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Abstract: The objective of this work is to present a review of computational tools and 

models for pharmaceutical processes, specifically those for the continuous manufacture of 

solid dosage forms. Relevant mathematical methods and simulation techniques are discussed, 

as is the development of process models for solids-handling unit operations. Continuous 

processing is of particular interest in the current study because it has the potential to 

improve the efficiency and robustness of pharmaceutical manufacturing processes. 
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1. Introduction 

In recent years, the pharmaceutical industry has experienced significant changes in the prevailing 

economic and regulatory environments. Increased global competition, particularly from manufacturers 

of generic products, has resulted in decreasing competition-free lifespan of products and reduced profit 

margins as drugs come off-patent [1,2]. Meanwhile regulatory agencies worldwide, including the US 

Food and Drug Administration (FDA) and the European Medicines Agency (EMA), have begun to 

adopt the quality by design (QbD) paradigm introduced by the ICH Q8 guidance on pharmaceutical 

development. QbD requires that companies demonstrate understanding of the way in which variability 

in raw materials as well as process design and operating conditions affect product quality and use this 

understanding to implement effective quality control strategies [3–5]. 
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Despite the challenges faced by the industry, pharmaceutical manufacturing processes remain 

relatively inefficient and poorly understood as compared with other those in other chemical process 

industries [4]. This can be attributed in part to the unique challenges associated with pharmaceutical 

process design. Throughout the drug development process, material is required for clinical trials. The 

corresponding timeline for delivery of clinical materials may limit the available resources for process 

development [6]. In addition, each active pharmaceutical ingredient (API) has its own set of physical 

and chemical properties which can affect the success of various drug product formulations and 

manufacturing routes [4]. Perhaps in part as a result of the aforementioned challenges, sequential 

scale-up of batch processes remains the predominant process development trajectory within the 

pharmaceutical industry [6]. Unfortunately this does not necessarily result in the most efficient or 

robust manufacturing processes. Under the current process development paradigm, manufacturing 

costs consume a large portion of revenue for many pharmaceutical companies, as much as 27% by 

some estimates [7]. In many cases more is spent on manufacturing than on research and  

development [6,7]. Insufficient process understanding and lack of robust process development can also 

result in variability in product quality [8]. In order meet the challenges associated with current 

economic and regulatory realities, the pharmaceutical industry will need to invest in efficient and 

reliable manufacturing technologies [8,9]. Continuous processing has a great deal of potential to 

address issues of cost and robustness in the development of pharmaceutical manufacturing processes. 

From an economic perspective, continuous processes tend to involve smaller equipment than batch 

processes. This corresponds to decreased capital investment in equipment and plant space as well as 

decreased utility requirements. Continuous processes scale readily through increases in operating time, 

total flow rate or parallelization, reducing the need for scale-up studies throughout the development 

process. This can reduce time to market, which in turn may increase competition-free lifespan. It can 

also decrease the amount of potentially expensive API required for process development, as 

continuous processes can generate a large quantity of data relatively quickly [2,8,10,11]. Finally, 

continuous processing can mitigate issues of product variability through implementation of on-line 

process control [8–10].  

Process systems engineering tools have the potential to play a significant role in the transition from 

batch to continuous processing in the pharmaceutical industry. Predictive process models can be used 

as a supplement to experiments throughout process development, enhancing understanding of process 

variability and contributing to design space exploration [12,13]. Modeling and computational tools 

such as flowsheet simulations and global sensitivity analysis can also contribute to identification of 

critical process parameters to support quality risk assessment (QRA) [14–16]. Predictive process 

models can be used to develop and assess control strategies for continuous processes and set the stage 

for the implementation of model predictive control (MPC) for pharmaceutical processes. These 

advanced control strategies can help to ensure consistent product quality [10,17–19]. Process models 

can also be used to optimize manufacturing processes and suggest optimal design and operating 

conditions [20,21].  

The objective of this review is to describe the application of process modeling tools to the study of 

continuous manufacturing processes for pharmaceutical solid dosage forms, specifically tablets. Three 

common manufacturing routes, direct compaction, wet granulation and dry granulation, are considered. 

Available unit operation models and relevant computational methods for the study of these processes 
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are discussed. References are provided to specific applications of these tools for modeling and 

simulation of solids-based pharmaceutical processes. The remainder of this paper is organized as 

follows. Section 2 provides an overview of continuous tablet manufacturing processes and the unit 

operations involved. Processing equipment and key design and operating parameters for each unit 

operation are described. In Section 3 various computational tools for process modeling and simulation 

are discussed. Section 4 provides an overview of existing process models for the unit operations 

involved in continuous tablet manufacture. An emphasis is placed on equation-oriented modeling 

approaches that can be used for process simulation. In section 5 several techniques for model 

validation and verification are discussed. Section 6 summarizes the state of process modeling and 

identifies areas for future work.  

2. Continuous Tablet Manufacturing 

2.1. Process Overview  

Tablets are among the most common oral solid dosage forms for drugs [22]. The exact manufacturing 

process for solid dosage forms vary from compound to compound, as the properties of the active 

pharmaceutical ingredient (API) molecule play a significant role in the development of an  

appropriate formulation. This work will describe a general process for transforming raw materials (API  

and excipients) into tablets and provide a summary of several manufacturing routes available for  

tablet production. 

Downstream pharmaceutical processes typically begin with the feeding of raw materials to the 

process. These materials include active pharmaceutical ingredients, excipients such as microcrystalline 

cellulose or lactose, and lubricants like magnesium stearate. In most cases the concentration of 

excipient is significantly greater than that of API or lubricant. The material may then be passed 

through a comill to eliminate any large, soft lumps within the powder. Thereafter the material is mixed 

(blended) to ensure uniform distribution of active ingredient. Optionally the blend may be granulated 

via wet or dry granulation. The use of wet granulation necessitates a granule drying step prior to 

further processing. If a granulation process has been implemented, a milling step is typically required 

to reduce the granule size to the desired level before tableting. In the absence of a granulation step 

material may be sent directly to the tablet press after blending. In a continuous tablet press the powder 

is typically fed via a hopper and a rotary feed frame. The powder blend fills a die and is subsequently 

compressed to create a tablet. An example flow sheet for a continuous tableting process showing 

several design alternatives (e.g. wet granulation, dry granulation, direct compaction) is shown in 

Figure 1. Certain units including feeders, hoppers and tablet presses are common to all manufacturing 

routes. Mills are present in both wet and dry granulation. Roller compactors are unique to dry 

granulation while wet granulation equipment such as twin screw extruders and granule dryers are 

present only in wet granulation based processes. A summary of relevant processing equipment along 

with design and operating parameters is provided in Section 2.2 and in Table 1. 
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Figure 1. Three manufacturing routes for the continuous production of pharmaceutical 

tablets are shown. Common processing steps for all three routes include feeding, blending 

and tableting. The dry granulation route involves roller compaction followed by milling of 

the produced ribbons while the wet granulation route involves wet granulation followed by 

drying and then by granule milling. In the case of direct compaction there is no granulation 

step and therefore milling is not required prior to tableting. 

 

Table 1. Processing equipment for continuous tablet manufacturing including the 

adjustable design and operating parameters.  

Unit name Symbol Design parameters 
Operating 

parameters 
Hopper 

 

Shape (conical, wedge)  
Width  

Outlet diameter  
Wall angle  

Material of construction 

Powder flow rate 

LIW Feeder 

 

Tooling (screw, screen)  
Hopper size  

Operating mode 

Screw speed  
Flow rate set point 

Continuous Mixer 

 

Vessel length and diameter  
Agitator size and configuration 

Agitator rpm  
Mixer fill level 

Twin Screw 
Extruder 

 

Number of screws  
Screw geometry  

Barrel length  
Binding solution properties  

and addition location 

Screw speed  
Granulation 
temperature  

Liquid to solid ratio 
Powder Flow Rate  

Binder content 
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Table 1. Cont. 

Unit name Symbol Design parameters 
Operating 

parameters 
Roller Compactor 

 

Roll configuration  
Roll diameter  
Roll surface  
Powder feed 

Powder feed rate  
Roll speed  

Compaction pressure 
Roll gap 

Mill 

 

Mill type  
Mill configuration  

Geometry  
Screen/selector size  

Equipment size  
Air nozzle arrangement 

Solids feed rate  
Rotor speed  

Grinding pressure 

Tablet Press 

 

Die and punch  
size and geometry  

Die feeding method  
Number of compression stations 

Die filling method  
Lubrication method 

Powder feed rate  
Compression force  

Tableting speed 

The success of a tableting process is assessed based on the quality attributes of the tablets produced. 

Properties of interest include tablet strength (hardness, friability), tablet API composition and relative 

standard deviation, tablet weight, weight variability and tablet dissolution.  

2.2. Processing Equipment  

2.2.1. Hoppers 

Hoppers are commonly used in solids processing as a means of holding materials and conveying 

them gravimetrically. In pharmaceutical tablet production, hoppers are typically found in conjunction 

with other operations like feeders and tablet presses. In a well-design hopper, powder should flow 

consistently towards the outlet of the unit at an approximately constant flow rate. This is described as 

the “mass flow” regime. Hoppers come in a variety of geometries including conical and wedge shaped, 

both of which are used in pharmaceutical applications. In addition to geometry, hoppers can vary in 

width, outlet size and wall angle as well as material of construction. The hold-up in the hopper is an 

important operating parameter that should be monitored to avoid overfilling or, in the case of feed 

hoppers, running empty while the process is still operational [23,24]. Segregation and poor flow are 

potential concerns in the operation of industrial hoppers. Flow problems include arching and bridging, 

which can stop flow from the hopper, and ratholing—the stagnation of material at the hopper walls 

which effectively reduces capacity. These issues can be addressed via changes in hopper design or 

modification of the flow path using inserts [23,25,26]. Segregation is a significant concern in 

pharmaceutical applications, as it can result in variability in composition over time. In a hopper 

attached to a tablet press, segregation could affect content uniformity. Powder properties play a 

significant role in segregation behavior. Segregation is more likely to occur in polydisperse materials 

with wide particle size distributions and a large degree of density variability among the  

particles [27,28]. 
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Hopper refilling dynamics and their effect on downstream operations are also a concern in 

continuous processes. The impact of hopper refilling on discharge rate and on the performance of a 

continuous tableting process has been studied both computationally and experimentally [14,29–31]. 

Flow and discharge behavior of pharmaceutical powders from several different hopper geometries has 

also been studied experimentally by Faqih et al. [26] who developed a quantitative flow index that was 

shown to correlate with hopper flow behavior based on data from a gravitational displacement Rheometer.  

2.2.2. Loss-in-Weight Feeders 

Loss-in-weight feeders, as the name implies, feed powders into a process by mass. Feeding by mass 

provides the desired accuracy for pharmaceutical processes, where low feed rates may be needed, 

particularly for APIs and lubricants [30,32]. Loss-in-weight feeders generally consist of a hopper, a 

load cell that is integrated with a gravimetric controller and a conveying mechanism such as a screw 

feeder. A secondary conveying mechanism at the base of the hopper may be used to transfer powder to 

the screws. A discharge screen at the exit of the feeder can be used to break-up any lumps in the 

powder entering the process. The preferred tooling (screw, discharge screen) for a loss-in-weight is a 

function of the material properties of the feed powder and the intended flowrate. Engisch and  

Muzzio [30] have described a characterization method for loss-in-weight feeder equipment that can aid 

in determining appropriate tooling for a given application. The key operating parameter for  

loss-in-weight feeders is the screw speed, which dictates the powder flow rate. The hopper fill  

level can also affect feeder performance. Specifically, feeder accuracy may decrease at low hopper fill 

levels [33]. 

2.2.3. Continuous Mixers 

The purpose of mixing in downstream pharmaceutical applications is to reduce composition 

variability in multi component powder blends. In continuous mixing spatial and temporal variations in 

the composition of the material exiting the mixer are of concern. Therefore a well-designed continuous 

mixer should be able to produce evenly distributed (not segregated) blends with good control of 

composition over time. 

A summary of available equipment for continuous mixing along with studies used to characterize 

these mixers is given in Pernenkil and Cooney [34]. Of particular interest in pharmaceutical applications 

are continuous convective mixers, in which the primary mixing mechanism is convection induced by 

rotating blades [35]. Key design parameters for these types of mixers include the vessel length and 

diameter and the agitator size, configuration and geometry [36]. Important operating parameters include 

mixing angle, agitator rpm and powder flowrate. Powder properties, particularly cohesiveness and flow 

properties, can also affect mixing performance [35,37–39]. As is the case for hoppers, if components in 

the blend have very different properties (particle size and density) segregation may occur [40]. Several 

metrics can be used to monitor mixing efficiency. Relative standard deviation (RSD) and variance 

reduction ratio (VRR) are based on composition variability at the outlet and, in the case of VRR, inlet 

of the mixer. These metrics are discussed at greater length in Section 4.3, as is the residence time 

distribution (RTD). These characteristics can be calculated from experimental data such as concentration 

measured at the outlet of the mixer. Composition can be assessed using near infrared spectroscopy 
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(NIR) [34,35,41–44]. In addition, flow trajectories within the mixer can be studied using positron 

emission particle tracking (PEPT) [39]. 

The effect of operating parameters and powder properties on mixing performance within continuous 

convective blenders has been studied extensively [35–39,41,45]. Marikh et al. [36,45] have studied the 

influence of mass flow rate, impeller speed and bulk powder properties on the hold up within a  

pilot-scale continuous mixer for different agitator types. Based on experimental studies a correlation 

between agitator speed and the bulk mean residence time was developed which could potentially be 

used for scale-up. Portillo et al. [39] have studied flow behavior in continuous convective mixers as a 

function of impeller speed, flow rate and powder cohesiveness. Flow behavior is characterized by 

particle trajectories, axial dispersion coefficient and residence time. In a separate study  

Portillo et al. [37] have examined the effect of mixing angle in addition to impeller speed and cohesion 

on residence time and blend content uniformity. Two mixers that differed according to geometric 

parameters such as vessel length and diameter and blade size, shape and configuration were compared 

in this study. Finally Vanarase and Muzzio [38] have studied the impact of impeller rotation rate, flow 

rate and blade configuration on mixer performance as characterized by RSD and VRR. 

