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Abstract: Aquatic products are popular among consumers, and their visual quality used to be
detected manually for freshness assessment. This paper presents a solution to inspect tuna and
salmon meat from digital images. The solution proposes hardware and a protocol for preprocessing
images and extracting parameters from the RGB, HSV, HSI, and L*a*b* spaces of the collected images
to generate the datasets. Experiments are performed using machine learning classification methods.
We evaluated the AutoML models to classify the freshness levels of tuna and salmon samples
through the metrics of: accuracy, receiver operating characteristic curve, precision, recall, f1-score,
and confusion matrix (CM). The ensembles generated by AutoML, for both tuna and salmon, reached
100% in all metrics, noting that the method of inspection of fish freshness from image collection,
through preprocessing and extraction/fitting of features showed exceptional results when datasets
were subjected to the machine learning models. We emphasize how easy it is to use the proposed
solution in different contexts. Computer vision and machine learning, as a nondestructive method,
were viable for external quality detection of tuna and salmon meat products through its efficiency,
objectiveness, consistency, and reliability due to the experiments’ high accuracy.

Keywords: computer vision; machine learning; tuna meat freshness; salmon meat freshness

1. Introduction

Aquatic products have received great popularity because of their high nutritional
value and delicious taste. When consumed, their quality determines their value and
price [1]. This study’s motivation focuses on food security, particularly in consuming fish-
based products, ensuring an impartial classification of tuna and salmon meat’s freshness level.

The aquaculture industry has been demanding inspection of fish quality for a long
time, since fishery product deterioration happens very quickly through biochemical pro-
cesses and microbial degradation mechanisms [2]. The examination of foodstuffs for
various quality factors is very repetitive, and is also very subjective. Traditionally, visual
quality detection is predominantly done by trained specialists, who approach quality as-
sessment in two ways: seeing and feeling. Due to the strong relationship between fish’s
freshness and quality, color and odor are widely used to measure freshness levels. Manual
processing and grading are inevitably influenced by human factors, such as mistakes,
occasional omission in processing, and fatigue. In addition to being costly, this method is
highly variable, and decisions are not always consistent between specialists or from day to
day [1].

The destruction of fish and the high inspection cost through sensory methods inhibit
the scalability of these quality characteristics. The increased industrial production of tuna
and salmon makes the quick and accurate assessment of the fish’s freshness a significant
challenge [3].

According to Bremner and Sakaguchi [4], the techniques applied in assessing the
quality of fish in sensory aspects depend on chemical and microbiological measurements.
However, the sensitivity of microbiological and chemical methods in the last stage of
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deterioration may not be suitable in the initial fish storage phase. Alternatively, computer
vision (CV) [5] and machine learning (ML) [6] can provide fast, objective, and robust
measurement [7]. CV has been widely applied for quality assurance purposes in different
industries. Several researchers, listed in the next section, studied meat products within this
perspective, including beef, pork, chicken, and fish, through measuring size, shape, and
color parameters using various CV and ML methods [8].

This paper proposes a computer vision system (CVS) [9] to capture the image of
tuna and salmon meat samples. The extraction of meat samples always takes place with
fresh fish. The system consists of hardware to create a controlled environment for captur-
ing images, in addition to a colorimetric feature extractor for generating a dataset. The
features are developed from the histograms of the respective color channels of the red,
green, and blue (RGB) [10]; hue, saturation, and value (HSV) [11]; hue, saturation, and
intensity (HSI) [12]; and L*a*b* [13] spaces. We investigate the automated machine learning
(AutoML) method [14], which automates the tasks of applying ML to real-world problems,
to prove the robustness of the proposed CVS using the color features extracted from the
samples in the ML models. AutoML covers the complete pipeline from the raw dataset to
the deployable ML model.

Background

Trientin, Hidayat, and Darana [15] proposed the classification of beef’s freshness
through the sensory analysis of the samples’ color, using two models: K-nearest neighbors
(KNN) [16] model and artificial neural network (ANN) [17] with retro propagation. The
authors captured the samples’ images in a controlled environment, using a digital camera.
RGB parameters were extracted and converted to HSV parameters to check the brightness
difference. The classification process using KNN obtained 75%, while the ANN model’s
best precision was 71.4286%. The KNN model proved to be the best solution.

Jang, Cho, Kim, and Kim [18] proposed method of freshness classification of beef
using ultrasound images and ANN. ANN uses 262 parameters extracted from character-
istics of colors and the histogram of the picture. The experiment provides five grades
of classification with the following performances: very fresh (100%), fresh (100%), little
fresh (66.67%), without freshness (93.33%), and spoiled (81.25%). The total forecast of the
performance of the proposed method was 83.33%.

