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Abstract: The present study deals with the stock-dependent Markovian demand of a retrial queueing
system with a single server and multiple server vacation. The items are restocked under a continuous
review (s, Q) ordering policy. When there is no item in the system, the server goes on vacation.
Further, any arrival demand permits entry into an infinite orbit whenever the server is on vacation.
In the Matrix geometric approach with the Neuts-Rao truncation technique, the steady-state joint
distribution of the number of customers in orbit, the server status, and the inventory level is obtained.
Under the steady-state conditions, some significant system performance measures, including the
long-run total cost rate, are derived, and the Laplace-Stieltjes transform is also used to investigate
the waiting time distribution. According to various considerations of uncontrollable parameters and
costs, the merits of the proposed model, especially the important characteristics of the system with
stock dependency over non-stock dependency, are explored. Ultimately, the important facts and
ideas behind this model are given in conclusion.

Keywords: Markovian demand; stock-dependent demand rate; vacation; infinite orbit; lead time

1. Introduction

Normally, allowing a vacation for a server helps to maintain the working efficiency
and increase the life span of the server (machine). Due to continuously working in the
system, even a human server may encounter physical or mental stress, which reduces their
efficiency. As a result, the vacation allows the human server to de-stress and re-energize.
After completing the vacation, the server can maintain the productivity of the system
without any hardship. One can gain a deep understanding of a single server vacation under
the queuing system by referring to Doshi [1], Tian and Zhang [2], and Ke et al. [3].

The concept of vacation was first initiated in an inventory system by Daniel, and Ra-
manarayanan [4] who applied the server vacation during the stock-out time. Sivakumar [5]
extended the multiple vacation policy in a retrial queuing inventory system. Jeganathan [6]
analyzed a finite queuing inventory system with multiple vacations of a single server
and impatient customers whose reneging time is assumed to be exponential. Yadavalli
and Jeganathan [7] studied a retrial perishable inventory finite queuing system with two
heterogeneous servers in which one server is assumed to take multiple vacations. Again,
Jeganathan et al. [8] explored the significance of heterogeneous servers over homogeneous
servers on a finite retrial inventory system with server vacations.
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Either during a period of stock out or a server vacation, any arriving customer’s
demand is not fulfilled. Rather, some of their customers may revisit the shop/stall to
meet their demand in the future due to the credibility of either of their products or ser-
vices. This retrial concept plays an important role in the development of either queuing
or inventory theory. The retrial concept with an inventory system was first studied by
Artaljeo et al. [9]. Paul Manuel et al. [10] analyzed a retrial perishable inventory system with
negative demands. Generally, we notice that the retrial of any individual customer does not
depend on the other customers in orbit. However, the rate of retrial customers is directly
proportional to the number of customers in orbit. An inventory system with this retrial
policy is known as the classical retrial inventory system (CRIS). The analytical approach to
CRIS was first established by Ushakumari [11]. Krishnamoorthy and Jose [12] studied a
retrial inventory system in which the capacity of orbital customers is assumed to be infinite.
Jeganathan et al. [13], investigated a M|M|1 retrial inventory system connected to a finite
capacity waiting hall, where the service rate is queue dependent and a classical retrial
policy is used for orbital customers. Recently, Jeganathan et al. [14] studied a multi-server
queueing inventory system with a classical retrial facility.

Dong-YuhYang et al. [15] discussed a retrial queueing system with a single server
that takes multiple optional vacations in a finite order under which batch arrivals and
a constant retrial rate are also considered. Dong-Yuh Yang and Chia-Huang Wub [16]
described a finite capacity classical retrial queue with server breakdown in which the
server is further encountered with working vacation under Bernoulli trail. Reshmi and
Jose [17] investigated a perishable inventory system with a classical retrial policy under
a matrix analytic approach in which both primary and retrial customers were considered
to enter into an orbit with independent Bernoulli’s schedules. Dhanya Shajin et al. [18]
deeply studied the marked Markovian arrival demand of a retrial inventory system with
additional items and two kinds of customers where services are provided according to
preemptive priority and threshold-based inventory, and classical retail policy is used for
low priority customers with the Bernoulli approach. Jothivel Kathiresan et al. [19] worked
on a finite buffer inventory system with two kinds of services, and the nature of the service
is assumed by Bernoulli distribution.

Most researchers have studied an inventory system where customers’ arrival policies
are independent of stock levels in the system. Nevertheless, in a real-life scenario, the higher
rate of customers entering happens in a system where the stock is kept in large quantities.
This can be found at any marketplace where all dealers have kept their products in a line.
Further, customers are inspired by a dealer who stocks their products in different sizes and
modes in some conditions. For instance, in a food exhibition, a stall displays a food product
with different varieties that attract different sections of people according to their age and
diets. It is because the product choice varies according to customer preferences. Hence,
customer preferences are highly satisfied by such a system with a large stock level. This
will be seen on a regular basis at food exhibitions, book exhibitions, mobile showrooms,
and car showrooms, among other places.

The following literature reviews show how the stock level influences the demand
pattern of customers. Levin et al. [20], Silver and Peterson [21] both considered the number
of customers’ arrivals functionally related to the quantity of displayed stock over a period
of time. Gupta and Vrat [22] defined the consummation rate of items as dependent upon
the inventory size. Baker and Urban [23] studied an inventory system with a deterministic
approach where the demand is estimated as a polynomial function with the reference of
stock level over the time interval. Badmanabhan and Vrat [24] determined the optimum
ordering quantity where the demand rate is assumed to be stock-dependent.

