
 informatics

Article

Literature Review of Deep Network Compression

Ali Alqahtani 1,2 , Xianghua Xie 1,* and Mark W. Jones 1

����������
�������

Citation: Alqahtani, A.; Xie, X.; Jones,

M.W. Literature Review of Deep

Network Compression. Informatics

2021, 8, 77. https://doi.org/

10.3390/informatics8040077

Academic Editor: Antony Bryant

Received: 30 September 2021

Accepted: 14 November 2021

Published: 17 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Swansea University, Swansea SA2 8PP, UK; amosfer@kku.edu.sa (A.A.);
m.w.jones@swansea.ac.uk (M.W.J.)

2 Department of Computer Science, King Khalid University, Abha 62529, Saudi Arabia
* Correspondence: x.xie@swansea.ac.uk

Abstract: Deep networks often possess a vast number of parameters, and their significant redundancy
in parameterization has become a widely-recognized property. This presents significant challenges
and restricts many deep learning applications, making the focus on reducing the complexity of
models while maintaining their powerful performance. In this paper, we present an overview of
popular methods and review recent works on compressing and accelerating deep neural networks.
We consider not only pruning methods but also quantization methods, and low-rank factorization
methods. This review also intends to clarify these major concepts, and highlights their characteristics,
advantages, and shortcomings.

Keywords: deep learning; neural networks pruning; model compression

1. Introduction

In recent years, deep learning has rapidly grown and begun to show its robust ability
in representation learning, achieving remarkable success in diverse applications. This
achievement has been possible through its ability to discover, learn, and perform automatic
representation by transforming raw data into an abstract representation. The process
of deep learning utilizes a hierarchical level of neural networks of different kinds, such
as multilayer perceptron (MLP), convolutional neural networks (CNNs), and recurrent
neural networks (RNNs). This hierarchical representation allows models to learn features
at multiple abstraction levels, meaning that complicated concepts can be learned from
simpler ones. Neurons in earlier layers of a network learn low-level features, while neurons
in later layers learn more complex concepts [1].

The achievement of neural networks in a variety of applications is accompanied
by a dramatic increase in computational costs and memory requirements. Due to the
sufficient amount of data and advanced computing power, neural networks have turned
into wider and deeper architectures, driving state-of-the-art performances in a wide range
of applications. Despite their great success, neural networks have a massive number
of parameters, and their significant redundancy in the parameterization has become a
widely-recognized property [2]. The over-parametrized and redundant nature of neural
networks incur expensive computational costs and high storage requirements. To classify a
single image, the VGG-16 model [3], for instance, requires more than 30 billion float point
operations (FLOPs), and contains about 138 million parameters with more than 500 MB of
storage space. This presents significant challenges and restricts many CNN applications.
Recognizing the importance of network units can help to reduce the model complexity by
discarding less essential units.

Most of the computational complexity originates in the convolutional layers due to
massive multiplication and addition operations, although they contain less parameters due
to parameter sharing. The number of FLOPs is utilized as a popular metric to estimate
the complexity of CNN models. The FLOPs in convolutional layers are calculated as
follows [4]:

Informatics 2021, 8, 77. https://doi.org/10.3390/informatics8040077 https://www.mdpi.com/journal/informatics

https://www.mdpi.com/journal/informatics
https://www.mdpi.com
https://orcid.org/0000-0003-1052-2657
https://orcid.org/0000-0002-2701-8660
https://orcid.org/0000-0001-8991-1190
https://doi.org/10.3390/informatics8040077
https://doi.org/10.3390/informatics8040077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/informatics8040077
https://www.mdpi.com/journal/informatics
https://www.mdpi.com/article/10.3390/informatics8040077?type=check_update&version=1

Informatics 2021, 8, 77 2 of 12

FLOPs = 2HW(CinK2 + 1)Cout, (1)

where H, W, Cout refers to the height, width and number of channels in the output tensor,
K is the kernel size, Cin denotes the number of input channels, and 1 is the corresponding
bias. In contrast, most of the weights parameters exist in fully-connected layers, where
the dense vector-matrix multiplications are very substantial resources. Table 1 repre-
sents the complexity of several CNNs’ architectures, which consist of two parts: (1) the
computational complexity is essentially related to the convolutional layers and (2) the
parameters in fully-connected layers dominate complexity. Accordingly, reducing the
computational complexity of the convolutional layers became the focus of most model
acceleration methods, while model compression methods mainly target the parameters of
the fully-connected layers.

Table 1. Summary of Modern CNNs with their performance, computational, and parameter complexities in ImageNet
database. M/B indicates million/billion (106/109), respectively.

Performance Computational Complexity Parameter Complexity

Year Network Layers (#) Size Top-1 (%) Top-5 (%) FLOPs Conv (%) FC (%) Par.(#) Conv (%) FC (%)

2012 AlexNet [5] 8 240 megabyte 36.70 15.30 724 M 91.9 8.1 61 M 3.8 96.2

2014 VGGNet [3] 16 528 megabyte 23.70 6.80 15.5 B 99.2 0.8 138 M 10.6 89.4

2014 GoogleNet [6] 22 88 megabyte 22.10 6.30 1.6 B 99.9 0.1 6.9 M 85.1 14.9

2015 ResNet [7] 50 98 megabyte 20.74 5.25 3.9 B 100 0 25.5 M 100 0

These complexities present significant challenges and restrict many applications. For
instance, deploying sizeable deep learning models to a resource-limited device leads to
various constraints as on-device memory is limited [8]. Therefore, reducing computational
costs and storage requirements is critical to widen the applicability of deep learning models
in a broader range of applications (e.g., mobile devices, autonomous agents, embedded
systems, and real-time applications). Reducing the complexity of models while maintaining
their powerful performance creates unprecedented opportunities for researchers to tackle
major challenges in deploying deep learning systems to a resource-limited device. Network
pruning focuses on discarding unnecessary parts of neural networks to reduce the compu-
tational costs and memory requirements associated with deep models. Pruning approaches
have received considerable attention as a way to tackle over-parameterization and redun-
dancy. Consequently, over-parameterized networks can be efficiently compressed and
allow for the acquisition of a small subset of the whole model, representing the reference
model with fewer parameters [9]. There is no authoritative guide for choosing the best
network architecture; a model may require a certain level of redundancy during model
training to guarantee excellent performance [10]. Hence, decreasing the size of a model
after training can be an effective solution.