Adi, Pujiyanto, and Nurhayati [19] presented a study of the classification of beef. The
determination of meat quality was carried out visually, based on the KNN model, using
the image processing technique [20]. The authors used color characteristics of meat and
fat to differentiate quality levels, analyzed through images with variations in the distance
between the camera and the sample, camera resolution and tilt angle, and rotating the
sample body. The parameters of the RGB and HSV color spaces represented the colors of
meat and fat. The results indicated that the developed system could acquire images and
identify the quality of meat.

Winiarti, Azhari, and Agusta [21] proposed identifying beef quality by sensory anal-
ysis of the color observed in samples photographed by a digital camera. The proposed
system captures the sample image and calculates its’ [12] RGB color space parameters. The
authors used the histogram for each color channel in the sample to group 40 meat samples
into four clusters, using the K-means model [22,23] representing four categories: very vi-
able, viable, less viable, or unfeasible. The determination of the categories is obtained based
on the calculation of the Euclidean distance. The system classified forty meat samples,
demonstrating that color parameters can group meat samples into different clusters.

Arsalane, Barbri, Tabyaoui, Klilou, Rhofir, and Halimi [24] presented the implementa-
tion of the principal component analysis (PCA) [25] and support vector machine (SVM) [26]
models to classify and predict the freshness of beef. A data set of eighty-one beef images
was analyzed based on the HSI color space. The beef images were captured in a con-
trolled environment. The authors used the PCA model as a projection model and the
SVM to classify and identify beef. The results obtained from the PCA projection model
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show the projection of three groups representing the freshness of beef meat during the
days of refrigerated storage. The SVM model got a 100% success rate of classification
and identification.

Hosseinpour, Ilkhchi, and Aghbashlo [27] presented an application based on ANN
embedded in a smartphone to classify beef’s freshness based on texture. One hundred and
sixty-seven meat samples were captured in a real environment and underwent preprocess-
ing to define the region of interest. Parameters of the RGB color space were extracted and
converted to grayscale. As a next step, the authors extracted the texture from the images
and developed an app based on ANN to assess the quality of beef samples. The results
showed that the ANN model could satisfactorily predict the quality values of new pieces
with an accuracy of 99%.

Tan, Husin, and Ismail [28] presented a CV and deep learning (DL) [29,30], the solution
to predict beef quality through the sample color. According to the standard color charts,
the authors photographed four hundred sirloin steaks, and experts assigned the beef color
score. The meat image was preprocessed and submitted to the DL classifier, which obtained
an accuracy of 90%. The results showed that CV integrated with DL can be an exemplary
implementation to predict beef quality using color scores.

Taheri-Garavand, Fatahi, Shahbazi, and de la Guardia [31] proposed a CV for intel-
ligent and nondestructive prediction of chicken meat’s freshness frozen at 4 ◦C. Three
thousand samples from thirty chickens were captured and labelled by specialists for
thirteen consecutive days to observe deterioration. The authors extracted RGB his, and
L*a*b* [13] color channels’ parameters from the images. A genetic algorithm [32] selected
features and the classification was made by an ANN, reaching an accuracy of 98%.

Sun, Young, Liu, Chen, and Newman [33] investigated pork’s freshness through its
color characteristics, observed in digital images. The study compared the performance of
the traditional regression methods [6]. One hundred loin samples were selected to deter-
mine correlation values between Minolta colorimeter measurements and image processing
features. Eighteen image color features were extracted from three different RGB (red, green,
blue) models, HSI (hue, saturation, intensity), and L*a*b* color spaces. When comparing
Minolta colorimeter values with those obtained from image processing, correlations were
significant (p < 0.0001) for L* (0.91), a* (0.80), and b* (0.66). Two comparable regression
models (linear and stepwise) were used to evaluate prediction results of pork color at-
tributes. The proposed linear regression model had a coefficient of determination of 0.83
compared to the stepwise regression results (0.70). These results indicate that computer
vision methods have the potential to be used as a tool in predicting pork color attributes.