Extensive modeling efforts have also been conducted for continuous mixers. These will be 

discussed in Section 4.3.  

2.2.4. Wet Granulation 

The purpose of granulation is to create agglomerates, or granules, of powder blends. These granules 

are of higher bulk density than the bulk powder and thus tend to have better flow properties. The 

granulation process also contributes to improved control of content uniformity and compactibility [46]. 

Wet granulation involves combining a dry powder blend with a liquid, known as a binding solution, in 

the presence of some sort of agitation. When the powder is wetted granule nuclei consisting of binder 

droplets that have taken up powder begin to form. Thereafter the granule grows and densifies through 

coalescence and consolidation. Finally breakage may occur as the granules collide at high speed or 

experience significant shear. The properties of the powder blend, choice of binder, binding solution 

content relative to the amount of powder, and granulation method all have the potential to affect 

granule properties [47,48]. 

Wet granulation can be performed using a variety of techniques and equipment, including high 

shear mixers, fluid bed granulators and single or twin screw extruders. High shear mixers are primarily 

used in batch applications although so-called “instant agglomerators”, which are similar to high shear 

mixers that process very small volumes of material and therefore have an extremely short residence 

time, can be used for continuous processing [46,49]. Fluid bed granulators, the most common of which 

are horizontal moving bed granulators, operate by spraying binding solution from above onto a powder 

bed that is fluidized with air (or an inert gas such as nitrogen) from below. The granules are partially 

dried by the air flow and granule drying is readily completed within the fluid bed granulators when the 

addition of binding solution is stopped. Fluid bed granulators tend to operate at relatively high 

production rates, e.g., 20 kg/h or more [46,50]. Therefore they are not necessarily suited to 

pharmaceutical processes which may operate at lower throughput, particularly during the formulation 

development process. Extrusion equipment consists of one (single) or two (twin) screws within a 
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barrel. Often pharmaceutical granulation is carried out in twin-screw extruders with co-rotating screws. 

Mixing and agglomeration occur as the material is conveyed along the length of the barrel. Binding 

solution is injected into the process at a certain point or points along the length of the barrel [47,51]. 

Depending on the degree of densification that occurs within the extruder it may be necessary to mill 

the granules resulting from an extrusion process down to an appropriate size prior to using them in 

subsequent processing steps. For all processes except fluid bed granulation, a granule drying step is 

also required [46,50]. 

Extrusion processes have been studied most for continuous pharmaceutical processes. This is due in 

part to the fact that extrusion is readily scaled-up via increased throughput and therefore lends itself to 

the development environment within the pharmaceutical industry. In these processes, the main design 

parameters include the length of the barrel, the number of screws (one or two), the geometry of the 

screws, and the location of a point or points along the barrel where binding solution is added [46,50]. 

Operating parameters of interest include screw speed, granulation temperature and liquid to solid  

ratio [51]. Powder properties and binder properties including viscosity and surface tension have the 

potential to influence the process as well [52]. Performance indicators for wet granulation are related 

to the granule properties, including the granule density and porosity, mean granule size and granule 

size distribution and the granule composition with respect to active ingredient [47,52]. In addition, the 

yield or recovery from a granulation process is important. The loss of material to fines during the 

granulation process impacts the overall yield and could affect granule composition if the active 

ingredient forms fines more readily during the granulation process [47,51]. 

Lee et al. [47] have compared twin screw extrusion (TSE) with high shear mixing (HSM) by 

measuring the properties of the resulting granules and have found that TSE tends to elicit multimodal 

granule size distributions with greater porosity. This is consistent with the need for a size reduction 

step following some extrusion-based granulation processes. Dhenge et al. [52] have studied the effect 

of binder solution properties including viscosity and surface tension on residence time and torque in a 

TSE granulation process as well as on granule properties including size distribution and granule 

strength. Tu et al. [51] have experimentally studied granule properties as a function of operating 

conditions including screw speed and liquid to solid ratio in two different twin screw extruders. This 

enabled the authors to develop regime maps for the process, describing the extruder geometry in terms 

of granulation, extrusion and breakage regimes. Regime maps are useful in the characterization of 

granulation equipment like twin screw extruders. Several authors have studied wet granulation in the 

context of other unit operations. Cartwright et al. [53] have addressed the importance of accurate 

powder feeding for successful granulation performance in a twin screw extruder by comparing two 

types of loss in weight feeders. The impact of granulation conditions, including throughput, screw 

speed, screw configuration, angle of kneading elements and barrel temperature, on both granule and 

tablet properties have been examined by Vercruysse et al. [54]. Finally the continuous drying of wet 

agglomerates in a fluid-bed dryer has been studied by Palzer [55], who found, among other things, that 

average residence time in the dryer significantly affects the propensity for undesired secondary 

agglomeration to occur during the drying process.  

Extensive research has also been conducted into the modeling of granulation processes, as will be 

discussed in section 4.4. 
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2.2.5. Roller Compactors 

Granulation can also be accomplished via dry granulation. Dry granulation is carried out 

continuously through roller compaction. Dry granulation differs from wet granulation in that granules 

are formed only through compression. Thus the powder properties of the raw materials are important 

in determining whether dry granulation via roller compaction is an acceptable approach. Powders that 

have low bulk density, small particle size (e.g., micronized materials) or are very cohesive may not 

perform well in roller compaction [56]. Powders with good flowability and compressibility tend to be 

better candidates for roller compaction [57,58]. The development of a robust granulation process can 

be more challenging via dry granulation than wet granulation, but dry granulation offers advantages 

including the elimination of the granule drying step, shorter processing time and lower capital 

investment and utility costs. Additionally, roller compaction can be used for moisture-sensitive  

APIs [50,59,60].  

In the roller compaction process, powder is fed into a set of counter rotating rolls, conveyed forward 

with the motion of the rolls and as it reaches the point where the rolls are closest together undergoes 

compression and forms a compact ribbon. The ribbon is then conveyed forward and released from the 

rolls. When the particles are fed to the rolls they are initially considered to be in the slip region of the 

process, characterized by the particles slipping at the surface of the rolls. Relatively little pressure is 

exerted on the powder in this region. As the powder is drawn towards the point where the rolls are 

closest together, the wall velocity of the powder begins to match that of the rolls and the pressure 

exerted on the powder increases substantially. This is known as the nip region, and it is in this part of 

the process that powder is compacted. The nip angle, typically denoted as α, defines the angle at which 

the powder transitions from the slip region to the no-slip (nip) region [61]. Once the roll gap begins to 

increase again, after the point where the rolls are closest, the ribbon produced in the nip region is said 

to be in the release region [62]. The ribbons can subsequently be milled to obtain appropriately sized 

granules [60].  

The different equipment available for roller compaction varies mostly in terms of configuration. 

Rolls can be arranged either horizontally (with ribbons coming out parallel to the floor) vertically (with 

ribbons coming out perpendicular to the floor) or at some intermediate angle. In addition, it is possible 

that both rolls will be fixed, resulting in a constant roll gap throughout the process, or that one roll can 

be adjustable allowing for a change in roll gap during processing. The roll diameter and width vary 

from one piece of equipment to another. The surface of the rolls can also vary from smooth to knurled 

(rough/with grooves) to pocketed design. Finally the powder can be fed either gravimetrically or using 

a screw feeder [50,56]. In addition to the previously discussed powder properties and equipment 

design parameters, several operating parameters affect the performance of roller compaction processes. 

These include the feed rate of powder to the rolls, the roll speed and the compaction pressure applied 

to the powder, which is a function of the roll gap [60,63]. The nip angle, which is related to the length 

of the compaction zone and therefore to the degree of compression, is an important indicator of the 

performance of a roller compaction process, as is the peak or maximum pressure [57,62]. The 

performance of roller compaction processes is assessed according to metrics similar to wet granulation. 

The propensity for fines can be greater in roller compaction depending on the properties of the powder 
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being formulated [50]. In addition, ribbon density and ribbon density variability can also be used to 

evaluate the process performance.  

Many studies of roller compaction focus on understanding the relationship between design and 

operating parameters. Bindhumadhavan et al. [62] have studied the influence of roll speed and roll gap 

on pressure profiles during roller compaction. The influence of rotation angle, feed rate and roll speed 

on pressure distribution and drive torque applied to the rolls has been experimentally evaluated by 

Lecompte et al. [58]. In addition to varying the angle at which powders are fed to the rolls  

Miguélez-Morán et al. [64] have examined the relationship between lubrication and ribbon density, 

which is an important performance indicator for roller compaction processes. In general lubrication 

was found to reduce variability in ribbon density. Yu et al. [57] have studied the relationship between 

powder properties and compaction performance and have shown that powders with better flowability 

achieve higher peak pressures during roller compaction, resulting in improved compaction behavior. 

2.2.6. Milling 

Milling is a broad term that describes a wide variety of size reduction techniques. The current work 

will focus on dry milling techniques that are relevant for downstream pharmaceutical processes. 

Milling can be used to delump powders, to reduce the particle size of raw materials, particularly APIs, 

or to reduce the size of granules generated through either wet or dry granulation [65]. 

Conical screen mills, such as comills, can be used for delumping of powders, or for coarse to fine 

control of wet or dry granule size. Conical screen mills consist of a cone shaped screen with an 

impeller inserted into the center. The impeller rotates and material is ground between the impeller and 

the screen until it is small enough to pass through the holes in the screen and leave the mill. The key 

design parameters for a conical mill include the screen mesh size, the size of the cone, the impeller 

shape and the impeller to screen distance, which can be adjusted using spacers. Important operating 

parameters include powder feed rate and agitator speed [60,66]. The properties of granules entering the 

process also play a significant role in dictating the degree of size reduction that can be achieved [67]. 

Granule size can also be reduced using oscillating granulators, which are essentially screens integrated 

with the roller compaction process. The compact ribbon is forced through a screen using an oscillating 

rotor, so called because rotor speed and direction can vary in time. Screen size and rotor speed and 

rotation angle dictate particle size [68]. 

Comills are often used for granule size reduction but other milling technologies may be used if a 

smaller final particle size is desired. These include air jet mills and impact mills. For each type of mill 

a variety of configurations is available. Air jet mills generally consist of a grinding chamber, where 

particles are broken, and a classification chamber, where particles are separated according to size. 

Sufficiently small particles are passed to the next unit operation while fines can be collected in a dust 

filter. For these types of mills the main design parameters of interest include the geometry, number and 

configuration of the air nozzles. Significant operating parameters include the solid feed rate and the 

grinding pressure [65]. Impact mills include pin mills and hammer mills. In both types of mills, 

material is fed through the center of the mill and exits at the outer edge of the chamber. A selector grid 

can be used to allow only sufficiently small particles to exit the milling chamber. Pin mills grind the 

product between two disks to achieve size reduction while hammer mills rely on high impact particle 
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wall, particle blade and particle-particle collisions. For pin mills, the mill size is the main design 

variable. For hammer mills the equipment size, blade configuration and selector grid size are all 

relevant design variables. Variable operating parameters for pin and hammer mills include solids feed 

rate and the rotor speed [65,67]. 

Regardless of the equipment used, the objective of milling is to achieve the desired particle size. 

The performance of a milling process can thus be assessed in terms of its ability to achieve the desired 

mean size or size distribution [16]. Specific surface area, which is related to particle size, can also be 

used to determine milling performance. Yield is also a concern in milling operations, as the production 

of a large quantity of fines that are recovered in the dust filter could result in significant losses of 

potentially expensive raw material (e.g., API) [67]. 

Comills have been studied more extensively for granule size reduction than have impact or air jet 

mills. Experimental studies have shown that screen size, impeller speed and impeller shape can be 

varied to affect granule size distribution [66,69]. It has also been demonstrated that decreasing screen 

size coupled with increased impeller speed results in smaller granule size [70]. Some correlation 

between granule properties and milling performance has also been demonstrated. Inghelbrecht and 

Remon [71] have found that low friability corresponded to reduced dust formation during milling. 

Verheezen et al. [67] have studied impact milling for granule size reduction and found that granule 

strength has a significant effect on the final particle size achieved. In addition, fines formation was 

found to be related to the total degree of size reduction.  

2.2.7. Tablet Press (with Integrated Hopper and Feed Frame) 

The tableting process involves the compaction of powder blends to form a hard compact. This is 

achieved in a tablet press, which contains several components integrated as a single processing unit.  

A hopper conveys material into the tablet press. A feed frame is then used to move the powder or 

granular material into the die, a cavity that defines the tablet size and shape. A punch compresses the 

material within the die to form a tablet. Cam tracks guide the continuous movement of the dies so that 

they can be filled, compacted, and discharged [14]. 

Material properties can significantly affect tableting performance. Wide particle size distributions  

or variability in density can result in segregation during die filling, causing non-uniform tablet 

composition. Low bulk density, poor compressibility or flow properties can affect die filling and the 

pressure profile during compaction, resulting in tablet weight variability and insufficient tablet 

hardness [72,73]. Experimentally a correlation between the particle size and specific surface area of 

the material to be compacted and the hardness and dissolution properties of tablets has been 

demonstrated [74,75]. Compression problems such as capping can occur due to the presence of 

excessive fines within the particle size distribution [76,77]. Particle or granule moisture content can 

impact drug product stability, compressibility and tablet physical properties [78]. In addition, the 

physiochemical properties of the active ingredient could affect the propensity for form change due to 

temperature increase during the compaction process [79]. Drug and lubricant properties can also affect 

tableting performance, particularly as drug loading or lubricant content increases [74,80–82]. 