Further, Urban [25] delineated and analyzed two kinds of demand rates, one of which
is dependent upon the stock out period, and the other is dependent upon the stock-in
period. Rathod and Bhathawala [26] studied a stock-dependent inventory system with
varying holding costs and shortages. Alfares [27] deeply analyzed an inventory system
where demand and storage time are assumed to be correlated with stock level and holding
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cost, respectively. Sudhir Kumar Sahu et al. [28] discussed a perishable inventory system in
which the demand rate is dependent upon the present stock level. Sandeep Kumar [29]
furnished the optimum ordering quantity and cycle time of a stock-dependent inventory
system with shortages and variable holding costs.

Gabi Hanukov et al. [30] also analyzed the stock-dependent Markovian demand with
two servers. In this model, the preliminary service inventory is also made during the servers’
idle time. Jeganathan et al. [31] analyzed the comparative study in their queueing-inventory
system in which they assumed that the arrival process of a customer was dependent on the
current stock level of the system. Recently, Abdul Reiyas and Jeganathan [32] discussed
stock-dependent arrivals in the base stock queueing-inventory system. Mostly, many authors
applied a positive service time in their respective models, whereas Paul Manual et al. [10],
Sivakumar [33], Sivakumar [34], and Jeganathan et al. [31] assumed that the inventory in
the system was depleted at the instant of the arrival of a customer.

These observations strongly motivated us to do further research on an inventory
system with stock-dependent arrivals. In the extension of Sivakumar [5], the arrival of
both primary and retrial is incorporated with the dependency of stock level, which makes
the novelty of this study. In addition, we employ the classical retrial policy for a retrial
customer. The rest of the paper is designed as follows. In the next section, the mathematical
formulation of the model is explained. The details of the mathematical approach of the
model with the steady-state analysis are presented in Section 3. Furthermore, the analysis
of waiting time is done in Section 4. Some key system performance measures and sensitive
analysis of the model are achieved in Sections 5 and 6, respectively. Furthermore, the
conclusion is given in the last section.

2. Explanation of System

This paper investigates a continuous review inventory to explore a stock-dependent
arrival process for a customer and two different tasks for the server. This system can
hold a maximum of S items. The server availability can be either in vacation mode or
in normal mode (not on vacation). In this connection, the arriving customer receives an
item immediately whenever the inventory is positive. More clearly, the customer’s service
time is assumed to be instantaneous. In the event of a zero stock level, the server goes on
vacation. If the server finds a positive inventory at the end of the vacation, then only he
will return from the vacation; otherwise, (zero stock level), he will take another vacation.
This is called the “multiple vacation policy”.

Any primary arrival of the system is assumed to be a non-homogeneous Poisson
process. This is because the primary arrival to the system is dependent on the current
stock level. The intensity rate of a primary arrival is defined as λj where 1 ≤ j ≤ S. As
we stated earlier, during the stock-out period, the server goes into vacation mode. In
such a period (the server is on vacation), an arriving primary customer enters into an
infinite orbit with an intensity α. The customer from orbit can approach the system at any
time. However, the successful retrial of a customer happens only when the inventory is
not empty and the server is in normal mode. The time between two successful retrials is
assumed to be exponentially distributed. The retrial process of a customer is dependent
on the current stock level as well as the number of customers in the orbit. The intensity
of a retrial customer is defined as kθj, where k is the number of customers in the orbit and
1 ≤ j ≤ S. Further, the replenishment process of the system will be started immediately if
the inventory level falls to the predetermined stock level s under the (s, Q) ordering policy.
The lead time follows an exponential distribution and its intensity is denoted as β.
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Description of Stock-Dependent Parameters

θj: mean retrial rate of orbital customers is given by θj = θ ja , 1 ≤ j ≤ S , θ > 0 , 0 ≤ a ≤ 1.
λj: mean arrival rate of primary customers is given by λj = λjb, 1 ≤ j ≤ S , λ > 0 ,
0 ≤ b ≤ 1.

δij :
{

1, if j = i,
0, otherwise

δ̄ij : 1− δij

H(i− j) :
{

1, if i ≥ j,
0, if i < j

3. Analysis of the System

This system can be referred by triplets (U(t), V(t), W(t)), where U(t), V(t) and W(t)
represent orbital customers’ size, server status and inventory level at time t, respectively.

The status of the server is defined by

V(t) =

{
0 if the server is on vacation mode at time t,
1 if the server is not on vacation mode at time t.

Based on the assumptions of the given model, the continuous time discrete state
random process {X(t), t ≥ 0} = {(U(t), V(t), W(t)), t ≥ 0} is said to follow Markov
process with the state space E is determined by

E = {(u, 0, 0) ∪ (u, 0, Q) ∪ (u, 1, w) | u = 0, 1, 2, . . . ; w = 1, 2, . . . , S},

and its infinitesimal generator transition rate matrix M can be framed as :

M =



M00 M01 0 0 0 · · · 0 0 0 0 0 · · ·
M10 M11 M01 0 0 · · · 0 0 0 0 0 · · ·

0 M20 M22 M01 0 · · · 0 0 0 0 0 · · ·
...

...
...

...
...

. . .
...

...
...

...
...

. . .
0 0 0 0 0 · · · Mk0 Mkk M01 0 0 · · ·
0 0 0 0 0 · · · 0 M(k+1)0 M(k+1)(k+1) M01 0 · · ·
...

...
...

...
...

. . .
...

...
...

...
...

. . .


,

Suppose (u2, v2, w2) be a transition state from a given state (u1, v1, w1), then the
following transition sub matrices are determined as follows:
Case (i):

The following sub-block holds the transition of a primary customer entering into orbit
if the server is on vacation mode.

[M01](v1w1)(v2w2)
=

{
α v2 = v1, v1 = 0; w2 = w1, w1 = 0, Q
0 otherwise.

Case (ii):
The following sub-block holds the transition of a retrial customer who purchases the

product successfully if the server is in normal mode.
For u1 = 1, 2, 3, . . . ; w1 = 1, 2, . . . , S

[Mu10](v1w1)(v2w2)
=

{
u1θw v2 = v1, v1 = 1; w2 = w1 − 1, w1 = w.
0 otherwise.