Taheri-Garavand, Fatahi, Banan, and Makino [34] proposed a method based on the
ANN to assess the common carp’s freshness (Cyprinus carpio) during storage on ice.
Sample images were captured in a controlled environment. Parameters of the RGB, his, and
L*a*b* color spaces were extracted from 1344 images of samples. Subsequently, the artificial
bee colony–artificial neural network (ABC–ANN) hybrid algorithm [35] was applied to
select the best resources. Finally, SVM, KNN, and ANN models classified fish’s freshness
as the most common method. The KNN classifier’s accuracy was 90.48%, the SVM was
91.52%, while the ANN model obtained the best accuracy, 93.01%.

Lugatiman, Fabiana, Echavia, and Adtoon [36] presented a CVS to classify Yellowfin
tuna meat’s freshness through colorimetric analysis. Sixty images of the tuna meat were
captured in a controlled environment, and from these the authors extracted parameters
from the RGB color space. The study reports that an expert labelled the samples at freshness
levels of excellent, fair, and acceptable, and a KNN classification model was used, obtaining
an accuracy of 86.6%.

Finally, Moon, Kim, Xu, Na, Giaccia, and Lee [37] proposed assessing the freshness
of salmon, beef, and tuna meat using spectral data obtained from the samples using a
portable visible/near-infrared (VIS/NIR) spectrometer. The authors used a convolutional
neural network (CNN) [38] to analyze the spectral response data. Each food sample was
labelled as follows: Atlantic salmon (AS), Pacific salmon (PS), tuna, and beef, and the
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samples were 3202 for SA, 3607 for SP, 2863 for tuna, and 5042 for beef. The pieces used
were composed of unfrozen salmon, frozen tuna imported from Indonesia, and beef. Three
categories (“fresh”, “probably spoiled”, and “spoiled”) for each type of food were coded
and provided as output vectors for the last layer connected to the CNN. The total accuracy
was 85% for salmon (84% for Atlantic salmon and 85% for Pacific salmon), 88% for tuna,
and 92% for beef, indicating that the handheld VIS/NIR spectrometer with CNN-based
classification model can assess the freshness of food with high accuracy.

Although many studies present solutions for classifying food products, few studies
focused on categorizing the freshness of tuna and salmon meat. As for studies with
tuna meat, none of them uses samples extracted through sashibo, a minimally invasive
method commonly used by specialists. Besides, the scarcity of specialists in Brazil and
the high commercial value of this type of food product impose new ways to automate the
classification task. A summary of the studies is shown in Table 1.

Table 1. Summary of studies on freshness classification of meat products.

Authors Type of Sample Number of Samples Color Spaces Classifiers Accuracy

Trientin, Hidayat, and Darana [15] Beef Uninformed RGB, HSV
KNN 75%

ANN 71.4286%

Jang, Cho, Kim, and Kim [18] Beef Uninformed Ultrasound image ANN 83.33%

Adi, Pujiyanto, and Nurhayati [19] Beef Uninformed RGB, HSV KNN It only mentions the
adequacy of the method

Winiarti, Azhari, and Agusta [21] Beef 40 RGB, HSI K-means Grouping freshness
levels into clusters

Arsalane, Barbri, Tabyaoui, Klilou,
Rhofir, and Halimi [24] Beef 81 HSI SVM 100%

Hosseinpour, Ilkhchi, and
Aghbashlo [27] Beef 167 RGB, Grayscale ANN 99%

Tan, Husin and Ismail [28] Sirloin steaks 400 Color scoring DL 90%

Taheri-Garavand, Fatahi, Shahbazi,
and de la Guardia [31] Chicken 3000 RGB, HSI, L*a*b* ANN 98%

Sun, Young, Liu, Chen, and
Newman [33]

Pork 100
RGB, HSI, L*a*b*,
Minolta CR-400

colorimeter

Linear Regression 83%

Stepwise Regression 70%

Taheri-Garavand, Fatahi, Banan,
and Makino [34]

Carp 1344 RGB, HSI, L*a*b*

SVM 91.52%

KNN 90.48%

ANN 93.01%

Lugatiman, Fabiana, Echavia, and
Adtoon [36] Tuna 60 RGB KNN 86.6%

Moon, Kim, Xu, Na, Giaccia, and
Lee [36]

Beef 5042

VIS/NIR spectrometer CNN

92%

Atlantic Salmon 3020 84%

Pacific Salmon 3601 85%

Tuna 2863 88%

In addition to this Introduction, this paper features four more sections. Section 2
presents the materials and methods used to construct the proposed CVS; Section 3 reports
the colorimetric features extracted from the sample images and used as predictor variables
in the ML classifiers. Section 4 shows the results and discusses the performance of each
pipeline to classify the freshness of meat samples. Finally, in the last section, the conclusions
are presented.