The variable design parameters for a tablet press are related to tooling and method of operation. The 

tooling includes the die and punch size and geometry, which can be changed according to the desired 
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tablet weight and shape. The number of compression stations also differs between tablet presses. The 

die can be filled via force feeding or suction filling [83]. Finally lubrication can be internal, mixed with 

the powder or granule blend, or external, applied directly to the punch and die assembly. Internal 

lubrication is common in the pharmaceutical industry, though some studies have indicated that external 

lubrication can mitigate the effect of lubricant on tablet hardness [82]. Operating parameters of interest 

for a tablet press include the powder feed rate and the compression force applied to the tablets as well 

as the rate of tablet production. Tableting speed and powder feed rate are related to tablet weight and 

weight variability while compression force affects tablet properties like hardness and density [22,76]. 

The performance of tableting processes can be assessed based on tablet active ingredient content, 

content uniformity, weight variability, and physical properties such as friability, hardness and 

dissolution performance. Drug content can be measured continuously using near infrared (NIR) 

spectroscopy [42,78]. Hardness, friability and dissolution must be measured offline, but models can be 

implemented to predict hardness and dissolution performance based on operating conditions or 

spectroscopic measurements [73,74,84,85]. 

3. Computational Tools and Mathematical Modeling Approaches  

3.1. DEM Simulation 

Particulate systems are of tremendous importance within the pharmaceutical and numerous other 

industries, yet they remain relatively poorly understood. In order to enhance understanding of 

macroscopic behavior in solids processes, it is helpful to first understand the particle-particle and 

particle-environment interactions that give rise to it. Discrete Element and Finite Element Method 

(DEM/FEM) models are particle level computational tools that can be used to develop this 

understanding [86]. An extensive review of theoretical developments and applications in discrete 

particle simulation has been provided by Zhu et al. [87,88]. This review will focus on the application 

of DEM to pharmaceutically relevant processes. 

DEM can be used to understand particle packing, which is important for problems involving 

powder bed densification and compaction like the manufacture of pharmaceutical tablets. The ability 

of DEM to accurately model particle packing has been well documented in the literature through 

studies comparing simulated with experimental behavior [89,90]. Specifically it has been shown that 

DEM can adequately represent packing density (porosity), coordination number, radial distribution 

function and the force network within a packed bed [88,91,92]. For instance, Yi et al. [92] have 

studied systems of multi sized spheres and shown that the porosity and coordination number obtained 

via DEM agree well with those obtained experimentally.  

Particle and particle-fluid flow behavior has also been studied extensively using DEM. Particle 

flows, and specifically confined flows, are relevant in pharmaceutical operations such as continuous 

mixing, fluidized bed drying, and powder feeding and conveying. It has been shown that DEM can 

accurately model confined flows like direct and annular shear, vertical flow and biaxial or triaxial 

compression [88]. McCarthy et al. [93] have compared solids fraction and particle velocity profiles as 

well as granular temperature distributions for simulated and experimental studies of a horizontally 

aligned annular shear cell and shown that as long as the system and particle geometries are well 
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represented the DEM and experimental profiles agree well. In addition, Wu et al. [94] have modeled 

the flow of powder in confined space in order to study a die filling process and found that 

appropriately calibrated DEM models can reproduce the powder flow behavior observed 

experimentally using high speed cameras.  

DEM has been used to model several aspects of the tableting process, including die-filling, 

compression of materials within a die and crushing of particles during compression [95,96].  

Mehrotra et al. [72] have used DEM to explore the impact of powder flow properties, specifically 

cohesiveness, on the die filling and compression process. It was found that as material cohesion 

increases the time it takes to fill the die also increases, which is consistent with the experimental 

observation that the tablet weight variability decreases at lower tableting speeds for cohesive powders. 

Several authors have also coupled DEM with computational fluid dynamics (CFD) to investigate suction 

filling of dies and to evaluate the effect of air or lack thereof on segregation during die filling [97–100]. 

One significant challenge associated with the use of DEM to model compression processes is the issue 

of deformation at high relative densities. In many computational studies of compression and 

compaction processes, FEM has been combined with DEM to improve the representation of particle 

deformation during compaction [76,95,96,101–103]. Specifically Frenning [102] has shown that finite 

and discrete element methods may be combined to simulate the behavior of granules in a densely 

packed bed and to understand the relationship between individual granules and the behavior of the 

granule bed under compression. Gethin et al. [101] have demonstrated that a combined DEM/FEM 

method can be used to determine particle packing in a die as a function of particle shape.  

DEM has also been used to study powder mixing processes. Several authors have demonstrated 

qualitative agreement between DEM simulations and experimentally obtained mixing behavior [104]. 

For instance, Marigo et al. [105] have obtained qualitative agreement between experimentally obtained 

axial and radial dispersion trends and those obtained through DEM simulation for a tubular mixer. 

Remy et al. [106,107] have compared experimental and DEM results for granular flows in a bladed 

mixer. This work has demonstrated qualitative agreement between the segregation profiles obtained 

via DEM and experimental studies for polydisperse, cohesionless spheres and has also shown that 

DEM can reproduce observed surface velocities, granular temperature profiles and mixing kinetics at 

varying surface and wall roughness. Of particular interest for continuous pharmaceutical manufacturing 

applications is the use of DEM to study continuous convective mixers. DEM has been used to validate 

the periodic section approach to modeling continuous convective mixers through demonstrating that 

the velocity profiles obtained from periodic section simulation are in agreement with those obtained 

from full blender simulation [108]. DEM simulations have been used to calculate the residence time 

distribution (RTD) in various blending equipment, including continuous convective mixers [41,109]. 

Data from DEM has also been used to inform reduced-order mixing models for process  

simulation [110]. 

Due to the importance of hoppers in a variety of industries, including agriculture, food processing 

and pharmaceuticals, numerous detailed studies of hopper flow have been conducted using DEM as 

well. DEM has been used to study the impact of powder properties, hopper geometry and operating 

parameters on segregation and flow patterns in hoppers [23–25,27–29,84,88,95]. 
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3.2. Population Balance Models 

The population balance equation can be used to describe the development of a set of properties of 

interest for a group of entities over time. Population balance equations have been used to model 

particulate processes including crystallization, mixing, milling, granulation, drying and dissolution, all 

of which are of great interest in the manufacture of solid dosage forms for pharmaceutical  

products [66,111–115] The general form of the population balance equation in 2 dimensions is  

given below.  

, , , , , ,  (1)

, ,  is referred to as the population distribution function, and describes the state of particles with 

respect to internal and external coordinates in time. x reflects the internal coordinate(s) such as particle 

size, mass or volume. z reflects the external coordinate(s) such as axial or radial position and t indicates 

time. The right hand side of the population balance equation (PBE) indicates the rate of formation and 

depletion of particles, which can occur through a variety of mechanisms including nucleation, 

aggregation and breakage. Analytical expressions for these mechanisms can be used to express the 

formation and depletion terms on the right hand side of the population balance equation [116,117]. 

Population balance models are often discretized with respect to the internal and external 

coordinates. In this case the differential terms with respect to x and z in Equation (1) are replaced by 

finite differences. Discretized population balance models can also be parameterized, as show in 

Equation (2). 

, , ,  

0,  
(2)

y(t,p) are the discretized states and p are the model parameters, which can be estimated based on 

experimental or simulated data. The parameter estimation can be formulated as an optimization 

problem with a least squares objective as outlined in Ramachandran et al [118]. Sen et al. [119] have 

demonstrated the use of a parameterized population balance equation to model a continuous mixer. 

The parameters were fit by minimizing error between measured and predicted relative standard 

deviation (RSD) of the product composition and the API mass fraction at the mixer outlet.  

High (three or four) dimensional population balance equations, such as those often encountered in 

modeling wet granulation processes, can be computationally expensive to evaluate [113]. The 

implementation of hierarchal solution techniques has been discussed extensively in the literature as a 

means of reducing the computational time associated with solving these equations [120–123]. In order 

to implement a hierarchal solution strategy the multidimensional PBE is discretized with respect to 

both internal and external coordinates. The partial differential equations in the PBE can then be 

rewritten as ordinary differential equations which can be integrated over time using a first order Euler 

predictor/corrector method [122]. 

The aforementioned methods are summarized in Table 2 with respect to their applications, the level 

of detail with which they model the process and the relative computational cost. 
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Table 2. Comparison of modeling techniques discussed in section 3 of the current work. 

Method Description 
Pharmaceutically 

relevant applications 
Level of detail 

Computational 

expense 

DEM particle level simulation of powder 

behavior 

powder flow, powder 

mixing, and compaction 

Particle level 

information 

high 

PBM describes the evolution of 

populations of entities (particles, 

granules, droplets) over time 

mixing, crystallization, 

granulation, milling 

Description of 

population of 

particles 

moderate to high—

depending on problem 

dimensionality 

ROM approximation of high fidelity 

models using a variety of estimation 

and interpolation techniques 

various unit operations, 

simulation-based 

optimization 

Unit operation 

level description 

low 

3.3. Reduced Order Models 

Reduced order models (ROM) are a class of models that represent high fidelity or full scale models 

in a lower dimensional space. The order reduction can be achieved through multivariate analysis 

techniques as in principal component analysis (PCA) or proper orthogonal decomposition. [124–128]. 

Alternatively a computationally expensive model can be replaced by lower dimensional surrogate 

model obtained through fitting of experimental or simulated data using techniques such as kriging, 

response surface methodology (RSM), artificial neural networks (ANN) or high dimensional model 

representation (HDMR) [12,129–134]. The motivation for using ROMs is that they are less 

computationally expensive than the original models and are therefore suitable for process simulation 

and optimization purposes.  

3.3.1. Kriging 

Kriging is a black-box interpolating technique that can be used to generate metamodels or response 

surfaces from input-output data for a process [135,136]. Originally developed for the purpose of 

predicting mineral deposit distributions, in recent years Kriging has been increasingly used for 

modeling in a variety of fields [136,137]. Its popularity can be attributed in part to its ability to model 

complex nonlinear and dynamic processes [138]. In addition, Kriging generates error estimates 

associated with each predicted point that can be used to assess prediction accuracy and direct future 

sampling [12,139,140]. This combined with the fact that Kriging models do not rely on a pre-defined 

closed form allows for the development of accurate model representations from relatively sparse 

datasets as compared with those obtained through traditional experimental designs [131,139]. The 

primary disadvantage associated with Kriging is that it does not provide a simple closed-form 

expression for the relationship between inputs and responses the way that other response surface 

methods do (see section 3.3.5) [131]. 

In Kriging models, the predicted response  associated with a new input point  is determined 

as a weighted sum of the known function values  associated with previously sampled inputs  as 

shown in Equation (3). The weight, , attributed to each  decreases with increasing Euclidian 

distance between the points  and . Thus Kriging is considered an inverse distance weighting 
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method. In general some maximum distance r is defined such that only points within some distance r 

of  are considered [131,136,140]. 

 (3)

The weights  in Equation (3) are unknown and their determination is a critical step in the 

development of the Kriging model. The objective is to select the weights such that the mean square 

error of prediction is minimized. In practice these weights can be obtained using a fitted variogram 

model based on N points that are sufficiently close to . The weights must sum to unity, a constraint 

which arises in part from the condition that the Kriging predictor should be unbiased [138,140].  

In addition, if input points are closely clustered together they are given lower weight in order to 

prevent biased estimation [12,131]. For purposes of the subsequent discussion the Euclidian distance 

between points (h) and the variogram corresponding to a dataset x consisting of NT sample points γ(h) 

will be define as in Equation (4). 

 

1
2

 
(4)

As can be seen in Equation (4) the variogram is calculated for individual pairs of points. This type 

of variogram is sometimes referred to as semi-variance while the variogram is described as 2γ(h), but 

for the purposes of the subsequent discussion γ(h) will be referred to as the variogram [138]. For a 

dataset containing NT sample points there are a total of NT(NT − 1)/2 Euclidian distances and 

corresponding γ values to be determined. The resulting γ vs. h data is usually smoothed and is then 

fitted to one of five basic models; sphereical, gaussian, exponential, linear or power-law. These are 

summarized in Jia et al. [131] and Boukouvala and Ierapetritou [139]. The form of the variogram 

model is chosen such that it minimizes prediction error, though computational efficiency may also be 

considered in making the selection. If necessary combinations of the various model types may be used 

to obtain appropriately low error. [131,138] Once an expression for the variogram has been obtained, it 

can be used to obtain a complementary function known as the covariance function shown in  

Equation (5).  

 (5)

The term  corresponds to the maximum variance of the variogram function and is also referred 

to as the sill. The kriging weights  for a given test point  can then be obtained from the covariance 

function by solving the system of Equation (6).  

, , 1

, , 1
1 1 0

,

,

1

 (6)

,  represents the distance between two points  and  while ,  represents the distance between a 

point  and the test point . Likewise ,  represents the covariance between data 

corresponding to input vectors that are distance ,  apart, obtained from Equation (5). λ are the 
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Lagrange multipliers associated with the constraint that the weights must sum to unity. The variance 
associated with the test point  is calculated from Equation (7), in which the term ,  is the 

right hand side of Equation (6). 

,  (7)

Figure 2. Algorithm for Kriging with the option for updating the sampling space in order 

to achieve sufficiently low prediction variance. 

 

Briefly, the Kriging algorithm, depicted in Figure 2 can be described as follows:  

1. Select an initial sample set x consisting of NT sample points and evaluate the process or model 

at these points to obtain the corresponding function evaluations . 

