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Abstract: In industrial processes, process data often exhibit complex characteristics, such as nonsta-
tionarity and nonlinearity, which brings challenges to process monitoring. In this study, a monitoring
strategy for nonstationary processes is proposed based on cointegration theory and multiple order
moments. Considering the nonstationarity presented in some variables, cointegration analysis (CA)
is applied to obtain long-term equilibrium relationships among these nonstationary variables, which
are then combined with stationary variables to form a new stationary dataset. For the purpose of
process monitoring, a new monitoring index that contains multiple order moments is proposed to
capture different statistical features of a previously obtained stationary data set. Moving windows are
applied to capture changes of local statistical characteristics to implement online monitoring. Case
studies on simulation data and an industrial dataset are presented to illustrate the effectiveness of
the proposed method for nonstationary process monitoring. Comparing with the PCA and common
CA-based monitoring methods, the proposed method has better performance with a lower false
alarm rate and earlier alarm time.

Keywords: nonstationary process monitoring; comprehensive statistic; cointegration analysis

1. Introduction

With increasing attention to industrial safety, process monitoring and control have
attracted broad public attention. In modern industrial processes, huge amounts of process
data have been accumulated due to the development of distributed control system and
computer technology. However, such massive data may present complex characteristics
such as nonstationarity and nonlinearity. Thus, many monitoring methods have been
proposed to deal with this issue.

Due to frequent load adjustments and external disturbances, process data may present
clear nonstationary characteristic in industrial processes [1]. Thus, fault information can be
easily covered by nonstationary changes in variables, which makes it difficult to properly
extract fault features and accurately identify current operating condition. A common
solution is to update the model recursively to adapt to normal nonstationary behavior [2–5].
However, the model will be wrongly adapted if a slow-varying fault is regarded as nor-
mal variation.

In addition, differential data preprocessing is used to convert nonstationary data
to stationary data, which will lose the dynamic information of process. The cointegra-
tion analysis (CA) theory proposed by Granger is an alternative to analyze long-term
equilibrium relationships among original multivariate nonstationary time series, and this
theory exhibits superiority since no differential data pretreatment is needed [6]. According
to the cointegration theory, time-invariant features can be extracted from nonstationary
variables as a monitoring index if nonstationary variables show common trends, which
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indicates that there is at least one stable long-term dynamic equilibrium relationship among
these variables.

In recent years, cointegration theory has been introduced to industrial nonstationary
process monitoring and has obtained better performance. Li et al. [7] applied CA to
separate multivariate nonstationary series into stochastic common trends and equilibrium
error, which are used to construct monitoring indices to realize the monitoring of process
operation status. However, the inherent serial correlation of process variables is ignored
in the above methods. Lin et al. [8] introduced a nonstationary monitoring strategy that
removed serial correlations by applying autoregressive filters and a compensation scheme
after extracting the common stationary and nonstationary factors by CA.

Most methods are only focused on nonstationary series in process; however, even in a
nonstationary process, there are variables that exhibit stationary characteristics that should
also be considered in modeling. Zhao et al. [9] proposed a full-condition monitoring method
based on cointegration and slow feature analysis where stationary variables and nonstation-
ary variables were separated first. CA was applied to nonstationary variables to extract the
long-term equilibrium relations among variables. Then, slow feature analysis was applied
to the combination of residuals after CA and stationary variables. Six monitoring indicators
were established to monitor static variation and dynamic variation, respectively, by which
the changes of operation conditions and real fault can be distinguished.

However, the cointegration relationship may be broken under certain circumstances.
Yu et al. [10] proposed a recursive cointegration analysis (RCA) for nonstationary industrial
processes, in which the monitoring model was updated when the long-term equilibrium
relationship of process variables extracted by cointegration analysis changed. Thus, the
method can avoid frequent model updating compared with common adaptive methods. On
this basis, Zhang et al. [11] applied recursive principal component analysis (RPCA) to cap-
ture remaining short-term dynamic information after extracting the long-term equilibrium
relationship by RCA. Thus, a comprehensive monitoring framework was built.