2. Materials and Methods

This section shows the preparation of tuna and salmon meat samples to be pho-
tographed and the CVS built to capture the images. We tested CVS with several configura-
tions, including the light source, the angulation, and distance between camera and sample,
the camera settings, and the background color. We opted for the CVS configuration that
made it easier to define the region of interest of the image automatically, using the feature
extractor script encoded in Python [39].
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This section also presents the image preprocessing to define the region of interest in
the image, and extract the parameters from the RGB, HSV, HSI, and L*a*b* color spaces.

2.1. Samples Preparation

Samples of the tuna meat of Bigeye species extracted with sashibo were obtained from
a fish industry in Recife (State of Pernambuco, Brazil) as experimental samples. As this
species’ classification of the meat-based freshness is carried out through sensory analysis,
the Bigeye tuna was chosen because it represents the vast majority of tuna species available
from the industry. Yellowfin tunas were also made available, with insufficient samples to
automate this species’ classification process. We followed the extraction of samples from
frozen body fish at minus 2 ◦C.

We chose to extract the tuna meat samples with sashibo, an instrument widely used by
specialists for tuna classification. The sashibo also allows the extraction of the meat sample
by puncture, without the need to open the fish body, since the data collection was carried
out in the fish industry and not as the end customer, with no possibility of cutting the
body of the fish. The tuna meat sample collected by sashibo has a very small observational
area, a fact that has caused it to become challenging to extract features that contain enough
information to perform a precise classification of freshness levels.

Unlike tuna, salmon samples were collected at a restaurant specializing in Japanese
cuisine, located in the city of Caruaru (State of Pernambuco, Brazil). As the restaurant
represents the end customer, the fish is classified for freshness while still whole, and then
cut into pieces (to be served immediately or frozen), allowing us to collect samples with a
larger observational area than tuna samples. We monitored the reception of the fish and
the classification of their freshness was completed by a specialist. A piece of meat from the
salmon was cut and delivered to us to be photographed.

Figure 1 shows the difference in the observational area for feature extraction in tuna
samples (Figure 1a) and salmon samples (Figure 1b).
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Figure 1. (a) Tuna and (b) salmon meat samples extracted from fresh fish, to be photographed.

We emphasize that both the tuna and the salmon used were fresh fish. Samples were
placed on cards made of white paper and transported to a laboratory to be photographed
in the industry/restaurant itself. According to the observation of colourimetric patterns,
specialists in tuna and salmon freshness classification labelled each sample at a specific
level of freshness. Meat texture, blood on the gills, and odour were also parameters used
by experts. The cards favoured the collection since they avoided manipulating the pieces
that broke easily. Each card contained only a sample and was placed individually in the
studio to be photographed. The total time between the extraction of the sample from the
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fish body and its image capture took, on average, 3 min. We discarded the pieces after the
capture session.

2.2. Computer Vision System

The CVS for capturing images consisted of a studio with thirty-six white and circularly
LED lights at the top, with 6500 K. The studio used to acquire the images, shown in Figure 2,
prevents sidelight entry since the sample had walls. An iPhone XR smartphone camera
was positioned at the top of the studio’s opening, and the height between the camera
and pieces was 12.5 cm. The camera was configured without zoom, flash, f/1.8 aperture,
optical stabilization, natural lighting, and touch focus. The images were taken on a white
background and saved on the smartphone’s camera roll in JPEG format as matrices with
dimensions 4608 × 2592 pixels.
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2.3. Preprocessing of Images

The computer used to perform the images’ preprocessing consists of a MacBook Pro
2017 notebook, i5 2.3GHz, 32GB of RAM. For image analysis, we used a feature extractor
script. Figure 3 shows the image preprocessing steps [20].
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the original image to 600 × 400 pixels; step 2: grayscale image, created from the mask that uses a
limit for (a) red and (b) orange variations; step 3: grayscale image, generated from Gaussian filter;
step 4: binary image generated from thresholding; step 5: contours defined; step 6: cut the contoured
area to determine the region of interest.

The script initially resizes images to 600 × 400 pixels to reduce processing and converts
the original RGB image to the HSV format. For defining the region of interest in tuna
meat samples pictures, the script uses a three-dimensional range of H, S, and V minimum
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(160, 0, 0) and maximum (180, 255, 255), representing variations of red tones. For the images
of salmon meat samples, the range varied from (5, 50, 50) to (15, 255, 255), representing
variations in shades of orange, the predominant color in the samples. The script then
applies a grayscale mask to the red/orange-coloured pixels found in the range, generating
a Gaussian noisy grayscale image.

