adapted to a motor (Fisatom 801, São Paulo, Brazil) at 45 rpm for 24 h until they reached
the equilibrium concentration [25,26]. Subsequently, the tubes were added to a digital
centrifuge (Kasvi, K14-0815P, Paraná, Brazil) at 3500 rpm for 7 min. A 2 mL aliquot was
filtered on a Millipore filter (PRFE membrane 0.45 µm) and placed in a vial. Metribuzin
was quantified in a high-performance liquid chromatograph (HPLC) (LC 20AT, Shimadzu,
Japan), with photodiode array detector (SPD-M20A, Shimadzu, Japan) and stainless-steel
C18 column (Shimadzu VP-ODS Shim-pack 250 mm × 4.6 mm d.i., 5 µm of particle size).
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The mobile phase was adapted from [25], composed of acetonitrile/water (acidified
with 0.01% phosphoric acid) in a ratio 45/55 (v v−1), injection volume of 30 µL, flow rate of
1.0 mL min−1, wavelength of 254 nm and column oven temperature of 30 ◦C. The mobile
phase showed good linearity in a range of 0.1 to 8 mg L−1 of metribuzin. The analytical
curve showed a coefficient of determination (R2) equal to 0.9993. The limit of detection
(LoD) and quantification (LoQ) were 0.044 and 0.13 mg L−1, respectively.

In the desorption study, the sorption supernatant was discarded from the Falcon tubes
containing biochar-amended and unamended soils and then 10 mL of the new 0.01 mol L−1

CaCl2 solution without herbicide was added. The tubes were subjected to rotary shaking
for 24 h until they reached the re-equilibrium concentration. Subsequently, the tubes were
centrifuged at 3500 rpm for 7 min. A 2 mL aliquot was filtered and placed in a vial for
HPLC analysis. The amount desorbed was calculated as the difference between the sorbed
metribuzin in the soil and the amount remaining in the supernatant.

2.4. Freundlich Model for Sorption–Desorption and Apparent Coefficient

The sorption apparent coefficient (Kd-app, L kg−1) was also calculated at Ce = 2.0 mg L−1

(an intermediate value of the equilibrium concentrations studied in the sorption), using the
following Equation (1):

Kd-app = Cs/Ce (1)

where Cs is the amount of herbicide sorbed in the unamended and biochar-amended soil
(mg kg−1) (2):

Cs = (Ci − Ce) × V/M (2)

where Ci is the pesticide initial liquid concentration (mg L−1), Ce is the equilibrium liquid
concentration (mg L−1), V is the volume of herbicide solution added (mL) and M is the
mass of soil (g) [13].

The sorption coefficient (Kd-app, L kg−1) normalized to the OC content of the biochar-
amended and unamended soils (Koc, L kg−1) was calculated as follows (3):

Koc = (Kd-app/%OC) × 100 (3)

The desorption Kd-app value for desorption was also calculated for comparison to the
sorption Kd-app.

The Freundlich model and its distribution coefficient were derived from Equation (4):

Kf = Cs/Ce
1/n (4)

where n (dimensionless value) can range from 0 to 1, depending on the heterogeneity in
the sorption sites.

The same sorption coefficient was also standardized, considering the soil OC content
(Kfoc). The hysteresis index (H) was calculated by Equation (5):

H = 1/nsorption/1/ndesorption (5)

The thermodynamic parameter of Gibbs free energy (∆G) to evaluate the degree of
spontaneity of the sorption process was calculated by linear equation of van’t Hoff (6). The
average Kf (Freundlich coefficient) value of each treatment was used for the calculation.

∆G= − R · T · InKf (6)

where R is the gas constant (8314 J mol−1 K−1), T is the absolute temperature (298 K) and
Kf is the Freundlich coefficient (mg(1−1/n) L1/n kg−1).
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3. Results and Discussion
3.1. Biochar Characterization

All biochar attributes varied as the pyrolysis temperature of the production system
increased. The pH of BC350 was lower (8.6) than BC550 (9.3) and BC750 (9.8). BC750
increased the SSA 13-fold compared to BC350. Higher C/N ratio and ash content were
observed for BC750 (Table 1). These results are in agreement with what has been observed
in studies with different pyrolysis temperatures in sugarcane straw biochar [32,38,39]. The
increase in pyrolysis temperature influences the SSA of biochar because there is a change
in the carbon structure, with the formation of structures similar to graphene, which has
a larger pore volume and, consequently, SSA [11]. The higher pH values of the biochar
produced at high temperature (BC750) are positively correlated with carbonate formation,
inorganic alkali content and increased ash content [40,41]. Ashes are mainly responsible for
the generation of alkalinity in biochar, due to the presence of alkaline-reacting minerals,
such as Na+, Ca2+ and Mg2+ [42]. The higher SSA of BC750 is probably related to the
release of volatile substances present in the biomass and the change in the C structure,
increasing the SSA and pore volume through degradation of OM [43,44]. The higher C/N
ratio of BC750 may be related to N losses during the thermal production process. With
increasing pyrolysis temperature, usually compounds with higher C content and lower
N content are formed, because N is lost through volatilization at high temperatures [45].
Increases in C/N ratios may indicate the production of compounds that have higher levels
of recalcitrant C [46].

