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Abstract: The judicious use of buffering capacity is important in the development of future
continuous pharmaceutical manufacturing processes. The potential benefits are investigated
of using optimal-averaging level control for tanks that have buffering capacity for a section of
a continuous pharmaceutical pilot plant involving two crystallizers, a combined filtration and
washing stage and a buffer tank. A closed-loop dynamic model is utilized to represent the
experimental operation, with the relevant model parameters and initial conditions estimated
from experimental data that contained a significant disturbance and a change in setpoint of a
concentration control loop. The performance of conventional proportional-integral (PI) level
controllers is compared with optimal-averaging level controllers. The aim is to reduce the
production of off-spec material in a tubular reactor by minimizing the variations in the outlet
flow rate of its upstream buffer tank. The results show a distinct difference in behavior,
with the optimal-averaging level controllers strongly outperforming the PI controllers. In
general, the results stress the importance of dynamic process modeling for the design of
future continuous pharmaceutical processes.
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1. Introduction

Continuous manufacturing holds promise to improve the reliability and profitability of future
pharmaceutical processes [1–6]. Significant progress has been achieved to exploit continuous operation
of various unit operations that are typically used in pharmaceutical processes [7–34]. Furthermore,
system-wide benefits may exist by, for example, exploiting material recycling and improved process
control based on real-time understanding of the final product quality, as well as critical material attributes
of streams within the process. Consequently, pharmaceutical companies are interested in the potential
benefits of transforming the manufacturing of pharmaceutical products from a conventional batch-wise
mode of operation to continuous flow mode [35]. The role of process modeling is expected to increase
significantly during this transition to enable improved design and operation [33,36–43].

A key ingredient in enabling the reliable operation of continuous pharmaceutical manufacturing
processes is the development of automated control strategies. In particular, judicious use of the buffering
capacity of tanks is needed to avoid high concentrations of impurities in a small fraction of the produced
tablets and to avoid sharp variations in flow rate propagating throughout the complete process. However,
on the downside, extensive use of buffering capacity will lead to sluggish process behavior. Therefore, an
appropriate design of automated control strategies around buffer tanks is of importance for the viability
of continuous pharmaceutical manufacturing.

The aim of this paper is to identify the potential benefits of using optimal-averaging level
control [44] over conventional proportional-integral (PI) feedback level control for an integrated
continuous pharmaceutical pilot plant. The pilot plant was constructed within the Novartis-MIT
Center for Continuous Manufacturing to produce a pharmaceutical product from start (raw materials
for intermediate compounds) to finish (tablets in final dosage form) in a fully continuous fashion [45]
and features several cascades of well-mixed tanks. The level of all tanks within the pilot plant were
initially controlled with proportional (P)-feedback control only. A plant-wide dynamic model is used
to investigate the potential benefits of replacing these level control loops with more advanced control
strategies. The plant-wide dynamic model is presented in detail elsewhere [42] and has been extended
with control loops in subsequent work [43].

The focus of this paper is on a characteristic sequence of unit operations within the continuous
pharmaceutical pilot plant. A closed-loop model is used to simulate the behavior of the unit operations,
including automated control loops with P-feedback control. The unknown parameters and initial
conditions are estimated from experimental data, which includes the behavior of several level control
loops and a concentration control loop in the presence of a significant disturbance and a setpoint change.
The focus is on the main compounds in the system to obtain a realistic description of at least the
overall mass balance, such that control strategies for buffering can be investigated. Subsequently, the
closed-loop dynamic model is used to investigate the potential benefits of replacing the P-feedback level
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controllers with more extended controllers. First, we will focus on PI level controllers with tuning
rules that specifically aim to achieve averaging level control (PI-ALC). Second, process simulations are
investigated, where the conventional level controllers are replaced with optimal averaging level control
(OALC). The advantage of OALC over conventional PI-ALC is that with OALC, flow optimality can
be achieved for a known magnitude of an input disturbance. The results illustrate the importance of
advanced control strategies to exploit systematically the buffering capacity of a cascade of buffer tanks
in future continuous pharmaceutical processes.