The above studies show that cointegration analysis is an effective tool in monitoring
nonstationary industrial processes. However, only the linear relationship among variables
is concerned in cointegration analysis, while the nonlinear relationship among variables is
neglected. In industrial processes, the relationship among variables is more complicated
than a linear relationship. Thus, dynamic relationship among system variables cannot
be described comprehensively by linear cointegration analysis. More precisely, higher-
order dynamic relationship of variables will be remained in model residual. Thus, the
residual of long-term equilibrium relationship of multivariate nonstationary time series will
contain dynamic components and exhibit non-Gaussian traits, which will lead to incorrect
monitoring results.

In practical applications, it is impossible to obtain all data, which also leads to a huge
workload. In this way, the statistics of part of the samples are widely applied to estimate
the overall features. Thus, statistics are often used as monitoring indices to estimate the
condition of industrial processes. In process monitoring, the T2 statistic and SPE statistic
are commonly used statistics for principal component analysis [12].

Statistics are mainly divided into two types: the measure of central tendency and
measure of variation. The former is an index used to express the central tendency among
variables, such as the mean; while the latter is an index to express the degree of dispersion
within variables, such as the standard deviation and variance. The statistics are usually
first order and second-order statistics, which are assumed to represent the characteristics of
data that obey normal distribution. However, when the data disobey a normal distribution,
higher-order statistics are required to better describe the characteristics of the data.

For non-Gaussian or non-linear signals, higher-order statistic techniques are effective
tools to capture statistical characteristics of the signals, which have been widely used in the
field of signals analysis [13]. Choudhury et al. [14] applied higher order statistics to analyze
the control loop performance. Two new higher order statistics indices were proposed
to detect and quantify the potential non-Gaussian and nonlinearity of signals in process.
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Kara et al. [15] introduced a statistic moment approach to analyze structures with variable
parameters. Higher order statistics measure the extent of nonlinearity and quantify the
non-Gaussian of the probability distribution of the process variables. However, the signal
processing methods only focus on one dimensional data, which are not appropriate to be
applied in multivariate process monitoring.

Thus, Wang et al. [16] proposed a novel approach based on higher order cumulants to
monitor a multivariate process. The method effectively extracts both amplitude and phase
information by applying higher order cumulants, especially for non-Gaussian distribution.
Wang et al. [17] proposed a method that replaced original variables with the statistics of
each variable when applying PCA to realize process monitoring. By applying different
order statistics to characterize process behavior, the results showed better performance in
nonlinear process.

Considering the complex characteristics presented in industrial process data, a moni-
toring strategy based on cointegration analysis and comprehensive statistics is proposed.
For nonstationary characteristics of some variables, cointegration analysis is first applied
to these nonstationary series to extract time-invariant characteristics, which are then com-
bined with stationary variables as a new data set. A new monitoring index containing
multiple order moments, such as the mean, variance and skewness, is employed to capture
different features of the generated data set, which makes it sensitive to fault information in
process monitoring.

The rest of this paper is organized as follows. Section 2 introduces the basic theory
of stationary test, cointegration analysis and multiple order moments. Section 3 presents
the monitoring strategy based on proposed method. In Section 4, the proposed method is
applied to the numerical data and industrial data. The final section gives our conclusions.

2. Preliminaries
2.1. Stationary Test

The stationarity of time series can be determined by the method of statistical testing.
A common stationarity test is the Augmented Dickey-Fuller (ADF) unit root test. For a
p-order autoregressive AR (p) process with no deterministic trend,

yt = a1yt−1 + a2yt−2 + · · ·+ apyt−p + ut (1)

where p is the lag order and ut is the stochastic part of the series, ut ∼ N
(
0, σ2). The

corresponding vector error correction model is obtained by parameter transformation and
adjustment to Equation (1), which can be written as follows:

yt = ρyt−1 + ∑p−1
i=1 θi∆yt−i + ut (2)

in which, ρ = ∑
p
j=1 αj, θi = −∑

p
j=i+1 αj, i = 1, 2, · · · , p − 1.