The elemental composition of biochar is shown in Supplementary Material
(Figure S1B), represented by the atomic percentage of elements located in EDS images
(Figure S1A). C was predominant for the biochar produced at the three pyrolysis tempera-
tures (BC350, BC550 and BC750) with values of ~90%. The O was 4.48, 8.04 and 12.6% for
the BC350, BC550 and BC750, respectively. Higher percentages of the elements Mg, Ca, Al,
P, K and Si were observed for BC550 and BC750. The increase in inorganic constituents in
pyrolyzed biochar at high temperatures is related to the higher ash content that remains in
the biochar after carbonization [47]. The characteristics of the biochar surface are presented
in Figure S2. BC350 preserved the structural organization of the plant cell wall with a
lamellar structure on the surface [48]. High pyrolysis temperatures showed deformation of
the biochar surface, which was also observed by [49] when comparing biochars derived
from wheat, corn, rape and rice straw at different pyrolysis temperatures.

The increase in pyrolysis temperature promoted a reduction in the amount of organic
functional groups in the biochar (Figure 1A). The results of the FTIR spectrum showed
variation in peaks and absorption intensity with variation in pyrolysis temperature. For
BC350, a band is observed at 788 cm−1 that can be attributed to aromatic and alkali func-
tional groups, such as C=C [50], a band at 1040 cm−1 that can be assigned to the C-O
vibration [51], a band at 1580 cm−1 that can be attributed to aromatic groups elongating
the C=C bond [52], a band at 2095 cm−1, which is assigned to asymmetric aliphatic C-H
stretches [53] and a band at 2100 cm−1, assigned to C=C stretching [54]. The increase in py-
rolysis temperature directly influenced the surface functional groups and may be attributed
to the structural reorganization of biochar through depolymerization and volatilization due
to ion losses of carbonaceous compounds (H+ and O−) [55,56]. The decrease in intensity
of the aliphatic elongation (C-H) bands was also observed by [32] and is attributed to
dehydration of the lignin and/or cellulose compounds, as well as structural changes in the
aliphatic compounds.

The Raman spectra of all materials (Figure 1B) showed classical bands of carbonaceous
materials, i.e., D and G located in the first-order region, 1100 to 1800 cm−1. In the spectra,
it was possible to observe that BC350 showed higher intensity for the G band compared
to the D band when compared to BC550 and BC750. The analysis of the organizational
structure of the biochars, analyzed by Raman spectrum, indicated that material synthesized
at the minimum temperature (BC350) has a more organized structure and, although all
biochars have well-defined D and G bands, their intensities are close. This indicates that
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these materials have some degree of structural defects [57]. Raman spectra of samples of
different biochars show a D-band at 1337–1361 cm−1 due to the A1g symmetry breathing
mode that is non-existent in perfect graphite and, thus, only becomes active in the presence
of disturbances, often referred to as amorphous C [51]. The G band (1596–1604 cm−1) is
related to the presence of carbon with sp2 hybridization, more specifically, the vibration of
the double bonds (C=C) that form the graphitic planes of the materials [58]. The higher
the value of the ratio between the intensities of the D and G bands (ID/IG), the lower the
organization of the structure [59].
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The physicochemical characteristics of biochar directly influence its sorptive capacity
due to the distinct mechanisms of interaction between the herbicide molecule and the
biochar. The nature of these interactions can be exclusively physical, chemical or both
and result in the phenomenon of sorption [60]. The characteristics that directly influence
the sorption of herbicides are related to porosity, SSA, aromatic structures, C contents,
surface functional groups, pH and elemental composition [61]. Understanding the probable
mechanisms for herbicide sorption by biochar ensures an understanding of the ability of
each material to act as a potential soil remediator.