2. Approach

2.1. Process Description and Control Structure

A schematic representation of the studied part of the integrated continuous pharmaceutical pilot plant
is given in Figure 1. A detailed description of the design of the pilot plant is presented elsewhere [45].
In this section, key elements are summarized that have a direct connection to the work presented in
the present paper. An intermediate compound A is synthesized and dissolved in solvent S1 upstream.
Compound A is a reagent for the synthesis of an active pharmaceutical ingredient further downstream and
is separated from solution via a cascade of two continuous crystallization steps followed by a continuous
wash and filtration step. Supersaturation is generated in the crystallizers via cooling and addition of an
anti-solvent (S2) to the second crystallizer, which reduces the solubility of compound A four-fold [22].
The temperature within the crystallizers is kept constant via thermostatic baths connected to the jackets of
the crystallizers. Both crystallizers are equipped with level sensors (Omega LVCN414) that are calibrated
to measure the total volume of the material in each crystallizer. The outlet flows of the crystallizers
consist of a slurry with suspended crystals in mother liquor, which are largely separated in a continuous
wash and filtration stage (W1). The purified slurry of compound A is collected in a buffer tank that
can be used for dilution (D1) to which solvent can be added to dilute the slurry. The dilution tank is
also equipped with a calibrated level sensor (Omega LVCN414) and an online density meter (Anton
Paar DPRn 417) calibrated to measure the concentration of compound A in the tank. The outlet flow
rate of the buffer tank is fed to a tubular reactor downstream for synthesis of a second intermediate
compound. The variations in composition and flow rate of the material leaving the buffer tank have a
significant impact on the performance of the reaction downstream. Therefore, to reduce the production
of off-spec material in the complete process, a feedback concentration control loop is used to maintain
the concentration of compound A in D1 close to a desired setpoint. The outlet flow rate of the buffer
tank is manipulated to control the level in the tank. The variations in concentration and outlet flow
rate should be minimized to maintain a constant residence time in the tubular reactor downstream. A
Siemens SIMATIC PCS7 process control system was used for data archiving and implementation of the
experimentally tested control loops. Such a control system allows for the flexible implementation of
desired control strategies.
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Figure 1. Process flowsheet of a section of a continuous pharmaceutical pilot plant that
consists of two crystallizers in series (Cr1–2), a washing and filtration stage (W1), and a
buffer tank that can be used for dilution (D1). The section has three automated feedback level
control loops (LC1–3), two automated temperature control loops (TC1–2) and an automated
feedback concentration control loop (CC1).
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The tuning of the P-only feedback level controllers of the crystallizers aims to provide both stability
and flow filtering to damp out fluctuations in flow rate. Therefore, the gains of the level controllers of the
crystallizers, as implemented in the pilot plant, are chosen, such that the outlet flow rate of a crystallizer
is approximately at the maximum flow rate when the level in the crystallizer reaches an upper limit
(Vmax). In case a steady-state offset in level is not desired, integral action can be added. The following
tuning rules are recommended for PI-ALC [46,47]:

Kc =
100%

∆V
(1)

τc =
4VSP
Kcφmax

(2)

with, for our case:
∆V = Vmax − VSP (3)

where Kc is the controller gain, τc is the controller integral time, V is the volume of the material in the
tank and φmax is the maximum outlet flow rate. Equation (1) states that the outlet flow rate will be at a
maximum value when the volume in a tank reaches the upper limit. Derivative controller action is not
desired, due to the noisy signal from the level measurement devices.

