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Abstract: In the field of desalination powered by renewable energies, the use of solar power cycles
exhibits some favorable characteristics, such as the possibility of implementing thermal energy storage
systems or a multi-generation scheme (e.g., electricity, water, cooling, hydrogen). This article presents
a review of the latest design proposals in which two power cycles of great potential are considered:
the organic Rankine cycle and the supercritical CO2 power cycle, the latter of growing interest in
recent years. The designs found in the literature are grouped into three main types of systems. In
the case of solar ORC-based systems, the option of reverse osmosis as a desalination technology
is considered in medium-temperature solar systems with storage but also with low-temperature
using solar ponds. In the first case, it is also common to incorporate single-effect absorption systems
for cooling production. The use of thermal desalination processes is also found in many proposals
based on solar ORC. In this case, the usual configuration implies the cycle’s cooling by the own
desalination process. This option is also common in systems based on the supercritical CO2 power
cycle where MED technology is usually selected. Designs proposals are reviewed and assessed to
point out design recommendations.

Keywords: solar ORC desalination; solar supercritical CO2; solar desalination; solar reverse osmosis

1. Introduction

The need to change the global energy model and the increase in drinking water
demand in important areas of the planet make desalination powered by renewable energies
(REs) part of the solution to the future challenge of the energy–water nexus. According to
International Energy Agency (IEA) data, almost 81% of the world’s energy supply had its
origin in fossil fuels (coal, natural gas and oil) in 2019 [1]. If we focus on electrical energy,
the percentage was 63% in the same year. These values explain the still-growing trend of
global greenhouse gas emission levels. In addition to this, there is the problem of access to
water. According to World Bank data, internal renewable freshwater resources per capita
have fallen by 36% and 25% between 2002 and 2017 in areas such as Sub-Saharan Africa or
the MENA (Middle East and North Africa) region, respectively [2]. These reductions are
largely due to population increase, which is the expected trend in the coming decades.

RE-powered desalination offers advantages and benefits compared to the fossil-fuels-
driven option, such as the coincidence of renewable resource availability—mainly solar—
and water scarcity. In addition, the environmental impacts associated with the energy
consumption of the processes are reduced [3]. In this sense, the Life Cycle Analysis
(LCA) of desalination technologies systematically indicates that the environmental impacts
associated with the energy consumption of the process are mainly attributable to the
operation and maintenance phase in comparison to construction and decommissioning
phases [4]. Therefore, the use of renewables as the energy input to these processes results in
a significant reduction of the environmental impacts of freshwater production. On average,
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the global warming potential reduction is around 90% for conventional thermal desalination
technologies—multi-stage flash (MSF) and multi-effect distillation (MED)—and 80% for
reverse osmosis (RO) [4].

The above advantages justify the trend in scientific activity concerning RE-powered
desalination shown in the bibliometric analysis of the scientific literature published on
desalination between 2000 and 2020, as presented by Zapata-Sierra et al. [5]. Among other
results, the clustering of publications is highlighted; the “Renewable energy desalination”
cluster is the second most important of the eight clusters, defined with a weight of 26.1%,
just one percentage point below the first ‘’Reverse osmosis” cluster).

Within this frame, this work deals with solar-powered desalination by means of solar
thermo-mechanic conversion through a power cycle, thus allowing the use of electricity
and/or heat to drive desalination processes. The main aim of the paper is the review and
assessment of recent design proposals existing in the literature to give design recommenda-
tions on such solar desalination systems.

The latest general review of RE-desalination concludes that the techno-economic
optimization of some aspects is still necessary to offer stable solutions in the long term [6].
Regarding the solar thermal-powered option, the need for its application to both small
and industrial scales and the importance of thermal energy storage are emphasized. The
need to expand the implementation of off-grid systems is also indicated in general. In the
field of solar thermal-powered desalination, it is possible to combine this resource with
all existing desalination technologies (see Figure 1). Only the methods associated with
the use of power cycles for the thermo-mechanical conversion of solar thermal energy are
shown since this is the route explored in this article. Therefore, the use of the electricity
generated and/or the heat rejected by a solar power cycle are the options reviewed instead
of the direct coupling of thermal desalination processes to a solar thermal collector field.
Concerning direct coupling, we refer to Buenaventura Pouyfacon and García-Rodríguez [7].
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Figure 1. Possible indirect solar desalination options when a power conversion unit (power cycle) 
is considered as the solely final energy supply unit. MSF: multi-stage flash; MED: multi-effect dis-
tillation; MD: membrane distillation; HDH: humidification dehumidification; MVC: mechanical va-
por compression; RO: reverse osmosis; ED/EDR: electrodialysis/electrodialysis reversal; CDI: capac-
itive deionization; EDI: electrodeionization. Adapted from [6]. 

The thermal processes shown in Figure 1 require a heat supply in the range of 50–120 
°C [6]. Temperatures from 50 to 60 °C are only suitable for humidification dehumidifica-
tion (HDH), appropriate only for small-scale use due to its relatively low energy efficiency 
[8]. Moreover, membrane distillation (MD) systems require 75–95 °C to achieve reasona-
ble specific thermal consumption, up to 237 and 170 kJ/kg, respectively [7]. However, 
there are only small capacity units, thus limiting their application at an industrial scale. 

Figure 1. Possible indirect solar desalination options when a power conversion unit (power cycle)
is considered as the solely final energy supply unit. MSF: multi-stage flash; MED: multi-effect
distillation; MD: membrane distillation; HDH: humidification dehumidification; MVC: mechanical
vapor compression; RO: reverse osmosis; ED/EDR: electrodialysis/electrodialysis reversal; CDI:
capacitive deionization; EDI: electrodeionization. Adapted from [6].

The thermal processes shown in Figure 1 require a heat supply in the range of
50–120 ◦C [6]. Temperatures from 50 to 60 ◦C are only suitable for humidification de-
humidification (HDH), appropriate only for small-scale use due to its relatively low energy
efficiency [8]. Moreover, membrane distillation (MD) systems require 75–95 ◦C to achieve
reasonable specific thermal consumption, up to 237 and 170 kJ/kg, respectively [7]. How-
ever, there are only small capacity units, thus limiting their application at an industrial scale.
Multi-effect distillation (MED) has been superior to multi-stage flash (MSF) distillation
since the end of the 20th century due to its lower main and auxiliary energy consumption
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along with lower thermal consumption at the same top temperature. For the sake of com-
parison, the MED process achieves 230 kJ/kg of thermal energy consumption with a top
temperature of 67 ◦C, whereas the MSF would require at least 105 ◦C to allow the said
main energy consumption. In addition, the auxiliary energy required by the MSF process is
much higher than that of MED, since the former requires brine recirculation. The industrial
standard of conventional MED technology consists of a MED unit coupled to a thermal
vapor compression process (MED-TVC). The MED unit is driven by the outlet flow of the
TVC, which is fed by a steam extraction of the steam turbine of a Rankine cycle (motive
steam) and steam generated within one of the last effects of the MED plant.