2. Using the data obtained in step 1, calculate the Euclidian distances h and the corresponding 

semi-variances γ(h) using Equation (4) for all NT(NT − 1)/2 sampling pairs. 

3. Smooth the γ(h) vs. h data and fit it to an appropriate variogram model according to a least 

squares error minimization criterion and/or a secondary criterion for computational efficiency. 

4. Based on the variogram model, determine the covariance function as in Equation (5).  

5. For a test point  calculate the weights from Equation (6). Calculate the predicted response 

 from Equation (3) and the associated variance from Equation (7).  

6. Optional—If the predicted variance is larger than desired, collect additional sample points in 

the region of the test point  and add those to the set NT to develop an updated Kriging model. 
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Kriging has been used in a variety of applications related to pharmaceutical process modeling.  

Jia et al. [131] have demonstrated Kriging models to represent the flow variability in a loss-in-weight 

feeder as a function of flowability and feed rate. Boukouvala et al. [129] have proposed an extension 

of this model that includes a Kriging-based imputation of missing data. Boukouvala et al. [138] have 

demonstrated the use dynamic Kriging to study the roll gap and ribbon density in a roller compaction 

process with respect to variable feed speed, roll speed and hydraulic pressure. Boukouvala et al. [138] 

have also demonstrated the use of Kriging to map the design space for a continuous convective mixer 

and a loss-in-weight feeder and Boukouvala and Ierapetritou [139] have described the use of a 

Kriging-based method for feasibility analysis of a roller compaction process.  

3.3.2. Response Surface Methodology (RSM) 

Response surface methodology describes a set of computational tools that can be used to  

establish relationships between a system or process response and multiple input variables.  

Box and Wilson first proposed RSM in 1951 as a means of optimizing operating conditions for a 

chemical processing [130]. In recent years RSM has been increasingly used for pharmaceutical 

applications [12,129,131,134,141,142]. The goal of RSM is to develop a functional representation for 

the response as a function of input variables. The functional representation, or response surface, is an 

approximation because the true form of the variable-response relationship is not known explicitly. The 

response surface is generated through a local sampling and optimization process within a region of 

interest. This region may be defined as the full operating space of the process or a subset of this space 

near an optimum or other point of interest [133]. 

Figure 3. Algorithm for response surface modeling with optimal model development 

around a region of interest. 
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The main steps in implementing RSM are given below for a system with a single response, y, and m 

input variables , , … , . The algorithm for developing a response surface model is also depicted 

in Figure 3. 

1. Establishment of an experimental design 

A design, D, consisting of n samples can be generated using a design of experiments (DOE) or 

other appropriate statistical approach. 

 …
 …

……
…

 …

. 

The proper selection of D is critical to ensure that the generated response surface will be an 

accurate predictor for the response of interest. The number of sampling points should be greater 

than the number of coefficients to be fitted for the response surface model. For noisy data, the 

number of sampling points needed may be greater. Further discussion of appropriate designs is 

provided in the literature [131–133]. 

2. Development of a response surface model in the region of interest  

The initial response surface model is developed around the nominal sampling point. The form 

of the model is defined by the modeler. Typically second-order polynomial functions as in 

Equation (8) are selected for the response functions. Justification for the selection of second 

order polynomials is provided in the literature [132,133]. The sampled data can then be 

regressed to the specified model using least squares or other appropriate fitting techniques. 

 
(8)

 is the estimated response. , ,  and  are the model coefficients.  and  are the  

input variables. 

3. Local model optimization  

Model optimization is performed in order to determine the region where expected process 

improvement can be maximized. The optimization can be completed using a steepest descent 

search over the sampling region. In this case the local optimum is found iteratively. An initial 

model is built based on the first sampling point. The optimum of this model then becomes the 

nominal point for the next iteration and a new response surface is built and optimized, with the 

addition of new sample points. As the algorithm converges, the nominal and optimal points 

become one and the same [131]. Other optimization techniques such as ridge analysis can also 

be applied [132]. If different process designs are to be considered, binary variables can be 

introduced to indicate the design configuration. This results in a mixed integer nonlinear 

program (MINLP) optimization problem formulation [12]. 

RSM has been used to model pharmaceutically relevant unit operations, including  

loss-in-weight feeding [129,131] and granulation [134,142]. It has also been used to explore 

design space and aid in the identification of critical process parameters for pharmaceutical 

applications [12,141]. 
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3.3.3. High Dimensional Model Representation (HDMR)  

High dimensional model representation (HDMR) describes a set of techniques that can be 

efficiently used to describe input-response relationships in high dimensional systems. HDMR 

expresses the system output as a finite hierarchal correlated function expansion of the various inputs. 

This functional representation accounts for the effect of individual inputs and the effect of interaction 

between inputs on a particular output [143–145]. 

, , ,

… , , … , … , , … ,  
(9)

in Equation (9)  is a zero order term which indicates the average value of the output over the domain 

of x in random sampling HDMR or the value of x at a specified reference point in cut-HDMR.  
indicates the individual contribution of variable i to the output while ,  indicates the 

contribution from the interaction of variables i and j.  

If Equation (9) is expanded to include all potential parameter interactions the number of component 

functions to be calculated can become intractable as the number of variables increases. However in 

most applications it is sufficient to include terms up to second order interactions only. Most higher 

order terms represent only a small contribution to the overall response [143,145]. Thus Equation (9) 

can be approximated as a second order expansion. 

,  (10)

The form of each of the component functions in Equation (10) can be optimally selected in order to 

accurately represent the available data. Objective functions and algorithms for selecting optimal 

component functions are discussed extensively in the literature [143,145,146]. 

Component functions can be determined differently depending on whether or not the data is 

randomly sampled. If it is, Random sampling HDMR (RS-HDMR) can be used. The HDMR 

expansion is determined from the average value of  over the entire domain of the input space.  

Cut-HDMR can be used when ordered sampling is used for data collection. In this case  is defined 

relative to a specified reference point  which is used to determine the component functions. Multiple 

cut-HDMR is an extension of cut-HDMR in which the expansions are determined relative to several 

different reference points and then combined to represent . Cut-HDMR generally requires fewer 

samples than RS-HDMR, as the latter relies on the evaluation of high dimensional integrals to obtain 

the constant terms [12,147]. However the use of analytical basis functions, including orthonormal 

polynomials or spline functions can reduce the computational expense of fitting RS-HDMR 

component functions. In terms of basis functions Equation (10) can be written as: 

,  (11)
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where  and  are coefficients for the basis functions  and ,  and k, l and l' are 

integers [143]. The use of variance reduction methods has also been shown to reduce the sampling 

required for accurate Monte-Carlo integration of coefficients for RS-HDMR expansions [148,149].  

An overview of the algorithm for developing high dimensional model representations is provided in 

Figure 4. 

Figure 4. Algorithm for high dimensional model representation based on a minimum 

prediction error criteria. 

 

In pharmaceutical applications, Banjeree et al. [150,151] have used HDMR to generate input-output 

maps for use in feasibility analysis of black-box processes. Boukouvala et al. [12,123] have extended 

this methodology to determine the design space for a continuous mixing process using cut-HDMR. 

RS-HDMR can also be used as a tool for variance based global sensitivity and uncertainty analysis. 

The total and partial variances can be calculated based on the HDMR component functions where D 

represents the total variance, Di represents the contribution of variable i to the total variance and Dij 

represents the contribution of the interaction between variables i and j to the total variance.  

 

 

,  

(12)
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Based on the variances and partial variances the sensitivities can be determined as: 

 

 
(13)

The use of HDMR for sensitivity and uncertainty analysis has been demonstrated for several 

applications in environmental and atmospheric chemistry [152,153]. Ziehn and Tomlin have developed 

a Matlab® based tool for the implementation of HDMR and HDMR-based sensitivity analysis called 

GUI-HDMR. This tool has been used for sensitivity analysis of air flow models, complex reaction 

models of pollutants in air and cyclohexane oxidation [154]. An example of HDMR component 

functions generated using the GUI-HDMR tool developed by Ziehn and Tomlin is given in Figure 5. 

Figure 5. Example of fit for of a first order HDMR metamodel for tablet API concentration 

in a direct compaction process obtained using the GUI-HDMR software of Ziehn and 

Tomlin [154]. 

 

3.3.4. Artificial Neural Networks 

Artificial Neural Networks (ANN) have become quite popular in a variety of fields as a tool for 

addressing complex science and engineering problems and for developing empirical process  

models [155]. In particular they are useful in modeling pharmaceutical processes due to their ability to 

accurately represent nonlinear system behavior [138,156]. Neural networks can be defined in terms of 

the transfer functions defined by their neurons, the learning rule applied and the connectivity of the 

system. The neurons are arranged in layers: an input layer which consists of data entering the network, 

hidden layers containing the neurons that transform the input data, and the output layer which contains 

the network output corresponding to a specific input or set of inputs. Each hidden layer can contain a 

single neuron or a group of neurons operating in parallel. The neurons, or processing elements, consist 

of weights and transfer functions. The weights are coefficients by which the inputs to the neuron are 

multiplied and the transfer functions are simple linear or nonlinear functions that transform the 

weighted inputs. The architecture of a network can be described as feedback or feedforward. Feedback 
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networks include connections from output neurons back to input neurons and therefore have some 

memory of prior states while feedforward networks do not. The architecture of the network can be 

adjusted through a learning process which involves the use of a training dataset for which the true 

values corresponding to each set of inputs are known. The learning process is iterative, with weights 

being modified in order to minimize prediction error, most often via back propagation of the error. 

Training involves a trade-off between the ability of the network to accurately predict the training set 

and its ability to generalize to data not included in the training set [138,155,156]. 

The general procedure for developing an artificial neural network, depicted in Figure 6, involves 

1. Obtain a training data set e.g., via DOE; 

2. Define the network: the number of hidden layers, the number of neurons to include in each 

layer and the type of transfer functions to be implemented; 

3. Use a training procedure to optimize the weights in such a way that prediction error is 

minimized. The number of neurons in each layer can also be determined based on the training 

set, via cross validation; 

4. Test the developed network against data that was not contained in the original training set to 

verify that the network has not been over fitted.  

Artificial neural networks (ANNs) have been used to model a variety of pharmaceutically relevant 

processes. They can be used to recognize patterns for analytical chemistry purposes, to evaluate  

the influence of molecular structure on material properties, to evaluate pharmacokinetic and 

pharmacodynamics profiles, [156] and to model pharmaceutical unit operations [16,138]. 

Figure 6. Algorithm for development of an Artificial Neural Network with the option to 

add points to the training set or to redefine the network structure in order to improve model 

predictive ability.  
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3.3.5. Comparison of HDMR, RSM, Kriging and Neural Networks 

Previous works have compared Kriging, RSM, HDMR and ANN as black box modeling techniques 

for pharmaceutical operations [12,131,138]. In these studies it has been found that Kriging tends to 

outperform other methods with respect to prediction accuracy. For instance, Kriging resulted in a 

lower prediction error than RSM for predicting flow rate variability in a loss-in-weight feeder [131].  

It also provided a more accurate prediction of design space for this unit operation [12]. This may be 

due in part to the fact that, unlike RSM and HDMR, Kriging provides a measure of prediction 

uncertainty through the calculation of prediction variance at each point. This uncertainty prediction can 

be used to suggest regions where additional sampling would be beneficial [139]. In addition, because 

Kriging does not assume a closed form for the fitted process model it may perform better in modeling 

complex nonlinear processes [138]. However the selection of a reduced-order modeling methodology 

is application dependent. In some cases it may be preferable to have a closed-form representation of 

the process model, in which case RSM would be appropriate. For global sensitivity analysis HDMR 

provides a convenient framework and thus this modeling methodology might be preferred. Artificial 

neural networks have the capacity to model pharmaceutical processes accurately, but may require large 

training sets. In addition, defining the network requires some trial and error which can be quite time 

consuming [138,155]. A brief comparison of these reduced-order modeling techniques in terms of the 

number of and type of fitted parameters and basis functions is provided in Table 3. 

Table 3. Comparison of reduced order modeling methodologies, Kriging, response surface 

models, high dimensional model representation and artificial neural networks.  

Method Fitted parameters 
Number of fitted 

parameters* 
Common basis functions 

Kriging variogram coefficients, 

regression coefficients 

21 correlation models: exponential, gaussian, linear, 

spherical, cubic, spline regression models: polynomial 

RSM polynomial coefficients 15 Polynomial 

HDMR component function 

coefficients 

20 Analytical basis functions: orthonormal polynomials, 

spline functions 

ANN neuron weights 40 Transfer functions: linear, threshold, sigmoid 

* The number of fitted parameters for second order model with 4 inputs and a single output. For kriging model assume 

that the correlation model is exponential and the regression model is a second order polynomial. For neural networks look 

at a feedforward model with 3 layers (1input 1output and 1 hidden) and 4 nodes per layer with sigmoid units. 

3.3.6. PCA Based ROM 

High fidelity process models like those obtained through CFD, DEM or FEM provide detailed 

information about distributed parameters like fluid and particle velocities. However these models are 

computationally expensive to evaluate and thus may not be useful for simulation and optimization 

purposes. Reduced order modeling based on principal component analysis was introduced by  

Lang et al. [128] for the co-simulation of CFD models with unit operation models for process 

equipment. Boukouvala et al. [110] have shown that the same approach can be applied to the reduction 

of DEM data for use in solids process models. 
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Principal Component Analysis (PCA) is a statistical tool that can be used to reduce the 

dimensionality of a dataset through orthogonal transformation. The original dataset, denoted as X, 

consists of n observations of m variables, which may or may not be correlated. The principal 

components obtained through PCA are orthogonal to one another and are arranged in order of 

decreasing variance such that the first component explains the greatest amount of variance in the 

original dataset and the last component explains the least. The number of components in the model (a) 

can be selected to achieve the desired percent variance explained and must be less than or equal to the 

number of variables in the original dataset.  