Finally, a scheme that utilizes OALC is investigated. When inlet flow measurements are available, the
following optimal-averaging level controller can be used [44]:

φo = φ̃o +Kc (V − VSP ) +
Kc

τc

∫
(V − VSP ) dt (4)

dφ̃o

dt
=

(
φi − φ̃o

)2
2 (Vm − V )

with Vm =

{
Vmax if dV/dt > 0

Vmin if dV/dt < 0
(5)
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where φi and φo are the measured inlet flow rate and manipulated outlet flow rate, respectively, and
Vm represents a constraint on the maximum or minimum volume, depending on the direction of change
of the volume, that should not be violated. The first term of Equation (4) minimizes the maximum
change in outlet flow rate for a given flow imbalance, which has been augmented with equations for
a PI controller. The latter does compromise on flow optimality, but also ensures that the steady state
of the system will eventually move to a setpoint value, such that future disturbances can be mitigated
effectively, as well. The reader is referred to McDonald et al. [44] for further details on the derivation
of Equations (4) and (5). When inlet flow measurements are not available, a discrete-time optimal flow
level controller could be utilized [48]. In this particular pilot plant (Figure 1), measurements of the
inlet flow rate of crystallizer Cr1 are not readily available, in contrast to the measurements of the inlet
flow rate of crystallizer Cr2, which can be obtained from the volumetric pumps P1 and P2. The buffer
tank D1 has two inlet flow rates, i.e., stream 4 from W1 and the solvent stream (pump P5). The latter
flow rate is readily available from measurements, whereas the former can be obtained from the outlet of
crystallizer Cr2 (pump P3) with the assumption that the performance of the filter (W1) does not change
over time. For the application of OALC, level controller LC1 utilizes P control, as was implemented in
the pilot plant, and level controllers LC2 and LC3 are extended according to the schemes described by
Equations (1)–(3) and, in separate simulations, by Equations (4) and (5). Note that OALC for a
crystallizer is only suitable within a range in which the residence time of the crystallizer does not have a
significant impact on the crystallizer performance, which calls for a conservative strategy when designing
the continuous crystallization stage and for a limited allowable buffering capacity.

The tuning of the optimal-averaging level controllers requires a trade-off between flow optimality
and the speed at which the level of the tank moves towards the setpoint after a disturbance, which
has to be selected based on the frequency and direction of the expected disturbances. For this case
study, the settings as given by Equations (1)–(3) are used as a reference for tuning the PI part of the
OALC controller. In particular, the gain of the OALC controller has been taken two orders of magnitude
smaller compared to the gain used for the PI-ALC controller, as given by Equation (1). Furthermore,
the controller integral time has been taken as two orders of magnitude larger compared to the PI-ALC
controller, as given by Equation (2). The aim is to assure that the PI part of Equation (4) does not
dominate the behavior of the OALC controllers, but also that the system does move slowly to a setpoint
somewhere in between the desired upper and lower limits of the tank. The resulting gains and controller
integral times for the studied controllers are given in Table 1, including the nominal setpoints. Note that
the setpoints for OALC correspond to the setpoints of the corresponding P level controllers, including
steady-state offset.

2.2. Process Modeling and Parameter Estimation

A closed-loop simulation is utilized to evaluate the effectiveness of OALC for the continuous
pharmaceutical pilot plant as described in the previous section. The model equations that are relevant
for the network of unit operations illustrated in Figure 1 are extracted from a plant-wide dynamic model
inspired by the experimental pilot plant, as described in detail elsewhere [42]. The model contains
component balances for all chemical species, moment balances to describe the dynamic evolution of
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the crystal size distribution and thermodynamic expressions related, for example, to solubilities. In
general, the stream coming from the reactor upstream contains several impurities. However, the effect
of impurities is expected to have a limited impact on the description of the overall mass balance, which
is the main requirement for the present study. Therefore, the model has been simplified by considering
only the component balances of the intermediate compound A and the solvents. Finally, the model has
been extended with P-feedback control loops to mimic the closed-loop behavior of the pilot plant.