Regarding desalination processes that consume shaft power or electricity, only me-
chanical vapor compression (MVC) and reverse osmosis (RO) are suitable for seawater
desalination applications. This is due to the significant increase in energy consumption in
electrodialysis (ED), electrodialysis reversal (EDR), capacitive deionization (CDI), and elec-
trodeionization (EDI) with salt concentration. Therefore, they do not compete with RO for
salinities within the range of seawater, about 0.035 kg of sea salts per kg of saline solution.

In addition to conventional phase-change technologies, a MED unit can be coupled to
a double-effect absorption heat pump (DEAHP). This technology has been developed at
the Spanish research center Plataforma Solar de Almería-CIEMAT [9–11]. For a given flow
and thermodynamic conditions of the external steam source, MED-DEAHP technology
exhibits lower main and auxiliary energy consumptions than MED-TVC, thus resulting in
higher thermodynamic efficiency of the integrated power and water production. Therefore,
MED-DEAHP is superior to MED-TVC, although the former is not commercially available.
Another advanced MED concept is a high-temperature MED process by using nanofiltration
as seawater pretreatment. This was proposed and developed by Hassan [12–14]. Not only
the concept but also the experimental assessment have been reported in the literature [15].
A representative industrial plant in which nanofiltration and distillation processes are
integrated is the Sharjah plant, based on MSF distillation [16].

Analyses of integrating desalination processes within conventional solar power plants
based on Rankine cycles with water as working fluid have been frequently reported in the
literature, considering mostly RO, MED, and MED-TVC processes. Some exemplary papers
are [17,18], among others. Regarding the integration of distillation processes, the main
issue is the availability of operating models properly validated to simulate the distillation
subsystem at part-load operation. Concerning MED-TVC plants, a performance model [19]
has been developed to calculate the efficiency and water production of the MED-TVC
distillation process as a whole within a suitable range of the external steam source. Some
selected previous papers are Hanafi et al. [20], who described a thorough model of a
thermocompressor for the said application, and Ameri et al. [21] and Mazini et al. [22], who
presented useful models of MED-TVC plants. Additionally, the parametric analysis needed
for plant design can be found in works by Kouhikamali et al. [23] and Esfahani et al. [24].
Finally, experimental data useful for validating models are provided by Temset et al. [25]
and Al-Mutaz and Wazeer [26]. On the other hand, both MED and nanofiltration-MED
processes can be modeled based on the aforementioned literature. Additionally, operation
out of nominal conditions of a MED unit has been experimentally assessed by Fernandez-
Izquierdo et al. [27].

Recent proposals of solar desalination system designs that fit the scheme of Figure 1
are presented throughout this paper. Minor innovations have been found concerning
coupling conventional solar Rankine cycles and desalination. Indeed, innovative proposals
rely on the organic Rankine cycle (ORC) and the supercritical CO2 (sCO2) cycle as power
conversion units.

Medium-temperature technology of solar thermal collectors consists of systems with
top operating temperatures within the range of 150–400 ◦C, thus requiring one-axis sun
tracking to concentrate the solar irradiance on a linear focus in which the absorber tube
is placed. Solar parabolic trough collectors (PTCs) and linear Fresnel concentrators corre-
spond to medium-temperature collectors. Since conventional Rankine cycles operated with
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water exhibit quite limited efficiency at relatively low temperatures, significant research
activity has been focused on organic Rankine cycles (ORCs), suitable even for the lowest
temperatures within the said range. Indeed, ORCs operated with low-temperature solar
collectors—i.e., stationary collectors—have also been developed. The first solar ORC desali-
nation systems date back to the late 1970s and early 1980s, all of them using reverse osmosis
as the desalination technology. Due to the high specific energy consumption of the process
at that time, these first experiences were developed for brackish water desalination [28–30].
A review of state-of-the-art solar thermal reverse osmosis desalination systems up to 2009
can be found in [31]. Its conclusions indicate, among other issues, that the water–electricity
cogeneration option has not been sufficiently explored. Design recommendations based
on the work developed up to 2012 is reported in [32], and the update of the state of the
art can be found in [33]. The existing systems and proposals are classified in the latter
according to the ORC configuration into single stage (referring to simple cycles), two-stage
(referring to double cascade cycles), and low-temperature systems. More recently, and
covering a wider scope, the evaluation of solar thermal-powered desalination technologies
has been conducted by [7] to identify market opportunities for these technologies. Among
the options of growing interest is reverse osmosis powered by solar ORCs, which presents
the possibility of incorporating thermal energy storage systems (TES) instead of batter-
ies. In low demand scenarios (less than 100 m3/d), conventional distillation technologies
(MED and MSF) and RO powered by solar ORCs are discarded against the photovoltaic
(PV)–RO option, while in intermediate demand scenarios (100 to 25,000 m3/d), the solar
ORCs with PTCs or Fresnel is one of the technologies with market opportunities. The
following sections present the most recent proposals found in the scientific literature on
solar desalination systems based on ORC as the main energy conversion units. As will be
seen, the approaches based on poly- or multi-generation are dominant.

Lastly, sCO2 Brayton cycles have been recently developed in order to achieve much
higher energy efficiency, with top temperatures technically achievable with the current
technology of solar tower power plants. Heliostats concentrate the solar radiation within
a focal point on the top of a tower where the solar receiver is placed. Specifically, energy
efficiency around 45% corresponds to the top temperature of 550 ◦C with a Brayton cycle
with regeneration and recompression. In the near future, 52% could be reliable with 700 ◦C
of top temperature [34].

2. Solar ORC (Organic Rankine Cycle)-Driven Desalination Systems: An Update
2.1. Integration of Reverse Osmosis (RO) as Desalination Technology

Reverse osmosis desalination requires electricity to power the main pump to pressurize
the saline water feed above the osmotic pressure of the concentrate output flow. Pressurized
feedwater flow circulates in parallel with the RO membrane surface, whereas part of the
solvent passes through the membrane along with a minor portion of salts, thus generating
the permeate flow (product). The remaining feed stream with increased salinity becomes
the concentrate flow. Since this concentrate exits at a pressure slightly below the feed
pressure, energy recovery devices are needed in seawater desalination plants. Recent
proposals for solar RO desalination systems with ORC units as the prime mover generally
correspond to the configurations described in the following subsections, dealing with
medium- and low-temperature solar systems, respectively.