3.2. Characterization of Biochar-Amended and Unamended Soils

The chemical characteristics of the soils amended with BC350, BC550 and BC750
at different application rates are shown in Table 2. The pH of the amended soil with
application rates 1.5%, regardless of pyrolysis temperature, increased the pH by ~0.5 units
relative to the unamended soil. Higher pH values were observed for the soil amended
with BC750, where the application rates of 5 and 10% increased pH by 1.7 and 2.1 units,
respectively, relative to the unamended soil. The potential acidity (H + Al) in the biochar-
amended soil, regardless of pyrolysis temperature, was similar to the unamended soil
(33 mmolc kg−1) for application rates < 1.0% (Table 2). Amended soil with 10% of BC350,
BC550 and BC750 reduced potential acidity by 80, 90 and 100%, respectively. The increase
in pH and reduction in potential acidity of the amended soil is possibly related to the
amount of ash and basic cations in the biochar. Biochar can have a soil liming capacity
due to the presence of basic cations (Ca, K, Mg and Si) that can form alkaline oxides or
carbonates during the pyrolysis process and, once added to the soil, react with monomeric
H + Al, increasing soil pH and, consequently, reducing exchangeable acidity [62]. One
study, analyzing a 3% application rate of rice straw biochar to a soil with a pH of 5.24,
reported increased soil pH by 4.5 units compared to the control [63].

The OC content of the unamended soil was 1.2% and increased to 1.3 and 1.4 in
the amended soils, with application rates of 5 and 10% of BC750, respectively. The 10%
application rate of BC550 increased the OC content to 1.3%. Regardless of the application
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rate, no changes in OC were observed for the soil amended with BC350 (Table 2). The OC
was also analyzed in a soil amended with six biochars [64]. These authors observed that
OC content increased from 4.9% of the unamended soil to 5.4 and 5.2% in the amended soil
with peanut shell and cassava bagasse biochar, respectively, and it was attributed to the
higher OC content in the feedstocks, which is indicative that biochar applications to soils
can increase C accumulation and sequestration.

Amended soil with BC350, BC550 and BC750 increased P for all application rates
(Table 2). The rates application < 1.0% of biochar, regardless of pyrolysis temperature,
increased the P concentration ~2-fold relative to unamended soil. The soil amended with
10% of BC350, BC550 and BC750 increased P by ~23-, 25- and 5-fold, respectively, relative to
the unamended soil. Increases in P availability in amended soil with different biochars have
been reported by different authors [65–67]. This result is directly related to the increase in
pH and the change in the sorption site of P by the biochar-amended soil. P in more acidic
soils is prone to complexing with Al or Fe and increasing soil pH above 7 may result in
precipitation of free Al and Fe and, thus, decrease active P sorption sites [68]. The increased
availability of P to the soil amended with BC750 is possibly related to characteristics of the
biochar produced at high temperature, such as surface area and changes in soil exchange
sites, preventing the fixation of P [69]. A study analyzed the potential of corn stover biochar
produced at a pyrolysis temperature of 500 ◦C on the availability of P in soil [8]. The authors
observed that P increased by 2.6-fold for 2% application rate, relative to the control soil.

K content in the amended soils increased for all application rates (Table 2). The 0.1%
application rate of biochar, independent of pyrolysis temperature, increased the K in the
amended soil by ~1.3-fold compared to the unamended soil. The 10% application rate
of BC350, BC550 and BC750 increased the K by 3.7-, 4.4- and 7-fold, respectively, over
unamended soil. Biochar typically contains a large proportion of K, which is dependent on
pyrolysis temperature and feedstock [70]. For mild pyrolysis temperatures < 500 ◦C, the C
and N contents are volatile; however, K starts to volatilize at higher temperatures > 700 ◦C,
which provides an increase in K concentration in the biochar produced at high tempera-
ture [71]. Amended soil with 0.3% application rate of cassava stem biochar and rice husk
were analyzed for K [72]. The authors reported release of ~148 mg kg−1 of K after 7 d of
incubation of amended soil with cassava stem biochar and ~188 mg kg−1 of K after 1 d of
incubation for rice husk biochar, being two biochars with high potential for K accumulation
in soil.

Ca and Mg contents increased with soil modification with biochar; however, small
variations were observed between application rates and pyrolysis temperature (Table 2).
Application rate of 10% biochar, regardless of pyrolysis temperature, increased Ca and Mg
by ~1.2- and 1.9-fold, respectively, relative to unamended soil. The increase in Ca was also
observed in a study with six different biochars [64]. The authors observed that compared
to the unamended soil, the Ca content increased by 1.2–5.9%.

The contents of the micronutrients Zn, Cu and B showed no variations in relation
to the unamended soil, for all pyrolysis temperatures and application rates (Table 2). Fe
and Mn contents increased ~2-fold, relative to unamended soil, for the 10% application
rate, regardless of pyrolysis temperature (Table 2). In more alkaline soils (pH > 7.0), Zn
and Cu can form associations with Fe oxides and their availability in the soil solution
is decreased. The application of different rates of hardwood biochar (Quercus spp. and
Carya spp.) to alkaline soils was analyzed in terms of soil chemical modifications [73]. The
authors observed that increasing the application rate of biochar provided higher Fe and
Mn content but showed no effect for Zn and Cu in the amended soil.