Pruning approaches were conceptualized in the early 1980s and ’90s, and can be
applied to any part of deep neural networks [11–17]. Optimal Brain Damage (OBD) by
LeCun et al. [13], and Optimal Brain Surgeon (OBS) by Hassibi et al. [14] are considered
pioneering works of network pruning, demonstrating that several unimportant weights
can be removed from a trained network with little accuracy loss. Due to expensive com-
putation costs, these methods are not applicable to today’s deep models. Obtaining a
sub-network with fewer parameters without reducing accuracy is the main goal of pruning
algorithms. The pruned version, a subset of the whole model, can represent the reference
model at a smaller size or with a smaller number of parameters. Over-parameterized
networks can therefore be efficiently compressed while maintaining the property of better
generalization [18].

In this paper, we present an overview of popular methods and review recent works
on compressing and accelerating deep neural networks, which have received consider-
able attention from the deep learning community and have already achieved remarkable

Informatics 2021, 8, 77 3 of 12

progress. The types of compression methods discussed below are intended to provide an
overview of popular techniques used in the research of deep neural network compression
and acceleration.

The rest of this paper is organized as follows. Section 2 describes the methodology
used to collect related research papers and the scope of the literature. Section 3 presents
a detailed review of deep network compression, derived from our general classification
for deep network compression and acceleration. Section 4 summarizes and discusses the
future challenges reported within our collection. Finally, concluding remarks and summary
are provided in Section 5.

2. Methodology
2.1. Survey Search Methodology

A variety of concepts and methods are involved in obtaining a sub-network with fewer
parameters without reducing accuracy. Our search methodology was to collect, study, and
analyze many papers in the field of deep network compression and network pruning. In
our search of the literature, we started by looking at each individual journal and conference
in the computer vision and deep learning communities. We performed a keyword search,
e.g., ‘network compression’, ’network pruning’, ‘network acceleration’,’model compression
and acceleration’, or ‘compact network architectures’. We list all the literature sources
searched in Table 2.

Table 2. A list of literature sources searched for Deep Network Compression. We mainly use IEEE
Xplore, the ACM Digital Library, the Elsevier Library, the Springer Library, and Google Scholar to
search for literature.

Conferences and Journals Papers

Advances in Neural Information Processing Systems 13
International Conference on Learning Representations 12

IEEE Conference on Computer Vision and Pattern Recognition 5
CoRR 6

International Conference on Machine Learning 3
European Conference on Computer Vision 2

International Conference on Acoustics, Speech and Signal Processing 2
British Machine Vision Conference 2

Pattern Recognition 2
IEEE Transactions on Pattern Analysis and Machine Intelligence 1

IEEE International Conference on Computer Vision 1
Computer Vision and Image Understanding 1

International Conference on Pattern Recognition 1
Nature communications 1

International Conference on Applications of Intelligent Systems 1
Signal Processing 1

IEEE Access 1
IEEE International Joint Conference on Neural Networks 1
International Joint Conference on Artificial Intelligence 1

Total 57

2.2. Survey Scope

In scope: To fulfil the scope of our survey, we selected papers that focus on deep
network compression and model pruning approaches. We found and collected 57 papers
to include in our deep network survey. We pay attention to compression methods and
pruning levels for all papers whether a model is pre-trained or trained from scratch.

Out of scope: We restrict our literature to papers that include a review of deep network
compression approaches. Papers that focus on data compression are out of our survey’s
scope. Unlike model compression, data compression (i.e., text compression [19], genomic

Informatics 2021, 8, 77 4 of 12

compression [20], and image compression [21–23]) forms a central role to handle the
bottleneck of data storage, transmission, and processing.

2.3. Survey Classification

The recently advanced approaches for deep network compression and acceleration pre-
sented in this work can be classified into three categories: pruning methods, quantization
methods, and low-rank factorization methods.

3. Deep Network Compression
3.1. Pruning Methods

This section illustrates approaches that have been proposed to prune non-informative
parts from heavy, over-parameterized deep models, including weights (i.e., parameters or
connections) and units (i.e., neurons or filters). The core of network pruning is eliminat-
ing unimportant, redundant, or unnecessary parts according to the level of importance.
Pruning methods can be applied to pre-trained models or trained from scratch and are
further categorized into two classes according to pruning level: weights level and units
level. Weight-based pruning eliminates unnecessary, low-weight connections between
layers of a neural network while unit-based methods remove all weight connections to a
specific unit, where both income or outgoing weights are removed.

3.1.1. Weight-Based Methods

Several weight-based methods have been proposed to prune non-informative con-
nections. Recently, Han et al. [24] introduced a pruning method to remove connections
whose absolute values are smaller than a predefined threshold value calculated using
the standard deviation of a layer’s weights. The network is then retrained to account for
the drop in accuracy. Although Han’s framework received significant attention and has
become a typical method of network pruning, it focuses on the magnitude of weights,
relies on iterative pruning and fine-tuning, and requires a particular software/hardware
accelerator not supported by off-the-shelf libraries. Moreover, the reliance on a predefined
threshold is not practical and too inflexible for some applications.