2.1.1. Medium-Temperature Solar Systems

The scheme shown in Figure 2 describes the latest innovative proposals of medium-
temperature solar ORC systems. As can be seen, a solar thermal plant with thermal energy
storage (TES) drives a single-effect absorption refrigeration system by the heat rejected
at the condenser. This scheme would therefore respond to a poly- or multi-generational
system if not the entire electrical energy output of the ORC is consumed by the RO unit.
Additionally, part of this thermal energy rejected preheats the feed water of the RO system.
This exploitation has two advantages: (1) the use of saline water as a cooling medium
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makes an additional cooling flow unnecessary; (2) the permeability of the RO membranes
rises with feed water temperature, that is to say, the productivity of the plant is improved
although this occurs at the expense of an increase in the salinity of the product.
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A solar poly-generation system with a recuperative ORC unit with n-octane as the
working fluid for electricity production is presented in [35]. The solar system considered
consists of a parabolic trough collector field operated with Therminol-66 as the heat transfer
fluid (HTF) and a two-tank thermal energy storage (TES) system with commercial molten
salts. Hitec XL is considered in order to take advantage of its relatively low freezing point
(120 ◦C) and cost. A fraction of the heat transferred in the ORC’s recuperator is exploited
for the production of domestic hot water. Moreover, the heat rejection of the ORC is used in
the generator of a single-effect absorption refrigeration cycle. The ORC’s electricity output
is consumed by an electrolyzer for hydrogen production and by the seawater RO unit,
where a Pelton turbine is considered as the energy recovery system. The water needed
in the electrolyzer is preheated by the thermal oil flow at the outlet of the ORC’s solar
heat exchanger. The proposed system is analyzed to produce between 200 and 500 kW
electric and 450 ppm freshwater from 35,000 ppm feed water. The nominal capacity of the
seawater reverse osmosis plant (SWRO) is 40 kg/s, and the absorption refrigeration system
would have a cooling capacity of 500–800 kW. Both energy and exergy efficiency of the
whole system is calculated, and techno-economic optimization is also performed using
evolutionary algorithms.

Another configuration of parabolic trough solar collectors with TES and Therminol
VP-1 as HTF and storage medium is proposed by [36]. A conventional Rankine cycle is
thermally driven by this solar energy system. The steam turbine’s output flow, after being
partially expanded, acts as the primary flow of a steam ejector. The discharge mixed flow
is the heat source of the ORC unit. After heating the ORC system, this stream is split into
two flows. One of them completes the Rankine cycle and the second flow is used for a
preliminary preheating of the RO feedwater and subsequently for cooling production. The
cooling of the ORC is also carried out with the feedwater of the desalination unit to obtain
additional heating. Therefore, in this proposal, the ORC is not directly heated by the solar
thermal plant.

2.1.2. Low-Temperature Solar Systems

The other option commonly addressed in recent studies is the combination of solar
ponds (SPs) and a low-temperature ORC unit (see Figure 3) to power a RO desalination
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system. The concept is not new; two of such systems were implemented in the USA—
Los Baños (California) and El Paso (Texas) [37]. A solar pond is integrated in the same
device for both solar–thermal energy conversion and long-term heat storage. With ade-
quate procedures of creation and maintenance, three zones with different salinities remain
throughout the lifetime of the SP. Thanks to the solar heating, thermal energy reaches the
lowest layer (lower convective zone), consisting of high salinity solution. On top, a layer
with an appropriate salinity gradient is created, so-called the non-convective zone (NCZ).
Due to the corresponding density profile, its salinity gradient avoids convection in order
to maximize the thermal insulation of the LCZ. The upper layer (upper convective zone,
UCZ) provides insulation from the atmospheric phenomena. As Figure 3 depicts, solar
heat is extracted from the lower convective zone (LCZ) of the SP, whereas the heat rejected
by the ORC is re-injected into the upper convective zone (UCZ).
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The investigation of a solar RO desalination system using an SP that provides thermal
energy to a recuperative ORC unit is presented by [38]. For this purpose, an HTF is used to
extract energy from the lower convective zone. This HTF is circulated through the ORC
evaporator. As for the desalination system, the feed water is first preheated in the ORC
condenser and then circulated into the upper convective zone of the solar pond before
entering the desalination unit. The brine stream from the RO unit is partially evaporated
and a portion is subsequently injected into the lower convective zone in order to replenish
salts losses due to their diffusion to the upper layers. The seawater RO unit is electrically
driven by the ORC.

A RO desalination system based on a solar ORC powered by an SP is also presented
in [39]. This configuration is proposed together with the analogous system, in which the
ORC is replaced by a Kalina cycle. In the solar ORC configuration, an extracted fluid stream
forms the LCZ and is circulated to the ORC evaporator, which incorporates recuperation.
Part of the electrical power produced is used in the desalination unit while the rest is
injected into the grid. It the use of the heat from the ORC condenser is also contemplated
for a thermoelectric generation (TEG) system. A flow extracted from the upper convective
zone is used as a cold sink for the TEG and re-injected into the upper convective zone after
being heated. Seven different working fluids are considered for the ORC, resulting in an
overall system exergy efficiency of up to 46.4% when using R227ea.

The double cascade concept is considered in the three designs investigated by [40],
one of them without ORC, where an SP acts as the heat source of the topping cycle. The
thermodynamic and thermoeconomic analysis of three configurations is performed. In two
of them, a single ORC is thermally driven with energy extracted from the LCZ of the SP. The
electricity output of this ORC is consumed by the RO unit. The heat rejection of the topping
cycle is used as heat absorbed by the bottoming cycle, which, in one of the configurations,
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is a Kalina cycle, and in the other, a simple ORC. In both cases, the cooling of the bottom
cycle’s condenser is carried out with water from the UCZ of the SP. A thermodynamic
and thermoeconomic analysis is performed, assuming a SP surface area of 10,000 m2, a
temperature of 90 ◦C in the LCZ, and a RO unit conversion of 30% for seawater salinity of
42,485 g/kg.

2.2. Integration of Thermal Processes as Desalination Technology

When a thermal desalination process is considered to be integrated with a solar ORC
system, recent proposals have mostly matched the layout shown in Figure 4. As can be
seen, the integration implies the use of the heat rejected by the ORC to drive the thermal
desalination process, which, in most of the proposals, involves a MED or MED-TVC unit.
There are also some proposals with HDH or an MSF unit. Those desalination processes are
described below.
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Figure 4. Integration of thermal desalination processes in solar-ORC-based poly-generation systems.