The stability of the sequence is determined by the hypothesis test of the coefficient ρ,
which is estimated by ordinary least square method. The AR (p) process has a unit root if
ρ = 1, which leads to nonstationarity of the process.

If a nonstationary sequence can be transformed into a stationary variable by multiple
first-order differences, the sequence is called an integral sequence, and the time of differ-
ences is called an integral order. The stationary time series is called “zero-order integration”
and denoted as I (0). If the first-order difference of time series is a stationary process, it is
called “first-order integration”, denoting I (1) and is known as the “unit root process”.

2.2. Cointegration Theory

The study on the cointegration relationship is mainly focused on the I (1) process, in
which the cointegration method is used to find the common random trend among vari-
ables. The basic idea is that, although some variables exhibit nonstationary characteristics
individually, they may have a common stochastic trend, which means that there is a stable
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long-term equilibrium relationship among them. Thus, one or more stationary sequences
are obtained by specific linear combinations. For example, it is assumed that sequences
in Yt = (y1t, y2t, · · · , ymt)

T are all integrated series of first order where m is the number
of variables.

For a p-order vector auto-regression model (VAR):

Yt = ∑p
i=1 ΠiYt−i + εt (3)

where p is the lag order and εt is a p-dimensional joint normal process, εt ∼ IN(0, Ωε).
The corresponding vector error correction model is obtained by parameter transformation
and adjustment on Equation (3), which can be written as follows:

Yt = ΦYt−1 + ∑p−1
i=1 Γi∆Yt−i + εt (4)

in which Φ = −(I − ∑
p
j=1 Πj), Γi = −∑

p
j=i+1 Πj, i = 1, 2, · · · , p − 1. The maximum Likeli-

hood Estimation (MLE) is applied to estimate the parameters [18] in Equation (4), in which
matrix Φ contains the main characteristics and information of the cointegration system.
The rank of matrix Φ is assumed to be r. If r = 0, Equation (4) represents a common VAR
model of first order difference, which means no cointegration relationships existing among
variables. Thus, the rank of matrix Φ equal to the number of independent cointegration
relationships, which can be obtained by testing the significance of characteristic roots of
matrix Φ [6]. A commonly used testing method is the eigenvalue trace test and the test
statistic λtrace is calculated as follows,

λtrace(r) = −T ∑m
i=r+1 ln

(
1 − λ̂i

)
, r = 1, 2, · · · , m − 1 (5)

The null hypothesis of the eigenvalue trace test is that the number of independent
cointegration vectors is less than or equal to r. Clearly, λtrace(r) = 0 if the null hypothesis
is true. The critical value of λtrace can be obtained by Monte Carlo simulation. Thus, the
number of independent cointegration vectors is obtained by such a statistical test. If the
number of cointegration vectors is r, the first r lines of β̂ estimated from the maximum
likelihood estimation is the cointegration coefficient matrix. If 0 < r < m, matrix Φ can be
decomposed as:

Φ = αβT (6)

where α, βεRm×r, and both α and β are full rank matrices. Thus, the “stationary part” ξt
can be calculated by:

ξt = βT
r yt (7)

in which ξt is a stationary series of I(0), and βr is called the cointegration coefficient matrix.
The cointegration relationships among variables exist when r > 0, which indicates that
there are r long-term equilibrium relationships among these nonstationary sequences.

2.3. Multiple Order Moments

Moments are statistics that can be employed to describe the probability distribution
of variables.

The first order moment is the mean of a set of samples:

µ1 =
∑n

i xi

n
(8)

The second order central moment is the variance:

µ2 =
∑n

i (xi − µ)2

n
(9)
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The first-order moment corresponds to the mean and the theorem of large numbers,
and the second-order central moment corresponds to the variance and the central limit
theorem. The first two moments correspond to the two most important theorems of
statistics, which determine the most important properties of the probability distribution.
The weak stationarity in time series analysis is to see whether the first and second moments
are stable.