Liu et al. [25] showed the possibility of overriding the retraining phase by random
reinitialization before the retraining step, which delivers equal accuracy with comparable
training time. Furthermore, Mocanu et al. [26] replaced the fully-connected layers with
sparsely-connected layers by applying initial topology based on the Erdős–Rényi random
graph. During training, fractions of the smallest weights are iteratively removed and
replaced with the new random weights. Applying initial topology allows for the finding
of a sparse architecture before training; however, this requires expensive training steps
and obviously benefits from iteratively random initialization. The random connectivity
of non-structured sparse models can also cause poor cache locality and jumping memory
access, which extremely limits the practical acceleration [27].

Through an iterative pruning technique, Frankle et al. [28] found that over- param-
eterized networks contain small sub-networks (winning tickets) that reach test accuracy
comparable to the original network. The obtained sparse network can be trained from
scratch using the same initialization as the original model to achieve the same level of
accuracy. Their core idea was to find a smaller architecture better suited to the target task
at the training phase. In a follow-up study, Frankle et al. [29] found that pruning networks
at initialization values does not work well with deeper architectures, and suggested setting
the weights to those obtained at a given early epoch in training. Various extensions have
been developed for further improvement and to experimentally analyze the existence of
the lottery hypothesis in other types of networks [30–33].

To overcome the weaknesses associated with unstructured pruning, strategies corre-
sponding to group-wise sparsity-based network pruning have been explored. Wen et al. [27]
proposed the Structured Sparsity Learning (SSL) method, which imposes group-wise spar-
sity regularization on CNNs, applying the sparsity at different levels of their structure

Informatics 2021, 8, 77 5 of 12

(filters, channels, and layers) to construct compressed networks. Lebedev et al. [34] also
employed group-wise sparsity regularization to shrink individual weights toward zero
so they can be effectively ignored. Furthermore, Zhou et al. [35] incorporated sparsity
constraints on network weights during the training stage, aiming to build pruned DNNs.
Although this proved successful in such sparse solutions, it results in damage to the original
network structure and there is still a need to adopt special libraries or use particular sparse
matrix multiplication to accelerate the inference speed in real applications.

It can be argued that the use of weight-based methods suffers from certain limitations.
The need to remove low-weight connections means that important neurons whose activa-
tion does not contribute enough due to low-magnitude income or outgoing connections
could be ignored. Moreover, the overall impact of weight-based pruning on network
compression is lower than neuron-based methods. Pruning a neuron eliminates entire
rows or columns of the weight matrices from both the former and later layers connected to
that neuron, while weight-based methods only prune the low-weight connections between
layers. To process the resulting sparse weight-matrices, some methods also require a par-
ticular software/hardware accelerator that off-the-shelf libraries do not support. Despite
these drawbacks, the weight-based methods can be applied in combination with unit-based
methods to add extra compression value.

3.1.2. Unit-Based Methods (Neurons, Kernels, and Filters)

Unit-based methods represent a pruning approach proposed to eliminate the least
important units. He et al. [36] developed a simple unit-based pruning strategy that involves
evaluating the importance of a neuron by summing the output weights of each one, and
eliminating unimportant nodes based on this. They also apply neuron-based pruning
utilizing the entropy of neuron activation. Their entropy function evaluates the activation
distribution of each neuron based on a predefined threshold, which is only suitable with a
sigmoid activation function. Since this method damages the network’s accuracy, additional
fine-tuning is required to obtain satisfactory performance. Alqahtani et al. [37] proposed a
majority voting technique to compare the activation values among neurons and assign a
voting score to quantitatively evaluate their importance, which helps to effectively reduce
model complexity by eliminating the less influential neurons. Their method simultaneously
identifies the critical neurons and prunes the model during training without involving any
pre-training or fine-tuning procedures.

Srinivas et al. [38] also introduced a unit-based pruning method by evaluating the
weights similarity of neurons in a layer. A neuron is removed when its weights are
similar to that of another in its layer. Mariet et al. [39] introduced Divnet, which selects
a subset of diverse neurons and merges similar neurons into one. The subset is selected
based on activation patterns by defining a probability measure over subsets of neurons.
As with others, these pruning methods require software/hardware accelerators that are
unsupported by off-the-shelf libraries and a multi-step procedure to prune neurons.

Filter-level pruning strategies have been widely studied. The aim of these strategies is
to evaluate the importance of intermediate units, where pruning is conducted according to
the lowest scores. Li et al. [40] suggested such a pruning method based on the absolute
weighted sum, and Liu et al. [41] proposed a pruning method based on the mean gradient
of feature maps in each layer, which reflects the importance of features extracted by
convolutional kernels. Other data-driven pruning methods have been developed to prune
non-informative filters. For instance, Polyak et al. [42] designed a statistical pruning
method that removes filters based on variance of channels by applying the feature maps
activation variance to evaluate the critical filters. Unimportant filters can also be pruned
according to the level of importance. Luo’s [43] pruning method is based on the entropy
of the channels’ output to evaluate the importance of their filters, and prunes the lowest
output entropy, while Hu et al. [44] evaluated the importance of filters based on the average
percentage of zero activations (APoZ) in their output feature maps.