The industrial standard of the MED process comprises a MED unit coupled to a
thermocompressor, as follows:

• MED unit. A set of several chambers (so-called effects) are kept under vacuum
conditions with decreasing pressures, corresponding to the saturation pressure at
decreasing temperatures from 50 to 67 ◦C, up to 45–35 ◦C. Normally there is a single
heat exchanger consisting of a horizontal tube bundle and the evaporator. An external
flow, providing the external heat source of the MED process, circulates within the
evaporator tubes of the first effect. Seawater feed with slight preheating is sprayed on
the surface of the tube bundle, thus resulting in a thin film that is partially evaporated.
The remaining brine is discharged by the bottom of the effect, whereas the steam
generated is sent to circulate inside the tubes of the evaporator of the next effect. The
steam generated in the last effect is condensed in the end condenser. A seawater
flow circulates through the end condenser; part of this flow (seawater cooling) is
discharged back to the sea and the rest of the flow is the preheated seawater that enters
all effects in parallel. Industrial plants normally have 8–12 effects in MED units and
4–8 effects in MED-TVC, although designs with 14 effects are feasible, with an average
of around 2.5 ◦C of temperature gradient between adjacent effects. With 14 effects, the
thermal energy consumption would be about 230 kJ/kg in a MED unit and 166 kJ/kg
in MED-TVC.

• Termocompressor. A high-pressure steam flow (motive steam) is mixed with a low-
pressure steam flow, thus resulting in a steam flow with intermediate pressure and
temperature. This outlet steam flow drives the MED process: the low-pressure flow
is the steam generated at the last effect or one of the last effects, whereas the motive
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steam is generated by the available heat source. In conventional MED-TVC plants,
the motive steam is a turbine extraction. Steam at about 140–225 ◦C is required in
MED-TVC plants. Coupling the thermocompressor to the MED plant at the last effect
makes the end condenser unneccesary. This results in avoiding the seawater cooling
flow that requires significant electricity consumption, along with increased capital cost
attributable to seawater intake infrastructure and pumps.

Moreover, MSF plants rely on steam generation due to the quick reduction of the
pressure (flash) of the saline solution heated by an external heat source. An MSF plant
consists of many flash chambers, the so-called stages, connected in series with a tube bundle
(condenser) at the top. Steam generated in the process preheats the seawater feed as it
circulates within the condenser tubes. After being preheated, seawater enters an external
heat exchanger (brine heater) driven by the external heat source. Industrial plants include
brine recycling since only a small portion of steam is generated. Then, brine, instead of
seawater, suffers successive flash processes within the flash chambers, coupled in series.
Condensers of several stages at the tail are cooled by an external seawater cooling flow.
MSF plants exhibit very high auxiliary energy consumption, attributable to the cooling
flow, the vacuum system, and the large flow of brine circulating through the flash stages.

Finally, the HDH process is based on increasing the relative humidity of the air by
means of spraying water within an air flow at the humidifier. At least one of those flows,
water and/or air, should be previously heated by an external heat source. Finally, at the
dehumidifier, part of the steam within the hot moist air is condensed on the outer surface
of colling tubes, thanks to the circulation of a cooling flow. Water and air circuits can be
either open or closed. Moreover, their circulation can be forced or natural.

A solar poly-generation scheme is presented in [41]. The ORC unit with o-Xylene
as the working fluid is powered by a solar thermal plant with PTCs (Sky Trough model)
and a sensible TES. In both systems, Therminol VP-1 is used as the thermal fluid. The
heat rejected by the ORC drives the MED unit and a single-effect absorption refrigeration
system. The system is studied from energetic and exergetic points of view.

The use of a recuperative ORC unit driven by a solar thermal plant with PTC and
TES, both with thermal oil as the thermal fluid, is proposed by [42], among other options.
This configuration is compared with the analogous system comprised of a conventional
Rankine cycle and molten salts as HTF and storage medium. In both cases, a MED plant
is considered.

A system based on a solar thermal plant with PTCs and TES with thermal oil as the HTF
and storage medium to drive an ORC unit is analyzed in [43,44]. N-octane is the working
fluid. The electricity produced by the ORC is consumed in an electrolyzer for hydrogen
production. The heat rejected by the ORC is used in an HDH desalination unit and also to
preheat the desalinated water output, which will be consumed by the electrolyzer.

A solar poly-generation system to meet the cooling and water demands of a green-
house is studied in [45]. The solar thermal plant with PTCs and TES provides thermal
energy to an ORC unit and an absorption cooling system. Part of the electricity produced
by the ORC—with toluene as the working fluid—is used in an electrolyzer, while the heat
rejected is used to drive an MSF plant. The desalinated water is then used both in the
electrolyzer and as a supply for the greenhouse. The oxygen and hydrogen produced are
stored to produce backup thermal energy during periods of no solar radiation using a
hydro-oxy combustor.

A solar poly-generation system based on an ORC unit integrating a steam ejector
placed at the turbine’s outlet is analyzed in [46]. The discharge mixed flow of the ejector is
condensed with seawater, while the secondary flow of the ejector is previously used for
cooling production. A MED plant fed with the vapor from an extraction at the ORC turbine
is proposed as the desalination unit. Seawater is considered as the heat transfer fluid in the
solar thermal plant.

In addition to the above, there are other recent proposals in the literature that do not
match the scheme of Figure 4 but incorporate ORC units to supply the energy demanded
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by a thermal desalination process. Examples of this are the proposals where the waste heat
recovered from the exhaust gas of a gas turbine is used to supply heat to the ORC [47,48].

A compressed air energy storage (CAES) system to consume electricity during the off-
peak hours of electrical demand is proposed by [47]. An intercooled two-stage compression
process is considered, and aftercooling prior to storage also takes place. The heat recovered
in both processes is used in the production of domestic hot water. During peak demand
hours, the stored compressed air is used to produce electricity by means of a gas turbine.
Prior to its combustion chamber, the air is preheated in a solar dish system. The exhaust
gases from the turbine are used to supply the heat demanded by the simple cycle ORC unit,
with toluene as the working fluid. The condenser of this unit is cooled with a MED plant.
A 10 m diameter solar dish and a 6-effect MED plant with a top brine temperature of 70 ◦C
and a feed of 40,000 ppm are analyzed. The results indicate an ORC output of 17.4 kW
and 2.5 m3/day of freshwater production with an overall exergy efficiency of 41.7%. As
a storage system, the calculated configuration has a round trip efficiency of 65.2%. Two
multi-objective optimizations with evolutionary algorithms are also performed by [47],
resulting in optimal exergy efficiencies of around 51%.