Several key parameters in the dynamic model were unknown and had to be estimated to ensure that the
dynamic model gives an accurate description of the dynamic development of the key control objectives,
i.e., the concentration of compound A in buffer tank D1 and the variations in the outlet flow rate of
tank D1. Experimental data covering a period of 24 h of operation were used to estimate the unknown
parameters. The time period started at t = 24 h, where t = 0 approximately corresponds to the start of
the filling of the first crystallizer (Cr1). Consequently, the experimental data do not necessarily represent
steady-state conditions. The experimental data contain at least one major disturbance, which was caused
by blocking of the transfer line from the second crystallizer (Cr2) to the continuous washing and filtration
stage (W1). Starting at t = 30.0 h, a number of plugging events occurred within a period of 30 min,
which temporarily prevented any flow from Cr2 to W1. Note that such blocking cannot be directly
observed, as volumetric pumps are used to obtain flow rates. However, the onset of plugging can easily
be determined by careful examination of the measurements of the level in the tanks, and plugging events
have been implemented in the model by multiplying the outlet flow rate of Cr2 with a binary variable,
whose value depends on the existence of plugging for the given time. Furthermore, a setpoint change in
the feedback concentration control loop (CC1) was implemented experimentally at t = 26.7 h to increase
the concentration of compound A in buffer tank D1, as indicated in Table 1. Note that such a change in
setpoint reduces the solvent flow rate going into buffer tank D1, which impacts the level and, thus, outlet
flow rate of the tank.

Table 1. Tuning parameters and setpoints of the studied controllers: P, implemented in the
pilot plant (proportional only); PI-ALC, implemented in a process simulator (proportional-
integral tuned according to averaging level-control criteria); OALC, implemented in process
simulator (optimal averaging level control).

Controller Setpoint Kc τc Comments

LC1 P 1.05 × 10−2 m3 8.3 × 10−4 s−1 –
LC2 P 1.15 × 10−2 m3 8.3 × 10−4 s−1 –

PI-ALC 1.24 × 10−2 m3 7.5 × 10−4 s−1 5.0 × 103 s
OALC 1.24 × 10−2 m3 7.5 × 10−6 s−1 5.0 × 105 s Vm = VSP ± 0.20 × 10−2 m3

LC3 P 3.00 × 10−3 m3 1.7 × 10−3 s−1 –
PI-ALC 3.08 × 10−3 m3 3.3 × 10−4 s−1 1.4 × 104 s
OALC 3.08 × 10−3 m3 3.3 × 10−6 s−1 1.4 × 106 s Vm = VSP ± 0.10 × 10−2 m3

CC1 P 2.62 × 10−1 g/g 2.5 × 10−5 m3s−1 – wA,SP = 0.24 if t < 26.7 h
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The available experimental data consist of the measured level in both crystallizers (Figure 2), the
outlet flow rate of both crystallizers (Figure 3), the level in the buffer tank and the corresponding
outlet flow rate (Figure 4) and the controlled concentration of compound A in buffer tank D1 with the
corresponding flow rate of the solvent for dilution (Figure 5). Each data point represents the median value
of a series of 30 measurements obtained within a period of 300 s. The dynamic model is implemented
in JACOBIAN (RES Group, Inc.), which is a process simulator equipped with routines for parameter
estimation. A maximum-likelihood objective function was used for the parameter estimation, with
equal weight given to each data point. The input and output of the parameter estimation problem to
fit the closed-loop dynamic model to the experimental data are presented in Table 2. These parameters
characterize the properties of the material coming from the reactor upstream, the initial solid fraction in
both crystallizers and the solid fraction of the slurry leaving the filter plate. The resulting dynamic model
is well capable of describing the experimental data, including the dynamics during the main disturbance
and the change in setpoint of the feedback concentration control loop, as illustrated in Figures 2–5.

