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Abstract: Machine learning models are used today to solve problems within a broad span of disci-
plines. If the proper hyperparameter tuning of a machine learning classifier is performed, significantly
higher accuracy can be obtained. In this paper, a comprehensive comparative analysis of various
hyperparameter tuning techniques is performed; these are Grid Search, Random Search, Bayesian
Optimization, Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). They are used to
optimize the accuracy of six machine learning algorithms, namely, Logistic Regression (LR), Ridge
Classifier (RC), Support Vector Machine Classifier (SVC), Decision Tree (DT), Random Forest (RF),
and Naive Bayes (NB) classifiers. To test the performance of each hyperparameter tuning technique,
the machine learning models are used to solve an Arabic sentiment classification problem. Sentiment
analysis is the process of detecting whether a text carries a positive, negative, or neutral sentiment.
However, extracting such sentiment from a complex derivational morphology language such as
Arabic has been always very challenging. The performance of all classifiers is tested using our
constructed dataset both before and after the hyperparameter tuning process. A detailed analysis is
described, along with the strengths and limitations of each hyperparameter tuning technique. The
results show that the highest accuracy was given by SVC both before and after the hyperparameter
tuning process, with a score of 95.6208 obtained when using Bayesian Optimization.

Keywords: hyperparameter tuning; Arabic sentiment analysis; machine learning

1. Introduction

Social media has attracted billions of people to interact with each other. Today, many
people use such media on a daily basis, not only as a platform to socialize with one
another, but also to share opinions, commentary, and experiences. The significant impact of
social media has been addressed in abundant research literature [1–3]. The importance of
sentiment analysis comes from its ability to find conclusions and draw indirect inferences
from a huge amount of given data. Analyzing a text written in a language with a complex
morphology, such as the Arabic language, has always been a multi-level challenging
process. Machine learning has become a prominent part of such a process. Today, machine
learning is everywhere; we encounter many machine learning applications in our daily
lives, from checking the weather for the next week or transferring our handwritten notes
to a typed document, to adjusting the car seat to our preferred position. Machine learning
algorithms have gained popularity in such a way that almost every scientific field now
uses them. They have become integrated into numerous scientific disciplines, such as
networking [4], transportation [5], text analysis [6,7], and bioinformatics [8]. This broad
range of machine learning disciplines is due to their promising results and predictive
performance in solving classification problems.

Machine learning algorithms automatically learn and hence adjust their internal
parameters based on data. These types of parameters are called “model parameters”,
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or simply “parameters” for short. However, there are other parameters that are not
adjusted during the learning process but, rather, have to be pre-configured before the
learning process starts. Such parameters are often referred to as “hyperparameters”.
The model parameters indicate how the input data are converted into the desired output,
while the hyperparameters indicate how the model is structured. The performance of a
machine learning model can drastically change depending on the choice and the values of
its hyperparameters.

For example, the decision tree algorithm has a “tree_depth” hyperparameter; setting
a moderate value for this hyperparameter can obtain good results, while a high value
can lower the algorithm’s performance. For this reason, hyperparameters should be set
very carefully. Hyperparameters could be set using a number of methods for a specific
dataset. One is to set them manually and calculate the accuracy accordingly. Then, other
values of the hyperparameters can be tested and, with every adjustment, the corresponding
accuracy can be calculated. Manually setting the values for the hyperparameters in such a
trial-and-error fashion is a cumbersome and time-consuming process. Another method to
find an appropriate hyperparameter configuration is to safely choose the default values
of hyperparameters that are recommended by the software packages used in the imple-
mentation, which are in turn based on recommendations from the literature, as well as
experience. Sometimes, the default values work well for a certain dataset, but this does not
always mean that they give the best accuracy.

Alternatively, we can use hyperparameter optimization strategies. These strategies
are data-dependent optimization algorithms, which try to minimize the expected gen-
eralization error of a machine learning model over the hyperparameter search space of
considered candidate configurations. The ML algorithms have been analyzed first using
the default hyperparameters values to be compared afterwards with the results obtained
when using hyperparameter tuning algorithms. Most of the manuscripts in literature
usually test the effect of using one hyperparameter tuning approach on the accuracy of
one or more machine language techniques when solving a certain classification problem.
The nature of the problem plays an important role in both the classification accuracy of the
machine learning technique and the hyperparameters combination that provide the best
classification accuracy.