A poly-generation system composed of a solar/fossil hybrid recuperative gas turbine
cycle with an intercooled two-stage compression system is proposed in [48]. The air coming
from the recuperator is solar-heated before entering the combustion chamber. The exhaust
gases from the gas turbine are used to drive the ORC unit. Moreover, there is an absorption
refrigeration system and a desalination unit, which consists of a single-stage flash process.
The seawater feed is preheated in the ORC condenser and then within the condenser of the
desalination unit. After being preheated, the seawater flow is separated into two streams.
One of them is directly sent to the condenser of the refrigeration system. The second acts
as the cooling flow of the two-stage compression before entering the refrigeration system,
passing through the generator. The latter finally enters the desalination unit as feed water.
At the outlet of the flash unit, the brine is air-cooled for low-grade heat production. For
the thermodynamic analysis, concentrating solar collectors are considered, while R134a is
the working fluid in the simple ORC. The proposed multi-generation configuration has
an exergy efficiency of 27%. This configuration is compared with another in which the
solar hybrid gas cycle configuration is maintained but the ORC, cooling, and desalination
systems are replaced by a Kalina cycle.

2.3. Proposals with Integration of Hybrid RO/Thermal Desalination

Recent hybrid desalination configurations with a solar-driven ORC unit can also be
found in specific literature.

A solar–wind hybrid system, in which a simple solar ORC operated with toluene is
connected to a solar parabolic trough field without TES, is presented in [49]. In addition to
the ORC, electricity production from a wind turbine is also considered. The total electricity
output drives a seawater RO desalination plant and the surplus is sold to the grid. The
rejected heat of the ORC is also used in a MED-TVC plant.

Jaubert et al. [50] present the analysis of three RO-MED hybrid solar desalination
systems powered by a PTC field without TES. Therminol VP-1 is selected as the heat
transfer fluid. Part of the RO brine flow is used in the MED plant. As for the ORC, two
possible working fluids are considered in this work. On one hand, there is isopentane, a
fluid usually considered in ORC studies, and on the other hand, ethyl butyrate, which
represents a case not studied so far and, according to the authors, shows promising results.
In the three proposed configurations, the heat rejected by the ORC preheats the feed water
of the reverse osmosis unit and the brine flow of the reverse osmosis unit before it enters
the MED plant. As for the ORC architectures, the simple cycle, simple regenerative and
simple regenerative, and solar reheating of the vapor are considered.
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3. Solar sCO2 Power Cycle and Desalination

Xia et al. [51] propose a solar-powered transcritical CO2 Rankine cycle for RO desali-
nation based on the recovery of the cryogenic energy of liquefied natural gas (LNG). The
use of the LNG as the cold sink (−161 ◦C) allows the condensation of the CO2. The solar
thermal system is composed of a compound parabolic concentrator (CPC) solar field and a
thermal energy storage system with thermal oil as an HTF and storage medium. Regarding
the power cycle, seawater is considered the hot fluid in the preheater of the Rankine cycle.
A sensitivity analysis was performed in [51] to investigate the effect of several parameters
on the daily values of exergy efficiency and net mechanical work and freshwater outputs.
Afterwards, the multi-objective optimization of the system by means of a genetic algorithm
was also performed. The optimized system, with a total aperture area of CPC collectors of
235 m2 and a seawater RO unit with a feedwater salinity of 45 kg/m3, exhibited a daily
exergy efficiency of 4.90% and a freshwater output of 2537 m3.

Additionally, the next table (Table 1) summarizes recent proposals of desalination
systems integrated into power cycles operated with CO2, most of them dealing with Brayton
cycles operated with supercritical CO2 (sCO2), as reported below. The top temperatures
needed by sCO2 to achieve high energy efficiency require point-focusing solar concentration
along with two-axis sun tracking. At the industrial scale, a heliostat solar field focuses solar
irradiance on the solar receiver placed on top of a tower. Either the storage medium or the
working fluid would be heated as it circulates through the solar receiver. Plants with this
technology are called solar tower power plants or central receiver solar plants, regardless
of the power cycle implemented. Conventional concentrated solar power (CSP) plants are
based on either, solar tower technology, or a Rankine cycle with water driven by a PTC
solar field. Recent CSP plants have normally used sensible TES, consisting of two tanks of
molten salts.

Table 1. Recent solar CO2-based power-cycle-driven desalination proposals.

Reference Solar
Technology

Thermal Energy
Storage

Supercritical CO2
Power Cycle

Desalination
Technology

[51] CPC Sensible—Thermal oil Simple SWRO

[52] Solar tower Sensible—Two tanks
molten salt Recuperated MED-TVC

[53] Solar tower Sensible—Two tanks
molten salt Recompression MED-TVC

[34] Solar tower Sensible—Two tanks
molten salt Recompression MED

[54] Solar tower Sensible—Two tanks
molten salt Recompression MED

[55–57] Solar tower Sensible—Two tanks
molten salt

Recuperated+
Recompression MED

Kouta et al. [52,53] studies the integration of solar tower (or central receiver) technology
with supercritical CO2 and MED-TVC desalination, with a top temperature of around
460 ◦C. Two different configurations—recompression and recuperated—of the power cycle
are considered, and a two-tank molten salt TES system is also included. In both cases, the
MED-TVC plant is powered by the hot storage tank instead of the heat rejected by the
sCO2 power cycle. Therefore, the hot storage tank drives both the power cycle and the
generation of the motive steam of the thermocompressor of the MED-TVC plant. This layout
corresponds to a desalination system directly driven by solar energy. All the subsystems
are modeled for thermodynamic performance, which is carried out for six different cities in
Saudi Arabia.

Yuan et al. [34] also present a configuration based on a central tower system with
storage by means of two molten salt tanks. The heat rejected in the cooler of a CO2 Brayton
cycle with recompression and regeneration is used to produce steam for the MED plant,
with a top brine temperature of 70 ◦C. Optimization of the configuration yields a solar
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power cycle efficiency of 24% and the coupling of the same with a 5-effect MED plant with
a capacity of 459 m3/d.

Omar et al. [54] presented an interesting analysis of the CSP plant with the sCO2–MED
combination. The origin of their approach is the inability to use more than 25% of the
total waste heat rejected by the cycle with the MED plant in previously proposed designs.
To overcome this value, the use of a cascade design of MED plants was proposed for
the first time. A cost–benefit analysis was also carried out regarding the location of the
CSP-MED system, given the reduction in the solar resource available when moving the
plant closer to the coastline. In the proposed configuration, part of the heat rejected by the
sCO2 recompression cycle is utilized by a cascade of MED plants. The result of the analysis
concludes that with a 4 MED plant cascade, it is possible to recover up to 57% of the total
waste heat of the cycle, whereas the levelized cost of water is minimized with a cascade of
3 MED plants. Another interesting conclusion is that the influence of the power cycle on
the payback period is considerably higher than that of the desalination system.