The primary sources of Gaussian noise in digital images are lighting or high-temperature
problems during acquisition, transmission, or processing. In digital image processing,
a Gaussian noise can be caused by an abrupt change in an image’s pixel values. Filter
techniques are used with the disadvantage of blurring it a little to mitigate noise. The
Gaussian filter reduces an input signal’s noise level to reduce distortion in an image [40].
The script applies a Gaussian filter to the Gaussian noisy grayscale image, obtaining
blurred vision.

From the blurred image, thresholding is applied to segment the image, creating a
binary image. Then, the script analyzes the binary image to define the sample contour.
This will find the shape consists of analyzing the binary image’s pixels, and those with 0
are outside of the outline, while pixels with values 1 are inside the design. Again, in RGB
format, a picture is obtained with the region of interest outlined. Finally, the script makes
a rectangular cut, producing the smallest bounding rectangle possible for the contour,
resulting in an area of interest in the image. The script gets the histogram and parameters
of the RGB, HSV, HSI, and L*a*b* color spaces from the preprocessed images to use them
as predictor variables in classifiers based on ML techniques.

The tuna sample dataset contained ninety-five samples, while the salmon dataset
included one hundred and five samples. The two datasets were built in a controlled
environment. Using a controlled environment constitutes the first phase of the research,
making it possible to quickly test the colourimetric variables extracted from the samples.

As the tuna dataset was the first to be built, we tried to capture the pieces of meat in an
uncontrolled environment, encountering difficulties such as the absence of benches in the
fish unloading area and the process of removing the fish from non-standard refrigerated
trucks. For example, there are situations in which fish are removed from refrigerated and
weighed trucks and are punctured with sashibo on the scale itself. The meat is sometimes
classified in the hand of the specialist, not favouring photography. In other situations,
several fish are punctured with sashibo, and the meat sample is placed over the fish’s body
to be classified, which also does not favour photography. The partner industry specialist
sometimes used the controlled environment proposed in this research since he had a setting
to type the freshness of the meat in a more standardized way. We believe that creating an
environment within the industry’s unloading area, which can accommodate the extracted
sample and have a lighting and background pattern, can diminish specialists’ inherent
subjectivity of classifying tuna. It could mitigate errors or bias. Our perception showed that
standardized hardware and capture protocol, of meagre cost, can increase the quality of the
specialist’s service during the collection. With the experience of collecting tuna samples,
we collected salmon samples directly in the controlled environment.

The two sample datasets columns consist of the parameters of the four studied color
spaces. The freshness level labels identified by the specialist have been added.

The tuna tags can denote five classifications of freshness levels when observing colouri-
metric parameters: #1, #2+, #2, #2−, and #3, in disbelieving order, label #1 represents the
classification “most fresh”. Label #3 represents the lowest level of freshness but is still
acceptable for consumption. The collection of tuna samples show only levels #2+, #2, #2−,
and #3. According to the specialist, tuna with a freshness level #1 is rare.

Ninety-five tuna and fifty salmon samples were analyzed in this study. Salmon
classification labels denote only three levels of freshness: “very fresh”, “fresh”, and
“immediate consumption”.

The low number of tuna samples was justified by a recent study and the extreme
difficulty in the dataset construction process, which relies on fish, the industry routine,
and the specialist’s ability to monitor the researchers’ work. The specialist focuses on
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placing the sashibo samples directly on the white cards to be photographed, and explaining
why he labelled the separate piece with a specific classification, causing a delay in the
process. Another factor appears in that fishing boats have caught tuna of different species,
although the vast majority are Bigeye tuna. However, although Yellowfin tuna were also
detected in smaller numbers, we could not collect their samples. Our presence during
unloading fish from refrigerated trucks represents a significant change in the industry’s
freshness classification process. Fish are usually removed from the refrigerated truck when
purchase orders are registered in the industry, often causing us to have access to few
samples after sometimes four hours of waiting in an environment without a waiting room
and a fishy smell.

The low number of salmon samples is due to a recent study and the reduced amount
of fish received by the partner restaurant per week.

Finally, the samples collection process was impacted by SARS-CoV-2 since consumer
demand for fresh fish has declined considerably. Restaurants had low customer numbers
since Brazil presented with an increase in the contagion curve of SARS-CoV-2. The collec-
tion process could have a larger team, but the sanitary measures prevented many people in
the industry and the restaurant.