The CEC was similar to unamended soil (23.3 mmolc kg−1) for application rates < 1.0%,
regardless of pyrolysis temperature. Amended soil with 10% of BC350, BC550 and BC750
increased CEC by 1.6-, 1.65- and 1.7-fold, respectively, compared to unamended soil.
The mechanisms that increase the SSA of the amended soil are probably mediated by
the higher SSA, negative surface charge and charge density in the biochar [74], and the
increase in soil pH, as presented in this study. Increased pH after biochar addition may
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result in deprotonation of functional groups of minerals, such as kaolinite, resulting in the
development of negative charges that increase the CEC of the amended soil [75].

The BS of the soil amended with BC350, BC550 and BC750 increased to 85, 90 and
100% at 10% application rate. Similar results were observed in the application of poultry
litter biochar produced at 350 ◦C [76]. The authors reported increased soil BS of 33.58% and
43.28% for the two highest application rates (0.4 and 0.5%, respectively) when compared to
unamended soil.

Overall, the sugarcane straw biochar produced at different pyrolysis temperatures di-
rectly influenced soil fertility when applied at high rates (5 and 10%). However, application
rates of 1 and 1.5% have potential in reducing potential acidity, increasing pH, high P and K
contents, maintaining Ca and Mg values and the micronutrients Fe and Mn and improving
soil CEC. Improvements in soil chemical attributes are provided by adding application
rates of 1 to 1.5% of BC350, BC550 and BC750 of sugarcane straw and may be an alternative
for soil fertility.

3.3. Sorption–Desorption Metribuzin in Biochar-Amended and Unamended Soils

The sorption–desorption isotherms were adequately fitted using the Freundlich model
to describe the sorption–desorption of metribuzin in amended soil at different biochar
application rates and pyrolysis temperature, as indicated by the high coefficients of de-
termination (R2 ≥ 0.98) of the equations (Figures 2 and 3). The degree of linearity (1/n)
ranged from 0.34 to 0.89 for sorption and 0.41 to 1.05 for desorption, indicating that the
sorption and desorption isotherm is classified as type L (Tables 3 and 4). This type of
isotherm is indicative that the sorbent (biochar-amended soil) showed lower sorption
capacity at high concentrations of the sorbate (herbicide) [77]. Thus, at low concentrations,
metribuzin showed higher affinity for biochar-amended soil, due to the high availability of
sorption sites at higher application rates (>1.5%), independent of pyrolysis temperature.
As the concentration of metribuzin increased, the number of binding sites decreased and
the concentration in the soil solution increased, consequently reducing its sorption by the
biochar-amended soil. This behavior was also observed for the sorption of metribuzin on
biochar from grapevine pruning residues and bonechar (cow bone) [26,27].

According to the sorption coefficients (Table 3), for both the Freundlich model (Kf)
and the median concentration (Kd-app), metribuzin showed increasing sorption as the
biochar application rate to the soil increased. The Kf value was low for unamended soil
(1.42 mg(1−1/n) L1/n kg−1). Studies analyzing the sorption and desorption of metribuzin in
different soils have reported sorption Kf values between 0.18 and 2.5 mg(1−1/n) L1/n kg−1,
being dependent on clay content, OM and soil pH [27,78–80].