Informatics 2021, 8, 77 6 of 12

Furthermore, Luo et al. [10] proposed the ThiNet method, which applies a greedy
strategy for channel selection. This prunes the target layer by greedily selecting the input
channel with the smallest increase in reconstruction error. The least-squares approach is
applied to indicate a subset of input channels which have the smallest impact to approxi-
mate the output feature map. A general channel pruning approach is also presented by
Liu et al. [45], where a layer-grouping algorithm is proposed to find coupled channels
automatically. Then a unified metric based on Fisher information is derived to evaluate the
importance of a single channel and coupled channels. These methods tend to compress net-
works by simply adopting straightforward selection criteria based on statistical information.
However, dealing with an individual CNN filter requires an intuitive process to determine
selective and semantically meaningful criteria for filter selection, where each convolution
filter responds to a specific high-level concept associated with different semantic parts. The
most recent work is a CNN pruning method inspired by neural network interpretability.
Yeom et al. [46] combined the two disconnected research lines of interpretability and model
compression by basing a pruning method on layer-wise relevance propagation (LRP) [47],
where weights or filters are pruned based on their relevance score. Alqahtani et al. [48]
proposed a framework to measure the importance of individual hidden units by comput-
ing a measure of relevance to identify the most critical filters, introducing the use of the
activation of feature maps to detect valuable information and the essential semantic parts
to evaluate the importance of feature maps.

It could be argued that compressing a network via a training process may provide
more effective solutions. Ding et al. [49] presented an optimization method that enforces
correlation among filters to converge at the same values to create identical filters, of
which, redundant ones are safely eliminated during training. He et al. [50] proposed
a filter pruning method which prunes convolutional filters in the training phase. After
each training epoch, the method measures the importance of filters based on L2 norm,
and the least essential filters are set to zero. He et al. [51] later iteratively measured the
importance of the filter by calculating the distance between the convolution kernel and
the origin or the geometric mean based on which redundant kernels are identified and
pruned during training. Liu et al. [52] trained an auxiliary network to predict the weights
of the pruned networks and estimate the performance of the remaining filters. Moreover,
Zhonghui et al. [53] applied a training objective to compress the model as a task of learning
a scaling factor associated with each filter and estimating its importance by evaluating
the change in the loss function. AutoPruner [54] embedded the pruning phase into an
end-to-end trainable framework. After each activation, an extra layer is added to estimate
a similar scaling effect of activation, which is then binarized for pruning. A significant
drawback of iterative pruning is the extensive computational cost; and pruning procedures
based on training iterations often change the optimization function and even introduce
hyper-parameters which make the training more challenging to converge.

3.2. Quantization Methods

Network quantization is a deep network compression procedure in which quantiza-
tion, low precision, or binary representations are used to reduce the number of bits when
representing each weight. Typical deep networks apply floating point (e.g., 32-bit) precision
for training and inference, which is accompanied by a dramatic increase in computational
costs, memory, and storage requirements. Several works [55–57] introduced low bit-width
models with a high level of accuracy, considering both activation and weight quantization.
In the parameter space, Gong et al. [58], and Wu et al. [8] applied Kmeans clustering on
the weight values for quantization. As a result, the network weights are stored in a com-
pressed format after completing the training process, which allows them to reduce storage
requirements and computational complexity. 8-bit quantization of the parameters has been
proved to achieve significant speedup with minimal accuracy loss [59]. Suyog et al. [60]
showed that truncating all parameters to 16-bits can result in a significant reduction in
memory usage and floating point operations without compromising accuracy.

Informatics 2021, 8, 77 7 of 12

Others have proposed to simultaneously prune and quantize the weights’ magnitudes
of a trained neural network. Han et al. [61] iteratively eliminated the unnecessary weight
connections and quantized the weights, which were then encoded to single-bit precision
by applying Huffman coding for further compression. This achieved state-of-the-art per-
formance with no drop in model accuracy. Soft weight-sharing [62] was also developed to
combine quantization and pruning approaches in one retraining procedure. Chen et al. [63]
introduced a HashedNets model that applied a random hash function on the connection
weights to force the weights to share identical values, resulting in a reduction in the number
of trainable parameters by grouping them into hash buckets. These pruning approaches
typically generate connection pruning in CNNs. In advanced cases, 1-bit quantization
is used to represent each weight. A number of binary-based methods exist to directly
train networks with binary weights (i.e., BinaryNet [64], BinaryConnect [65], and XNOR-
Networks [55]), who shared the idea of learning binary weights or activation during the
training process.

The disadvantages of binary networks include significant performance drops when
dealing with larger CNNs, and they ignore the impact of binarization on accuracy loss. To
overcome this, Hou et al. [66] employed a proximal Newton algorithm with a diagonal
Hessian approximation to minimize the overall loss associated with binary weights, and
Lin et al. [67] quantized the representations at each layer when computing parameter
gradients, converting multiplications into binary shifts by enforcing the values of the
neurons of power-of-two integers.

3.3. Low-Rank Factorization Methods

Low-rank approximation (factorization) is applied to determine the informative pa-
rameters, applying matrix or tensor decomposition. A weight matrix is factorized into
a product of two smaller matrices, performing a similar function to the original weight
matrix. In deep CNNs, the greatest computational cost results from convolution operations,
so compressing the convolutional layers would improve overall speedup and compression
rate. Convolutional units can be viewed as a 4D tensor, as the fact that the 4D tensor
consists of a significant amount of redundancy drives the idea of tensor decomposition,
which is an effective way to eliminate redundancy.