2.4. Color Space Parameters

The script took the RGB color space parameters directly from the histogram images
since the camera captures these in RGB format to identify the fish meat’s freshness through
color aspects. These parameters represent the intensity of red, green, and blue colors. The
script calculated the color spaces HSV, HSI, and L*a*b*.

To form a color with RGB, three light beams (one red, one green, and one blue) must
be superimposed, employing the principle of human eye functionality (sensitivity of the
retina to three types of specific light spectra). Each of the beams is called a component of
that color. Each component has an arbitrary intensity, ranging from 0 to 255. The RGB
color model is additive because the three light beams are added together, and their light
spectra form the final color spectrum. Red, green, and blue are primary colors because they
can produce secondary colors from their combinations. Zero intensity for each component
gives the darkest color (black), and the full intensity of each gives the lightest color (white).
When the powers for all components are equal, the result is a shade of grey, darker or
lighter depending on the intensity. When the forces are different, the result is a colored
tint. The primary colors were standardized by the CIE (Commission Internationale de
l’Éclairage) in wavelengths: red (700 nm), green (546.1 nm), and blue (435.8 nm) [11].

The hue saturation value (HSV) color space was created by Alvy Ray Smith in 1978.
Commonly used in CV applications, the HSV color space is formed by the components H
(hue), S (saturation), and V (value). The H component, called hue, can be understood as the
hue of the color; it measures the dominant wavelength of the color and can be interpreted
as the distance to red. Their values vary around the vertical axis of a hex cone, measured in
degrees, ranging from 0 to 360. The hex cone represents the graph of the HSV color space.
The S component or saturation, also called “purity”, has 0 to 100% values. The smaller this
value, the more gray the image will be (less pure), while the higher the value, the more
“pure” the image. Finally, the V component, or value, is analogous to the brightness/light
of the color, also ranging between 0% and 100% [11].

The hue saturation intensity (HSI) space was created to allow another form of image
processing. The HSI color space separates intensity I from H (hue) and S (saturation). The
H and S components of the HSI color space represent similar concepts to the H and S
components of the HSV color space. At the same time, the I value of HSI embodies the
achromatic notion of intensity, being similar to brightness in HSV. However, the equations
that convert RGB components to HSI differ from those that convert RGB to HSI. The
graphical representation of the HSI is a bicone (two cones) joined by the base [12].

In general, colors differ in chromaticity and luminance. The parameters of the L*a*b*
color space created by the CIE correlate color values with visual perception. This color
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space was created based on the Opposite Color Theory [41], in which two colors cannot
be green and red at the same time or yellow and blue at the same time. The L* parameter
indicates brightness, and the a* and b* parameters represent the chromatic coordinates,
with a* being the red/green coordinate (+a indicates red and −a indicates green) and b*
the yellow/blue coordinate (+b indicates yellow and −b indicates blue) [13].

Following CIE guidelines, in which L*a*b* is one of the spaces for comparing different
colors, industries with plastic, ink, printing, food, and textile industries use this space to
identify product color attributes and deviations from a standard color. Small differences
can be found by a color measuring instrument, even when two colors look the same to one
person. Color differences are defined by the numerical comparison between the sample
and the standard [42].

To convert RGB values to L*a*b*, RGB components must be linearized concerning
light [13]. To do so, we convert RGB components into XYZ components of the CIE XYZ color
space [43], and then convert the XYZ components into the L*a*b* color space components
using the D65 illuminant values.

The script automatically extracts the bands R, G, and B from the histogram when the
image’s region of interest is defined. Three features are extracted for R, G, and B bands:
the means of all histogram pixels. Then, the images are converted from RGB to HSV, HSI,
and L*a*b*. The respective means of the histogram parameters are extracted through all
pixels, generating nine more features in the dataset. Six more features are removed from
the HSV color space: means of the pixels of the peak histogram and the median of the ridge
of the histogram of the H, S, and V channels. In total, eighteen features are available in the
dataset to be analyzed by classification models.

3. Color Features and AutoML

This section will discuss features extracted from samples based on colorimetric pat-
terns and the AutoML method used to test the ML model.