The novelty of the manuscript is in the number of hyperparameter tuning algorithms
being compared, the number of machine learning techniques being tested, and, the most
important, the nature of the classification problem which is Arabic sentiment analysis. A
number of manuscripts have used machine learning approaches to solve Arabic sentiment
analysis, but none (as far as we know) have used hyperparameter tuning algorithms to find
the best hyperparameters that will lead to the best classification accuracy for the machine
learning algorithm used. It should be noted that this set of hyperparameters is not the
same for every classification problem and differs according to the nature of the problem.

In this paper, five search strategies are used; these are Grid Search, Random Search,
Bayesian Optimization, Particle Swarm Optimization (POS), and Genetic Algorithm (GA).
They are used to hyperparameter-tune six machine learning algorithms, namely Logistic
Regression (LR), Ridge Classifier (RC), Support Vector Machine Classifier (SVC), Decision
Tree (DT), Random Forest (RF), and Naive Bayes (NB) classifiers. These algorithms are used
in Arabic sentiment analysis in order to determine the tonality of Arabic reviews using
our dataset, which contains 7000 reviews written in different forms of the Arabic language.
The accuracy of the algorithms mentioned is calculated when the default values of the
hyperparameters are used, and then calculated again after each of the hyperparameter
tuning strategies are used. A before-and-after comparison is given. The contributions of
our work can be summarized as follows:

• The paper reviews common hyperparameter tuning techniques, their benefits, and their
drawbacks.
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• A comprehensive comparative analysis among five hyperparameter tuning algorithms
is given, as most of the previous and current literature typically focuses only on Grid
Search and Random Search.

• Hyperparameter tuning for six machine learning models is performed to analyze
sentiments over an Arabic text.

• The Arabic language is a challenging language; this paper is considered the first
hyperparameter tuning study performed on an Arabic text.

The paper is organized as follows. Related work is given in Section 2. The five
hyperparameter optimization models are presented in Section 3. Section 4 describes our
Arabic sentiment analysis scheme. The experimental results and conclusions are given in
Sections 5 and 6, respectively.

2. Related Work

In this paper, we present the use of hyperparameter tuning of machine learning
algorithms to tackle the sentiment analysis problem of Arabic reviews. It is important to
shed light on previous related work on both hyperparameter tuning and sentiment analysis.

2.1. Hyperparameter Tunning

Most of the previous work in hyperparameter tuning tends to focus only on Grid
Search and Random Search, or a comparison between them [9–13]. A comprehensive study
on tunability is given in [14]; the authors constructed the tuning problem in statistical terms
as well as suggesting tunability quantifying measures of algorithms’ hyperparameters.
They presented a comprehensive study based on 38 datasets from the OpenML platform.
In [15], the authors showed that the performance of SVM can be improved significantly
using parameter optimization. They applied two methods which are Grid Search and
Genetic Algorithm. Based on the average running time on different datasets, GA was
almost 16 times faster than Grid Search. Another comparison between Grid search and
Genetic Algorithms was introduced in [16]. The result of the implementation showed that
Genetic Algorithm can find the hyperparameters with faster computational time than Grid
search. The authors tested their comparison against Support Vector Machine, Random
forest, Adaptive Boosting,and K Nearest Neighbour. In [17], the authors proposed the
use of an evolutionary algorithm named SHADE to optimize the configuration of a deep
learning model for the sentiment analysis of Spanish tweets. Their results showed that
the hyperparameters found by the evolutionary algorithm enhanced the performance of
the deep learning method. A Word2Vec model based on a convolutional neural network
was constructed in [18]. The authors used a dataset collected from different newspapers
over a number of Arabic countries. Our work differs from the work listed here in the sense
that our main concern is increasing the accuracy of a machine learning algorithm through
selection of its internal hyperparameters. An ensemble of surface and deep features for
Arabic sentiment analysis was proposed in [19], and the model was evaluated on three
datasets of Arabic tweets. The authors concluded that the Word2Vec method gives much
better results than sentiment-specific embeddings.

2.2. Sentiment Analysis

Sentiment analysis has been a very rich topic for research. However, very few works
have been conducted involving sentiment analysis of an Arabic text. In this section, we shed
light on the relevant literature. In [20], the authors used three machine learning approaches,
Naïve Bayes, Support Vector Machine, and K-Nearest Neighbor classifiers, to classify their
in-house dataset of tweets. Their study found that SVM gives the highest precision, while
K-Nearest Neighbor gives the best recall. Meanwhile, in [21], the authors studied the effect
of preprocessing techniques on the classification behavior of machine learning algorithms.
In [22], a sentiment analysis study on financial context news, gathered from Lithuanian
language websites, has been introduced. Three machine learning algorithms have been
applied (SVM, Naive Bayes, and long short term memory). The Naive Bayes algorithm
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has shown the best accuracy. A hybrid framework of machine learning and deep learning
is proposed in [23], which combines Convolutional Neural Network and Random Forest
classifier for sentiment analysis. The experimental result showed that the proposed model
gives much better accuracy values than the existing base models.