Low-rank factorization has been utilized for model compression and acceleration
to achieve further speedup and obtain small CNN models. Rigamonti et al. [68] post-
processed the learned filters by employing a shared set of separable 1D filters to ap-
proximate convolutional filters with low-rank filters, and Denton et al. used low-rank
approximation and clustering schemes to reduce the computational complexity of CNNs.
Jaderberg et al. [69] suggested using different tensor decomposition schemes, achieving
double speedup for a particular convolutional layer with little drop in model accuracy.
Low-rank factorization has also been used to exploit low-rankness in fully-connected layers.
Denil et al. [9] utilized a low-rank decomposition of the weight matrices which learned from
an auto-encoder to reduce the number of dynamic parameters, while Sainath et al. [70]
showed that low-rank factorization of the last weighting layer significantly reduces the
number of parameters. Lu et al. [71] adopted SVD to composite the fully-connected layer,
attempting to design compact multi-task deep learning architectures. Low-rank approxi-
mation is made in a layer-by-layer fashion: at each layer, the layer is fine-tuned based on
a reconstruction objective, while keeping all other layers fixed. Following this approach,
Lebedev et al. [72] applied the non-linear least-squares algorithm, a type of Canonical
Polyadic Decomposition (CPD), to approximate the weight tensors of the convolution
kernels. Tai et al. [73] introduced a closed-form solution to obtain results of the low-rank
decomposition through training constrained CNNs from scratch. The Batch Normaliza-
tion layer (BN) is utilized to normalize the activations of the latent, hidden layers. This
procedure has been shown to be effective in learning the low-rank constrained networks.

Low-rank factorization approaches are computationally expensive because they in-
volve decomposition operations. They also cannot perform global parameter compression

Informatics 2021, 8, 77 8 of 12

as low-rank approximation is carried out layer-by-layer [74]. Undertaking sufficient re-
training is the only technique which can be used to achieve convergence when compared to
the original model. Despite their downsides, these approaches can be integrated with con-
ventional pruning methods to obtain more compressed networks for further improvement.

4. Discussion of Challenges and Future Directions

After we present a review of network compression and acceleration works and classify
them into three categories, we, here, highlight opportunities and potential future directions.
Reducing the complexity of models while maintaining their high performance creates
unprecedented opportunities for researchers to tackle the challenges of deploying deep
learning systems to a resource-limited device and increasing deep network models’ appli-
cability to a broader range of applications. Choosing well-suited methods to compress and
accelerate deep neural networks relies on the applications and requirements. For instance,
pruning and low-rank factorization-based methods may present effective solutions when
dealing with pre-trained models. In particular tasks (i.e., object detection), low-rank fac-
torization may be better suited when accelerating convolutional layers, while the pruning
method can be adopted when compressing fully-connected layers.

Applying initial topology or random connectivity of sparse models allows for the find-
ing of a sparse architecture. Although this process has been proved successful [25,26,28–33],
it is still part of a relatively young and emerging field. Most of the proposed methods
damage the original network structure, demonstrating the necessity to adopt some special
libraries or to use particular sparse matrix multiplication to accelerate the inference speed
in real applications. Random connectivity causes cache and memory access issues so that
the acceleration of even high sparsity models is very limited. Therefore, more theoretical
analysis requires further study to better understand how to improve sparse models and
introduce more effective methods.

The effectiveness of deep representations has been shown to extend to network prun-
ing [46,48]. For instance, the pruning methods presented in [48] make use of quantifying
the importance of latent representations, compressing and accelerating CNNs for image
classification tasks, including CIFAR object recognition, CUB-200 fine-grained classification,
and ImageNet large-scale object classification. Applying such pruning methods to real
applications in several different computer vision tasks, including object detection, semantic
segmentation, image generation, image retrieval, and style transfer, is a fertile avenue for
future research, as these visual tasks require richer knowledge and more abstract feature
representation than image classification, meaning that they may face a sharp reduction
in model performance [75,76]. Research could visually explore how such applications are
capable of making use of our pruning method, particularly semantic segmentation and
image generation.

Several filter-level pruning strategies, proposed for CNN compression and accelera-
tion approach, mainly focus on filter-level pruning [4,10,40,41,44,48], where removing the
unimportant filter in its entirety does not affect the network structure. This would allow for
more significant compression and acceleration by other compression approaches, such as
the parameter quantization approach and low-rank factorization methods. Although these
approaches are computationally expensive and cannot perform global parameter compres-
sion, integrating them with filter-level pruning methods would obtain more compressed
networks for further improvement. It would also be fruitful to explore the usage of a hybrid
scheme for network compression, where the advantages of each network compression
category can be exploited to prune models further.

There are also several challenges and extensions we perceive as useful research di-
rections. The first would be to extend the multi-step filter-level pruning framework and
combine it with an iterative pruning method to more deeply explore the problem and
accomplish effective CNN compression and acceleration, as pruning a network via a train-
ing process may provide more effective solutions. Secondly, most pruning methods are
data-driven based, so their speed efficiency is a significant concern. Although pruning-

Informatics 2021, 8, 77 9 of 12

based methods inspired by neural network interpretability achieved better results, it can
be time-consuming to complete their process. Although a few images are selected from
each category to form our evaluation set used to find the optimal channel subset, the [48]
method still requires more than seven minutes to estimate IoU scores and MV values for
one block only on ResNet-50 and ImageNet. Therefore, parallel implementation could be a
promising solution, where CNN-based methods are more suitable for efficient paralleliza-
tion benefit on both CPUs and GPUs. Consideration of a set of nodes, filters, and layers
for pruning, instead of one by one in a greedy manner is also worthwhile to study in our
future work.

Overall, the potential for deep network compression is vast; the field has many open
problems to understand and explore. The remarkable advancement of neural network
interpretability should encourage the development of efficient methods for network com-
pression and acceleration to facilitate the deployment of advanced deep networks.