The third order standard moment is called skewness:

µ3 =
1
n

∑n
i (xi − µ)3

σ3 (10)

The fourth order standard moment is kurtosis:

µ4 =
1
n

∑n
i (xi − µ)4

σ4 (11)

The third-order moments and above are called standard moments, and, just as the
influence of variance should be removed from the mean, the influence of variance should
also be removed from skewness and kurtosis. Thus, these moments are assumed to be
“independent” or “orthogonal” to each other. Moments commonly used in general statistics
are up to the fourth order.

As the order of moments increases, each moment provides more detailed probability
distribution information. Together with lower-order moments, a more complete description
of the probability distribution (from the mean, variance, skewness, kurtosis . . . ) can be
obtained with the similar idea for Taylor series and Fourier series. However, the higher the
order of the moment, the more data is needed for estimation and the more difficult it is to
describe and understand the moment.

3. Monitoring Strategy based on Cointegration Theory and Multiple Order Moments
3.1. The Procedure of the Proposed Monitoring Framework

In the nonstationary process, some variables exhibit obvious nonstationary character-
istics, while other variables remain stationary. Thus, for nonstationary process monitoring,
the variables are first separated into stationary and nonstationary variables by the ADF
stationary test. Cointegration analysis is then applied to nonstationary variables to extract
stationary features among variables, which are combined with stationary variables as a
new dataset.

The new dataset is divided into several windows to capture changes in the local
characteristics for the purpose of online detection, and the window width is selected based
on trials with different window widths. If the window width is too small, the statistic
characteristics of variables cannot be captured properly, which will be greatly influenced by
the fluctuation of the data, while, if the window width is too large, the monitoring model is
insensitive, and thus the fault cannot be detected in a timely fashion.

The proper window width l is selected within a certain range with the balance of
model sensitivity and well feature extraction. Then mean matrix M, variance matrix V and
skewness matrix S are obtained, which are combined into A = [M, V, S] as a set of multiple
order moments. Based on the calculation of A, monitoring index m is calculated by

m = aTa (12)

where a is one of the row vectors in A. Thus, different features reflected from each order
of statistics can be expressed by the combined monitoring index, which is sensitive to
the abnormal process. The control limit of the monitoring index is obtained by kernel
density estimation [19] of the training data. The Gaussian kernel function is selected as the
kernel function.

The diagram of nonstationary process monitoring based on cointegration theory and
multiple order moments is shown in Figure 1.
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3.2. Offline Modelling

Data under normal conditions is selected as training data with n samples and m vari-
ables, which is normalized and denoted as XtεRn×m. The ADF unit root test is applied as a
stationary test method to separate Xt into stationary data set Xs

t εRn×m1 and nonstationary
dataset Xn

t εRn×m2 , in which m1 and m2 are the number of nonstationary variables and the
number of stationary variables, respectively.

The Johansen cointegration test is applied to nonstationary dataset Xn
t , in which the lag

order p of the cointegration analysis model is determined by the AIC criterion. The number
of cointegration vectors r is obtained through the trace eigenvalue test, and the cointegration
coefficient matrix B = (β1, β1, · · · , βr) is obtained from the maximum likelihood estimation,
the stationary part ξt = (ξ1t, ξ2t, · · · , ξrt) extracted from nonstationary dataset is obtained
with Equation (7).

The stationary part ξt of the nonstationary variables are combined with the sta-
tionary variables Xs

t = (x1, x2, · · · , xm2) to construct a new dataset denoted as Yt =
(ξ1t, ξ2t, · · · , ξrt, x1, x2, · · · , xm2), YtεRn×(r+m2). A window with width of l is applied to Yt,
and each window is a l × (r + m2) matrix denoted as yit, i = 0, 1, · · · , n − l. Calculate multi-
ple order moments of each window matrix yit. Take, for example, the mean of each window
is stacked vertically to a matrix denoted by MεR(n−l)×(r+m2) with each row representing
the mean of yit, i = 0, 1, · · · , n − l.