The authors in [24] used two datasets, one with binary labels and the other with
multiclass labels, to explore various natural language processing (NLP) methods to perform
sentiment analysis. For the binary classification they applied the bag of words, and skip-
gram Word2Vec models followed by Random Forest, SVM, or logistic regression classifiers.
For the multi-class case, they implemented the recursive neural tensor networks (RNTN).
A comprehensive comparative analysis of various machine learning classifiers is provided
in [6], and a review of sentiment analysis in the Arabic Language is given in [25]. A rich
study of Algerian newspaper comments is presented in [26], in which the authors created
their own corpus and used Support Vector Machine and Naïve Bayes to classify Arabic
comments into positive and negative sentiments.

As mentioned above, very limited research has been conducted in sentiment analysis
involving the Arabic language, and there is almost no research concerning hyperparameter
optimization for sentiment analysis on Arabic texts. To the best of our knowledge, this
paper is considered the first study to tune machine learning hyperparameters used in the
sentiment analysis of an Arabic text.

3. Hyperparameter Tuning

Speaking in statistical terms, hyperparameter tuning captures a snapshot of the current
performance of a model, and compares this snapshot with others taken previously. In any
machine learning algorithm, hyperparameters need to be initialized before a model starts
the training. Fine-tuning the model hyperparameters maximizes the performance of the
model on a validation set. In a machine learning context, a hyperparameter is a parameter
whose value is set before initiating the learning process. On the other hand, the values of
model parameters are derived via training the data. Model parameters refer to the weights
and coefficients, which are derived from the data by the algorithm. Every algorithm has a
defined set of hyperparameters; for example, for a Decision Tree, this is a depth parameter.

Before explaining our hyperparameter tuning approach, it is important to explain
a process called “cross-validation”, as it is considered an important step in the hyperpa-
rameter tuning process. Cross-validation (CV) is a statistical method used to estimate the
accuracy of machine learning models. Once the model is trained, we cannot be certain
of how well it will work on data that have not been encountered before. Assurance is
needed regarding the accuracy of the prediction performance of the model. To evaluate
the performance of a machine learning model, some unseen data are needed for the test.
Based on the model’s performance on unseen data, we can determine whether the model is
underfitting, overfitting, or well-generalized. Cross-validation is considered a very helpful
technique to test how effective a machine learning model is when the data in hand are
limited. To perform cross-validation, a subset of the data should be set aside for testing
and validating; this subset will not be used to train the model, but rather saved for later
use. K-Fold is one of the most common techniques of cross-validation, and it is also the
cross-validation technique that we used to validate our model (see Figure 1).

In K-Fold cross-validation, the parameter K indicates the number of folds or sections
that a given dataset is split into. One of the folds is retained as a validating set and the
machine learning model is trained using the remaining K-1 folds. Each fold of the K-Folds
is used as a validating set at some point, with K scores (accuracy) given as a result. Finally,
we average the model against each of the folds to obtain a final score for the model, as
shown in Figure 1.



Informatics 2021, 8, 79 5 of 21

Figure 1. Cross-validation.

The importance of hyperparameters lies in their ability to directly control the behavior
of the training algorithm. Choosing appropriate hyperparameters plays a a very important
role in the performance of the model being trained. It is important to have three sets into
which the data are divided, i.e., a training, testing, and validation set, whenever the default
parameter is altered in order to obtain the necessary accuracy, so as to prevent data leaks.
Thus, hyperparameter tuning can be simply defined as the process of finding the best
hyperparameter values of a learning algorithm that produce the best model (see Figure 2).

The approach to finding the best hyperparameter values with respect to a specific
dataset has traditionally been performed manually. To set these values, researchers often
depend on their past experience of training these machine learning algorithms in solving
similar problems. The problem is that the best setting for hyperparameters used to solve
one problem may not be the best settings for another one, as these values will change
with different datasets. Hence, it is difficult to define the hyperparameter values based on
previous experience. A more automated, guided method is needed to explore alternative
configurations of the machine learning model under study. Common hyperparameter
optimization algorithms include Grid Search, Random Search, and Bayesian Optimization.
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Figure 2. Hyperparameter tuning process.