Processes 2022, 10, 176 5 of 25

Case (iii):
The following sub-block holds the transition of the reorder level, vacation return,

primary and retrial customer is purchasing.
For u1 = 0, 1, 2, . . . ; w = 1, 2, . . . , S

[Mu1u1 ](v1w1)(v2w2) =



β v2 = v1 v1 = 0
w2 = w1 + Q, w1 = 0

β v2 = v1 v1 = 1
w2 = w1 + Q, w1 = 1, . . . , s

γ v2 = v1 + 1 v1 = 0
w2 = w1, w1 = Q

u1θ1 + λ1 v2 = 0 v1 = 1
w2 = 0, w1 = 1

δ̄0u1 u1θw1 + λw1 v2 = v1 v1 = 1
w2 = w1 − 1, w1 = 2, 3, . . . , S

−(α + β) v2 = v1 v1 = 0
w2 = w1, w1 = 0

−(α + γ) v2 = v1 v1 = 0
w2 = w1, w1 = Q

−(δ̄0u1 u1θw1 + λw1 + H(s− w1)β) v2 = v1 v1 = 1
w2 = w1, w1 = w

0, otherwise.

It is noted that the above matrices are all square matrices of order S + 2.

3.1. Matrix Geometric Approximation
Steady-State Analysis

Consider k to be the cutoff point for the matrix-geometric approximation in the trunca-
tion process. Since the solving procedures of a classical retrial system have some analytical
difficulty, we apply the Neuts-Rao truncation method. The classical retrial system under
consideration is terminated at the truncation point k. After such truncation point, the
system admits a constant retrial policy for a retrial customer. This concept is called the
Neuts-Rao truncation method. We assume Mi0 = Mk0 and Mii = Mkk for all i ≥ k. The
modified generator matrix of the truncated system X(t) is shown below.

M̂ =



M00 M01 0 0 0 · · · 0 0 0 0 0 · · ·
M10 M11 M01 0 0 · · · 0 0 0 0 0 · · ·

0 M20 M22 M01 0 · · · 0 0 0 0 0 · · ·
...

...
...

...
...

. . .
...

...
...

...
...

. . .
0 0 0 0 0 · · · Mk0 Mkk M01 0 0 · · ·
0 0 0 0 0 · · · 0 Mk0 Mkk M01 0 · · ·
...

...
...

...
...

. . .
...

...
...

...
...

. . .


,

3.2. Analysis of Steady-State Behavior

Let N = Mk0 + Mkk + M01. Then N can also be determined by

[N]v1v2
=


N1, v2 = v1, v1 = 0,
N2, v2 = v1 + 1, v1 = 0,
N3, v2 = v1 − 1, v1 = 1,
N4, v2 = v1, v1 = 1,
0, otherwise,
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where

[N1]w1w2 =


β w2 = w1 + Q, w1 = 0
−β w2 = w1, w1 = 0
−γ w2 = w1, w1 = Q
0, otherwise,

[N2]w1w2 =

{
γ w2 = w1, w1 = Q
0, otherwise,

[N3]w1w2 =

{
kθw1 + λw1 w2 = w1 − 1, w1 = 1
0, otherwise,

[N4]w1w2 =


β w2 = w1 + Q, w1 = 1, 2, . . . , s
kθw1 + λw1 w2 = w1 − 1, w1 = 2, 3, . . . , S
−(kθw1 + λw1 + β) w2 = w1, w1 = 1, . . . , s
−(kθw1 + λw1) w2 = w1, w1 = s + 1, . . . , S
0, otherwise,

Clearly N is a square matrix of order S + 2 and the sub-matrices N1, N2, N3 and N4 are
all matrices of orders 2× 2, 2× S, S× 2 and S× S, respectively.

Lemma 1. The steady-state probability vector Π = (π(0), π(1)) where π(0)=(π(0,1), π(0,Q)) and
π(1)=(π(1,1), π(1,2), . . . , π(1,S)) corresponding to the generator N is given by

π(0,w1) = π(1,1)aw1 , w1 = 0, Q.

π(1,w1+1) = π(1,1)bw1 , w1 = 1, . . . , S− 1.

where,

aw1 =

{ kθ1+λ1
β , w1 = 0

kθ1+λ1
γ , w1 = Q

bw1 =



kθw1+λw1+β

kθw1+1+λw1+1
, w1 = 1

bw1−1(kθw1+λw1+β)

kθw1+1+λw1+1
w1 = 2, . . . , s

bw1−1(kθw1+λw1 )

kθw1+1+λw1+1
w1 = s + 1, . . . , Q− 1

S
∑

j1=w1+1
bj1−Q β

kθw1+1+λw1+1
, w1 = Q, . . . , S− 1

and π(1,1) can be obtained by solving equation
γπ(0,Q) − (kθQ + λQ)π

(1,Q) + (kθQ+1 + λQ+1)π
(1,Q+1) = 0 and Πe = 1.

Proof. Let Π be the steady-state probability vector of N. That is, Π satisfies ΠN = 0,
Πe = 1.