Figure 2. Dynamic development of the volume of crystallizers Cr1 and Cr2 (see Figure 1)
for a period of 24 h describing experimentally measured data from level sensors (circles and
diamonds) and a model-based computation (solid lines). The volume in each crystallizer is a
controlled variable within an automated P-only feedback level control loop (LC1 and LC2).
A number of plugging events occurred at t = 30.0 h in the outlet tubing of crystallizer Cr2.
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Figure 3. Dynamic development of the outlet flow rates of crystallizers Cr1 and Cr2 (see
Figure 1) for a period of 24 h describing experimentally measured data obtained from
volumetric pumps (circles and diamonds) and a model-based computation (solid lines). The
outlet flow rate of each crystallizer is a manipulated variable within an automated P-only
feedback level control loop (LC1 and LC2). A number of plugging events occurred at
t = 30.0 h in the outlet tubing of crystallizer Cr2.
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In the next section, the model is used to investigate the potential benefit of replacing each of two
P level control loops with PI-ALC level control loops and OALC, which have both been implemented
in the model-based process simulator in differentiated form, with the initial condition corresponding
to the measured outlet flow rate at the beginning of the investigated time interval. The simulated
scenario mimics, for the first 24 h, the operation of the pilot plant, including the observed disturbances.
Subsequently, the simulation is extended for another 48 h to investigate via model-based simulations
the performance of the controllers when a large and temporary step change in throughput would be
implemented in the process. The disturbances observed during experimental operation of the pilot plant
were significant as a flow rate came to a complete stop. However, since the disturbance was relatively
short, the total amount of material that was blocked was limited. Even if the OALC controller takes no
corrective action, the levels of tanks are not expected to cross the upper or lower boundary. Therefore, the
simulation is extended beyond the experimental period to investigate the performance of the controllers
in case the levels in the tanks approach a critical value to obtain broader insight. In particular, the
following step changes in the flow rate of Stream 1 are implemented in the process simulator:

F1 =


5.0 × 10−4 kg s−1 if t < 72

7.5 × 10−4 kg s−1 if 72 ≤ t ≤ 76

5.0 × 10−4 kg s−1 if t > 76

(6)

where F1 is the inlet flow rate of the first crystallizer.
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Figure 4. Dynamic development of the volume (A) and outlet flow rate (B) of buffer tank
D1 (see Figure 1) for a period of 24 h describing experimentally measured data (diamonds)
obtained from a level sensor and a volumetric pump (P6) and a model-based computation
(solid lines). The outlet flow rate of buffer tank D1 is a manipulated variable, and the level
is a controlled variable within an automated P-only feedback level control loop (LC3). Note
that a setpoint change of a concentration control loop constructed around buffer tank D1
(CC1) at t = 26.7 h caused the volume to drop and, furthermore, a number of plugging
events occurred at t = 30.0 h in the outlet tubing of crystallizer Cr2 upstream.
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Table 2. Input for parameter estimation and results.

Parameter Estimated value Initial guess Bounds

Flow rate of stream 1 5.0 × 10−4 kg s−1 4.9 × 10−4 [2.8 × 10−6, 8.3 × 10−4]

Mass fraction of A in stream 1 7.4 × 10−2 kg/kg 1.5 × 10−1 [6.0 × 10−2, 7.5 × 10−1]

Slurry liquid fraction at outlet of W1 2.1 × 10−1 kg/kg 6.5 × 10−1 [1.0 × 10−1, 8.5 × 10−1]

Initial liquid fraction in Cr1 9.7 × 10−1 m3/m3 8.8 × 10−1 [6.0 × 10−1, 9.8 × 10−1]

Initial liquid fraction in Cr2 9.6 × 10−1 m3/m3 9.6 × 10−1 [6.0 × 10−1, 9.8 × 10−1]
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Figure 5. Dynamic development of the concentration of compound A in buffer tank D1
(A) and the flow rate of solvent added to tank D1 (see Figure 1) (B) for a period of 24 h
describing experimentally measured data (diamonds) obtained from an online density meter
and a volumetric pump (P5) and a model-based computation (solid lines). The outlet flow
rate of buffer tank D1 is a manipulated variable, and the level is a controlled variable within
an automated P-only feedback level control loop (LC3). Note that a setpoint change of a
concentration control loop constructed around buffer tank D1 (CC1) caused the volume to
drop, and furthermore, a number of plugging events occurred at t = 30.0 h in the outlet
tubing of crystallizer Cr2 upstream.