3.1. Grid Search

The most intuitive traditional approach for performing hyperparameter optimization
is perhaps Grid Search [9]. It generates a Cartesian product of all possible combinations of
hyperparameters. Grid Search trains the machine learning algorithm for all combinations
of hyperparameters; this process should be guided by a performance metric, typically
measured using the “cross-validation” technique on the training set. This validation
technique ensures that the trained model obtains most of the patterns from the dataset. Grid
Search is obviously the most straightforward hyperparameter tuning method. With this
technique, we simply build a grid with each possible combination of all the hyperparameter
values provided, calculating the score of each model, in order to evaluate it, and then
selecting the model that gives the best results. To perform Grid Search, one selects a
finite set of reasonable values for each hyperparameter; the Grid Search algorithm then
trains the model with each combination of the hyperparameters in the Cartesian product.
The performance of each combination is evaluated on a held-out validation set or through
internal cross-validation on the training set. Finally, the Grid Search algorithm outputs
the settings that achieve the highest performance in the validation procedure. The best
set of hyperparameter values chosen in the Grid Search is then used in the actual model.
Grid Search guarantees the detection of the best hyperparameters. However, one of its
drawbacks is that it suffers severely when it comes to rapid convergence and dimensionality.
If k parameters with n distinct values are tested, the complexity of Grid Search is expected
to grow exponentially at a rate of O(nk) [27].

3.2. Random Search

As seen in the previous section, Grid Search is an exhaustive search for selecting
a model. In Grid Search, we set up a grid of hyperparameter values, train a model,
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and calculate scores for the testing data for each combination, which can be very inefficient.
Thus, searching 10 different hyperparameter values for each of five parameters, for example,
will require 100,000 trials. If 10-fold cross-validation is used, this requires 1,000,000 model
fits and 1,000,000 predictions, which would be costly in terms of both computing power and
time. In contrast, Random Search [10] samples the search space and evaluates sets from a
specified probability distribution. In brief, it is a technique in which random combinations
of the hyperparameters are used to find the best solution for the model under consideration.
For example, instead of rotating through all 100,000 samples, only 1000 random samples of
hyperparameter sets are checked. The number of evaluations in Random Search must be
set in the beginning, before the hyperparameter optimization process starts, and hence, the
complexity of Random Search running n evaluations is O(n) [28]. A significant drawback
of the Random Search algorithm is that it does not use information from prior trials to
select the next set and it also does not use a strategy to predict the next trial.

3.3. Bayesian Optimization

A more appealing approach to fine-tune hyperparameters through automated model
tuning is the Bayesian Optimization algorithm. Bayesian Optimization is an informed
search algorithm, which means that each iteration of this algorithm learns from the previous
one, and the results of one iteration help in creating the next one. Bayesian Optimization
resembles the Random Search method in the sense that it samples a subset of hyperparam-
eter combinations; however, they differ in the way in which each combination is chosen.
Bayesian Optimization [29] views the hyperparameter tuning process as the optimization
of a black-box function. The function to be optimized is the model’s final prediction score
(i.e., accuracy) on a held-out test set. Any global optimization framework can then be
applied to minimize this function. The model used to approximate the objective function is
called a surrogate model. A number of surrogate models for Bayesian Optimization are
in use, but perhaps the most common one is the Gaussian Process (GP). This is also the
one used in our study. First, a few hyperparameter combinations are randomly chosen and
tested. These randomly selected hyperparameters’ values are then used to produce the first
model of the objective function. Once a first draft of the model is obtained, there are two
methods to choose the next combination: one can either choose a value close to the highest
obtained value, where performance is likely to increase, or one can explore another subset
of the hyperparameter search space, where another maximum could be found. Applying
Bayesian Optimization with the Gaussian Process fitness function over a dataset of size
n has a time complexity of O(n3) and space complexity of O(n2) [30]. The advantage of
Bayesian Optimization is that it does not sample each combination in the search space, as
Grid Search does, and, at the same time, it proceeds in a more systematic manner than
Random Search.

3.4. Genetic Algorithm

Metaheuristic algorithms are mainly those approaches inspired by biological theories;
they are known for their ability to solve non-continuous and non-convex optimization
problems. One common example of a metaheuristic algorithm is Genetic Algorithm
(GA). Metaheuristic algorithms generally begin by creating a population that represents a
generation at each iteration. Each generation consists of a number of candidate solutions
called individuals, which in turn have a number of properties represented by chromosomes.
Each candidate solution (individual) in every generation is then evaluated until a global
optimum is found [31]. Metaheuristic algorithms differ in the methods used to generate
and select populations.