The equation ΠN = 0 of the above yields the following set of equations:

π(0)N1 + π(1)N2 = 0, (1)

π(0)N3 + π(1)N4 = 0, (2)
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Now, expanding the Equations (1) and (2) explicitly, we obtain the following set of
equations,

−βπ(0,0) + (kθ1 + λ1)π
(1,1) = 0,

βπ(0,0) − γπ(0,Q) = 0,
−(kθw1 + λw1 + β)π(1,w1) + (kθw1+1 + λw1+1)π

(1,w1+1) = 0,
w1 = 1, . . . , s

−(kθw1 + λw1)π
(1,w1) + (kθw1+1 + λw1+1)π

(1,w1+1) = 0,
w1 = s + 1, . . . , Q− 1

γπ(0,Q) − (kθQ + λQ)π
(1,Q) + (kθQ+1 + λQ+1)π

(1,Q+1) = 0,
βπ(1,w1−Q) − (kθw1−Q + λw1−Q)π

(1,w1) + (kθw1+1 + λw1+1)π
(1,w1+1) = 0,

w1 = Q + 1, . . . , S− 1
βπ(1,s) − (kθS + λS)π

(1,S) = 0.

Solving the above system of equations recursively and using the normalizing condition,
we get the stated result.

Next, we derive the condition under which the system is stable.

Lemma 2. The stability condition of the system under study is given by

(a0 + aQ)α < kθ1 + k
S−1

∑
w1=1

bw1 θw1+1 (3)

Proof. From the well known result of Neuts [35] on the positive recurrence of M we have

ΠM01e < ΠMk0e

and by exploiting the structure of the matrices M01 and Mk0, and Π the stated result
follows.

It can be seen from the structure of the rate matrix M and from the Lemma 2, that the
Markov process {(U(t), V(t), W(t)), t ≥ 0} with the state space E is regular. Hence the
limiting probability distribution

Φ(u,v,w) = lim
t→∞

Pr[U(t) = u, V(t) = v, W(t) = w | U(0) = 0, V(0) = 0, W(0) = 0],

exists and is independent of the initial state. Let Φ =
(

Φ(0), Φ(1), . . . ,
)

satisfies

ΦM = 0, Φe = 1.

We can partition the vector Φ(u), u ≥ 0 as

Φ(u) =
(

Φ(u,0,0), Φ(u,0,Q), Φ(u,1,1), . . . , Φ(u,1,S)
)

.

3.3. R Matrix Calculation

For analyzing the QBD process, suppose the steady-state probability vector can be
determined by the relation

R2Mk0 + RMkk + M01 = 0. (4)
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The rate matrix, R, is the smallest non-negative solution to the quadratic equation
above. Because the matrix M01 only has two non-zero rows, the structure of the unknown
rate matrix R also has two non-zero rows, resulting in a rate matrix R with only non-zero
entries in the first two rows and only zero elements in the remaining rows:

R =


y11 y12 y13 · · · y1S+1
y21 y22 y23 · · · y2S+1
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

.

Apply R to the Equation (4), we get the following set of equations:
For i = 1, 2,

(yi1y13 + yi1y23)kθ1 − yi1(α + β) + yi3λ1 + αδi1 = 0,

yi1β− yi2(α + γ) + αδi2 = 0.

For i = 1, 2; j = 3, · · · , S + 2,

δ(S+2)j(yi1y1j+1 + yi2y2j+1)kθj−1 − yij(kθj−2 + λj−2 + H(s + 1− j)β) +

(1− δ(S+2)j)yij+1λj−i + δ(S−1)jyi2γ + H(j− S)yi(j+3−S)β = 0.

From the above non-linear equations, the matrix R can be determined explicitly by
using Gauss–Seidel iterative technique.

Theorem 1. The vector Φ can be determined by

Φ(i+k−1) = Φ(k−1)Ri; i ≥ 0 (5)

due to the special structure of M and where R is as in Equation (4) and the vector Φ(i), i ≥ 0

Φ(i) =

 σX(0)
k

∏
j=i

Mj0(−Mj−1), 0 ≤ i ≤ k− 1

σX(0)R(i−k), i ≥ k
(6)

where

σ = [1 + X(0)
k−1

∑
i=0

k

∏
j=i

Mj0(−Mj−1)e]−1 (7)

and X(0) can be computed by set of equations

X(0)[Mk + RMk0] = 0

X(0)(I − R)−1e = 1.

Proof. The sub vector (Φ(0), Φ(1), . . . , Φ(k−1)) and the block partitioned matrix of M̂ gives
the set of equations

Φ(0)M00 + Φ(1)M10 = 0

Φ(i−1)M01 + Φ(i)Mii + Φ(i+1)M(i+1)0 = 0; 1 ≤ i ≤ k− 1. (8)

using Equation (8),
Φ(0) = Φ(1)M10(−M0)

−1
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again using (8),
Φ(1) = Φ(2)M20(−M1)

−1,

where M1 = (M11 + M10(−M0)
−1M01), M0 = M00.

Next,
Φ(2) = Φ(3)M30(−M2)

−1,

where M2 = M22 + M20(−M1)
−1M01.

On continuing this procedure up to k− 1 times, we get,

Φ(i) = Φ(i+1)M(i+1)0(−Mi)
−1, 0 ≤ i ≤ k− 1 (9)

where

Mi =

{
Mi0, i = 0
Mii −Mi0(−Mi−1)

−1M01, 1 ≤ i ≤ k

We use the block Gaussian elimination method to find the vectors (Φ(k), Φ(k+1), Φ(k+2) . . .).
The sub vector (Φ(k), Φ(k+1), Φ(k+2) . . .) satisfies the following relation,

(Φ(k), Φ(k+1), Φ(k+2) . . .)


Mk M01 0 0 0 · · ·
Mk0 Mkk M01 0 0 · · ·

0 Mk0 Mkk M01 0 · · ·
...

...
...

...
...

. . .

 = 0. (10)

Assume,

σ =
∞
∑

i=k
Φ(i)e

X(i) = σ−1Φ(k+i), i ≥ 0.

From (10) we get

Φ(k)Mk + Φ(K+1)Mk0 = 0

Φ(k+i) = Φ(k+i−1)R, i ≥ 1.