The results of PCA can be expressed in terms of the component scores (T), which are the variables 

transformed into the latent space, and loadings (P), by which the original variables can be multiplied to 

obtain the scores. The number of columns in the scores and loadings matrices is given by the number 

of principal components in the model (a). The original dataset can be reconstructed from the scores 

and loadings as shown in Equation (14).  

 (14)

where  is a matrix of residuals.  

An advantageous feature of PCA from a modeling perspective is that it can tolerate missing 

elements in the original dataset X reasonably well. Several methods for handling missing data have 

been proposed in the literature including Expectation-Maximization PCA, the iterative NIPALS 

algorithm and a nonlinear programming based strategy [157–160]. 

The objective of PCA based ROM is to develop a mapping between input variables and the scores 

or loadings obtained from PCA. The scores and loadings can then be used to approximate the high 

dimensional data as in Equation (14). In the case of DEM this information can include particle 

velocities, energies and forces at a number of discrete locations within a processing unit.  

The basic algorithm for developing a PCA based ROM is outlined below and is also depicted in  

Figure 7 [110,124]. 

1. Identification of the input space (U), the state space (X) and the output space (Y) 

The input space consists of operating parameters that can be controlled. The output space 

contains measured responses at the end or outlet of the process. The state space contains 

variables monitored within the processing unit at various discrete points. The dimensionality of 

the state space depends on the spatial discretization of the unit. In the case of a continuous 

mixing operation the inputs might include blade rpms and configurations as well as fill level 

and total feed rate while API concentration and relative standard deviation (RSD) at the mixer 

outlet would make up the output space. The state space could include average particle 

velocities and energies at discrete positions within the geometry of the mixer.  

2. Determination of the domain of the input space and implementation of an experimental design 

to define the input sampling space. Performing the computer simulations at the defined 

sampling points. 

The levels of input variables to be investigated can be defined based on the operating regime 

for the process of interest. A design of experiments (DOE) can be used to sample the input 

space appropriately, resulting in a total of N distinct sampling points within the input space. 
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Simulating the process at each of the sampling points provides the corresponding state space 

and output space data.  

3. Definition of the discretization of the process geometry in order to extract the state space data 

Boukouvala et al. [110] have indicated that the choice of discretization is critical to successful 

ROM development. Therefore care should be taken in selecting the mesh for the geometry.  

4. Performing PCA on the state space data 

PCA can be performed as discussed above. Note that PCA is conducted separately for each 

state. Thus if particle velocity data in the axial and radial directions is extracted from a 

simulation PCA must be conducted on each velocity component separately.  

5. Mapping the input space to the output space and to the scores or loadings for the state space  

The functional form of the input-output mapping  and the input-scores or input-loadings 

mapping  is determined by the modeler. Lang et al. [124,128] have described the use of 

Neural Networks for this mapping, while Boukouvala et al. [110] have described the use of 

Kriging. Regardless of the type of mapping used, it is important verify the model accuracy e.g., 

via cross validation. 

Figure 7. Algorithm for reduced order modeling based on principal component analysis.  

 

Once a ROM has been developed, it can be used to predict output and state space data for new input 

points that were not part of the original experimental design. The mapping developed is applied to the 

new point uk to predict a new vector of scores or loadings for the state space tk and a new vector of 

responses in the output space yk. The full dimensional state space data can then be reconstructed from 

the loadings using Equation (14).  

Boukouvala et al. [110] have demonstrated the use of PCA based ROM to predictively model 

distributed particle properties including total force, kinetic energy and velocity within a continuous 



Processes 2013, 1 93 

 

 

mixer. The developed model was also used to optimize the blending efficiency of the mixer. It would 

have been impractical to use the original DEM model for optimization purposes due to its high 

computational cost. Thus the benefit of PCA based ROM is clearly demonstrated by this work.  

3.4. Integrated Flowsheet Modeling Tools 

Individual unit operation models can be combined into integrated flowsheets using process 

simulators, which allow for the collection of various types of process models in a single programming 

environment. This facilitates the development of integrated flowsheet models that can be used for 

process simulation and optimization as well as design space exploration and sensitivity and uncertainty 

analysis [14,161,162]. Flowsheet models can also be used to evaluate control strategies for continuous 

processes [17,19]. The use of process models can reduce the experimental burden associated with 

process development and help to anticipate and resolve challenges in process scale up [15].  

An overview of commercially available for software packages for process simulation is provided in 

reference [163]. The current work will focus on simulators that can be used to model continuous solids 

processes, specifically gPROMS™ and ASPEN™. 

3.4.1. gPROMS™ 

gPROMS™ is a modeling platform developed by Process Systems Enterprise, Ltd. It consists of a 

model development environment (ModelBuilder) that comes with several built-in model libraries. 

Related PSE applications for solids processing include gSOLIDS and gCRYSTAL, which contain their 

own model development environment and unit operation models for many solids processes including 

but not limited to batch, semibatch and continuous crystallization, roller compaction, granulation, 

milling and fluidized bed drying. Users can also take advantage of custom modeling capabilities. This 

facilitates the implementation of data-based or hybrid models in conjunction with existing process 

model library components. gPROMS™ ModelBuilder supports complex models including algebraic, 

differential, partial differential and integral equations [164,165]. 

The use of gPROMS™ for the simulation of continuous pharmaceutical processes is documented 

extensively in the literature. The simulation of continuous tablet manufacturing via wet granulation has 

been described by Boukouvala et al. [161]. The simulation of manufacturing and control of tableting 

processes including roller compaction and direct compaction has been documented by multiple  

authors [14,17–19]. A gPROMS™ flowsheet describing a direct compaction process along with 

corresponding simulation results is shown in Figure 8. gPROMS™ has also been used for combined 

simulation of upstream and downstream pharmaceutical processes [162]. 

In addition to process simulation, the development environment has parameter estimation and 

optimization capabilities. gPROMS™ can be used to perform both steady state and dynamic 

optimization. It can handle both equality and inequality constraints and can optimize over both 

continuous and discrete variables. gPROMS™ parameter estimation tool uses a maximum likelihood 

framework to estimate parameters within process models [166,167]. The use of both of these 

functionalities has been documented in the literature for industrial processes [168,169]. Both functions 

have also been used extensively in the simulation and optimization of batch crystallization processes 

for pharmaceutical applications [170–172]. 
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Figure 8. Direct compaction flowsheet simulated in gPROMS™ showing simulated tablet 

hardness as a function of lubricant concentration. 

 

While a large number of models are available in the gPROMS™ model libraries, the connection of 

these models and their integration into processes that will run without error is not always straightforward. 

Models may take different connection types, and while units akin to stream converters can be used to 

address this issue it is not always immediately apparent when and why these are required. In addition, 

some models have a large number of parameters which require specification. The proper values to 

select may not always be intuitive, though they can usually be determined via heuristics if direct 

measurement is not possible. Default parameter values are provided by the software, and these can be 

used if appropriate values cannot be selected any other way. Additional training, provided by Process 

Systems Enterprise, can supplement the extensive user manual associated with the development 

environment to familiarize users with the proper implementation of unit operations.  

3.4.2. Aspentech’s AspenOne® utilizing AspenPlus® (V7 and V8) and AspenCustomModeler® 

AspenTech developed a suite of engineering tools by focusing on chemical analysis in areas such as 

process control, process engineering, optimization, and supply chain management. Aspen Plus® is the 

spearhead of AspenTech process modeling products which simulates industrial chemical processes. 

With the recent acquisition of SolidSim Engineering GmbH, Aspen Plus® Version 8 can model particle 

behavior with solids handling and separating units [173]. Aspen describes the particulate systems in 

discrete size classes by a user set number of intervals; each interval varies equally from a lower to 

upper bound with units selected from angstroms to kilometers. For solids processing, Aspen can 

handle conventional and non-conventional solid streams alongside mixed liquid/vapor streams with or 

without particle distribution. These streams can then be manipulated under 19 different types of 

physical property methods; the most common method as ideal property method including Raoult’s 

Law and Henry’s Law [174]. The process models in the current Aspen Plus® package consist of 

convective drying, granulation and agglomeration, crushing and milling, as well as classification and 

separation units [173,174]. Within varying units, the operating mode and type of unit can be altered; 
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for example, a crystallizer’s operating mode can vary from “Crystallizing”, “Dissolving or melting,” or 

“Either” while a crusher can vary from cage mill, to cone, to 8 other options; this trend continues for a 

variety of the available process units [174]. 

In addition, users can add their own models that utilize unique differential and algebraic equations 

to simulate behavior of their unit operations. Custom units can be programmed into Aspen Plus® 

through Fortran, C++, and visual basic; AspenTech also includes a Custom Modeler (ACM) to 

program user-defined units that can handle any system described by logical, nonlinear, differential and 

algebraic equations [174,175]. These user defined units can be exported from ACM to the drag and 

drop interface to interact with the Aspen Plus® simulation [175]. After a user programmed unit 

becomes exported into Aspen Plus, the unit can be manipulated without programming knowledge; this 

allows for quicker manipulation and testing of processes. Also, since the unit can be simply drag, 

dropped, and defined in contrast to reprogramming variables, an additional accessibility encompasses 

the scientist that’s knowledgeable in chemical processing but not coding. Units exported into Aspen 

Plus gain the advantage of interacting with the default set of Aspen unit models, the Aspen Plus 

optimization and analysis utilities, as well as the ease of access that comes with a drag and drop interface.  

Within Aspentech software, manipulating the required set of input variables either through the 

calculation block or equation-oriented modeling becomes available. The user can set up the calculation 

block to determine certain input parameters using a predefined algorithm and variables within the 

simulation [176]. The equation oriented modeling can switch inputs and calculated outputs; for example, 

one can switch from defining the reflux ratio input to the product purity output in a distillation column. 

AspenTech software can handle both steady state and dynamic process simulation and contains its own 

optimization software for model and equation oriented simulation based optimization. In order to 

model time varying conditions, Aspen Plus Dynamics® can add time dependent factors into steady 

state dynamics developed in Aspen Plus® [175]. Although many Aspen Plus® applications involve 

continuous processes, the software also can handle batch processes.  

One advantage to using AspenTech software is the availability of resources such as guides and 

forums to aid the user. These can be found both through AspenTech and from independent  

sources [173,174,176]. The software also comes with an extensive manual along with an integrated 

guide within the software to ensure proper inputs are given in the varying screens. Along with the 

included manuals and guidelines, AspenTech software includes an extensive physical property and 

thermodynamic property library [175]. 

Use of the AspenTech suite of tools for modeling of continuous, solids-based processes for 

pharmaceutical applications is not extensively reported in the literature. However pharmaceutically 

relevant solids-based processes have been successfully modeled using this software. For instance, 

Aspen Plus® has been used to model batch crystallization processes, which include both liquid and 

solid phases [177,178]. Given the recent acquisition of SolidSim Engineering by Aspen Technology, 

Inc. it is possible that publications related to modeling of continuous solids-based pharmaceutical 

processes in Aspen Plus® will increase in the coming years. 

The challenges accompanying model integration in AspenPlus® are comparable to those 

experienced within the gPROMS™ platform. In addition, while custom built gPROMS™ models can 

be readily integrated with built-in model library elements (provided inputs and outputs are properly 

specified) the incorporation of custom models with pre-existing models in AspenPlus® requires a 
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model export process from Aspen Custom Modeler to AspenPlus®. This model export process relies 

on third party software like Microsoft Visual Studio®. Alternatively custom models can be developed 

within AspenPlus using Fortran. It would be preferable to be able to integrate existing model library 

elements with custom models within AspenPlus® itself using the Aspen Custom Modeler language, 

which is more straightforward than Fortran for unit operation modeling. 

4. Unit Operation Models  

The focus of this section will be equation-oriented modeling for unit operations that are used in 

downstream pharmaceutical processes. Many of the operations discussed have also been studied 

extensively via discrete element or finite element method models. While reference may be made to 

these studies so that the reader can pursue them further, they will not be considered at length in the 

current work because such models are not readily used in process simulation and optimization on 

account of their computational cost.  

4.1. Hopper 

Several authors have proposed continuum models for the flow of cohesionless granular materials in 

hoppers. Early efforts focused on empirically describing mass flux out of hoppers for free flowing, 

frictionless, cohesionless materials under steady flow. For instance Brown [179] proposed that for a 

cone geometry flow can be described as in 15, where β is the hopper wall half angle ( )when the 

hopper is operating in the mass flow regime. 

2 1 /

3 /  (15)

These models tended to assume that behavior near the hopper outlet determines flow rate.  

Savage [180] and Savage and Sayed [181] introduced an approach based on the laws of motion to 

predict flow rates for frictional materials in conical and wedge shaped hoppers. For conical hoppers 

that are sufficiently full mass outflow can be obtained from 16 where  is the internal friction angle of 

the granular material. 

1
2 2 3

/

 

1
1

 

(16)

Equation (16) was found to significantly over estimate flow rates. Numerous extensions to the 

approach based on laws of motion have been proposed. The introduction of a perturbation to account 

for the effect of wall friction was found to significantly improve predictive quality [180,181]. 

Subsequent authors have modified the perturbation method to improve model convergence and 

predictive ability [181–183]. Models of granular flows have continued to increase in complexity to 

describe additional process physics. Plastic potential models, which consider rigid-plastic or elastic-

plastic materials, and the double-shearing model, which can be used to extend models from 

incompressible to compressible flows, are models that have been used to this end [184]. Recently Weir 
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et al. [24] have proposed a continuum model for variable-density, fully plastic, granular flow. The 

model was applied to study steady radial flow of a cohesionless granular material in steep-walled 

wedge and conical hoppers. This model extends previous continuum models by considering 

compressible flows, allowing for the consideration of pressure effects on density within the hopper. 