Genetic Algorithm (GA) [32] is based on the evolutionary theory that individuals
with the best capability to adapt to environmental changes are more likely to survive and
hence pass on their capabilities to future generations. As the next generation inherits
the characteristics of the parents, they may produce individuals with better or worse
versions of the parents. Better individuals will be more likely to survive and consequently
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have better offspring, while the worse individuals will gradually disappear. After several
generations, the individual carrying the best chromosomes (properties) will be identified
as the global optimum [33].

When applying GA to the hyperparameter optimization problem, each hyperparam-
eter is represented by a chromosome, and the value of the hyperparameter is set to the
decimal value of the representative chromosome. Every chromosome has several genes rep-
resented in binary digit format. Chromosome selection, crossover, and mutation operations
are then performed on the genes of this chromosome to identify the optimal parameters.
Chromosomes with good fitness function values will be selected and passed to the next
generation with higher probability. In the next generation, these chromosomes generate
new ones carrying the best characteristics of their parents. Crossover is used to generate
new chromosomes by swapping proportions of the genes of different chromosomes, which
represent the solution, in order to obtain the mixing of solutions in the search space [34].
Mutation is another kind of operation that can also be used to generate new chromosomes
by randomly changing one or more genes of a chromosome [35]. Crossover and mutation
operations ensure the diversity of the later generations, enable them to possess different
characteristics, and reduce the chance of missing good ones [36].

Setting up the initialization step with an appropriate estimate is always considered an
important step in any optimization problem, as it may speed up the convergence of the
algorithm. Even if the initial values will iteratively be enhanced during the convergence
process, it is always wise to choose initial values that bring the convergence closer to the
optimum point without being trapped in unpromising local regions within the search space.

One of the advantages of Genetic Algorithm is that its initial values are randomly
selected, making it very easy to implement without requiring excessive effort in choosing
good initial values. This is because the mutation, crossover, and selection operations
ensure that the the global optimum is not missed. However, being a sequential execution
algorithm, the possibility to parallelize is lower. The time complexity of GA is O(n2) [37],
which is considered a low convergence speed.

3.5. Particle Swarm Optimization

Another powerful metaheuristic example is Particle Swarm Optimization (PSO) [38,39],
which is commonly used to solve optimization problems. PSO solves a problem by trying to
optimize a solution in an iterative way with respect to some measure of quality by enabling
a group of particles (swarm) to scan the search space in a semi-random manner [40]. PSO
algorithms find the optimal solution through information sharing and cooperation among
the particles in a group. In PSO, a swarm has a group of particles and each particle is
represented by a vector containing the current position, the current velocity, and the best
known position of the particle so far. After initializing the position and velocity of each
particle, the current position and performance score of every particle are calculated. In the
next iteration, the velocity of each particle is changed based on the calculated information
from previous iterations, namely the position and the current global optimal position.
The particles then move based on their new velocity vectors [41]. These steps are repeated
until some convergence or termination criteria are reached.

PSO is easier to implement than GA, since PSO does not include crossover and muta-
tion operations. In GA, all chromosomes share information with each other, so the entire
population moves uniformly toward the optimal region, while, in PSO, only the individual
best particle and the global best particle are transmitted to others. The computational
complexity of the PSO algorithm is O(nlogn) [42]. Generally, PSO has faster convergence
than GA. Moreover, PSO is easy to parallelize since particles operate independently and
only need to share information with each other after each iteration [36].

Unlike GA, the population in the PSO algorithm needs proper initialization; otherwise,
it might only find a local optimum and lose the global optimum, especially for discrete
hyperparameters. Many population initialization approaches have been developed to
improve the performance and convergence of PSO [43]. However, using one of the popula-
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tion initialization approaches will increase the complexity and the execution time of PSO.
Table 1 provides a complexity, parallelization, and initialization comparison among the
different techniques.

Table 1. Comparison of hyperparameter tuning algorithms (where k is the number of hyperparame-
ters and n is the number of values for hyperparameters).

HP Approach Complexity Enable Parallelization Easy Initialization

Grid O(nk) - X

Random O(n) X X

Bayesian O(nk) - X

PSO O(nlogn) X -

GA O(n2) - X

4. Proposed Architecture for Arabic Sentiment Analysis

We used our own constructed dataset for hotel reviews. To better analyze the polarity
of these reviews as being positive or negative, useless content was removed. A brief
discussion is given in the following subsections to explain the steps undertaken by our
system in order to be fully constructed. Below is a description of each step.