3.1. Color Features

We begin the discussion by analyzing the feature correlation matrix of the datasets
shown in Figure 4.
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The features r, g, b represent the mean of all histogram points for channels R, G, and
B. The saturationHsv, hueHsv, valueHsv features represent the saturation, hue, and value
values of the HSV color space. Using values above 150 of the saturationHsv parameter, we
calculate the peak of the HSV histogram for tones of red (for tuna samples) and tones of
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orange (for salmon samples). We emphasize that saturation values above 150 represent
strong tones of the color in question since saturation can be understood as the intensity of
the color. Features histR, histG, and histB represent the peak of the histogram of channels H,
S, and V. Features medianR, medianG, and medianB represent the median of the previous
histograms. The saturationHSI, hueHSI, and intensityHsi features represent the HSI color
space’s saturation, hue, and intensity values. Finally, the features lLab, aLab, and bLab
represent L*a*b* color space values. The analysis of the correlation matrices presented in
Figure 4 shows a strong correlation (above 90%), giving us the certainty that information
redundancy disrupts the models, since they are subject to duplicated information that is not
always useful for learning model. The monotony of data suggests applying preprocessing
feature techniques so that ML models do not have higher computational costs for training.
Quickly finding the best feature preprocessing method to deliver the ideal datasets so that
classifiers are trained and generate good classification models becomes challenging, given
the number of combinations that can be made, which justifies our choice to use AutoML.

We see in Figure 5 the number of samples in each class or freshness level. We can see
in Figure 5a that there are a different number of samples for each class, with the dataset of
unbalanced tuna samples. Tuna freshness levels, being categorical variables, were coded
into numerical variables: level 2− was coded as 0, level 3 was coded as 1, level 2 was
coded as 2, and level 2+ was coded similar to 3. Class 0 is the majority, while class 2 is
the minority.
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The dataset of salmon samples is also unbalanced, as shown in Figure 5b, where class
0 is the majority and class 1 is the minority. Class 0 represents the lowest freshness level,
labelled “immediate consumption”. Class 1 represents the label “fresh”, and finally, class 2
represents the class with the highest level of freshness, labelled “very fresh”.

We use the uniform manifold approximation and projection (UMAP) dimensionality
reduction technique [44] to understand how the proposed feature choice is adequate to
classify the freshness of tuna and salmon meat. Any other dimensionality reduction tech-
nique could have been used. The purpose of using a dimensionality reduction technique is
to make it possible to visualize, in a two-dimensional orthogonal cartesian axis, whether
the existing classes in the dataset form a well-defined cluster, and the UMAP technique is
suitable for this purpose.

In Figure 6, we see that UMAP has successfully captured the four tuna meat freshness
classes existing in the dataset. We can also observe that the freshness classifications are
dismissed as clearly distinct. Only two samples with legend 0 appear further away from
their true cluster and may be samples of mixed freshness. As with the tuna freshness
classes, UMAP successfully captured the three freshness levels of salmon meat, as shown
in Figure 6b. The clustering graphs in Figure 6 prove that the features proposed to classify
tuna meat freshness levels are also suitable for organizing salmon meat freshness levels.
We understand that such features can be applied to other food products. The clustering
graph in Figure 6 proves the adequacy of the features proposed in this paper for evaluating
colorimetric patterns of tuna meat freshness.
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3.2. AutoML

We understand the need for CVS validation through ML methods. There are several
algorithm classifiers of ML. Defining the parameters that must be used during the execution
of each algorithm to control the training process and ensure the best results is computa-
tionally expensive and may discourage further experiments, as each problem behaves in a
specific way. We used an AutoML method to reduce the costs in the development process
and tested many classifiers in conjunction with preprocessing, feature preprocessing, and
balancing techniques. We understand that generated AutoML models that present good
metrics encourage the use of CVS in other contexts, attempts to increase datasets of tuna
and salmon samples, and above all, the development of new classification models.
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AutoML refers to techniques for automatically discovering well-performing models
for predictive modelling tasks with very little user involvement. AutoML improves ML
efficiency and accelerates the research. The AutoML pipeline allows for automating the
preprocess, cleaning the data, selecting and constructing appropriate features, selecting a
proper model family, optimizing model hyperparameters, post-process ML models, and
critically analyzing the results [45].

In this study, we chose to use the Auto-Sklearn framework [46], an open-source library
written in Python. It makes use of the popular Scikit-Learn machine learning library for
data transforms and ML algorithms. It uses a Bayesian Optimization search procedure to
discover a top-performing model pipeline for a given dataset efficiently.

The benefit of Auto-Sklearn is that in addition to discovering the data preparation and
model that performs best for a dataset, it can learn from models that performed well on
similar datasets and automatically create an ensemble of top-performing models discovered
as part of the optimization process [46].