24

25

26

27

Co
nc

en
tr

at
io

n 
/ w

t%
 

 

 Conc. of A in D1 (computed)
 Conc. of A in D1 (measured)
 Setpoint

0

2

4

6

8

10

12

24 30 36 42 48

Fl
ow

 ra
te

 / 
m

l m
in

-1
 

Time / hours  

 Flow rate of S1 into D1 (computed)
 Flow rate of S1 into D1 (measured)

(A)

(B)

3. Results and Discussion

Figure 6 illustrates the dynamic development of the volume and the outlet flow rate of crystallizer
Cr2 with P-feedback level control as implemented experimentally, with PI-ALC and with OALC. The
difference in behavior is striking. Initially, after the first disturbance at t = 30.0 h, the volume for all
cases rises sharply as the outlet flow rate of the crystallizer ceases (Figure 6A). In the experimentally
tested case, the controller increases the outlet flow rate significantly (Figure 6B), which causes the level
to return to its steady-state value within approximately 2 h. The PI-ALC controller shows a similar
behavior as the P-only controller with a peak value in the outlet flow rate that is slightly higher. However,
for OALC, the automated level control loop utilizes the buffering capacity of the crystallizer and brings
the volume of the tank only gradually back to the setpoint. As a result, the outlet flow rate of crystallizer
Cr2 hardly changes after the first disturbance hits the system (Figure 6B), which will essentially eliminate
any sustained impact of this disturbance downstream. The maximum volume of the crystallizer is not yet
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approached after the first disturbance, which warrants the full use of buffering capacity. When the second
disturbance hits the system, at t = 72.0 h, a different response can be observed. In this case, the volume
of the crystallizer approaches the maximum allowable value, which results in a significant increase of
the outlet flow rate in the case of OALC (Figure 6B). For all tested cases, the outlet flow rates increase
temporarily with approximately 50% compared to their steady-state value. The behavior in the OALC
case can be understood by the notion that the first term on the right-hand side of Equation (4) becomes
dominant compared to the loosely-tuned PI part of the OALC controller when the volume approaches
the upper or lower limit. In the case that only the PI part of the OALC controller would be used, the
vessel would simply overflow. Note that the changes in flow rate in the case of OALC are slightly
delayed compared to using only P control or PI-ALC, which causes the system to use more buffering
capacity. In general, the simulation results clearly demonstrate the anticipated effectiveness of OALC to
mitigate flow disturbances and to smooth changes in setpoints for the studied section of the pilot plant of
a continuous pharmaceutical process.

Figure 6. Dynamic development of the volume (A) and outlet flow rate of crystallizer Cr2
(B) as predicted by a dynamic model of the process illustrated in Figure 1. The former
variable is a controlled variable, and the latter variable is the manipulated variable within an
automated level control loop (LC2). The black solid line (triangles) describes the simulated
behavior with P-only feedback control, as was done experimentally. The blue line (circles)
is the predicted behavior if PI controllers are implemented with tuning tailored for ALC. The
red line (diamonds) describes the predicted behavior if OALC is implemented.
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Figure 7 illustrates the dynamic development of the concentration of compound A in buffer tank
D1 (controlled variable) and the flow rate of solvent into buffer tank D1 (manipulated variable) for the
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experimentally implemented P-feedback control for all level control loops and the expected behavior if
PI-ALC or OALC were implemented for LC2 and LC3. Note that the concentration control loop itself is
identical in all cases. Therefore, the behavior of all control schemes is identical in the first part of the time
interval. The concentration control loop saturates at a minimum flow rate for the manipulated variable
when the setpoint change is implemented and resumes to operate the closed loop when the concentration
exceeds the setpoint. Since the schemes respond differently to the first disturbance occurring in the
outlet flow rate of crystallizer Cr2, some differences can be observed after t = 30.0 h. Initially, the
concentration, and, thus, solvent flow rate, drops sharply for all schemes, which is caused by a blocked
supply of slurry from crystallizer Cr2. With P level control and PI-ALC control, the accumulated material
in crystallizer Cr2 is pushed out within a relatively short amount of time to the continuous filtration
and washing, which causes the concentration in the buffer tank D1 to peak slightly (Figure 7A) and,
consequently, the solvent flow rate to peak, as well (Figure 7B). If OALC were implemented in the
plant around the crystallizer, Cr2, the accumulated material of compound A would be pushed out at a
much slower pace, which would prevent a peak in concentration of compound A in the buffer tank D1
(Figure 7A) and solvent flow rate (Figure 7B), such that steady state is approached more rapidly in the
first part of the tested time interval. The behavior of the concentration control loop strongly correlates
to the outlet flow rates of the crystallizer upstream for all tested controllers (Figure 6B) towards the end
of the simulated period when the second disturbance hits the system, i.e., around t = 70.0 h. Note that
the flow rate of solvent that is added to control the concentration of compound A also has a significant
impact on the volume and, thus, on the behavior of the level control loop, of the buffer tank.