4.1. Data Collection

We used the Booking.com website to collect hotel reviews. A total of 3500 positive
and 3500 negative hotel reviews were collected, generating a total of 7000 reviews. The
number of words in the dataset is 95,906 words, with an avarage of 13 words per review.
The corpus was named the Reviews Sentiment Analysis Corpus (RSAC), and it is available
at the link provided in [44]. The reviews in RSAC are written in both standard Arabic and
dialectical Arabic, which contains non-standard Arabic vocabulary, such as onomatopoeia
and mimetic words. Figure 3 shows sample records from our constructed dataset (RSAC),
and an English translation of the dataset is provided in Figure 4.

Figure 3. Sample records of our constructed dataset (RSAC).
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Figure 4. English translation of sample records of our constructed dataset (RSAC).

4.2. Cleaning and Annotation

In this step, RSAC was cleaned by removing whitespace and punctuation, correcting
spelling mistakes, and deleting replicate instances. Each review instance in RSAC was
manually annotated as being either positive or negative.

4.3. Preprocessing

In the preprocessing stage, data were prepared for a text mining process. Preprocessing
subtasks were applied to the cleaned reviews, as discussed below.

• Normalization: Normalization converts all possible conjugations of a specific word
to its standard form. Our normalizer has been fed with a predefined set of rules to
provide a standardized form of the collected Arabic reviews. For example, the nor-
malizer removes unnecessary characters such as punctuation, numbers, non-Arabic
characters, and special characters. It also removes repeated letters, usually used to
express certain impressions, such as exaggeration or affirmation, and replaces this
repetition with a single occurrence of the character.

• Stop Word Removal: Stop words are frequently used words that appear in a text but
are not semantically related to the context in which they exist. These words can be
removed from the text without affecting the classification task’s performance.

• Stemming: Stemming is the process of returning a word to its stem. Stemming trims
words by reducing all forms of the word (i.e., adjectives, adverbs, etc.) to its origin
base. Many Arabic words have the same stem. Hence, all such words are replaced
with one word. This technique has a large impact on improving the efficiency of text
categorization.

4.4. Feature Extraction

At this stage, the text is ready for processing, which starts with the feature extraction
step. During this step, the annotated data are converted into a feature vector, which in turn
is fed into the machine learning classifiers for training. A specific combination of features
leads to a specific class. Each piece of text is converted into a feature with a certain weight.
The weight of the word (feature) changes as the document changes because it is calculated
with respect to the document containing the word under consideration. In our model, Term
Frequency-Inverse Document Frequency, which is known as TF-IDF and considered to
be one of the most popular term-weighting schemes, was used to construct the feature
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vectors. Other examples of term-weighting schemes include Boolean and Term Frequency
(TF). TF-IDF measures the importance of a word according to how many times this word
appears in a document. Hence, TF-IDF is defined as the frequency with which a word
appears in a text fragment divided by the frequency of the word within the whole dataset.

4.5. Training and Testing Classifiers

This step in the sentiment analysis process depends on the approach used for classi-
fication. Six supervised ML algorithms are used; they are Logistic Regression (LR) [45],
Ridge Classifier (RC) [46], Support Vector Machine (SVC) [47], Decision Tree (DT) [48],
Random Forest (RF), and Naive Bayes (NB) classifiers. During this step, the machine learn-
ing classifier was trained to classify each Arabic review in the dataset as carrying either a
positive tone or a negative tone. During the training stage, the classifier algorithm learns
from the labelled data, which were hotel reviews in our case. Consequently, during the
testing stage, the classifier needed to have the ability to classify new, non-labelled hotel
reviews. Each classifier was then evaluated by measuring the accuracy.

5. Experimental Results
5.1. Using Default Hyperparameters

First, the accuracy of each machine learning model in classifying the Arabic reviews
was calculated using the default values of the hyperparameters. We used the default
values specified by the Python scikit-learn library package [49]. Figure 5 presents a box
plot of the accuracy for all classifiers, while Figure 6 contains a tabular representation of
the accuracy of each classifier. Figure 7 shows how each classifier was calibrated during
the global optimum search. Figure 8 gives the confusion matrix of each classifier for
better performance evaluation. The figures show that the Support Vector Classifier (SVC)
outperformed the other classifiers.

Figure 5. Box plot of all classifiers against the score (accuracy).
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Figure 6. Default hyperparameters.

Figure 7. Calibration.
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Figure 8. Confusion Matrix for Classifiers (DT, RF, SVC, LR, NB, and RC)

5.2. Using Hyperparameter Tuning Techniques

This section presents the results after the Grid Search, Random Search, Bayesian
Optimization, Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) strategies
were used to tune the hyperparameters of each machine learning model, with the accuracy
was calculated accordingly. Our system was implemented using Python running on a
MacBook Air platform.