The variance matrix V and skewness matrix S are obtained the same as the mean
matrix M. A set of multiple order moments is constructed by stacking the statistical moment
matrix M, V, S horizontally, which is denoted as A = (a1, a2, · · · , an−l)

T , AεR(n−l)×3(r+m2).
The monitoring index is calculated by mi = aT

i ai, i = 1, 2, · · · , n − l, and the kernel density
estimation is applied to estimate the control limit Cα with a significance level of α.

3.3. Online Monitoring

We scaled the testing data with the mean and variance obtained from the training data
and separated the scaled testing data into a stationary dataset and nonstationary dataset
denoted as Xs

new and Xn
new. We projected the nonstationary dataset Xn

new to the cointegration
coefficient matrix B to obtain the stationary part ξnew = BTXn

new of the new window in each
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cointegration direction, which was then combined with the stationary variables Xs
new to

construct a new dataset denoted as Ynew. We calculated the monitoring index mnew and
compared it with the control limit Cα to determine the current operating conditions.

4. Applications
4.1. Numerical Example

To verify the effectiveness of the proposed method, a multivariate nonstationary
process Yt = (y1t, y2t, y3t, y4t) containing four variables was constructed as follows. Each
sequence contains the same random walk process xt as a simulation of common stochastic
trend. The common stochastic trend and other four sequences were constructed as follows:

xt = xt−1 + e1t (13)

y1t = e2t (14)

y2t = −0.6xt + e3t (15)

y3t = 0.3xt + e4t (16)

y4t = 0.1x2
t − 8xt + e4t (17)

In Equations (13)–(17), e1t ∼ N(0, 1), e2t, e3t, e4t ∼ N(0, 0.5), the number of sample
points is 2000. A soft fault is introduced to {y2t} at 1000 sample points:

y f ault
2t = y2t + (t − 1000)0.05 (18)

To compare with the proposed method, a principal component analysis (PCA)-based
monitoring method and common CA-based method [7] were also adopted.

The first two subplots in Figure 2 depict the monitoring results based on PCA, in which
the blue solid line represents the statistics, and the red solid line represents the control
limit. The T2 statistic and Q statistics are the monitoring indices, which are computed by
Equations (19) and (20), respectively.

T2 = tTΛ−1
k t (19)

Q = tTt (20)

where t represents the score vector of PCA and Λk is the covariance of t.
The third subplot in Figure 2 shows the monitoring result based on the common CA-

based method, and the monitoring index is the T2 statistic that is computed by Equation (21)

T2 =
(

BTxt

)T
Λ−1

ξ

(
BTxt

)
(21)

in which B is the cointegration matrix, xt is the original multiple series, and Λξ is the
covariance of

(
BTxt

)
.

The fourth subplot in Figure 2 depicts the result based on the proposed method, in
which the blue solid line represents the monitoring index that is calculated by Equation (12),
and the red horizontal line is the control limit. A validation set is used to determine the
proper window width, which is set to be 15, 30, 60, 90 and 120, respectively. The monitoring
results of the alarm time and false alarm rate are shown in Table 1, and 60 is considered to
be the suitable window width with weighing the alarm time and false alarm rate.
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Table 1. Monitoring results of the validation set with different window widths.

Window Width Alarm Time False Alarm Rate (%)

15 1192 0
30 1045 0
60 1018 0.3
90 1018 3.4

120 1017 6.1

As can be seen in Figure 2, for the multivariate process with nonlinearity and nonsta-
tionarity, the monitoring results based on the proposed method exhibit better performance
compared with the monitoring methods based on PCA and the common CA method. The
monitoring result based on the PCA method shows that the fault occurs after the 1500th
sample both in the principal part and residual part, which is at least 500 samples too late
for an alarm.