5. Conclusions

The over-parametrized and redundant nature of network models incurs expensive
computational costs and high storage requirements, presenting significant challenges, and
restricts many of their applications. Therefore, reducing the complexity of models while
maintaining their powerful performance is always desirable. This paper has discussed
necessary background information for deep network compression. We presented a com-
prehensive, detailed review of recent works on compressing and accelerating deep neural
networks. Popular methods such as pruning methods, quantization methods, and low-rank
factorization methods were described. We hope this paper can act as a keystone for future
research on deep network compression.

Author Contributions: Conceptualization, methodology, validation, formal analysis, investigation,
writing—original draft preparation, writing—review and editing: All. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Deanship of Scientific Research, King Khalid University
of Kingdom of Saudi Arabia under research grant number (RGP1/207/42).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
2. Denton, E.L.; Zaremba, W.; Bruna, J.; LeCun, Y.; Fergus, R. Exploiting linear structure within convolutional networks for

efficient evaluation. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada,
8–13 December 2014; pp. 1269–1277.

3. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

4. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning convolutional neural networks for resource efficient inference.
In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

5. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of
the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105.

6. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 1–9.

7. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

8. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized convolutional neural networks for mobile devices. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4820–4828.

Informatics 2021, 8, 77 10 of 12

9. Denil, M.; Shakibi, B.; Dinh, L.; Ranzato, M.; De Freitas, N. Predicting parameters in deep learning. In Proceedings of the
Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 2148–2156.

10. Luo, J.; Zhang, H.; Zhou, H.; Xie, C.; Wu, J.; Lin, W. ThiNet: Pruning CNN Filters for a Thinner Net. IEEE Trans. Pattern Anal.
Mach. Intell. 2019, 41, 2525–2538. [CrossRef] [PubMed]

11. Mozer, M.C.; Smolensky, P. Skeletonization: A technique for trimming the fat from a network via relevance assessment.
In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 1988; Volume 1, pp. 107–115.

12. Reed, R. Pruning algorithms: A survey. IEEE Trans. Neural Netw. 1993, 4, 740–747. [CrossRef] [PubMed]
13. LeCun, Y.; Denker, J.S.; Solla, S.A. Optimal brain damage. In Proceedings of the Advances in Neural Information Processing

Systems, Denver, CO, USA, 26–29 November 1990; pp. 598–605.
14. Hassibi, B.; Stork, D.G. Second order derivatives for network pruning: Optimal brain surgeon. In Proceedings of the Advances in

Neural Information Processing Systems, Denver, CO, USA, 1993; pp. 164–171.
15. Weigend, A.S.; Rumelhart, D.E.; Huberman, B.A. Generalization by weight-elimination applied to currency exchange rate

prediction. In Proceedings of the IEEE International Joint Conference on Neural Networks, Seattle, WA, USA, 8–12 July 1991;
pp. 2374–2379.

16. Hanson, S.; Pratt, L. Comparing biases for minimal network construction with back-propagation. In Proceedings of the Advances
in Neural Information Processing Systems, Denver, CO, USA, 1988; pp. 177–185.

17. Weigend, A.S.; Rumelhart, D.E.; Huberman, B.A. Back-propagation, weight-elimination and time series prediction. In Connection-
ist Models; Morgan Kaufmann: Burlington, MA, USA, 1991; pp. 105–116. [CrossRef]

18. Arora, S.; Ge, R.; Neyshabur, B.; Zhang, Y. Stronger generalization bounds for deep nets via a compression approach. In Proceed-
ings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 254–263.

19. Li, Z.; Zhang, Z.; Zhao, H.; Wang, R.; Chen, K.; Utiyama, M.; Sumita, E. Text Compression-aided Transformer Encoding.
IEEE Trans. Pattern Anal. Mach. Intell. 2021, 1. [CrossRef] [PubMed]

20. Amich, M.; Luca, P.D.; Fiscale, S. Accelerated implementation of FQSqueezer novel genomic compression method. In Proceedings
of the International Symposium on Parallel and Distributed Computing, Warsaw, Poland, 5–8 July 2020; pp. 158–163.

21. Weinberger, M.; Seroussi, G.; Sapiro, G. The LOCO-I lossless image compression algorithm: Principles and standardization into
JPEG-LS. IEEE Trans. Image Process. 2000, 9, 1309–1324. [CrossRef] [PubMed]

22. Nagoor, O.; Whittle, J.; Deng, J.; Mora, B.; Jones, M.W. MedZip: 3D Medical Images Lossless Compressor Using Recurrent
Neural Network (LSTM). In Proceedings of the International Conference on Pattern Recognition, Milan, Italy, 10–15 January 2021;
pp. 2874–2881.

23. Nagoor, O.; Whittle, J.; Deng, J.; Mora, B.; Jones, M.W. Lossless Compression For Volumetric Medical Images Using Deep Neural
Network With Local Sampling. In Proceedings of the IEEE International Conference on Image Processing, Abu Dhabi, United
Arab Emirates, 25–28 October 2020; pp. 2815–2819.

24. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. In Proceedings of the
Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 1135–1143.

25. Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the value of network pruning. In Proceedings of the International
Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

26. Mocanu, D.C.; Mocanu, E.; Stone, P.; Nguyen, P.H.; Gibescu, M.; Liotta, A. Scalable training of artificial neural networks with
adaptive sparse connectivity inspired by network science. Nat. Commun. 2018, 9, 2383. [CrossRef] [PubMed]

27. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in deep neural networks. In Proceedings of the Advances
in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 2074–2082.