This can be written as

X(0)Mk + X(1)MK0 = 0 (11)

X(i) = X(i−1)R, i ≥ 1

(11) becomes

X(0)[Mk + RMk0] = 0. (12)

Since
∞
∑

i=0
X(i)e = 1, then

X(0)(I − R)−1e = 1. (13)

As a result, X(0) is the only solution to the Equations (12) and (13).
Hence,

Φ(i) = σX(0)R(i−k), i ≥ k. (14)
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Again by (9) and (14), we get (6). Since
∞
∑

i=0
Φ(i)e = 1 and using (6),

σX(0)
k−1

∑
i=0

k

∏
j=i

Mj0(−Mj−1)e + σX(0)
∞

∑
k

R(i−k)e = 1

which gives σ as in (7).

4. Waiting Time Analysis

Waiting time (WT) is the time interval between an epoch when demand approaches
the orbit and the moment when their time of operation completion occurs. Using the
Laplace-Stieltjes transform (LST), we look at the WT of demand in orbit (LST). To find the
orbital demand’s waiting period, we naturally limit the orbit to a finite size. The concept of
restriction of orbit size is followed from Lopez Herrero [36]. The continuous-time random
variable Wo represents the waiting time of an orbital customer.

WT of Orbital Customers

Theorem 2. An orbital demand does not wait with probability

P{Wo = 0} = 1−ωo (15)

where ωo =
L−1
∑

u=1

S
∑

w=1
Φ(u,1,w) +

L−1
∑

u=1
[Φ(u,0,0) + Φ(u,0,Q)]

Proof. Since the total probability of zero and positive waiting time is 1, we have

P{Wo = 0}+ P{Wo > 0} = 1. (16)

Clearly, the probability of positive WT of orbital demand can be determined as

P{Wo > 0} =
L−1

∑
u=1

S2

∑
w=1

Φ(u,0,w). (17)

The Equation (17) can be found easily using Theorem 1 and substitute in Equation (16)
we get the stated result as desired in (15).

To enable the distribution of Wo, we shall define some complimentary variables.
Suppose that the queueing-inventory system is at state (u, v, w), u > 0 at an arbitrary
time t,

1. Wo(u, v, w) be the time until chosen demand become satisfied.
2. LST of Wo(u, v, w) is ∗Wo(u, v, w)(y) and we denote Wo by ∗Wo(y).
3. ∗Wo(y) = E[eyWo ] LST of unconditional waiting time(UWT).
4. ∗Wo(u, v, w)(y) = E[eyWo(u,v,w)] LST of conditional waiting time(CWT).

Theorem 3. The LST {∗Wo(u, v, w)(y), (u, v, w) ∈ H∗ where H∗ = E ∪ {∗}} satisfy the follow-
ing system

Zo(y)∗Wo(y) = −θwe(u, v, w), (u, v, w) ∈ E. (18)

Zo(y) = (P− yI), the matrix P is derived from E by deleting the following state (0, 0, 0), (0, 0, Q),
(0, 1, w), 1 ≤ w ≤ S and {∗} be the absorbing state and the absorption appears if the orbital
demand finds the positive commodities and the server is in the system.
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Proof. To analyze the CWT, we apply first step analysis as follows:
For 1 ≤ u ≤ L,

(y + δ̄uLα + β)∗Wo(u, 0, 0)(y) = δ̄uLα∗Wo(u + 1, 0, 0)(y) + β ∗Wo(u, 0, Q)(y). (19)

For 1 ≤ u ≤ L,

(y + δ̄uLα + γ)∗Wo(u, 0, Q)(y) = δ̄uLα∗Wo(u + 1, 0, 0)(y) + γ ∗Wo(u, 1, Q)(y). (20)

For 1 ≤ u ≤ L, 1 ≤ w ≤ S,

(y + λw + H(s− w)β + uθw)
∗Wo(u, 1, w)(y) = λ∗wWo(u, 1, w− 1)

+H(s− w)β ∗Wo(u, 1, w + Q)(y) + (u− 1)θ∗wWo(u− 1, 1, w− 1)(y) + θw. (21)

From the Equations (19)–(21) we attain a co-efficient matrix of the unknowns as a
block tri-diagonal yields a stated result as in (18).

Theorem 4. The nth moments of conditional waiting time is given by

Zo(y)
dn+1

dyn+1
∗Wo(y)− (n + 1)

dn+1

dyn+1
∗Wo(y) = 0 (22)

and

dn+1

dyn+1
∗Wo(y)|y=0 = E[Wn+1

o (u, v, w)(y)], (u, v, w) ∈ H∗ (23)

Proof. Linear equations which are obtained in Theorem 3, we get a recursive algorithm to
find a conditional and unconditional waiting times.

Now, we differentiate the Equations (19)–(21) for (n + 1) times and setting at y = 0,
we have,
For 1 ≤ u ≤ L

(δ̄uLα + β)E[Wn+1
o (u, 0, 0)] = δ̄uLαE[Wn+1

o (u + 1, 0, 0)] + βE[Wn+1
o (u, 0, Q)]. (24)

For 1 ≤ u ≤ L

(δ̄uLα + γ)E[Wn+1
o (u, 0, Q)] = δ̄uLαE[Wn+1

o (u + 1, 0, 0)] + γE[Wn+1
o (u, 1, Q)]. (25)

For 1 ≤ u ≤ L, 1 ≤ w ≤ S

(λw + H(s− w)β + uθw)E[Wn+1
o (u, 1, w)] = λwE[Wn+1

o (u, 1, w− 1)] +

H(s− w)βE[Wn+1
o (u, 1, w + Q)] + (u− 1)θwE[Wn+1

o (u− 1, 1, w− 1)]. (26)

With reference to Equations (24)–(26), one can determine the unknowns E[Wn+1
p (u, v, w, x)]

in terms of moments of one order less. On setting n = 0, we obtain the desired moments of
particular order in an algorithmic way.