BC750-amended soil improved the sorption of metribuzin between 1 and 10-fold over
unamended soil as application rates increased from 0.1 to 10%. BC350- and BC550-amended
soils showed similar sorption with ~1.3- and 6-fold increases in sorption at application
rates of 1.5 and 10%, respectively, compared to unamended soil. The Kf and Kd-app of the
sorption of metribuzin were normalized by the OC content in the soil, showing that the
overall sorption trends were not altered by the OC (Table 3). The Kfoc values for the
sorption of metribuzin on the amended soil increased proportionally to the application
rate and pyrolysis temperature. The Kfoc for the 10% application rate was 504, 726 and
1236 mg(1−1/n) L1/n kg−1 for the amended soil with BC350, BC550 and BC750, respectively
(Table 3). The higher sorption of metribuzin in the soil amended with BC750 can be
attributed to the higher SSA compared to BC350 and BC550. The increased sorption
capacity of biochar is directly related to higher SSA, because the number of pores increases
proportionally with SSA, providing a greater number of herbicide binding sites [81]. The
Kf value of metribuzin sorption was evaluated in a study with sugarcane bagasse biochar,
produced at different pyrolysis temperatures [82]. These authors observed that the biochar
produced at 700 ◦C presented Kf of 47.2 mg(1−1/n) L1/n kg−1 and SSA of 82 m2 g−1, while
for the biochar produced at 350 ◦C, the Kf was 9.77 mg(1−1/n) L1/n kg−1 and SSA was
2.6 m2 g−1.
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Figure 2. Sorption isotherms of the Freundlich model of metribuzin applied in soil amended and
unamended (control) with sugarcane straw biochar (BC) produced at pyrolysis temperatures of
350 ◦C (A), 550 ◦C (B) and 750 ◦C (C). The vertical and horizontal bars represent standard error
(n = 3) of Ce (equilibrium concentration) and Cs (soil concentration). Symbols can cover the bars.
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Figure 3. Desorption isotherms of the Freundlich model of metribuzin applied in soil amended
and unamended (control) with sugarcane straw biochar (BC) produced at pyrolysis temperatures
of 350 ◦C (A), 550 ◦C (B) and 750 ◦C (C). The vertical and horizontal bars represent standard error
(n = 3) of Ce (equilibrium concentration) and Cs (soil concentration). Symbols can cover the bars.
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Table 3. Sorption isotherm parameters of Freundlich model. Sorption coefficient (Kd-app) of 2 mg L−1

and Gibbs free energy (∆G) concentration for metribuzin applied to soil amended with sugarcane
straw biochar and unamended soil.

Pyrolysis
Temperature

Application
Rate

Freundlich

Kf Kfoc Kd-app Koc ∆G

(◦C) (%) w w−1 (mg(1−1/n) L1/n kg−1) 1/n R2 L kg−1 Sorbed (%) kJ mol−1

- unamended 1.42 ± 0.26 a 114.5 0.721 ± 0.04 0.99 1.66 ± 0.71 133 23.17 ± 2.80 −868.77

350

0.1 1.13 ± 0.05 96 0.875 ± 0.05 0.99 0.96 ± 0.07 82 18.9 ± 0.28 −302.80
0.5 1.27 ± 0.14 116 0.894 ± 0.03 0.99 1.39 ± 0.14 127 22.8 ± 0.76 −592.18
1 1.33 ± 0.05 122 0.885 ± 0.03 0.99 1.37 ± 0.04 117 23.8 ± 0.48 −706.55

1.5 1.71 ± 0.10 137 0.830 ± 0.01 0.99 1.60 ± 0.10 129 28.0 ± 0.61 −1329.20
5 4.05 ± 0.15 311 0.579 ± 0.02 0.99 3.04 ± 0.34 233 45.2 ± 1.56 −3465.42
10 7.06 ± 0.16 504 0.527 ± 0.01 0.99 6.99 ± 0.11 499 63.8 ± 0.98 −4842.27

550

0.1 1.21 ± 0.08 105 0.807 ± 0.02 0.99 1.22 ± 0.15 104 20.4 ± 0.62 −472.27
0.5 1.38 ± 0.10 117 0.877 ± 0.03 0.99 1.23 ± 0.05 105 21.9 ± 0.72 −797.98
1 1.13 ± 0.08 91 0.854 ± 0.01 0.99 1.33 ± 0.23 107 22.0 ± 0.82 −302.80

1.5 1.87 ± 0.04 159 0.708 ± 0.02 0.99 1.58 ± 0.16 134 26.4 ± 0.39 −1550.80
5 4.55 ± 0.15 417 0.460 ± 0.02 0.99 4.77 ± 0.32 437 49.2 ± 1.38 −3753.83
10 8.50 ± 0.10 726 0.358 ± 0.02 0.99 14.0 ± 0.14 1196 75.5 ± 0.74 −5302.16

750

0.1 1.54 ± 0.07 107 0.881 ± 0.01 0.99 1.03 ± 0.09 83 23.6 ± 0.56 −532.95
0.5 1.60 ± 0.09 136 0.704 ± 0.03 0.99 1.35 ± 0.18 115 23.4 ± 0.75 −1164.46
1 1.84 ± 0.21 157 0.788 ± 0.06 0.99 1.09 ± 1.0 93 23.5 ± 1.90 −1510.73

1.5 2.73 ± 0.08 220 0.606 ± 0.03 0.99 2.58 ± 0.17 208 39.9 ± 0.79 −2488.22
5 8.41 ± 0.22 718 0.349 ± 0.04 0.98 14.2 ± 0.18 1210 77.8 ± 1.31 −5275.79
10 14.51 ± 0.15 1239 0.383 ± 0.06 0.98 45.0 ± 0.21 3846 89.4 ± 0.70 −6627.10

a Average of the value of each parameter ± standard deviation of the mean (n = 3).