The influence of the combined effect of the disturbance upstream and the change in setpoint of the
concentration control loop CC1 on the volume and outlet flow rate of buffer tank D1 is illustrated in
Figure 8 for all investigated control schemes. The results show a significantly different behavior. In the
case of P level control and PI-ALC, both the disturbance in flow rate from upstream and the setpoint
change of the concentration control loop strongly affect the outlet flow rate of buffer tank D1. First,
a sharp drop in the outlet flow rate can be observed when the change of setpoint is implemented at
t = 26.7 h, which causes the inlet flow rate of the tank to decrease as a result of the decreased solvent
flow rate set by the concentration control loop. Once the concentration reaches the new setpoint, the
flow rate increases again to approach the new steady state. Secondly, a sharp decrease in outlet flow rate
followed by a sharp increase in outlet flow rate can be observed around t = 30.0 h, which is caused by the
temporarily blocked transfer line from crystallizer Cr2 to the filtration and washing stage, W1. Note that
such sharp changes in the outlet flow rate directly translate to variations in the residence time of tubular
Reactor 2 downstream, which would impact the synthesis of the subsequent intermediate compound and
impurities. The behavior of P-only level control and PI-ALC is comparable when the second disturbance
hits the system at t = 72.0 h, with the volume in the case of PI-ALC reaching a slightly higher value,
because of the smaller controller gain in that case.
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Figure 7. Dynamic development of the concentration of compound A in the buffer tank D1
(A) and the flow rate of solvent going into the buffer tank (B) as predicted by a dynamic
model of the process illustrated in Figure 1. The former variable is a controlled variable, and
the latter variable is the manipulated variable within an automated concentration control loop
(CC1). The black line (triangles) describes P-feedback control implemented for crystallizer
Cr2 and buffer tank D1, as was implemented experimentally. The blue line (circles) is the
predicted behavior if PI-ALC feedback controllers are implemented for crystallizer Cr2 and
buffer tank D1. The red line (diamonds) describes the predicted behavior if OALC were
implemented for crystallizer Cr2 and buffer tank D1. The concentration control loop utilizes
P-feedback control in all cases.
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The expected behavior is distinctively different if OALC were implemented. For OALC, the change
in setpoint of the concentration control loop does not lead to a significant drop in outlet flow rate
(Figure 8B). Instead, the buffering capacity of the tank is used by reducing the volume of the tank, and a
slowly increasing volume can be observed once the concentration control loop reaches its new setpoint.
A similar behavior occurs when the first disturbance from upstream around t = 30.0 h causes the inlet
flow rate of the tank to decrease, i.e., the volume of the material in the tank reduces significantly, while
minimizing the changes in outlet flow rate. Once both inlet flow rates of buffer tank D1 are re-established
at their nominal value, a gradual increase in volume to compensate for the offset can be observed until
the second disturbance hits the system at t = 72.0 h. In this last part of the investigated time period,
application of OALC shows a significantly lower variation in the outlet flow rate of buffer tank D1
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compared to the investigated conventional schemes. This different behavior can be understood from the
more gradual supply of material from upstream units (Figure 6B) and the automated use of buffering
capacity in buffer tank D1 (Figure 8A). Clearly, the significantly reduced variations in outlet flow rate
with OALC combined with no expected additional impact on the concentration control loop (Figure 7A)
would minimize the propagation of disturbances within the studied pilot plant of an integrated continuous
pharmaceutical process.