Theorem 5. The LST of UWT of orbital demand is given by

∗Wo(y) = 1−ωo + ωo
∗Wo(u + 1, v, w)(y) (27)

Proof. Using PASTA property, one can obtain the LS transform of Wo as follows:

∗Wo(y) = Φ(u) ∗Wo(u, v, w)(y), 0 ≤ u ≤ L, 0 ≤ v ≤ 1, 0 ≤ w ≤ S (28)
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using the expressions (28), we get the stated result. By considering Euler and Post-Widder
algorithms in Abatt and Whitt [37] for the numerical inversion of (27), we obtain the desired
result.

Theorem 6. The nth moments of UWT, using the Theorem 5, is given by

E[Wn
o ] = δ0n + (1− δ0n)

L−1

∑
u=0

1

∑
v=0

S

∑
w=0

Φ(u,v,w)E[Wn
o (u + 1, v, w)] (29)

Proof. To determine the nth moments of UWT in terms of the CWT of the same order,
we differentiate the expression (27) n times and calculate at y = 0 to obtain the desired
result.

Theorem 7. The expected waiting time of an orbital demand is defined by

E[Wo] =
L−1

∑
u=0

1

∑
v=0

S

∑
w=0

Φ(u,v,w)E[Wo(u + 1, v, w)] (30)

Proof. Using Equation (29) in Theorem 6 and substitute n = 1, we get the desired result as
in (30).

5. Measures of Various Activities of the System

In this section, the following measures of corresponding activities are used to obtain
the expected total cost under the steady-state transitions.

1. Expected inventory level is

Ei =
∞

∑
u=0

QΦ(u,0,Q) +
∞

∑
u=0

S

∑
w=1

wΦ(u,1,w) (31)

2. Expected reorder rate of commodity is

Er =
∞

∑
u=0

(λs+1 + uθs+1)Φ(u,1,s+1) (32)

3. Expected number of customers enters into the orbit is

Ee =
∞

∑
u=0

α[Φ(u,0,0) + Φ(u,0,Q)] (33)

4. Expected number of customers in the orbit is

Eo =
∞

∑
u=1

S

∑
w=1

uΦ(u,1,w) +
∞

∑
u=1

u[Φ(u,0,0) + Φ(u,0,Q)] (34)

5. Expected number of overall retrial customers is

Eor =
∞

∑
u=1

S

∑
w=1

uθwΦ(u,1,w) +
∞

∑
u=1

uθQΦ(u,0,Q) (35)

6. Expected number of successful retrial customers is

Esr =
∞

∑
u=1

S

∑
w=1

uθwΦ(u,1,w) (36)
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7. Fraction of successful retrial rate is

Fsr =
Esr

Eor
(37)

8. Expected total cost is determined by

Tc(S, s) = ChEi + CsEr + CwEo (38)

where

Ch: Carrying cost per unit item of commodity per unit time.
Cs: Ordering cost of commodity per order.
Cw: Waiting cost of an orbiting customer per unit time.

6. Numerical Investigation

The author’s real-life experience is studied to provide a numerical picture for the
readers regarding the contemplated recommended model. One day, the author went to a
mobile store and observed how it operated. It also sells clients’ pen drives. Those who come
into the shop to make a purchase are instantly served. They will not let a new customer into
the system if there’s a zero-stock situation. They go outside and perform some personal
work in such a situation. They return after some time to buy the pen-drive if it is still
available. Suppose the shop has more pen drives. They start displaying or advertising
them. When customers or people see the advertisement, they start purchasing. When the
current stock level reaches some fixed quantity, the server makes a call to the supplier to
furnish the replenishment. If there is no pen drive available currently, the server will close
its service and take a rest. Once the ordered pen drive comes, the server will continue his
service. From this experience, the author wanted to use the pen-drive sales functions as
a mathematical model. Since the arrival occurs according to the displayed stock level, a
stock-dependent arrival process is considered in this paper. At zero stock level, the server’s
rest situation is considered a vacation, and new customers are not allowed. To provide a
numerical illustration, an arrival rate (positive stock), λ = 19.2, a reorder rate, β = 1.47,
an arrival rate (zero stock), α = 3.8, a vacation completion rate, γ = 9.98, scale factors,
a = 0.6, b = 0.5, a retrial rate, θ = 4.5, a holding cost, Ch = 0.0046, a setup cost, Cs = 5.4,
and awaiting cost per unit in the orbit, Cw = 0.032 are assumed.
Case (i):

The two dimensional, local convexity of the expected total cost curve(Tc) is obtained
when the maximum number of items(number of pen-drive) S lies in the integer interval
[30,40] with regard to pre-fixed reorder level s = 6, s = 7 and s = 8 which are shown
in Figures 1–3 respectively. Each figure depicts the convexity of the Tc curve under the
classification of stock-dependent (SD) and non-stock-dependent (NSD). Each curve in
those diagrams has a minimum point, which is referred to as the optimum point. That is,
the estimated overall cost of pen-drive sales should be kept to a minimum (optimized).
These curves show the total cost of the pen-drive sales when the arrival is wholly SD
(a = 0.21, b = 0.1) and NSD (a = 0, b = 0) or partially SD (a = 0, b = 0.1 and a = 0.21,
b = 0). Because the optimum total cost is determined for both fully SD (or NSD) and
partially SD arrivals, the organizer can pick for either the purely SD (or NSD) or partially
SD arrival approach to boost pen-drive sales profits. The contrasting results of both solely
and partially SD arrival processes are also shown in the Figures 1–3. This will be valuable
to all readers as well as business tycoons who are in the inventory business (electric and
electronic items, home appliances, etc.) and apply any of the arrival policies depending on
their business plan. The optimal predicted total cost of the pen-drive store is attained when
the store follows a partially SD arrival method, as shown in all three figures. However, if
the s varies, one can see that the best-reduced cost varies continually. They will determine
the critical reorder level to attain the optimal S, as indicated in Figures 1–3. Overall, at the
middle reorder level (s = 7), the optimum estimated total cost of the pen-drive business
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exists. The overall expenditure of the store may be regulated with the help of this shown
case, which shows the optimal predicted total cost of the pen-drive business and the best
fit of the reorder point.
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Figure 1. Tc(S) with s = 6.
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Figure 2. Tc(S) with s = 7.
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Figure 3. Tc(S) with s = 8.