Table 4. Desorption isotherm parameters of Freundlich model. Sorption coefficient (Kd-app) of
2 mg L−1. Hysteresis coefficient (H) and Gibbs free energy (∆G) for metribuzin applied to soil
amended with sugarcane straw biochar and unamended soil.

Biochar Freundlich

Pyrolysis
Temperature

Application
Rate Kf Kfoc Kd-app Koc ∆G

(◦C) (%) w w−1 (mg(1−1/n) L1/n kg−1) 1/n H R2 L kg−1 Desorbed
(%) kJ mol−1

- unamended 0.78 ± 0.09 a 62 0.468 ± 0.13 0.65 0.91 1.49 ± 0.09 117 15.8 ± 0.54 −615.58

350

0.1 1.23 ± 0.08 105 0.974 ± 0.30 1.11 0.96 1.07 ± 0.04 91 15.5 ± 0.25 −512.89
0.5 2.22 ± 0.18 203 1.006 ± 0.10 1.24 0.99 2.27 ± 0.10 208 15.7 ± 0.45 −1975.88
1 3.45 ± 0.06 294 1.029 ± 0.04 1.39 0.99 2.86 ± 0.10 244 15.1 ± 0.72 −3068.16

1.5 3.27 ± 0.12 344 0.976 ± 0.08 1.18 0.99 5.33 ± 0.06 429 13.5 ± 0.15 −2935.40
5 6.51 ± 0.18 597 0.418 ± 0.03 0.91 0.99 14.76 ± 0.07 1135 11.0 ± 0.32 −5985.60
10 14.64 ± 0.11 1251 0.425 ± 0.07 1.19 0.96 33.10 ± 0.07 2364 5.8 ± 0.19 −8218.33

550

0.1 2.30 ± 0.09 196 1.023 ± 0.06 1.52 0.99 2.03 ± 0.07 173 15.2 ± 0.13 −2062.59
0.5 2.00 ± 0.08 170 1.059 ± 0.20 1.44 0.97 2.21 ± 0.03 188 15.1 ± 0.30 −1717.32
1 2.35 ± 0.09 189 0.970 ± 0.08 1.02 0.99 2.40 ± 0.14 193 15.5 ± 0.23 −2116.87

1.5 2.69 ± 0.05 229 0.645 ± 0.05 0.91 0.99 4.23 ± 0.10 361 14.3 ± 0.18 −2451.65
5 11.28 ± 0.17 961 0.818 ± 0.03 0.91 0.99 17.26 ± 0.22 1583 11.4 ± 0.44 −4641.33
10 27.58 ± 0.18 1970 0.815 ± 0.07 1.19 0.96 58.86 ± 0.09 5030 8.3 ± 0.32 −6649.20

750

0.1 1.64 ± 0.06 132 0.960 ± 0.02 1.09 0.99 1.72 ± 0.09 138 15.1 ± 0.37 −1225.61
0.5 1.90 ± 0.18 162 0.766 ± 0.09 1.09 0.98 2.40 ± 0.07 205 15.7 ± 0.26 −1590.23
1 3.26 ± 0.12 281 0.877 ± 0.09 1.11 0.99 7.02 ± 0.03 600 14.9 ± 0.33 −2927.80

1.5 4.08 ± 0.09 329 0.583 ± 0.05 0.96 0.99 7.85 ± 0.11 566 14.3 ± 0.18 −3483.70
5 12.44 ± 0.27 1063 0.468 ± 0.10 1.34 0.91 44.9 ± 0.06 3837 11.8 ± 0.31 −6245.75
10 35.91 ± 0.19 3069 0.623 ± 0.09 1.62 0.97 114.5 ± 0.13 9786 3.7 ± 0.17 −8872.22

a Average of the value of each parameter ± standard deviation of the mean (n = 3).

FTIR analysis showed that with increasing pyrolysis temperature, losses of surface
functional groups occurred, which may increase the sorptive capacity of BC750. Low-
temperature biochar (350 ◦C) has more polar, aliphatic surface groups that are amorphous
in character [83], while high-temperature biochar has surface groups that resemble graphitic
aromatic C, rich in π electrons [84]. The increased sorption capacity on BC750 could also
occur due to π–π-type binding between metribuzin and BC750. Triazine herbicides, such as
metribuzin, can behave as a π-electron donor while the polyaromatic surfaces of biochar act
as an electron acceptor, indicating a combination of a π–π force between metribuzin and the
biochar surface [85]. Wheat straw biochar produced at a pyrolysis temperature of 800 ◦C
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was analyzed for the sorption potential of metribuzin for environmental remediation [86].
These authors observed that the predominant sorption process was linked to chemical
sorption via π–π interactions.