The variation in bulk density as a function of pressure is based on the relationship between pressure 

and voidage empirically determined by Weir [185]. 

1.57 10 .  (17)

In Equation (17)  is the change in pressure and  is the corresponding change in voidage.  is 
the solid density,  is the particle diameter and g is gravitational acceleration. The flow rate out of the 

hopper (J), is determined using a set of linear and nonlinear algebraic and partial differential equations 

given in [24]. The proposed model has shown a qualitative agreement with the observed density 

variation in hoppers and approximate agreement with experimentally obtained discharge rates for both 

conical and wedge hoppers.  

Sun and Sundaresan [184,186] propose a constitutive model for rate independent granular flows 

with microstructure evolution, which can be used to determine internal properties of the granular 

material. This model has been applied to the flow of an incompressible, cohesionless granular material 

in a conical hopper. The model has been validated against DEM simulations, both with respect to its 

ability to predict hopper flow rate and its ability to qualitatively describe microstructure within  

the hopper. 

The previously discussed models are particularly relevant in cases where the pressure exerted on 

material at the hopper outlet by the powder bed above is significant. However in many continuous 

pharmaceutical processing applications the hoppers used are relatively small and the residence time 

therein may be quite short. Boukouvala et al. [14] propose a straightforward equation oriented 

approach that can be applied for such processes. 

 (18)

 (19)

Equation (18) describes a basic mass balance around the hopper while Equation (19) describes the 

mass holdup in the hopper, , as a function of the height of the powder within the hopper (H), the 

cross sectional area of the hopper, A, which may vary as a function of the height and the bulk density 

of the powder. Equation (19) assumes that bulk density is constant throughout the hopper, which is a 

reasonable assumption for small hoppers with relatively low holdup. 

There is also a mean residence time associated with the hopper. This is accounted for by applying a 

time delay to the propogation of material properties through the hopper as shown in Equation (20). 

, ,
 

I.C. , 0  

(20)

 is any relevant property for component i and  is the mean residence time for the hopper, which 

can be determined experimentally.  
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The above model is appealing due to its relative simplicity. However it should be noted that the 

model makes several significant assumptions, including that the hopper is operating in the mass flow 

regime, that the bulk density is constant throughout the hopper and that the experimentally determined 

mean residence time does not vary significantly over the course of time. These assumptions should be 

validated experimentally prior to implementing this model. 

4.2. Loss-in-Weight Feeders 

Feeders are not typically considered in the absence of other processing equipment, so model 

development for loss-in-weight feeders is not as extensive as for other unit operations. Engisch and 

Muzzio [30] have described a combined experimental and statistical approach to characterize the 

performance of loss-in-weight feeders as a function of screw speed, discharge screen size and screw 

rpms. Analysis of variance (ANOVA) was used to determine the effect of these parameters and their 

binary interactions on feeder performance. Fast fourier transforms (FFT) were also used to obtain 

analyze the feed rate data from the equipment. The resulting power spectra could be used to help 

determine the feeder’s characteristic time. 

Boukouvala et al. [12] have demonstrated the use of response surface models, high dimensional 

model resolution and Kriging to optimize feeder design and operating parameters for a given material. 

The model is built based on experimental data. Its inputs include screw speed (rpm), screw size, screw 

configuration (open or closed helix) and powder flow index. The response chosen to indicate feeder 

performance is relative standard deviation of the outlet flowrate–an indication of variability. 

Boukouvala et al. [14] have also described a semi-empirical equation oriented approach to 

dynamically model a loss-in-weight feeder. Equation parameters that are fitted from experimental data 
include the process gain , a time constant  and a time delay factor . For the purposes of 

this model, material bulk density and mean particle size is assumed to be constant throughout the feeder.  

 

, ,
 

(21)

I.C. , 0  (22)

 (23)

In Equation (21)  is the screw speed (rpms). Equation (22) represents the time delay associated 
with the feeder, where z is the time delay domain,  is the experimentally determined time delay and 

 is the output feed rate. Equation (23) indicates that for invariant properties, like material bulk 

density, the feeding process has no effect. This should be experimentally verified prior to using this 

model for a particular process.  

4.3. Continuous Mixer  

The objective of a powder mixing process is to produce a blend within minimal composition 

variability. For continuous mixing the blend composition variability is considered with respect to both 

space and time. Continuous blending processes can be characterized based on several metrics related to 
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product homogeneity including the relative standard deviation (RSD) of the composition at the blender 

exit, the variance reduction ratio (VRR) and the residence time distribution (RTD) [34]. The relative 

standard deviation can be calculated based on the exit concentration of a particular component, the API 

in most pharmaceutical applications, over time.  

 

∑

1
 

   

 

(24)

The variance reduction ratio can be calculated based on the composition variance at the input and 

output of the blender. 

 

1
 

(25)

The residence time distribution is a probability distribution that describes the amount of time a solid 

or fluid element is likely to remain in a particular unit or process. The residence time distribution can 

be calculated experimentally by injecting pulses of a tracer molecule into the blender and then 

monitoring the concentration of these particles at the mixer exit over time [41,187]. RTD can be 

expressed mathematically as an integral in terms of the concentration of tracer particles over time.  

 (26)

It has also been shown that the residence time distribution can be used as a modeling tool for the 

design of mixing processes. The performance of a mixing process can be viewed as the result of local 

mixing rate and total mixing time, which is function of residence time. Thus the RTD can be used as a 

means of determining appropriate throughput such that material remains in the unit long enough to 

become well mixed [109]. 

Continuum models for continuous mixing processes have consisted largely of population balance 

models [14,115,119,123]. A general form of a multidimensional balance that could be used to describe 

a mixing process is given in Equation (27), where n is the number of components in the mixture, x and 

y are external (axial and radial) spatial coordinates that describe the position in the blender and r is an 

internal coordinate that describes the particle size. For pharmaceutical applications the value of n is 

often three; API, excipient and lubricant. 

, , , , , , , , , , , , , , , ,

 
(27)
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The number density function , , , ,  indicates the number of particles of type n with size r at 

position x,y at time t. Thus the particle velocities in the x and y directions are given by  and . For 

implementation, the process geometry is usually discretized in space so that the differentials with 

respect to y and x can be replaced with finite differences. The same can be done for the particle size.  

It is typically broken up into size categories or bins defined by upper and lower limits on particle size. 

In order to calculate the right hand size of Equation (27) the material balance for the mixer  

is needed. This is provided in Equation (28). Equation (29) provides a means of determining  

composition-dependent properties at the mixer outlet.  

∑ , 0,  for i=1,2,..n ∑ , , ,  

for i=1,2,..n 
(28)

, , ,  (29)

Finally Equation (30) describes the calculation of active ingredient concentration in terms of mole 

fraction at the mixer outlet. From this RSD and VRR can be calculated [14,115]. 

∑ ∑ , , , ,

∑ ∑ ∑ , , , ,
 (30)

Predictive models for particle velocities  and  that appear in the PBM can be developed based 

on DEM data. Boukouvala et al. [110] have demonstrated the use of a technique called DE-ROM to 

develop predictive models based on data obtained from DEM and have shown that it can be used to 

develop a predictive model for particle velocities throughout the mixer as a function of input 

parameters like blade rpm. The developed reduced order model can then be implemented to provide 

velocity information for the population balance model. 

Periodic section modeling is a method whereby a continuous mixer is modeled as a series of mixer 

segments in which transverse mixing occurs. Each segment represents a cross sectional slice of the 

mixer with a limited axial size. Periodic section modeling operates on the principle that continuous 

mixing can be viewed of as a combination of two processes; powder flow along the length of the 

blender (axial movement) and transverse powder mixing within the blender. Axial movement is 

characterized by the axial velocity  and the dispersion coefficient . Within a periodic section, 

transverse mixing is understood to occur in a manner similar to batch mixing. The batch-like mixing 

can be characterized in terms of the variance profile. As variance decreases, the homogeneity of the 

blend increases. For a periodic section the decay of variance over time has been modeled as an 

exponential function as shown in Equation (31), where  is the variance decay rate for the batch 

mixing process. ,  and  describe the composition variance within the periodic section as a 

function of time, at steady state, and initially (before mixing begins).  

 (31)

Variance can also be expressed as a function of position within the mixer. This empirical relation 

can be used to determine the mixer length required to ensure homogeneity of the mixture at the outlet. 

,  (32)
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In Equation (32) ,  is the residence time distribution at position x.  is the variance at 

position x and can be calculated as in Equation (33) where  is the variance decay rate for a 

continuous mixing process  

 (33)

This allows continuous mixing processes to be readily compared with batch processes. The 

relationship between the batch and continuous mixing efficiency can be defined in terms of the 

variance decay rate as in Equation (34). This equation also allows for estimation of  based on the 

values of  and  which are readily obtained through DEM simulation. 

 (34)

Gao et al. [188] have demonstrated the application of a periodic section model to mixing case 

studies with segregating and non-segregating materials. This type of model is shown to accurately 

characterize the continuous mixing process with respect to variance decay and relative standard 

deviation of the mixture under steady state conditions. In a subsequent publication the authors have 

described the use of a periodic section model to optimize a continuous mixing process [20]. In this 

instance the periodic section model is applied to cases with varying particle properties (diameter, 

density and cohesiveness) and operating parameters (fill level and blade speed). The results indicate 

that mixing performance cannot be improved by simply increasing blade speed due to the corresponding 

increase in axial velocity. The authors suggest strategies which increase impeller speed without 

significantly increasing axial velocity, such as reducing the blade angle or increasing the weir height at 

the end of the periodic section. Both of these strategies have been shown to significantly improve the 

mixing performance. Thus the periodic section modeling method can be used to suggest improved 

mixer design and operating parameters. [20] An example of a DEM simulation of a periodic section of 

a continuous convective mixer is shown in Figure 9. 

Figure 9. Discrete Element Method (DEM) simulation of particles mixing in a periodic section. 

 

The periodic section modeling approach has several significant advantages. It can be used to draw 

parallels between batch and continuous mixing. It can also be used to elucidate mechanisms that 

contribute to improved mixing that might not be apparent otherwise. Finally, the periodic section is 
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significantly smaller than the entire blender. Therefore it is much less computationally expensive to 

simulate using the discrete element method.  

Reduced order modeling approaches including Kriging, HDMR and response surface modeling can 

also be used to model the entire continuous blending processes, eliminating the need to evaluate the 

population balance equation. Boukouvala et al. [12,129] have modeled blender performance (RSD) as 

a function of impeller rpm, powder flow rate and blade configuration using both Kriging and HDMR. 

These reduced-order models were used to develop a design space for the blending process [12]. One 

downside of the use of input-output reduced-order models is that they do not provide information 

about the state of the material within the mixer. Material fluxes, concentration and RSD cannot be 

determined as a function of position within the mixer using these models, as they typically map input 

parameters to conditions at the outlet of the mixer and not to the states within the mixer. However, 

using the DE-ROM approach described above a mapping between input parameters and states within 

the mixer can be developed [110]. 

4.4. Wet Granulation 

Wet granulation processes are frequently modeled using the population balance equation, the 

general 2 dimensional form of which is described in Equation (1). Three or four dimensional 

population balances can be used to model wet granulation processes. In three dimensional models the 

population distribution is considered with respect to granule solid content (powder or powder blend), 

liquid content (binding solution), and gas content (porosity). Four dimensional models consider also 

granule composition with respect to the specific components in the system (e.g., API and excipient) as 

a fourth dimension. General three and four dimensional population balance equations are shown in 

Equations (36,37) respectively. s, l and g indicate the solid, liquid and gas volumes in the granule, 

where the assumption of constant granule density is made. In the 4-D equation s1 and s2 are two 

different solid phases whose compositions in the granule are defined [46,113,161,189]. 

, , , , , , , , , , , ,  

, , , , , , , , ,  
(35)

, , , , , , , , , , , ,

, , , , , , , ,

, , , , , , , , ,  

(36)

The right hand side of the population balance equation for wet granulation typically includes a 

nucleation kernel, a coalescence or aggregation kernel and may also include a breakage kernel. These 

describe granule birth (nucleation), granule growth and attrition and are indicated by 
, , , , , , ,  and , , ,  respectively in Equations (35,36) [120,190]. 

In practice it is preferable to solve lower dimensional PBMs, as 4-D models can become 

prohibitively computationally expensive to solve. In order to reduce the dimensionality of a population 

balance model, one or more of the granule properties can be lumped into the other distributions [113]. 
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For instance, if it is assumed that all granules of the same solid and liquid content also have the same 

gas content then it is possible to describe the 4-D population balance in 36 as a set of two 3 

dimensional equations; the reduced PBE (Equation (37)) and a gas balance equation (Equation (38)). 

The gas balance equation relates the total gas volume , , ,  in a particular discretization bin to 

the volume of gas in each particle , , ,  and the inflow and outflow of gas for the entire  

bin [113,191,192]. 

, , , , , ,  (37)

, , , , , , , ,  (38)

Barrasso and Ramachandran [113] have investigated a variety of model reduction options and have 

determined that the best performance is obtained when the gas volume is the lumped parameter, as in 

Equations (37,38). This reduction gave performance closest to that of the full 4-D population balance 

model. This is consistent with expectations because gas volume is known to have little effect on 

aggregation and prior work has indicated that lumped parameters should be chosen such that they have 

little effect on aggregation rates in order to minimize the error resulting from order reduction [191]. 

The development of kernels for the nucleation, aggregation and breakage represents a major 

research area in population balance modeling for wet granulation. Of these the aggregation kernel has 

been studied most extensively [193]. Kernels can be developed mechanistically or empirically. Often a 

combination of the two approaches is used and kernels are determined semi-empirically, with 

parameters fitted based on experimental or simulated data [189,194,195]. 