Case (ii):
This case explores the expected number of existing pen drives, its re-order rate, the

number of customers in orbit, and the total and successful rate of retrial. With respect
to purely SD (or NSD) and partially SD classifications. The increase in β shows that the
average time between two consecutive reorders has decreased. Figure 4 demonstrates
that the expected number of current stock levels has increased if the lead time decreased.
The owner of the pen-drive store will have more products in the storage system (if β is
increased). That is, the shop’s displayed stock level has been increased. When individuals
look at the objects on showcase, they may be tempted to them. They become customers and
begin purchasing the displayed things if they are intrigued with them. The information
concerning about expected reorder rate is shown in Figure 5 which demonstrates that the
re-order intensity rate is always proportional to its expected rate. As a result, as shown in
Figure 5, the merchant ensures that the appropriate steps are followed to obtain a prompt
replacement. Figures 6–8 show the results as the lead time is inversely proportional to
the number of customers in the orbit, the expected total, and the success rate of retrial
customers, respectively. As previously stated, if Q products are restocked quickly (i.e., if
β is increased), the shop’s displayed stock level is likewise boosted. The boosting of the
current stock level indicates the estimated number of consumers in orbit, the expected
total retrial rate, and the expected successful retrial rate respectively. In the same way, the
vacation will soon come to an end. As illustrated in Figures 9–13 when the parameter
γ is increased, current stock level, expected reorder rate, average customer in the orbit,
and their total and successful rate of retrial decrease. That means, if the pen-drive store
owner spends as much time as possible on vacation, the measured metrics of the store’s
performance will be impacted, as we predicted. This will assist them in deciding whether
to lengthen or shorten their vacation time based on their preferences.
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Figure 13. Fsr vs. Vacation time.

Case (iii):
The ideal total cost, optimal stock level, and optimal reorder level of the store are

achieved by varying the cost values of waiting cost per customer, holding cost per item,
and set-up cost per order together. From a business standpoint, cost functions are critical to
making a profit. This explanation illustrates how changes in respective cost values affect
the optimum number of pen drives that have to be stored, its re-order level, and predicted
total cost. The store owner notices that the findings produced in Table 1 demonstrate that
the waiting cost per customer in the store and the set-up cost per order are both increased,
and that the optimal stock, re-order levels, and predicted total cost are also increased.
Based on these findings, the model’s assumed cost structure indicates that the store or
firm should focus on calculating their cost values. If they lose control over the cost values,
their total spending costs will rise and their profit will decrease. As a result of the cost
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function variation, the findings in Table 1 show that if the store owner raises the holding
cost per pen-drive, the calculated total cost rises. Similarly, the remaining set-up cost of the
pen-drive for every order, as well as the waiting expenses per client in the orbit, drive up
the total cost.

Table 1. Optimum ordering policy with different combinations of various costs.

Cs = 4.4 Cs = 5.4 Cs = 6.4

Cw Ch S∗ s∗ Tc∗ S∗ s∗ Tc∗ S∗ s∗ Tc∗

0.022 0.0036 35 7 0.083579 36 7 0.088457 36 7 0.09299

0.0046 32 6 0.098958 34 7 0.104504 35 7 0.109522

0.0056 31 6 0.11338 32 6 0.119566 33 6 0.125273

0.032 0.0036 36 8 0.085174 37 8 0.08987 38 8 0.094231

0.0046 34 7 0.101007 34 7 0.106373 35 7 0.111305

0.0056 31 6 0.115923 33 7 0.12186 34 7 0.127264

0.042 0.0036 38 9 0.086534 39 9 0.091091 40 9 0.095338

0.0046 35 8 0.102671 36 8 0.10787 37 8 0.112674

0.0056 33 7 0.117893 34 7 0.123767 36 8 0.129104

Case (iv):
In Tables 2–5, under the parameter variation, optimum stock level, reorder level, total

cost and expected inventory level, re-order rate, the average customer in the orbit are
discussed. When we raise the arrival rate (both zero and positive stock or λ and α) and the
scale factors a and b and the retrial rate, θ are proportional to optimum stock level, reorder
level, total cost and expected, re-order rate, the average customer in the orbit separately.
The number of customers entering the system per unit time has increased as the average
arrival rate has increased. The system must stock a larger quantity of products in order
to satisfy or give service to all of the arriving clients. If the current stock level falls below
the reorder level quickly, the replenishment of Q goods may be replaced promptly. If the
replenishment does not take place right away, the current stock level will be depleted.
Any arriving customer who discovers that the inventory level is empty may be sent into
orbit. The scaling factors a and b perform the same function as λ. On the other hand, the
re-order intensity rate, β influences the measures optimum stock level, reorder level, total
cost and expected inventory level, re-order rate, the average customer in the orbit in the
inverse direction. This is because the existing stock level of the system is increased if the
replenishment time is reduced. Since the re-ordered quantities arrive quickly, the store
owner can provide the service as much as possible. If the service completion is to be done
fast, the estimated measures taken into this case are to be decreased. Similarly, the vacation
completion time (if γ is increased) ends as soon as the server starts his work immediately.
Suppose the customer finds that the server is in working mode, the number of the customer
going to orbit will reduce. On following that the optimum stock and reorder level also
decreased. In addition, the orbital customers also get the opportunity to get a quicker
service. So that the customers expected total and successive retrial rates are reduced. This
illustration inspires the readers to develop the stock-dependent arrival strategy in their
business. Many businesses nowadays use social media to display their products in the
most efficient way in order to enhance client traffic. The expansion and development of the
inventory industry will be aided by such arrival dependencies.
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Table 2. Response of retrial factors (θ,a) on S∗, s∗, Tc∗, Ei, Er and Eo.