The pH has an influence on the sorption and desorption of metribuzin in the amended
soil. Metribuzin is a strong acid (pKa = 1.3) and shows low sorption due to its ionic form
(negatively charged) that provides repulsion with the negative charges of the soil under
conditions of high pH values [78,87]. However, even as the pH of the biochar-amended soil
increased, the sorption of metribuzin was higher than in the unamended soil. Although
the herbicide is mostly in ionic form, the mechanisms related to porous structure, SSA and
surface groups provide high capacity to sorb the herbicides that are in the soil solution [88].
Similar results were observed by [89], analyzing pH and biochar addition on the sorption
of two acidic herbicides (2,4-D and imazethapyr). The authors observed that in unamended
soil, sorption decreased as soil pH increased, providing injury to the rice crop. As 2 and 8%
biochar were added to the soil, pH increased; however, sorption increased proportionally,
decreasing crop injury.

The application rates of biochar produced at different pyrolysis temperatures influ-
enced the percentage sorbed (relative to the total initially applied) of metribuzin in the soil
(Table 3). Application rates of 0.1, 0.5 and 1% biochar had similar percentages of metribuzin
sorbed to unamended soil (~23%) for all pyrolysis temperatures. The 5% application rate
of BC750 to soil increased the sorption of metribuzin by 70%, while amended soil with
BC350 and BC550 sorbed 45 and 49%, respectively. At the highest application rate, the
percentage of metribuzin sorbed was 63.8, 75.5 and 89.4% relative to the total applied,
for the amended soil with BC350, BC550 and BC750, respectively (Table 3). The presence
of 5% biochar can directly influence the effectiveness of metribuzin in the soil for weed
control. Sugarcane straw biochar with a high sorptive capacity, such as BC750, applied
at high rates may result in a scenario where even higher doses will be required to control
weeds after the addition of this material to the area. However, the application of biochar to
soil for agronomic purposes is considered undesirable [61]. In a remediation scenario for
soils contaminated with metribuzin, sugarcane straw biochar presented itself as a viable
alternative for immobilization of the herbicide at application rates above 5%.

Increased sorption of metribuzin at higher application rates was observed using
different biochars [25,90,91]. Application rates of olive mill waste biochar were analyzed
for the sorption potential of metribuzin in the soil [25]. These authors observed that the
application of 2.5 and 5% biochar increased the sorption of metribuzin by 1.5- and 2.5-fold,
respectively, relative to unamended soil. The effectiveness of metribuzin was reduced
when sugarcane bagasse biochar was applied (350 and 700 ◦C) at rates of 1 to 4% in clayey
soil [82]. The authors observed that the application rate of 8% biochar reduced the residual
effect of metribuzin and provided increased germination of Palmer amaranth (Amaranthus
palmeri), being larger than the unamended soil. The reduction in herbicide residual effect
was also observed by [92], in which an application rate of only 1.6% of bonechar in the soil
was sufficient to reduce the level of weed injury by 50%.

The desorption coefficients (Table 4) for the Freundlich model (Kf) and at the me-
dian concentration (Kd-app) showed that desorption was reduced as the application rate
of biochar to the soil increased. The Kf value of the unamended soil desorption was
0.78 mg(1−1/n) L1/n kg−1. The desorption of metribuzin decreased between 2- and 46-times
for the application rate of 0.1 to 10% for the BC750-amended soil compared to the una-
mended soil. Soil amended with BC350 and BC550 decreased desorption by up to 18- and
35-fold, respectively, for the 10% application rate, relative to unamended soil. The higher
Kf (desorption) value for metribuzin in the amended soils, relative to the unamended soil,
regardless of pyrolysis temperature, indicated that the presence of carbonaceous mate-
rial decreased the desorption of metribuzin. Lipophilic herbicides, such as metribuzin
(Log Kow = 1.75), can establish chemical interactions between non-polar groups in the
biochar and increase stability, reducing desorption. Both the C content and the aromatic



Processes 2022, 10, 1924 14 of 19

structure are important factors affecting the low desorption capacity of biochar for lipophilic
herbicides [13,93].