Nucleation accounts for the creation of new granule nuclei from primary powder particles.  

Poon et al. [195] and have described a mechanistic kernel for nucleation that accounts for both wetting 

kinetics and nucleation thermodynamics. The kernel can be expressed generally as Equation (39) for 

zero order and Equation (40) for first order dependency on primary particle concentrations.  

A droplet-controlled nucleation regime is assumed. 

, ,  (39)

, , , , , ,  (40)

N is the number of primary particles in the nucleus and , ,  is the fraction of particles with 

properties s, l, g within the nucleus. The nucleation coefficient  depends on the binder solution 

flow rate (Q) and process temperature (T) as well as the ideal gas constant (R).  is an adjustable 

parameter and  is described as a spreading coefficient, which relates the nucleation coefficient to the 

particle properties (s, l, g).  

, ,  (41)

 and , ,  can be determined based on the volume of the nucleus, the effective porosity and the 

liquid and solid granule volume. 
Aggregation or coalescence kernels  describe the rate of granule growth, which can occur 

through consolidation of wetted particles or through layering of fines onto existing granules [48]. The 

rate of aggregation depends on the probability of wetted particles colliding as well as on the likelihood 
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that they will adhere to one another upon making contact. This in turn is influenced by liquid binder 

content and granule size as well as the particle velocities [190]. Numerous aggregation or coalescence 

kernels have been proposed in the literature. While it is beyond the scope of this work to consider them 

all here, interested readers are referred to Cameron et al. [190] and Liu et al. [193], both of which 

provide tabular summaries of coalescence kernels discussed in the literature with associated references. 

The general form of a coalescence kernel contains two terms; a rate constant that relates growth rate to 

operating conditions and size dependence term that shows the relationship between granule size and 

growth rate. It is the latter term which dictates the size distribution of the granules and it is thus of 

great interest to be able to model it accurately [193]. Theoretical models that have been developed to 

predict the likelihood of aggregation based on powder properties and binder properties often rely on 

force or energy balances. For instance, several authors [122,193,196] have implemented a coalescence 

kernel in which granules combine if the kinetic energy of the granules is dissipated through viscous 

interactions or through plastic deformation of the particles.  

Despite the development of mechanistic aggregation kernels, empirical or semi-empirical kernels 

are often used in simulations due to the difficulty associated with developing mechanistic kernels that 

are detailed enough to accurately model the process without becoming too computationally expensive 

to evaluate [193]. For instance, Immanuel et al. [122] describe the theoretical development of a 

rigorous, mechanistic aggregation kernel, but in order to demonstrate a robust solution strategy for 3D 

population balances use a semi-empirical kernel. 

Many of the aforementioned aggregation kernels apply to single component systems. However in 

cases where binder is added continuously it may be appropriate to consider the binder as a separate 

component. Marshall et al. [197] have described a 2 component aggregation kernel for continuous 

fluid bed granulation where the binder and powder are treated as separate components.  

Matsoukas et al. [198] have proposed a multi-dimensional aggregation kernel to consider the effect of 

granule composition on aggregation rate. This is particularly useful for pharmaceutical applications, as 

multi component powder blends are typically the material being granulated in the pharmaceutical 

industry. Composition dependence is particularly important in cases where blends are not well mixed 

prior to granulation or where the materials being blended have disparate properties that affect their 

propensity for coalescence.  

Breakage kernels are relevant for both granulation and milling population balance models and are 

therefore discussed in section 4.6. 

Granule drying is an inherent part of the wet granulation process. It typically carried out in a 

fluidized bed, so the models discussed will focus on fluidized bed drying. Mathematical models for 

granule drying vary in their level of detail from lumped parameter models to more detailed distributed 

parameter models. Distributed parameter models include continuum models, which use macroscopic 

laws to describe phenomena like heat and mass transfer, and discrete models like the pore network 

model which explicitly describe microscopic behavior [199]. Discrete models based on CFD can be used 

to describe granule fluidization within the dryer. Distributed models based on the population balance 

equation can be used to represent the distribution of properties like liquid content [112,161,200]. These 

models can be coupled with experimental information or data from more detailed mechanistic drying 

models to develop semi-empirical relations for drying rate or granule size as a function of dryer 

parameters like gas temperature and velocity [112,199]. For instance, Mortier et al. [112] have 
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described a one-dimensional population balance model for granule drying that incorporates 

information obtained from more detailed mechanistic model. The PBM, shown in Equation (42), 

contains a single internal coordinate, the wetted radius Rw, and a negative growth term, Gr, associated 

with the reduction in particle size due to granule drying. 

, , 0 

,  

(42)

The growth term in Equation (42), can be determined empirically as a function of the drying gas 

temperature based on a more detailed mechanistic model as described in Mortier, Van Daele et al [201]. 

A comprehensive review of various mechanistic models for fluidized bed drying is provided in 

Mortier, De Beer et al [200]. 

4.5. Roller Compaction 

One of the first models to describe behavior of roll compaction processes was the rolling theory of 

granular solids proposed by Johanson [202]. Bindhumadhava et al. [62] have shown that this theory 

can accurately predict pressure profiles in the nip region of a roller compaction process, as well as the 

influence of material properties on nip angle and peak pressure. Johanson’s model makes several 

simplifying assumptions, including isotropic, cohesive material, no-slip between the powder and the 

roll surface in the nip region (the material is frictional) and that all material within the nip region is 

compressed to a ribbon with a thickness equal to the exact gap between the rolls [203]. The required 

model inputs include effective angle of internal friction and angle of friction, which can be found 

experimentally, and the relationship between pressure and density for the powder of interest, which 

can be determined experimentally using a punch-die system similar to that found in a tablet press. The 

assumptions associated with Johanson’s model are reasonable for gravity fed roller compaction 

systems with smooth rollers of relatively large diameter (>500 mm) and powders with a high enough 

friction coefficient that the no-slip condition holds. In such cases this model agrees well with 

experimental data [63]. 

Johanson’s model describes the pressure gradients for the slip and nip regions according to 

Equations (43,44). In these equations, θ denotes the roll angle, S denotes the roll gap, D indicates the 

roller diameter,  is the friction coefficient between the powder and the roll,  is the effective angle 

of internal friction, the constant K indicates material compressibility and σ is the normal stress applied 

to the powder. The parameter A can be calculated from Equation (45), where  is the angle of wall 

friction [61]. 

4 2

2 1 cot cot
 (43)

2 1

2 1
 (44)
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The nip angle (α) is determined based on the assumption that the pressure gradients at the boundary 

between the no-slip and nip regions are equal. Thus setting Equations (43,44) equal to one another it is 

possible to calculate α [62]. 

Based on Johanson’s model, the relative density exiting the process can be calculated from  

Equation (46), where  is the pre consolidation relative density, Rf is the roll force, and W is the roll 

width. The roll force can be calculated based on the roll diameter and width, the roll gap, the peak 

pressure, the angle θ and the compressibility K [61]. 

2

 1

 (46)

The relevant equipment parameters in Equations (43–46) can generally be determined from the 

equipment geometry [63]. In some cases the roll force is determined experimentally as a function of 

the hydraulic pressure set point for the equipment. The material properties such as the effective angle 

of internal friction, angle of wall friction, compressibility and preconsolidation relative density must be 

determined experimentally [61]. The use of instrumented roller compaction equipment to empirically 

obtain pressure profiles and torque information has been demonstrated by several authors [58,62].  

This information can be used to empirically determine friction coefficients and angles as well as roll 

force. In addition, the obtained pressure profiles can be used to verify the pressures predicted by 

Johanson’s model. 

One of the drawbacks of Johanson’s model is its inability to accurately predict ribbon density for 

incompressible materials. This is due to the use of the Jenike-Shield yield criterion. An alternative 

model has been proposed by Marhsall [204] which facilitates modeling of both compressible and 

incompressible materials by using the Coulomb-Mohr criterion. Although it is more generally 

applicable, the resulting model is far more complicated than Johanson’s model. Another alternative is 

the so called “slab method”, which uses a force balance on a slab of material to predict pressure 

distribution in powder under compression. The yield criterion for this model can also be adjusted to 

consider incompressible material such as metals [63,203]. Since most pharmaceutically relevant 

powders are compressible it is not typically necessary to consider alternate yield criterion, but other 

assumptions within Johanson’s model (e.g., that of smooth, relatively large rolls) are not always accurate.  

Finite element models, which are akin to the discrete element method models discussed in  

section 3.2, have been shown to describe roller compaction processes with a high degree of  

accuracy [63,205]. The accuracy of these models can be attributed to the fact that they consider 

particle-particle and particle-roll interactions at a fundamental level. Information about the friction 

conditions, contact angles, process geometry, roll surface texture can thus be considered. However the 

utility of these models is limited by computational expense [203]. 
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For simulation and optimization purposes, Hsu et al. [203] have proposed a dynamic model that is 

based on Johanson’s theory of rolling granular solids but incorporates the effect of changing roll gap 

on ribbon density. Johanson’s model assumes a constant roll gap. The ability to consider the process 

response to dynamic variability in roll gap is useful, as the roll gap typically varies with changes in the 

feed rate to the roller compactor. The model in Hsu et al. [203] combines Johanson’s model with a 

material balance to account for the variability in roll gap as a function of powder feed rate. In addition, 

delay differential equations are incorporated to account for the time dependent response of the feed 

rate, roll speed, and roll pressure to changes in the set point. This model has been implemented in 

gPROMS™ by Boukouvala et al. [14] for the simulation of a continuous tablet manufacturing process 

that incorporates dry granulation.  

4.6. Milling 

Size reduction by milling is common at both the drug substance and the drug product step of 

pharmaceutical manufacturing. Milling can be used to reach the desired particle size for an active 

pharmaceutical ingredient or granule size for a pharmaceutical blend to be used in tableting.  

Milling processes are often modeled using population balance equations similar to those discussed in 

sections 3.2 and  4.4. The PBEs used to describe a milling process can be discretized with respect to 

time or spatial coordinates depending on the mill design and residence time [206,207]. Both  

one-dimensional and multi-dimensional population balance models for milling have been described in 

the literature [16,206,208]. However for pharmaceutical applications it is preferred to implementa  

multi-dimensional model as the materials being milled are typically granules, which may consist of 

multiple solid phases as well as a gas phases. A multi-dimensional population balance facilitates 

consideration of composition variability with respect to each internal coordinate [207]. 

A general form of a multi-dimensional population balance that incorporates breakage is given by 

Equation (47) where s1 and s2 represent two different solid phases (e.g., API and excipient) and g 

represents a gas phase and t is time. For a wet milling process a liquid phase could also be included.  

, , , , , ,  (47)

The breakage term, , , , , in Equation (47) accounts for the likelihood that a particle 

in a particular size class will break into smaller particles (breakage probability) and the distribution of 

sizes into which the particle will fragment (breakage distribution) [206,208]. A general form of the 

breakage term is given in Equation (48), where the integral portion indicates the formation of particles 

in smaller size classes due to breakage of larger particles into smaller fragments and the second term 

indicates the loss of particles from a larger size class due to breakage. The breakage kernel, kbreak and 

the breakage function, b, account for the rate at which particles break and the size distribution into 

which they fragment [14,66,198,209]. 

, , ,

 , , , , , , ,

, , , , , , , ,  

(48)
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If it is assumed that the breakage rate is constant for a given size class, a simpler linear breakage 

kernel may be used. For short milling durations this assumption may be valid [16]. However, if this 

assumption is not made then the associated breakage rate expression should be formulated to 

incorporate nonlinear effects [206,208]. Breakage kernels can vary in complexity depending on the 

level of detail accounted for in the model. For multi-component systems a composition specific 

breakage kernel may be used to account for variable breakage rates and size distribution as a function 

of granule API or excipient content [14,198]. Semi-empirical breakage functions in which parameters 

are estimated from experimental data are common in the literature [66,208]. Heuristic approaches are 

also used in which breakage distributions of a particular form, often corresponding to the limiting case 

for an assumed fragmentation pattern, are applied [209,210]. 

4.7. Tablet Press 

Modeling of the tablet press unit operation includes modeling of powder flow into the dies and 

modeling the compaction process for powder blends. The modeling of flow into dies includes 

consideration of the feed frame, which supplies powder to the dies. Relatively little work has been 

done in the literature to independently model the feed frame aspect of the tablet press, but  

Boukouvala et al. [14] have described a response surface model for the residence time in the feed 

frame as a function of feed frame rotation rate and disk rotation rate.  

The compaction of powders in confined geometries has been modeled extensively. Detailed models 

often rely on discrete or finite element methodology as discussed in section 3.1 [72,95,96,98–100]. 

Semi-empirical models that describe the compaction behavior of granular materials by relating 

compaction pressure to relative density are also well established in the literature. A review of models 

describing compression behavior is provided in Patel et al [75]. Of particular interest are the  

Heckel [211,212] and Kawakita [213,214] equations, variations of which have been extensively used 

to model the compaction behavior of powder blends within tablet presses [74]. 

The Heckel equation (Equation (49)) assumes that the relationship between powder densification 

and applied pressure is first-order. 

1
1

 

ln
1

1
 

(49)

In Equation (49) D is the relative density, P is applied pressure and K is a material-specific constant.  

A is a constant densification term, where  relates to the initial die filling process and B 

corresponds to densification from slippage and rearrangement of particles [75,211,212]. The Kawakita 

equation (Equation (50)) assumes that the relationship between applied pressure and powder volume is 

constant because particles are at equilibrium throughout the compression process.  

1
 

 
(50)
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a is the initial porosity of the material and 1/b is the pressure that would result in a compression of the 

powder by one half of the total possible volume reduction [213,214]. The parameters for the Heckel 

and Kawakita equations can be found experimentally from force-displacement data [75]. 