a θ S∗ s∗ Tc∗ Ei Er Eo

0.4 4.0 130 5 23.2558 18.3919 0.0046 1.2573

4.5 121 5 21.3804 17.0708 0.0037 1.1522

5.0 113 5 19.8516 15.8955 0.0032 1.0693

0.6 4 120 6 19.5224 16.7811 0.0024 1.0170

4.5 112 6 18.0376 15.6050 0.0020 0.9371

5 107 7 16.8157 14.7228 0.0018 0.8683

0.8 4 111 8 15.8538 15.1655 0.0015 0.8312

4.5 104 8 14.7204 14.1356 0.0013 0.7693

5 98 8 13.7805 13.2526 0.0011 0.7186

Table 3. Response of primary arrival factors (λ, b) on S∗, s∗, Tc∗, Ei, Er and Eo.

b λ S∗ s∗ Tc∗ Ei Er Eo

0.3 17.12 98 9 13.6277 13.1061 0.0010 0.6677

19.12 105 9 14.7002 14.1365 0.0011 0.7202

21.12 111 9 15.7336 15.0195 0.0012 0.7742

0.6 17.12 106 7 16.6518 14.5755 0.0018 0.8598

19.12 112 6 18.0376 15.6050 0.0020 0.9371

21.12 120 6 19.3804 16.7816 0.0023 1.0060

0.9 17.12 114 5 20.5399 16.0404 0.0038 1.1177

19.12 122 4 22.3593 17.3623 0.0042 1.2197

21.12 130 4 24.1368 18.5364 0.0050 1.3217

Table 4. Response of vacation and lead time parameters (γ, β) on S∗, s∗, Tc∗, Ei, Er and Eo.

γ β S∗ s∗ Tc∗ Ei Er Eo

8.98 1.37 117 6 19.3946 16.9227 0.00228 1.0027

1.47 107 6 18.9158 16.5227 0.00231 0.9771

1.57 99 6 18.4859 16.2495 0.00232 0.9515

9.98 1.37 124 7 18.5065 16.0521 0.00211 0.9601

1.47 112 6 18.0376 15.6050 0.00204 0.9371

1.57 103 6 17.6158 15.2519 0.00207 0.9146

10.98 1.37 130 7 17.7551 15.3398 0.00187 0.9236

1.47 119 7 17.2952 14.9881 0.00188 0.8980

1.57 109 7 16.8813 14.5788 0.00192 0.8778
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Table 5. Response of orbit entrance and lead time parameters (α, β) on S∗, s∗, Tc∗, Ei, Er and Eo.

α β S∗ s∗ Tc∗ Ei Er Eo

3.4 1.37 114 7 17.0140 14.6825 0.00167 0.8860

1.47 103 7 16.5873 14.1349 0.00164 0.8691

1.57 95 6 16.2031 13.9961 0.00165 0.8431

3.8 1.37 124 7 18.5065 16.0521 0.00211 0.9601

1.47 112 6 18.0376 15.6050 0.00204 0.9371

1.57 103 6 17.6158 15.2519 0.00207 0.9146

4.2 1.37 134 7 19.9756 17.4208 0.00262 1.0322

1.47 121 6 19.4645 16.9269 0.00253 1.0074

1.57 112 6 19.0050 16.6643 0.00259 0.9791

7. Conclusions

This model accounts for both primary and retrial arrivals, each with its own expo-
nential time and different rates that depend on the current stock level. Furthermore, the
research considers the independent exponential times of server vacation and lead-time.
The matrix geometric technique is used to generate the steady-state joint distribution with
its components, orbit size, server status, and inventory level at any time t. This steady-state
behavior is used to investigate the nature of the expected total cost and various system
operations, including waiting time. A numerical analysis of the various metrics derived in
Section 5 is offered to improve the considered model. We looked at how stock-dependent
and non-stock-dependent arrival rules affect the optimal ordering policy for both main
and retrial consumers. We also experimented with the properties of different measures
by changing the lead time and vacation factors. Then, for the various cost values and
parameters, we looked at the best ordering strategy and optimum total cost. All of the
numerical visualizations are illustrated with examples from a pen-drive store. By glancing
at each illustration, the business owner can understand more about the suggested model.
From the examination of the ideal total cost in case (i), the store owner or any businessman
will understand the unreliability of the optimal total expenditure cost as well as the optimal
stock level and re-order level. On the other hand, the influence of the lead time and vacation
completion time on the system performance measures suggests that every businessperson
makes a strategy to reduce the average lead and vacation time, as illustrated in case (ii).
However, by case (iii), one can conclude that the holding cost of the product and the setup
cost per order of the product, and the waiting cost per customer are offset by having deter-
mined the optimum stock, re-order, and predicted total cost, there is considerable variation
as they are changed. Therefore, fixing the cost values of the inventory sales service process
will have a great contribution to the profit of the business. Case (iv) investigates the impact
of arrival rate, retrial rate, and scale factors, along with vacation completion time and lead
time, on system performance. In all the above cases, the results are presented for both SD
and NSD clients. Readers can apply the proposed model whenever a suitable inventory
sales business is executed. According to the results obtained in the numerical section, they
can implement their new strategies for further growth and development. In the future, this
considered model will be extended with positive service time.
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