Finally, Sharan et al. [55] carried out a design parameter selection of a MED system to
be coupled to a sCO2 cycle with recuperation and recompression, considering 600 ◦C as
the maximum temperature. Moreover, in [56], the authors proposed an innovative MED
configuration to better exploit the waste heat resource. The analysis of the full solar system
in different plant locations is reported in [57], considering a turbine inlet temperature of
554 ◦C, which is suitable for the selected energy storage medium. It is worth noting that the
author considered phase change materials to partially store the heat rejected by the power
cycle in order to maximize the operating hours of the desalination unit with minimum
investment cost.

4. Assessment of Innovative Configuration of CSP + D Plants

The assessment of main issues to draw conclusions concerning design recommenda-
tions of CSP + desalination (CSP + D) plants are summarized below:

1. There is an important number of proposals of solar ORC systems in which desalinated
water is produced by means of a thermal process that receives the heat discharged
by the cycle. The most common technology is MED, although it is also possible to
find some designs with HDH. First, auxiliary consumption of thermal desalination
processes should be taken into account in comparison to that of RO desalination, as
Section 4.1 describes. Second, the coupling of thermal desalination to an ORC requires
an increase in condensing temperature. This results in the lower energy efficiency of
the ORC in thermal desalination applications, which should be compared to ORC/RO
desalination (see Section 4.2).

2. Concerning solar ORC-RO technology with a solar thermal system in the medium-
temperature range, most designs focus on PTCs and thermal storage in addition
to the use of the heat rejected by the cycle for other processes, mainly cooling by
single-effect absorption. The use of this heat for the preheating of the RO feed water
is also considered. The assessment of poly- or multi-generation schemes in solar
ORC, including cooling applications, requires further analysis focused on the effect
of condensing temperature of the power cycle, presented in Section 4.2. Moreover,
the proposed seawater preheating should be assessed case by case, having regard to
regulations of product quality since a temperature increase makes the compliance of
boron content difficult. Further treatment of product water could be required, thus
increasing capital and operation expenses. Therefore, no general conclusion can be
pointed out in this regard.

3. When low-temperature ORC is considered to drive the RO, the most common option
is a solar pond being used as a solar thermal collector and storage system. In this
case, heat is supplied to the ORC from the lower convective zone of the SP and the
upper convective zone is the cold sink. The combined system SP/ORC/RO exhibits
the highest solar energy consumption in comparison to any other solar desalination
technology [7]. However, this option is inexpensive due to three main reasons: the
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RO desalination system can operate 24 h/day most of the year, no additional energy
storage is required, and the low cost of the SP technology.

4. In relation to the coupling of desalination processes with solar sCO2 cycles, it has
been noted that there are few design proposals to date. Most of them correspond to
the use of the heat rejected by the cycle to drive MED plants. As a common feature in
all of them, not all the waste heat of the cycle contributes to the desalination process.
The coupling of thermal desalination and solar power cycles based on sCO2 has a
lower effect on the cycle efficiency than that of solar ORCs. Innovative configurations
of MED plants, such as those proposed by Omar et al. [54] and Sharan et al. [56], have
significant market prospects as cost-effective solutions. However, Sharan et al. [56]
reported on maximum freshwater production of about 2500 m3/d in a solar sCO2
plant of 115 MW of net power output. This means a ratio of desalination production
to power output of 21.7 m3/d/MW, so higher water demands should be provided by
RO desalination.

4.1. Auxiliary Energy Consumption in Thermal Desalination

The energy balance over a thermal desalination process as a whole allows the cal-
culation of the seawater cooling required in addition to the feed flow. Figure 5 depicts
the ratio of mass flow rates of cooling to product as a function of the specific thermal
energy consumption (STEC) of the distillation process, corresponding to four different
temperature increases, ranging from 5 to 20 ◦C. The selection of this parameter depends on
local regulations regarding the maximum temperature increase of flows discharged back to
the sea. An ambient temperature of 20 ◦C and seawater salinity of 0.035 kg of salts per kg
of seawater are considered. The STEC of industrial MED plants normally ranges from 230
to 330 kJ/kg, considering a well-known dependence on the number of effects. However,
MED units studied in the literature of ORC and sCO2 mostly exhibit higher STEC, up to
575 kJ/kg or even more. Moreover, HDH processes consume between 575 and 2300 kJ/kg
of STEC, whereas the STEC of a single flash chamber corresponds to around 2300 kJ/kg.
According to Figure 5, design proposals should take into account extra costs attributable
to cooling flow, namely, capital expenses of seawater intake and pumping systems, along
with pumping electricity consumption.
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4.2. Effect of Condensing Temperature in Medium-Temperature ORCs

This section presents a comparative analysis of medium-temperature solar desalination
system configurations with ORCs, in which the heat rejected by the cycle is used in a thermal
desalination process or absorption cooling. In this way, it is possible to evaluate the effect
of increasing the condensing temperature of the ORC on the cycle itself and also on the
solar field and thermal storage. This analysis is not usually found in the specific literature
where such variants are proposed.

The basic layout considered for a CSP − ORC plant with thermal storage is shown in
Figure 6. The solar field could be composed of PTCs or linear fresnel reflectors (LFRs), and
the TES can consist of a direct two-tank system or a single thermocline tank, either with
liquid or solid filler (packed-bed system). A thermal oil is used as the HTF. This type of
plant has been evaluated by several authors [58–62].

TES system  
(2 tank direct, 1

tank thermocline
solid or liquid 

filler,...)

HTF Pump

Electricity

Solar field 
(PTC/LFR)

ORC
unit

Heat

Figure 6. Reference plant configuration (CSP-ORC).

Table 2 shows the input parameters that determine the performance of the ORC and
the final thermal oil loop temperature. With the chosen ORC’s working fluid (MDM) and
the parameters set, performance values of commercial ORC units operating with thermal
oil at 300 ◦C as the thermal source are close to reproducing it, both in the power-only (about
25%) and CHP (about 18–19%) modes [63]. For the simplicity of the analysis, the thermal
losses between the solar field’s outlet and the solar heat exchangers’ inlet are considered
negligible, such that TSF,i = Tc = THEX,o and TSF,o = Th = THEX,i.

As shown in Figure 7, increasing the condensing temperature of the ORC to allow
the use of the rejected heat implies a significant reduction in its thermal efficiency or,
equivalently, an increase in the available heat per unit of net power output. An increase in
the final cooling temperature of the thermal oil (THEX,o) is also observed, which does not
favor the sizing of the TES or the performance of the solar field.