The method based on the common CA method only explores the linear long-term
equilibrium among nonstationary series, thus, when a nonlinear relationship exists among
variables, the false acceptance rate is high as is shown in the monitoring results in the third
subplot in Figure 2. However, the monitoring methods based on the proposed monitoring
strategy exhibit great properties to identify the normal conditions and real fault with alarms
in time and no false alarms.

4.2. Industrial Case

In this section, the proposed method is applied to monitor the industrial data collected
from a continuous catalytic reformer (CCR) unit, and the monitoring results are compared
with the monitoring methods based on PCA and the common CA method respectively.

The main monitoring purpose is to identify the abnormal increase of hot end pressure
drop of the reforming feed heat exchanger in a catalytic reforming unit. In this work,
3240 samples were used to validate the effectiveness of the proposed mothed. The sampling
frequency was 1 min, and each sample was composed of 26 process variables. The first
1800 samples were used as a training dataset to establish the monitoring model, and the
remaining samples were used as test datasets that contained abnormal working conditions.
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The change of the pressure drop mentioned above is mainly affected by the changes in
the feed volume of naphtha and circulating hydrogen. As shown in Figure 3, the subplots
from top to bottom are the variation of the pressure drop, the feed volume of naphtha and
the feed volume of circulating hydrogen over time in the sampling interval. The pressure
drop of the heat exchanger shows an upward trend after 2700 sample points, in which
the feed volume has not increased while the pressure drop has a clear increasing trend;
therefore, this is considered as an abnormal rise in the pressure drop.
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Figure 3. The variation in the feed volume and pressure drops.

The ADF unit root test is first applied to the 26 process variables in the training dataset
to separate the original dataset into nonstationary variables and stationary variables for
modeling. The test results are shown in Table 2.

Table 2. Process variables and their unit root test results.

Variable p-Value Variable p-Value

Outlet temperature of cold end 1.21 × 10−2 Pressure drops of the third reactor 2.32 × 10−3

Inlet temperature of hot end 1.55 × 10−8 Pressure drops of the fourth reactor 2.09 × 10−5

Inlet temperature of cold end 0.35 Outlet temperature of the first furnace 4.19 × 10−29

Outlet temperature of hot end 0.40 Outlet temperature of the first reactor 1.82 × 10−3

Inlet flow of cold end 0 Outlet temperature of the second furnace 0
Hydrogen flow 0.55 Outlet temperature of the second reactor 2.60 × 10−4

Inlet pressure of cold end 3.24 × 10−2 Outlet temperature of the third furnace 0
Hydrogen pressure 7.18 × 10−2 Outlet temperature of the third reactor 1.90 × 10−5

Temperature drops of the fourth furnace 2.10 × 10−11 Outlet temperature of the fourth furnace 2.39 × 10−30

Pressure drops of cold end 1.21 × 10−4 Temperature drops of the first furnace 4.32 × 10−17

Pressure drops of hot end 1.43 × 10−5 Temperature drops of the second furnace 7.66 × 10−4

Pressure drops of the first reactor 1.77 × 10−3 Temperature drops of the third furnace 1.62 × 10−10

Pressure drops of the second reactor 1.71 × 10−4 Outlet pressure of hot end 0

If the p-value is less than 0.05, the variable is stable at the 5% significance level, and the
test results show that 4 variables in bold are nonstationary as shown in Table 2. Then the
first-order difference of these variables is tested for stationarity. The test results show that
the first-order differences of these variables are stable, and the results are not shown here.

The four first-order single integer variables were used as nonstationary modeling
variables. The Johansen cointegration test was performed on these variables, and the
AIC criterion was used to determine the lag order of the VAR model. The lag order was
determined to be 2 after calculation.
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The number of cointegration relations was tested by trace statistics, and the test results
are shown in Table 3.

Table 3. The Johansen trace test results.