For Ridge Classifier (RC), Table 2 shows the five hyperparameter tuning techniques,
the corresponding score (accuracy), and the set of the best hyperparameters that represent
the best model configuration obtained by each technique and hence with the best accuracy.
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Figure 9 depicts the score corresponding to each hyperparameter tuning strategy, as well as
the accuracy obtained using the default values for the hyperparameters. Figure 10 shows
the score for each parameter value in the search space for Ridge Classifier (RC).

It should be noted that, sometimes, default values work very well for some machine
learning models and the specified dataset; however, this is not always the case when
changing the model and/or the dataset used. For example, in terms of our dataset, setting
the default value for the ‘var_smoothing’ hyperparameter in the Naïve Bayes model, which
was 1 × 10−9, gave an accuracy value of 70.5013; however, a higher accuracy value of
71.4402 was obtained when setting this hyperparameter to 1 × 10−9. Similarly, setting
the ‘max_feature’ hyperparameter to ‘log2’ in the Random Forest model yielded higher
accuracy than setting it to its default value, which was ‘auto’.

Another issue that should be noted is that some values of the hyperparameters
should not be used together. For example, in the Logistic Regression classifier, the solver
hyperparameter value ‘sag’ supports only ‘l2’ or ‘no’ penalties. Therefore, one should
pay careful attention when setting the values. Of course, one can anticipate that Grid
Search requires more iterations than the other two search algorithms as it rotates over
every hyperparameter set. In the Ridge Classifier, for example, Grid Search tested 561
hyperparameter combination sets to find the best set, while, in both Random Search and
Bayesian Optimization, we set the number of iterations to 100.

Similarly, Table 3 and Figures 11 and 12 show the results for Decision Tree (DT).
Table 4 and Figures 13 and 14 show the results for Random Forest (RF). Table 5 and
Figures 15 and 16 show the results for the Support Vector Classifier (SVC). Table 6 and
Figures 17 and 18 show the results for Logistic Regression (LR). Finally, Table 7 and
and Figure 19 show the results for Naive Bayes (NB).

Table 2. Hyperparameter tuning for Ridge Classifier.

HP Approach Accuracy Best Hyperparameters

Grid 95.2178 ‘alpha’: 1.0, ‘copy_X’: True, ‘fit_intercept’: True,
‘normalize’: False, ‘solver’: ‘auto’, ‘tol’: 0.001

Random 95.1279 ‘tol’: 0.001, ‘solver’: ‘auto’, ‘normalize’: False, ‘fit_-
intercept’: True, ‘copy_X’: False, ‘alpha’: 0.9

Bayesian 95.1022 ‘alpha’: 1.0, ‘copy_X’: True, ‘fit_intercept’: False,
‘normalize’: True, ‘solver’: ‘lsqr’, ‘tol’: 0.001

PSO 94.5494 ‘alpha’: 0.807, ‘tol’: 0.0559
GA 94.5751 ‘alpha’: 1, ‘solver’: ‘auto’, ‘fit_intercept’: ‘False’,

‘normalize’: ‘True’, ‘copy_X’: ‘False’, ‘tol’: 0.001

Figure 9. Hyperparameter tuning techniques versus score for Ridge Classifier (RC).
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Figure 10. Score per parameter for Ridge Classifier (RC).

Table 3. Hyperparameter tuning for Decision Tree.

HP Approach Accuracy Best Hyperparameters

Grid 89.3773 ‘criterion’: ‘entropy’, ‘splitter’: ‘random’
Random 89.253 ‘splitter’: ‘random’, ‘criterion’: ‘entropy’
Bayesian 89.7459 ‘criterion’: ‘entropy’, ‘splitter’: ‘random’

PSO 86.4421 ‘splitter’: ‘random’, ‘criterion’: ‘entropy’
GA 87.5176 ‘criterion’: ‘entropy’, ‘splitter’: ‘random’

Figure 11. Hyperparameter tuning techniques versus score for Decision Tree (DT).

Figure 12. Score per parameter for Decision Tree (DT).
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Table 4. Hyperparameter tuning for Random Forest.

HP Approach Accuracy Best Hyperparameters

Grid 94.335 ‘max_features’: ‘log2’, ‘n_estimators’: 1000
Random 94.3907 ‘n_estimators’: 1000, ‘max_features’: ‘log2’
Bayesian 94.3907 ‘n_estimators’: 1000, ‘max_features’: ‘log2’

PSO 92.4869 ‘max_features’: ‘log2’, ‘n_estimators’: 1000
GA 92.5183 ‘n_estimators’: ‘log2’, ‘max_features’: 63, ‘max_-

depth’: 48, ‘min_samples_split’: 6, ‘min_samples_-
leaf’: 1, ‘criterion’: ‘entropy’

Figure 13. Hyperparameter tuning techniques versus score for Random Forest (RF).