To estimate the effect on storage sizing, two options commonly discussed in the
literature are considered [58,60,62]: direct storage with the HTF itself, e.g., using a two-tank
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system, and single tank thermocline storage with solid filler. The basic sizing in both cases
can be calculated using the following expression [58]:

VTES =
ETES

(1 − ε)× ρs × cs × (Th − Tc) + ε × ρl × ∆hl
(1)

where ETES is the nominal energy capacity of the storage, and ε is the void fraction (liquid
volume to total volume ratio). The properties of liquid density (ρl) and enthalpy (∆hl)
were determined using the CoolProp library [64,65], taking the density at the average
temperature (Th + Tc)/2. As for the void fraction, its value has been estimated in the order
of those used by [59,62,66,67]. Density (ρs) and heat capacity (cs) values for the solid filler
have also been chosen according to [66].

Table 2. Information used to compute the ORC’s performance, HTF-ORC heat exchange processes,
and basic sizing of the TES.

ORC
Working fluid MDM (octamethyltrisiloxane)

Recuperator effectiveness 0.7
Evaporation temperature, Tevap 270 ◦C

Feed pump’s isentropic efficiency, ηp 0.75
Turbine’s isentropic efficiency, ηt 0.85

Secondary HTF loop
Heat Transfer Fluid Therminol VP-1

Temperature at solar heat exchangers inlet,
THEX,i

300 ◦C

Temperature difference at solar heat
exchangers inlet 15 ◦C

Pinch point 10 ◦C

Thermal energy storage (TES)
Liquid storage medium Therminol VP-1

Heat capacity of solid storage medium, cs 850 J/(kg × K)
Density of solid storage medium, ρs 2600 kg/m3

Void fraction 0.30
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Figure 8 shows the effect of the ORC’s condensation temperature (Tcond) on the
required volume of storage medium per unit of stored energy. As expected, increasing
Tcond implies a larger required storage volume since the hot–cold temperature difference
to which the storage medium is subjected is reduced. Because the CSP − ORC plant
produces electricity to be used in the production of freshwater or cooling, the required
volume of storage medium per unit of equivalent electrical energy stored is also depicted
in Figure 8. With this parameter, the change of the ORC’s performance is reflected over the
storage volume.
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The performance of the solar field (SF) at the design conditions is estimated with a
model widely used in the literature [58,60,62,68]. The efficiency of the solar field—thermal
energy output to incident solar power ratio—is computed as the difference between the
optical efficiency (η0,SF) and thermal losses terms:

ηSF =

( .
QSF,out

Gb,N ·ASF

)
= η0,SF −

( .
QSF,losses

Gb,N ·ASF

)
(2)

where ASF is the total area of the solar field.
For the comparison presented in this section, it is assumed that a solar field is com-

posed of PTCs. In that case, the optical efficiency is computed by taking into account the
shadow (ηshadow) and end losses (ηendloss), the cleanliness of the solar collectors (Fe), the
availability of the solar field (avSF), and the influence of the incidence angle (θ) on its peak
optical performance (ηopt,0) via the incidence angle modifier (K):

η0,SF = ηopt,0·K·Fe·ηshadow·ηendloss·avSF (3)

On the other hand, thermal losses are modeled as:

.
QSF,losses =

[
a1·
(
TSF − Tamb

)
+ a2·

(
TSF − Tamb

)2
]
·ASF (4)



Processes 2022, 10, 153 16 of 23

where TSF is the average inlet/outlet heating temperature of the HTF, and a1 and a2 are
the heat losses coefficients. Values of these coefficients are derived from the information
available at [69]. Parameters selected for the evaluation of the solar field performance
at design conditions are given in Table 3. Two extreme values are considered for the a1
coefficient to quantify the influence of the ORC’s condensation temperature in scenarios of
different solar-to-thermal energy conversion efficiency values. The two resulting curves are
depicted in Figure 9.

Table 3. Location and design conditions for the efficiency computation of the PTC solar field.

Location Fuerteventura (Canary Islands, Spain)

Latitude, longitude 28.317–14.071◦

Design conditions
Ambient temperature, Tamb 23 ◦C

Direct normal irradiance, Gb,N 850 W/m2

Peak optical performance, ηopt,0 075
Cleanliness index, Fe 0.97

Availability, avSF 0.95
Design point Solar noon, 21 June
Orientation North-South (East-West tracking)

Incidence angle, θ 4.87◦

Optical efficiency, η0,SF 0.67
Heat losses coefficient, a1 (low–high value) 0.02–0.4 W/m2 × K
Temperature dependence of the heat loss

coefficient, a2
0.001 W/m2 × K2
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Figure 10 shows the CSP − ORC + (MED + RO) configuration for which a condensation
temperature of 70 ◦C is studied. To assess only the desalination application, the remaining
net power output (

.
Wnet) not consumed as auxiliary by the MED plant (Specific Electricity

Consumption, (SECMED) is dedicated to an RO unit (SECRO). Under these assumptions,
the volumetric flow rate of freshwater (

.
Vp) is computed with the following expressions:

.
Vp,MED =

.
Qin·

(1 − ηORC)

STECMED
(5)

.
Vp,RO =

.
Wnet

SECRO
−

.
Vp,MED·

(
SECMED
SECRO

)
(6)
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This configuration is compared with the one shown on the left side, for which a
condensing temperature of 40 ◦C is assumed and whose net power produced is fully
consumed by an RO unit. In this case,

.
Vp,RO can also be computed with the expressions

above, making
.

Vp,MED = 0. Table 4 shows the numerical results of the comparison,
assuming the same total desalination capacity in both cases.
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Figure 10. Configurations considered to be compared: CSP − ORC + RO (left) and CSP − ORC +
(RO + MED) (right).

Table 4. Comparison of the CSP − ORC configuration for desalination (same desalination capacity).
SECRO = 3 kWh/m3; SECMED = 2 kWh/m3; PR = 10. Direct TES with thermal oil Therminol VP-1.