28. Frankle, J.; Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In Proceedings of the International
Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

29. Frankle, J.; Dziugaite, G.K.; Roy, D.M.; Carbin, M. Stabilizing the lottery ticket hypothesis. arXiv 2019, arXiv:1903.01611.
30. Morcos, A.; Yu, H.; Paganini, M.; Tian, Y. One ticket to win them all: Generalizing lottery ticket initializations across datasets and

optimizers. In Proceedings of the Neural Information Processing Systems, Vancouver, BC, Canada, 10–12 December 2019; pp.
4932–4942.

31. Hubens, N.; Mancas, M.; Decombas, M.; Preda, M.; Zaharia, T.; Gosselin, B.; Dutoit, T. An Experimental Study of the Impact of
Pre-Training on the Pruning of a Convolutional Neural Network. In Proceedings of the International Conference on Applications
of Intelligent Systems, Las Palmas de Gran Canaria, Spain, 7–12 January 2020; pp. 1–6.

32. Zhou, H.; Lan, J.; Liu, R.; Yosinski, J. Deconstructing lottery tickets: Zeros, signs, and the supermask. In Proceedings of the
Neural Information Processing Systems, Vancouver, BC, Canada, 10–12 December 2019; pp. 3597–3607.

33. Yu, H.; Edunov, S.; Tian, Y.; Morcos, A.S. Playing the lottery with rewards and multiple languages: Lottery tickets in RL and NLP.
arXiv 2020, arXiv:1906.02768.

34. Lebedev, V.; Lempitsky, V. Fast ConvNets using group-wise brain damage. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2554–2564.

35. Zhou, H.; Alvarez, J.M.; Porikli, F. Less is more: Towards compact CNNs. In Proceedings of the European Conference on
Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 662–677.

36. He, T.; Fan, Y.; Qian, Y.; Tan, T.; Yu, K. Reshaping deep neural network for fast decoding by node-pruning. In Proceedings of the
International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 4–9 May 2014; pp. 245–249.

http://doi.org/10.1109/TPAMI.2018.2858232
http://www.ncbi.nlm.nih.gov/pubmed/30040622
http://dx.doi.org/10.1109/72.248452
http://www.ncbi.nlm.nih.gov/pubmed/18276504
http://dx.doi.org/10.1016/B978-1-4832-1448-1.50016-0
http://dx.doi.org/10.1109/TPAMI.2021.3058341
http://www.ncbi.nlm.nih.gov/pubmed/33577448
http://dx.doi.org/10.1109/83.855427
http://www.ncbi.nlm.nih.gov/pubmed/18262969
http://dx.doi.org/10.1038/s41467-018-04316-3
http://www.ncbi.nlm.nih.gov/pubmed/29921910

Informatics 2021, 8, 77 11 of 12

37. Alqahtani, A.; Xie, X.; Essa, E.; Jones, M.W. Neuron-based Network Pruning Based on Majority Voting. In Proceedings of the
International Conference on Pattern Recognition, Milan, Italy, 10–15 January 2021; pp. 3090–3097.

38. Srinivas, S.; Babu, R.V. Data-free Parameter Pruning for Deep Neural Networks. In Proceedings of the British Machine Vision
Conference, Swansea, UK, 7–10 September 2015; pp. 31.1–31.12.

39. Mariet, Z.; Sra, S. Diversity networks: Neural network compression using determinantal point processes. In Proceedings of the
International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.

40. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient ConvNets. In Proceedings of the International
Conference on Learning Representations, Toulon, France, 24–26 April 2017.

41. Liu, C.; Wu, H. Channel pruning based on mean gradient for accelerating Convolutional Neural Networks. Signal Process. 2019,
156, 84–91. [CrossRef]

42. Polyak, A.; Wolf, L. Channel-level acceleration of deep face representations. IEEE Access 2015, 3, 2163–2175. [CrossRef]
43. Luo, J.H.; Wu, J. An entropy-based pruning method for cnn compression. arXiv 2017, arXiv:1706.05791.
44. Hu, H.; Peng, R.; Tai, Y.W.; Tang, C.K. Network trimming: A data-driven neuron pruning approach towards efficient deep

architectures. arXiv 2016, arXiv:1607.03250.
45. Liu, L.; Zhang, S.; Kuang, Z.; Zhou, A.; Xue, J.; Wang, X.; Chen, Y.; Yang, W.; Liao, Q.; Zhang, W. Group Fisher Pruning for

Practical Network Compression. In Proceedings of the International Conference on Machine Learning, Virtual, Vienna, Austria,
18–24 July 2021; pp. 7021–7032.

46. Yeom, S.K.; Seegerer, P.; Lapuschkin, S.; Wiedemann, S.; Müller, K.R.; Samek, W. Pruning by Explaining: A Novel Criterion for
Deep Neural Network Pruning. Pattern Recognit. 2021, 115, 107899. [CrossRef]

47. Bach, S.; Binder, A.; Montavon, G.; Klauschen, F.; Muller, K.R.; Samek, W. On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation. PLoS ONE 2015, 10, e0130140. [CrossRef] [PubMed]

48. Alqahtani, A.; Xie, X.; Jones, M.W.; Essa, E. Pruning CNN filters via quantifying the importance of deep visual representations.
Comput. Vis. Image Underst. 2021, 208, 103220. [CrossRef]

49. Ding, X.; Ding, G.; Guo, Y.; Han, J. Centripetal SGD for pruning very deep convolutional networks with complicated structure.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 4943–4953.

50. He, Y.; Kang, G.; Dong, X.; Fu, Y.; Yang, Y. Soft filter pruning for accelerating deep convolutional neural networks. In Proceedings
of the International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 2234–2240.

51. He, Y.; Liu, P.; Wang, Z.; Hu, Z.; Yang, Y. Filter pruning via geometric median for deep convolutional neural networks acceleration.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20June 2019;
pp. 4340–4349.