Figure 14. Score per parameter for Random Forest (RF).

Table 5. Hyperparameter tuning for Support Vector Classifier.

HP Approach Accuracy Best Hyperparameters

Grid 95.6206 ‘C’: 1.0, ‘gamma’: ‘scale’, ‘kernel’: ‘rbf’
Random 95.6206 ‘kernel’: ‘rbf’, ‘gamma’: ‘scale’, ‘C’: 1.0
Bayesian 95.6208 ‘C’: 1.0, ‘gamma’: ‘scale’, ‘kernel’: ‘rbf’

PSO 94.6337 ‘C’: 1.64, ‘kernel’: ‘rbf’, ‘gamma’: ‘scale’
GA 94.7936 ‘C’: 1.65, ‘kernel’: ‘rbf’, ‘gamma’: ‘scale’
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Figure 15. Hyperparameter tuning techniques versus score for Support Vector Classifier (SVC).

Figure 16. Score per parameter for Support Vector Classifier (SVC).

Table 6. Hyperparameter tuning for Logistic Regression.

HP Approach Accuracy Best Hyperparameters

Grid 95.0936 ‘C’: 10, ‘max_iter’: 20, ‘multi_class’: ‘ovr’, ‘penalty’:
‘l2’, ‘solver’: ‘saga’

Random 95.0936 ‘solver’: ‘saga’, ‘penalty’: ‘l2’, ‘multi_class’: ‘auto’,
‘max_iter’: 100, ‘C’: 10

Bayesian 95.0938 ‘C’: 10, ‘max_iter’: 20, ‘multi_class’: ‘ovr’, ‘penalty’:
‘l2’, ‘solver’: ‘saga’

PSO 94.1123 ‘solver’: ‘liblinear’, ‘penalty’: ‘l2’, ‘multi_class’:
‘auto’, ‘max_iter’: 30.0634765625

GA 94.2152 ‘solver’: ‘newton-cg’, ‘penalty’: ‘l2’, ‘multi_class’:
‘multinomial’, ‘max_iter’: 20
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Figure 17. Hyperparameter tuning techniques versus score for Logistic Regression (LR).

Figure 18. /hlScore per parameter for Logistic Regression (LG).

Table 7. Hyperparameter tuning for Naive Bayes.

HP Approach Accuracy Best Hyperparameters

Grid 71.4402 ‘var_smoothing’: 1 × 10−7

Random 71.4402 ‘var_smoothing’: 1 × 10−7

Bayesian 71.4402 ‘var_smoothing’: 1 × 10−7

PSO 78.3005 ‘var_smoothing’: 9.965 × 10−5

GA 78.3005 ‘var_smoothing’: 0.0001

The RC algorithm clearly showed the highest accuracy obtained by Grid Search. The
Grid Search, Random Search, and Bayesian Optimization hyperparameter tuning strategies
obtained almost the same accuracy for LG, SVC, RF, and NB. Meanwhile, Bayesian Opti-
mization showed noticeable superiority over the other hyperparameter tuning strategies
for the DT algorithm. However, PSO and GA showed significant improvements for the NB
accuracy. It is shown in the tables and figures that SVC gave the best accuracy both before
and after hyperparameter tuning. Bayesian Optimization yielded slightly higher accuracy
than Grid Search and Random Search when tuning SVC.
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Figure 19. Hyperparameter tuning techniques versus score for (NB).

6. Conclusions

Sentiment analysis has become a very useful method to understand how a population
feels about a given product, service, place, or even a public issue. In general, a machine
learning approach is used when a certain text needs to be sentimentally analyzed. The clas-
sification accuracy of each machine learning model can be further optimized through
hyperparameter tuning to achieve better accuracy than that obtained when using the
model’s default values of the hyperparameters. In this paper, five hyperparameter tuning
approaches are presented: Grid Search, Random Search, Bayesian Optimization, Particle
Swarm Optimization, and Genetic Algorithm. These approaches are used to perform
the hyperparameter tuning of six machine learning algorithms in order to sentimentally
analyze Arabic reviews. This paper is considered the first machine learning hyperparam-
eter tuning study on an Arabic text. Our results show that the Support Vector Classifier
offers the best accuracy both before and after hyperparameter tuning, with the highest
score of 95.6208 obtained when using Bayesian Optimization. Meanwhile, Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA) dramatically enhanced the score of the
Naive Bayes classifier.
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