CSP − ORC + RO CSP − ORC +
(MED + RO)

ORC’s condensation temperature, Tcond 40 ◦C 70 ◦C

ORC’s evaporation temperature, Tevap 270 ◦C 270 ◦C

ORC’s thermal efficiency, ηORC [%] 24.98 21.37

HTF’s outlet temperature, THEX,o 226.5 234.5

Average solar field temperature [◦C] 263 267

Solar field’s efficiency, ηSF (low a1/high a1) 0.608 0.501 0.606 0.500

Storage medium volume/stored energy
[m3/MWh] 25.9 29.1

Storage medium volume/equivalent electric
stored energy [m3/MWhe] 103.7 136.1

ORC thermal input/total desalination capacity
[kW/(1000 m3/day)] 500 554

Net ORC power output/total desalination
capacity [kW/(1000 m3/day)] 125 118

Solar field’s area (SM = 1)/total desalination
capacity [m2/(1000 m3/day)] (low a1/high a1) 968 1175 1075 1303

Storage medium volume (1 h)/total
desalination capacity [m3/(1000 m3/day)] 13.0 16.1
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As can be seen, increasing the condensing temperature to 70 ◦C to include the MED
unit requires an ORC unit with less net power due to the utilization of the heat rejected by
the cycle for freshwater production output (118 kW instead of 125 kW per 1000 m3/day
of capacity, 6% less). However, the negative effect of the above is clearly reflected in the
solar field area and storage volume requirements. In the first case, 11% more area would be
required for solar multiple (SM) = 1 due to the higher thermal energy input of the ORC
unit, while in the second case, the increase would be 24%.

The configurations to be compared when the heat rejected by the cycle is consumed in
the generator of an absorption cooling system are shown in Figure 11. To make the com-
parison consistent, a mechanical vapor compression (VC) refrigeration system is analyzed
when the condenser’s heat is not used for this purpose. For the CSP − ORC + (RO + ARS)
configuration, the auxiliary electrical consumption of the absorption refrigeration unit is
considered negligible, in which case, both the cooling capacity (

.
Qc,AR) and the desalinated

water flow rate (
.

Vp,RO) are easily computed as:

.
Qc,AR = COPAR·

.
Qin·(1 − ηORC) (7)

.
Vp,RO =

.
Qin·

ηORC
SECRO

(8)
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Figure 11. Configurations considered to be compared: CSP − ORC + (RO + VC) (left) and CSP −
ORC + (RO + ARS) (right).

For the CSP − ORC + (RO + VC) configuration, the
.

Vp,RO can be obtained from:

.
Vp,RO =

1
SECRO

·
[

ηORC·
.

Qin −
.

Qc,VC

COPVC

]
(9)

where
.

Qc,VC is the cooling capacity of the vapor compression refrigeration system.
The numerical results of the comparison for the same cooling and desalination capacity

are shown in Table 5, where a condensing temperature of 90 ◦C is assumed for the operation
of the absorption refrigeration unit.
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Table 5. Comparison of the CSP − ORC configuration for desalination and refrigeration (same
desalination and cooling capacity). SECRO = 3 kWh/m3; direct TES with thermal oil Therminol VP-1.

CSP − ORC +
(RO + VC)

CSP − ORC +
(RO + AR)

ORC’s condensation temperature, Tcond 40 ◦C 90 ◦C

ORC’s evaporation temperature, Tevap 270 ◦C 270 ◦C

ORC’s thermal efficiency, ηORC 24.98% 19.12%

HTF’s outlet temperature, THEX,o 226.5 ◦C 239.6 ◦C

COP 4 0.7

Average solar field temperature [◦C] 263 270

Solar field’s efficiency, ηSF 0.608 0.501 0.604 0.493

Solar field’s area (SM = 1), ASF [m2] 4553 5526 3440 4215

Storage medium volume/stored energy
[m3/MWh] 25.9 31.5

Storage medium volume/equivalent electric
stored energy [m3/MWhe] 103.7 164.9

ORC thermal input/total desalination capacity
[kW/(1000 m3/day)] 871 654

Net ORC power output/total desalination
capacity [kW/(1000 m3/day)] 218 125

Solar field’s area (SM = 1)/total desalination
capacity [m2/(1000 m3/day)] 1685 2045 1273 1560

Storage medium volume (1 h)/total
desalination capacity [m3/(1000 m3/day)] 22.6 20.6

Unlike the use for MED desalination, the use of the condenser’s heat for cooling
combined with RO desalination has advantages over a configuration in which the cooling
production is performed by a compression system to avoid increasing the condensation
temperature of the cycle. Moreover, this situation is observed for a relatively high COP
value of the compression chiller. Even in that case, the better performance of the ORC does
not lead to a smaller size of the ORC unit, which finally implies a larger storage volume
and a larger required solar field area.

5. Conclusions and Recommendations

The following trends have been detected after the update of the design proposals
recently found in the specific literature on solar desalination systems based on ORCs. In
the medium-temperature range, it is common to find proposals in which the heat rejected
by the cycle is used, in general, to drive thermal desalination processes (mainly MED) or
absorption cooling processes. In the low-temperature range, there are numerous proposals
for the use of solar ponds as solar collection and energy storage systems. Regarding
the coupling of desalination systems with solar supercritical CO2 power cycles, the most
common option is the use of the heat rejected by the cycle by means of MED units.

In addition, the critical analysis of the reviewed configurations leads to the following
conclusions and design recommendations:

• In remote locations, solar desalination systems based on solar-pond-driven ORC/RO
should be studied in comparison to solar PV/RO plants to supply only the freshwa-
ter demand.

• Concerning the selection of thermal desalination versus reverse osmosis, design pro-
posals should consider the extra costs attributable to cooling flow, namely, capital
expenses of seawater intake and pumping systems, along with pumping electricity
consumption (see Figure 5).
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• A comparative analysis of solar ORC/RO combined with cooling technologies has
been performed. The use of the heat rejected by the cycle to drive an absorption
refrigeration system is superior since results show that a bigger solar field and storage
system would be needed to supply the same cooling capacity with a mechanical vapor
compression refrigeration system (see Table 5).

• A comparative analysis has also been carried out to compare solar ORC/MED and
solar ORC/RO desalination. Auxiliary electricity consumption of 0.75 kWh/m3 is
assumed in seawater RO desalination, attributable to the control system and feed
pumping, whereas 2 kWh/m3 has been considered in MED plants due to the additional
requirements of a vacuum system and cooling flow pumping (see Figure 5). Results
(see Table 4) show that thermal desalination is not recommended to exploit the heat
rejection of the power cycle since the condensing temperature must be increased to
couple the MED unit.

• On the contrary, heat rejection of sCO2 cycles in CSP plants may be economically
exploited by innovative MED desalination plants with the so-called cascade design
depending on both local regulations of discharge temperature and the corresponding
auxiliary pumping of cooling flow. Water production is limited to the waste heat
available, so in the case of higher water demands, RO desalination is the only option
recommended. Either seawater feed or concentrate flows of the RO plant can be used as
the cooling flow of the power cycle, up to the maximum limit of temperature discharge.

Based on the results of the present literature update and assessment, research on the
improvement of solar ORC configurations for poly-generation, with freshwater production
through desalination, is considered a future work of interest, in addition to solar sCO2
coupled to novel MED plants with enhanced energy efficiency.
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