52. Liu, Z.; Mu, H.; Zhang, X.; Guo, Z.; Yang, X.; Cheng, K.T.; Sun, J. Metapruning: Meta learning for automatic neural network
channel pruning. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019;
pp. 3296–3305.

53. You, Z.; Yan, K.; Ye, J.; Ma, M.; Wang, P. Gate decorator: Global filter pruning method for accelerating deep convolutional neural
networks. In Proceedings of the Neural Information Processing Systems, Vancouver, BC, Canada, 10–12 December 2019; pp.
2133–2144.

54. Luo, J.H.; Wu, J. Autopruner: An end-to-end trainable filter pruning method for efficient deep model inference. Pattern Recognit.
2020, 107, 107461. [CrossRef]

55. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. XNOR-Net: Imagenet classification using binary convolutional neural
networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016;
pp. 525–542.

56. Zhao, Y.; Gao, X.; Bates, D.; Mullins, R.; Xu, C.Z. Focused quantization for sparse CNNs. In Proceedings of the Neural Information
Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 5584–5593.

57. Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; Chen, Y. Incremental network quantization: Towards lossless CNNs with low-precision weights.
arXiv 2017, arXiv:1702.03044.

58. Gong, Y.; Liu, L.; Yang, M.; Bourdev, L. Compressing deep convolutional networks using vector quantization. arXiv 2014,
arXiv:1412.6115.

59. Vanhoucke, V.; Senior, A.; Mao, M.Z. Improving the speed of neural networks on CPUs. In Proceedings of the NIPS Workshop
on Deep Learning and Unsupervised Feature Learning, Grenada, Spain, 16 December 2011.

60. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep learning with limited numerical precision. In Proceedings of the
International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1737–1746.

61. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization
and Huffman coding. In Proceedings of the International Conference on Learning Representations, San Juan, Puerto Rico,
2–4 May 2016.

62. Ullrich, K.; Meeds, E.; Welling, M. Soft weight-sharing for neural network compression. In Proceedings of the International
Conference on Learning Representations, Toulon, France, 24–26 April 2017.

63. Chen, W.; Wilson, J.; Tyree, S.; Weinberger, K.; Chen, Y. Compressing neural networks with the hashing trick. In Proceedings of
the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 2285–2294.

http://dx.doi.org/10.1016/j.sigpro.2018.10.019
http://dx.doi.org/10.1109/ACCESS.2015.2494536
http://dx.doi.org/10.1016/j.patcog.2021.107899
http://dx.doi.org/10.1371/journal.pone.0130140
http://www.ncbi.nlm.nih.gov/pubmed/26161953
http://dx.doi.org/10.1016/j.cviu.2021.103220
http://dx.doi.org/10.1016/j.patcog.2020.107461

Informatics 2021, 8, 77 12 of 12

64. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.

65. Courbariaux, M.; Bengio, Y.; David, J.P. Binaryconnect: Training deep neural networks with binary weights during propagations.
In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015;
pp. 3123–3131.

66. Hou, L.; Yao, Q.; Kwok, J.T. Loss-aware binarization of deep networks. In Proceedings of the International Conference on
Learning Representations, Toulon, France, 24–26 April 2017.

67. Lin, Z.; Courbariaux, M.; Memisevic, R.; Bengio, Y. Neural networks with few multiplications. In Proceedings of the International
Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.

68. Sironi, A.; Tekin, B.; Rigamonti, R.; Lepetit, V.; Fua, P. Learning Separable Filters. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2754–2761.

69. Jaderberg, M.; Vedaldi, A.; Zisserman, A. Speeding up Convolutional Neural Networks with Low Rank Expansions. In Proceed-
ings of the British Machine Vision Conference, Nottingham, UK, 1–5 September 2014.

70. Sainath, T.; Kingsbury, B.; Sindhwani, V.; Arisoy, E.; Ramabhadran, B. Low-rank matrix factorization for Deep Neural Network
training with high-dimensional output targets. In Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, Prague, Czech Republic, 22–27 May 2013; pp. 6655–6659.

71. Lu, Y.; Kumar, A.; Zhai, S.; Cheng, Y.; Javidi, T.; Feris, R. Fully-Adaptive Feature Sharing in Multi-Task Networks with
Applications in Person Attribute Classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1131–1140.

72. Lebedev, V.; Ganin, Y.; Rakhuba, M.; Oseledets, I.; Lempitsky, V. Speeding-up Convolutional Neural Networks Using Fine-
tuned CP-Decomposition. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA,
7–9 May 2015.

73. Tai, C.; Xiao, T.; Wang, X.; Weinan, E. Convolutional neural networks with low-rank regularization. In Proceedings of the
International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.

74. Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. Model compression and acceleration for deep neural networks: The principles, progress,
and challenges. IEEE Signal Process. Mag. 2018, 35, 126–136. [CrossRef]

75. Zeng, D.; Zhao, F.; Shen, W.; Ge, S. Compressing and accelerating neural network for facial point localization. Cogn. Comput.
2018, 10, 359–367. [CrossRef]

76. Ge, S. Efficient deep learning in network compression and acceleration. In Digital Systems; IntechOpen, London, UK, 2018.

http://dx.doi.org/10.1109/MSP.2017.2765695
http://dx.doi.org/10.1007/s12559-017-9506-0

	Introduction
	Methodology
	Survey Search Methodology
	Survey Scope
	Survey Classification

	Deep Network Compression
	Pruning Methods
	Weight-Based Methods
	Unit-Based Methods (Neurons, Kernels, and Filters)

	Quantization Methods
	Low-Rank Factorization Methods

	Discussion of Challenges and Future Directions
	Conclusions
	References