Kuentz and Leuenberger [215] have described a modified Heckel equation that accounts for the 

effect of relative density on susceptibility to pressure, defined as the change in relative density in 

response to applied pressure. This model also incorporates a critical density, beyond which pressure 

susceptibility cannot be defined due to a lack of rigid structure. Singh et al. [216] describe a detailed 

model that can be used for process modeling and control of a tablet press which is based on the 

Kawakita equation. This model also incorporates an equation for tablet hardness as a function of 

compression force, proposed by Kuentz and Luenberger [73]. 

Modifications to the Kawakita equation to consider binary powders have been proposed to predict 

compaction behavior for powder blends. This is applicable in pharmaceutical case studies, as the 

material being compressed in a tablet press typically contains at least two components, an API and 

excipient. Frenning et al. [217] suggest the use of effective Kawakita parameters for mixtures, which 

are calculated based on the parameters for the individual components and a mixing rule that assumes 

the component volumes are additive. Mazel et al. [218] propose a method that does not use effective 

Kawakita parameters, but applies the Kawakita equation to each component in the blend separately and 

assumes that volumes are additive. The implementation of these mixture models is particularly useful 

for blends in which the various components have very different physical properties. 

5. Model Validation and Verification 

Model verification and validation is a necessary part of the development process. Specifically 

verification describes the process of determining whether the desired conceptual or mathematical 

model has been properly implemented while validation describes the process of ensuring that the 

developed model is sufficiently accurate for its intended purpose [219,220]. Verification and validation 

can be used to establish the predictive ability of the model and justify the use of the underlying 

theories and assumptions associated with the model equations [221]. Model validation is also an 

inherent part of the quality by design paradigm outlined in the ICH Q8 guidance for pharmaceutical 

development [3]. Model verification and validation should be carried out in parallel with process and 

model development, so that at each stage the existing model can be assessed and potential gaps in 

process knowledge and the associated model equations can be identified [222]. Issues with model 

implementation can also be addressed [219,221,223]. 

In order to validate a model, it is first necessary to identify its intended purpose, as this will dictate 

the validation criteria in terms of the model outputs to be considered, the domain over which the model 

should be valid and the level of prediction accuracy required [221,223]. The approach to model 

verification also depends on its planned use. Sargent [221] outlines four basic approaches: evaluation 

by the model development team, evaluation by the end users of the model in collaboration with the 

model development team, independent verification and validation (IV&V) by a third-party and 

evaluation using a scoring model. For the types of models discussed in the current work, the first two 

approaches are most likely to apply. These models are typically used in a process development context, 

and often the development team creates the model or collaborates closely with the group that creates 
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the model. However in cases where models are included in a regulatory filing the regulatory agency 

may become involved in assessing the model as an independent third party.  

In order to carry out model validation for pharmaceutical unit operations it is necessary to conduct 

experiments to which model predictions can be compared. These experiments should be carried out in 

processing equipment comparable to the modeled units. If data-based models have been implemented, 

the validation data must be distinct from the data used in model development. In some cases it may be 

appropriate to verify a model against a more detailed simulation such as a discrete or finite element 

simulation [221]. For instance, in the case of a reduced-order model developed to approximate a 

detailed simulation using a semi-empirical or black box method such a validation process is 

appropriate [110]. 

Model validation can include both qualitative and quantitative assessments. Qualitative evaluations 

can be done through data visualization and sensitivity analysis. Preliminary evaluation of model 

predictive ability may be conducted through visualizing the model output in conjunction with 

experimental data to determine how similar the predicted and observed behaviors are. For instance, 

parity plots may be used to qualitatively assess the discrepancy between predicted and experimentally 

obtained model outputs. Alternatively the predicted and observed data may be plotted on the same set 

of axes for visual comparison [119,221]. Model results may also be qualitatively validated by 

observing process trends or trajectories and confirming that they correspond with expected process 

behavior based on prior knowledge of process behavior [113,120]. Sensitivity analysis is the process of 

attributing variability in model outputs to uncertain model parameters and input variables [224]. 

Sensitivity metrics, which quantify the sensitivity of a model output to a particular input or collection 

of inputs, can be used as an indicator of qualitative model agreement with observed process  

behavior [221,225]. Sensitivity analysis also indicates which model parameters the process outputs are 

most sensitive to. Thus additional experimental effort can be directed towards fitting these parameters 

accurately [120,226]. 

Qualitative model assessment can be helpful in visualizing model performance, but is insufficient to 

justify the use of a model for quantitative prediction of process outputs. A variety of metrics can be 

used to quantitatively assess model prediction accuracy [221,227]. In linear regression, the coefficient 

of determination (R2) can be used as an indicator of model fit. The coefficient of determination 

describes the strength of the linear relationship between the model inputs and responses, indicating the 

proportion of variance in the response that can be accounted for by a particular input [228].  

In pharmaceutical modeling applications, more frequently used metrics of model performance are 

based on prediction error, including the sum of square error (SSE), the mean square error of prediction 

(MSEP) and root-mean square error of prediction (RMSEP) [229,230]. The mean square error of 

prediction can be defined as the expected squared distance between the predicted and true value of a 

model output and the root-mean square error of prediction is simply its square root. Unlike  

correlation-based metrics, such as the coefficient of determination, the mean square error of prediction 

and root mean square error of prediction are sensitive to the scale of the data [231]. 

Metrics like the coefficient of determination and the sum of square error and can be calculated 

based on direct comparison between experimental and simulated data that correspond to the same 

design and operating configuration. These metrics are relatively easy and computationally inexpensive 

to calculate and can characterize model accuracy under the specific conditions studied. However they 
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do not provide any information about the error associated with model predictions of points not 

included in the original dataset. To obtain an estimate of the prediction error (MSEP, RMSEP) 

alternative validation procedures such as cross-validation and bootstrapping are needed.  

Cross-validation, in which a subset of available data is excluded from the model building process 

and subsequently used to compare with model predictions, can be used to evaluate model performance 

metrics. In leave-one-out cross validation, a sample of size N is partitioned into a calibration  

(model-building) set of size N-1 and a validation set of size 1. Cross-validation calculations are then 

carried out N times with a different sample left out of the calibration set at each iteration. An average 

error over the N cross validation calculations is then used to indicate model performance. Similar 

methods wherein a somewhat larger subset (n) of the N samples is used for validation and the 

calibration set is of size N-n can also be implemented [231]. An advantage of cross-validation is that it 

can provide a nearly unbiased estimate of prediction error. However, for relatively small sample sizes 

the variability in the estimates can be high, resulting in unstable error estimation [232,233].  

Cross-validation, particularly as it pertains to multivariate regression and latent variable methods, is 

discussed extensively in the literature [234,235]. An alternative to cross validation is the bootstrap 

procedure. In this process, a bootstrap size (n) is selected and the input space is randomly sampled n 

times with replacement. Each set of n samples is referred to as a bootstrap sample. The model 

evaluation metric of interest (e.g., SSE) is determined for the bootstrap sample. This process is 

repeated with a large number (B) of bootstrap samples and the resulting metric is averaged over the B 

bootstraps to provide an estimation of model error. The bootstrapping procedure can provide accurate 

error estimation for large values of B. In several cases bootstrapping has been shown to provide a more 

stable estimator of the error than cross validation procedures. This is particularly true for instances 

with small sample sizes [232,233,236,237]. 

Quantitative metrics like the mean square error of prediction are straightforward to calculate and 

useful in determining the validity of model predictions [230]. However the conclusions drawn from 

these metrics depend on the intended purpose of the model. In early process development a relatively 

large prediction error may be acceptable since the objective is simply to obtain a general understanding 

of process behavior. For applications like model predictive control (MPC) large model errors can 

prove problematic and are generally not acceptable [238,239]. 

Beyond metrics associated with prediction error, a number of statistical techniques can be used to 

objectively decide whether a model is sufficiently predictive for a given application. Statistical model 

validation involves the formulation of a null hypothesis H0 (“the API concentration of a blend 

predicted from model X is within ±5% of the experimentally determined concentration”) and an 

alternative that may be the direct opposite of the null hypothesis. Subsequently a statistical metric that 

will be used to evaluate the hypothesis must be defined. Finally, a rejection criterion for the developed 

hypothesis should be determined [227,240]. A variety of statistical approaches for model validation are 

discussed in the literature. The most well-known is classical hypothesis testing in which the t-test,  

z-test or F-test statistics may be used as a criterion for rejecting or accepting the null  

hypothesis [227,241]. Bayesian hypothesis testing uses the Bayes factor as a validation metric. The 

Bayes factor expresses the ratio between the conditional probability of observing the experimentally 

obtained results given that the null hypothesis is true and the conditional probability of observing the 

experimental data given that the alternative hypothesis is true [241]. An advantage of using the Bayes 
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factor is that it can be applied to prediction accuracy for a single point or for an entire probability 

distribution function as described in Ling et al [227]. Statistical tests can also be used to determine 

confidence intervals for the model predictions relative to experimental observations. These can be used 

to define the range of model accuracy. In defining confidence intervals care should be taken to set 

appropriate confidence levels and consider the associated sampling requirements [221]. 

This section provides only a brief overview of model validation techniques. Model validation is an 

extensive topic in itself has been the subject of numerous publications. The validation methods 

discussed in the current work are summarized in Table 4 along with references in which they have 

been applied to validate various types of models. Any of the aforementioned validation methods can be 

used alone or in conjunction with other techniques. The choice of model verification and validation 

approach as well as the validation criteria selected should be consistent with the intended use  

of the model.  

Table 4. Summary of validation methods discussed in the current work, including 

references in which the proposed validation methodology is implemented. 

Validation 

Method 
Metrics Advantages Disadvantages References 

Data 

visualization 

Qualitative Straightforward to implement  

and interpret 

-Relies on visual assessment to 

determine model quality; 

-Preferable to use in conjunction 

with quantitative model 

assessment [242] 

[62,113,120,

189,192,193] 

Sensitivity 

analysis 

Qualitative Identifes important sources of 

process variability 

-Can require many model runs to 

calculate some sensitivity indices;  

-Requires knowledge of factors that 

contribute significantly to 

sensitivity in practice 

[14,225] 

Direct 

comparison 

Quantitative (R2, SSE) -Straightforward and 

inexpensive to calculate; 

-Indicates model accuracy for a 

specific design and operating 

configuration 

Does not provide an estimate of the 

prediction error  

[191,242] 

Cross-

Validation 

Quantitative (MSEP, 

RMSEP) 

Provides a nearly unbiased 

estimate of prediction error 

Can be an unstable error estimator, 

particularly for small datasets 

[42,78,85,110,

234,235,243] 

Bootstrapping Quantitative (MSEP, 

RMSEP, etc.) 

-Provides a nearly unbiased 

estimate of prediction error;  

-More stable error estimator than 

cross-validation, particularly 

for small sample sizes 

Can become computationally 

expensive as the number of 

bootstraps increases 

[244,245] 

Hypothesis 

Testing 

Qualitative result (reject 

or accept model) based 

on a Quantitative 

decision making criteria 

(t-test, z-test, or F-test 

statistic or Bayes factor) 

-Provides objective decision-

making criterion;  

-Can be used to provide 

confidence intervals for  

model predictions 

-Does not provide an exact 

indication of model prediction error;  

-Can be difficult to implement 

relative to other methods 

[41,241] 
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6. Conclusions 

Economic and regulatory pressures have led to increased interest in continuous processing for 

pharmaceutical applications in recent years [4,8,9]. Process systems engineering tools have a 

significant role to play in the transition from batch to continuous processing. Predictive models are of 

particular interest, as they can contribute to cost effective and robust process development  

while enhancing process understanding in a fashion consistent with the ICH Q8 guidance on  

quality by design [3,10,15]. The use of process systems engineering tools for modeling and  

simulation of pharmaceutical processes has been increasingly reported in the literature in recent  

years [13–15,95,161,222]. This review has focused specifically on process modeling tools related to 

the production of tablets via continuous processing. An overview of continuous tableting processes 

including direct compaction, wet granulation and dry granulation manufacturing routes has been 

provided, along with a discussion of relevant processing equipment and equation-oriented unit 

operation models. Computational tools, including those related to detailed process modeling,  

reduced-order modeling and integrated flowsheet simulation have been discussed in some detail. 

Finally approaches for model validation have been discussed.  

Significant work remains to be done in the area of solids-based process modeling, specifically as it 

pertains to pharmaceutical manufacturing. Understanding how variability in material properties of 

APIs and pharmaceutical blends that include these active ingredients affects the quality attributes of 

drug products remains a challenge in pharmaceutical process development [4,246]. Many existing 

process models do not sufficiently account for the impact of API physical properties on the 

performance of unit operations such as powder blending and conveying and the compaction of 

pharmaceutical blends. DEM simulation has contributed to understanding of the influence of  

particle-level properties on flow and compaction behavior as described in section 3.1, but connecting 

particle level properties in DEM to the bulk powder properties that are typically measured throughout 

process development remains a challenge. Another area where continued development is needed is in 

the area of tablet properties prediction. While models exist in the literature to predict tablet properties 

like hardness and dissolution performance as a function of operating conditions, these are relatively 

simplistic and may not sufficiently account for the effect of all relevant sources of variability in the 

tablet manufacturing process [73,161,216,247]. An ongoing challenge in the development of 

mathematical models for particulate processes is the inherent trade-off between the level of detail 

included in a model and computational efficiency. Detailed models may be more predictive and 

provide additional insight into the underlying system behavior, but their computational expense can 

become prohibitive for process simulation, optimization and MPC applications. Thus the development 

of reduced order or constitutive models to supplement detailed process models for applications where 

computational efficiency is important is an area where continued efforts will be needed. 
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