Johansen H0 Hypothesis Trace Statistics Critical Value (5%)

r ≤ 0 125.75 3.84
r ≤ 1 40.46 14.26
r ≤ 2 8.00 21.13
r ≤ 3 1.22 27.58

The results in Table 3, at the 5% significance level, indicate rejecting the hypothesis of
r ≤ 1 and accepting the hypothesis of r ≤ 2. Thus, the number of cointegration relations
can be described as r = 2—that is, there are two forms of linear combinations to eliminate
the common stochastic trend among these nonstationary variables.

The testing data and cointegration coefficient matrix obtained from the training data
were substituted into Equation (7). A labeled dataset containing abnormal conditions was
applied as the validation set to obtain the optimal window width in the same way as
described in Section 4.1. The selected window width was 80 in this case. The monitoring
index and control limits were calculated according to the method mentioned in Section 3.
The monitoring results based on PCA, the common CA method and the proposed method
are shown in Figure 4, in which the blue line represents the statistics, and the red horizontal
line represents the control limits. If the blue line exceeds the red line, it is considered that
the current condition is abnormal.
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As shown in Figure 4, after about 2800 samples, the statistics of all three monitoring
methods exceed the control limits, which indicates that an abnormal rise in the pressure
drop after 2800 samples was identified by all these methods. However, in this process,
several variables exhibited obvious nonstationary characteristics, while the monitoring
method based on PCA assumed that the variables in the process were all stable. Thus, the
nonstationary characteristics of certain variables led to a high false alarm rate when PCA
was applied.
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As shown in the first subplot in Figure 4, the alarm time of the T2 statistic was later
than the cointegration analysis-based methods. While the Q statistic exceeded the control
limit at a normal condition as shown in the second subplot in Figure 4, it was ineffective to
monitor nonstationary process with a high false alarm rate.

Cointegration analysis is an effective tool to deal with multivariate nonstationary series
by eliminating the common trend among variables to extract time-invariant features, which
are then used as an index to monitor the operation conditions. The commonly used statistic
is T2, which is used to monitor the principal part of the extracted time-invariant features
among nonstationary variables. However, the methods only focus on the nonstationary
variables and their linear long-term relationship among them, which is not sufficient for
complex industrial processes. The monitoring results in the third subplot in Figure 4 show
that the statistics of several samples exceeded the control limit before fault occurred, which
led to false alarms.

The monitoring results of the proposed method as shown in the fourth subplot in
Figure 4 exhibited superiority with no false alarms, and the statistics exceeded the control
limit in time when the pressure drop rose abnormally. With stationary variables combined
in the model, the information included in the monitoring index is more comprehensive.
In addition, multiple order moments were applied to represent different features of the
process, which is appropriate for a monitoring index. Thus, the proposed method exhibits
its effectiveness in nonstationary process monitoring.

5. Conclusions

For nonstationary processes that cannot be monitored by traditional multivariate
statistical methods, a monitoring strategy based on cointegration theory and multiple
order moments is proposed. Unlike most cointegration-based methods that only focus on
nonstationary variables, stationary variables are also included in the monitoring model
in this work, which ensures that the model contains more comprehensive information
of the process. In addition, multiple order moments of the stationary part extracted by
cointegration analysis, such as the mean, variance and skewness, were used to construct a
new monitoring index that contains different features represented by each order moment.

Moving windows were applied to capture changes in the local statistical characteristics
for the purpose of online monitoring. Thus, the proposed monitoring method is sensitive to
the abnormal conditions and can realize early identification of faults with slow features. The
case study on simulation data indicates that the proposed method is effective to monitor
nonstationary processes with low false alarm rates even when nonlinear relationships exist
among variables.

For industrial data, compared with PCA and the common cointegration analysis
monitoring method with the T2 statistic, the monitoring results of the proposed method
demonstrated the superiority in the fault alarm rate and alarm time. Therefore, for the
monitoring of nonstationary processes, the use of multiple order moments as a monitoring
index based on cointegration analysis can provide early alarms for abnormal conditions
and can effectively identify normal changes and abnormalities.
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