Figure 8. Dynamic development of the volume (A) and outlet flow rate of buffer tank D1
(B) as predicted by a dynamic model. The former variable is a controlled variable, and the
latter variable is the manipulated variable within an automated level control loop (LC3). The
black solid line (triangles) describes the simulated behavior for P-only feedback control, as
was done experimentally. The blue line (circles) is the predicted behavior for PI-ALC. The
red line (diamonds) describes the predicted behavior for OALC.
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The central thought behind the application of OALC is to allow little control action in response to
inlet disturbances when the volume of the material in a tank is sufficiently far from critical boundaries.
Consequently, a more aggressive response is needed when inlet disturbances push the volume close to a
critical boundary. The presented results clearly demonstrate this strong difference in behavior depending
on the value of the measured volume. These observations raise the question of how to design the excess
capacity of buffer tanks. Figure 9 illustrates the simulated process behavior for various allowable ranges
in volume as defined by the upper and lower limit of the volume in crystallizer Cr2 and dilution tank
D1. The results demonstrate that increasing the range in volume (orange squares in Figure 9) only has a
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modest effect on the variations in the outlet flow rate. However, upon reducing the range (blue circles in
Figure 9), a distinctly different behavior can be observed with a significantly higher variation in outlet
flow rate. In the latter case, the volume in the tank approaches the upper limit, and consequently, a
peak value of the outlet flow rate comparable to what can be expected when applying conventional P
level control or PI-ALC (Figure 8B) is observed. The results stress the attractiveness of introducing
specific buffer tanks, without tight constraints on residence time and equipped with automated OALC, to
damp out fluctuations in flow rate in future continuous pharmaceutical processes. In addition, exploiting
an allowable range in residence time for processing units, such as crystallizers, can further strengthen
automated control strategies to damp out fluctuations.

Figure 9. Dynamic development of the outlet flow rate of buffer tank D1 (A) and volume
(B) as predicted by a dynamic model with OALC level control in crystallizer Cr2 and buffer
tank D1 for various allowable ranges in volume. In the legend, ∆V = Vmax − Vmin, and the
numbers in the legend are given in cubic meters.
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4. Conclusions

The presented dynamic model gives an accurate description of the closed-loop dynamic behavior
of a section of a continuous pharmaceutical pilot plant involving continuous crystallization, filtration,
washing and buffering of an intermediate pharmaceutical compound, at least for the studied conditions.
The studied section involves three automated level control loops and one automated concentration control



Processes 2013, 1 345

loop. The experimental data included a significant disturbance in the outlet flow rate of a crystallizer
and a change in the setpoint of a concentration control loop around the buffer tank. Model-based
simulations of the system in which two of the experimentally implemented proportional-only feedback
level controllers are exchanged with optimal-averaging level controllers showed a clear benefit of
using optimal-averaging level control to automatically exploit the buffering capacity of tanks within
a continuous pharmaceutical process. The model-based simulations predict a significant reduction in
the variation of the flow rate leaving the buffer tank for the experimentally observed disturbances, which
would result in reduced variation of the residence time of a tubular reactor downstream. The performance
of optimal averaging level control, at least for the investigated conditions, also strongly outperforms the
performance in the case of conventional proportional-integral control with the values for the tuning
parameters tailored for averaging level control.

In general, it is expected that dynamic process models will play an important role in the design of
future continuous pharmaceutical processes by, for example, judicious design of buffer tanks within a
plant, as illustrated in this work, or advanced model-predictive control strategies.
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