The percent of metribuzin desorbed in the soil with application rates of 0.1, 0.5 and 1%
biochar was similar to the unamended soil (~15%) at all pyrolysis temperatures (Table 4).
The 10% application rate of biochar to soil provided the least desorption of metribuzin,
being desorbed 8.3, 5.8 and 3.7% for BC350, BC550 and BC750, respectively. The desorption
Kfoc values for the 10% application rate were 1970, 1251 and 3069 mg(1−1/n) L1/n kg−1

in the BC350-, BC550- and BC750-amended soils, respectively. The hysteresis (H) of the
isotherms of metribuzin in the unamended soil was 0.65 and when biochar was added, the
H was greater than 1, which is classified as negative hysteresis (H > 1) (Table 4). When H is
negative, it indicates that desorption is greater than the sorption rate [94]. With increasing
application rates of BC750 biochar, the H values increased, showing that the application of
this biochar can decrease the bioavailability of metribuzin in the soil solution. Metribuzin
also showed negative H in soils amended with fly ashes [95]. The results of the lower
desorption of metribuzin presented in this study showed that, in addition to the high
sorption capacity, the sugarcane straw biochar presented available pores for herbicide
diffusion. The porous structures of biochar can lead to herbicide immobilization [96]. The
lowest desorption of atrazine was also observed when applied directly to the amended soil
with biochar from cassava waste obtained at 750 ◦C [97]. The authors reported that the
lower desorption could be related to the irreversibility of chemical bonding or sequestration
of atrazine in meso- or micro-pores of the biochar.

In general, the Gibbs free energy value (∆G) of the sorption and desorption reaction of
metribuzin in the biochar-amended soils decreased with increasing pyrolysis temperature
and application rates (Tables 3 and 4). This indicates that as pyrolysis temperature and
application rates increased, the molecules of this herbicide remained sorbed onto the
biochar, indicating that sorption increased while desorption decreased. The change in
Gibbs free energy (∆G) indicates the degree of spontaneity in a sorption process and a
larger negative value reflects more energetically favorable sorption [98]. The more negative
∆G value for the BC750-amended soil (Table 3) indicated that sorption of metribuzin was
not exclusively governed by chemical reactions, since an absolute ∆G value of less than
40 kJ/mol indicates mainly physical sorption [99]. However, both physical and chemical
sorption are processes that can occur concomitantly [100]. Sorption is a thermodynamic
process, i.e., physical sorption (related to surface interaction, pore filling, Coulomb forces,
van der Waals and hydrogen bonds) and chemical sorption (valence forces, electron donor-
acceptor (EDA) mechanisms, π-interactions) involve the conversion of heat and other forms
of energy [60].

Overall, soil modification with higher application rates (1.5, 5 and 10%) of BC750
had a high influence on the sorption and desorption of metribuzin from the soil and may
reduce the potential of the herbicide to control weeds. However, lower rates (<1.5%)
of BC350 and 550 provided less impact on sorption and desorption of metribuzin and
improved the chemical attributes in the amended soils. This information is important for
determining the application of these biochars to the soil, either as fertilizer or to reduce
the risk of environmental contamination of the herbicide. The sorption and desorption
study showed that the successful use of biochar will depend on the relationship between
pyrolysis temperature and application rate.

4. Conclusions

Pyrolysis temperature altered the physicochemical attributes of sugarcane straw
biochar. BC750C showed higher SSA, C/N ratio, pH and decreased presence of surface
functional groups, which may be directly linked to higher sorption and lower desorp-
tion of metribuzin in the amended soil. The physicochemical characterization allows the
analysis of the biochar composition and the main positive aspects related to herbicide
immobilization.
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Using application rates of 1 and 1.5% of BC350, BC550 and BC750 can improve soil
fertility by making P, K, Mg, Fe and Mn available, reducing potential acidity (H + Al)
and increasing soil pH. The lower rates of BC350 and 550 provided less impact on the
sorption and desorption of metribuzin and may be an alternative for the use of sugarcane
straw biochar produced at low pyrolysis temperatures as a source of fertilizer. However,
it is important to note that the sorption and desorption behavior takes into account the
physicaochemical attributes of the herbicide; in this case, the same biochar evaluated in this
study may present lower or higher sorption capacity when analyzed with another herbicide.

Soil amended with BC750, from an environmental remediation perspective, has a high
potential to decrease the mobility and risks of metribuzin in environmental contamination.
However, sorption of metribuzin increased and desorption decreased with increasing rates
of biochar application, which may negatively affect the bioavailability of metribuzin in the
soil solution and, in an agronomic approach, may influence the residual effect of metribuzin
in the soil and decrease its activity in weed control efficacy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr10101924/s1, Figure S1. Surficial elemental composition C (red),
O (yellow), Si (green), Ca, K, P, Al, P and Na (undetected) by energy dispersive X-ray spectrometry
(EDS) analysis of biochar (BC) (A) and EDS spectrogram (B) in different pyrolysis temperatures (350,
550 and 750 ◦C); Figure S2. Images of the biochar (BC) derived from sugar cane straw at different
pyrolysis temperatures (350, 550 and 750 ◦C) by scanning electron microscopy (SEM) at 500- and
3000-times magnification.
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