We performed a random dataset split in the classification process, considering 80% for
training data and 20% for test data. The training base had 76 samples in the tuna dataset,
while the test base had 19 pieces. The training base consists of 84 examples in the salmon
dataset and the test base of 21 selections.

Cross-validation [47] with ten folders was performed in the training data, and we
made predictions using test data to check the accuracy and ROC_AUC of the models in the
pipeline. The execution time of tuning for each pipeline was specified as 720 s.

4. Results and Discussion

To analyze freshness levels, we use PipelineProfiler [48], a tool that enables the in-
teractive exploration of pipelines generated by AutoML systems. Figures 7 and 8 show
the PipelineProfiler that applied the tuna and salmon samples dataset to the AutoML
system, respectively, to compare different pipelines that predict freshness levels. The main
components of PipelineProfiler are the primitives (A), the pipeline matrix (B), and the
pipeline comparison view (C), shown in Figures 7 and 8.

The pipeline matrix models the pipelines as a set of primitives that can be effectively
displayed in a matrix to summarize a collection of pipelines concisely. The pipeline matrix
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shows a tabular summary of all the pipelines in the pool. The pipeline comparison view con-
sists of a node-link diagram that offers either an individual pipeline or a visual-difference
overview of multiple pipelines selected in the matrix representation. Each primitive (node)
is color-coded in the summary graph to indicate the pipeline where it appears. If a primi-
tive is present in multiple pipelines, all corresponding colors are displayed. If a primitive
appears in all selected pipelines, no color is displayed.
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To compare pipeline patterns, we sought to identify common patterns in the best
pipelines in the PipelineProfiler. To this end, we first sorted the primitives by type and the
pipelines by performance. This was useful to uncover patterns.

As we saw in Figure 5, the tuna and salmon sample datasets are unbalanced. In
cases of unbalanced dataset predictions, minority classes may never be predicted, even in
models with high accuracy [6]. In this study, we need the minority class of tuna (class 2)
and salmon (class 1) to be accurately predicted, as fish’s commercial values and shelf-life
change depending on these classifications, justifying the importance of class balancing
techniques. To do so, we used one approach to address the imbalanced training dataset to
oversample the minority class to train AutoML models. The approach involves duplicating
examples in the minority class, although these examples do not add any new information
to the model. Instead, recent examples can be synthesized from the existing samples. It
consists of a technique of data augmentation for the minority class and is referred to as
the synthetic minority oversampling technique (SMOTE) [49]. We will not evaluate the
class balancing primitive in PipelineProfiler. We emphasize that we generated the AutoML
model without class balancing and other techniques, with the SMOTE technique being the
one that obtained the best values of the evaluated metrics.
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We evaluated the AutoML models to classify the freshness levels of tuna and salmon
samples through the metrics: accuracy [50], receiver operating characteristic (ROC) curve [51],
precision [52], recall [53], f1-score [54], and confusion matrix (CM) [55].

Accuracy is the proportion of the total number of correct predictions [50]; the ROC
curve is a graph showing the performance of a classification model at all classification
thresholds. This curve plots two parameters: true positive rate and false-positive rate [51].
Precision is the fraction of relevant instances among retrieved instances [52], while recall is
the fraction of retrieved cases [53]. The f1-score combines recall with accuracy so that they
bring a single number [54]. Finally, a confusion matrix is a specific table layout that allows
visualization of the performance of an algorithm. Each row of the matrix represents the
instances in an actual class, while each column represents the instances in a predicted class,
or vice versa [55].

We first analyzed the PipelineProfiler generated from the tuna dataset, shown in
Figure 7. Thirty-two pipelines were analyzed; eight exceeded the 720 s time limit set for
the tuning. We can see that 100% of the pipelines presented the categorical transformer [56]
and numerical transformer [56] techniques in the preprocessing primitives.

To build a classification pipeline for identifying the freshness of tuna meat, we evalu-
ate different ML classifiers: Random Forest (RF) [57], Passive Aggressive (PA) [58], Extra
Tree [59], Linear Discriminant Analysis (LDA) [60], Library Support Vector Machine (lib-
svm_svc) [61], Multilayer Perceptron (MLP) [62], Stochastic Gradient Descent (SGD) [63],
Quadric Discriminant Analysis (QDA) [64], Gradient Boosting (GB) [65], and Ensemble [66]
methods, combined with preprocessing, feature preprocessor, and balancing techniques.

Without loss of understanding, we will call the Ensemble model, the set of pipelines
chosen by AutoML to classify the freshness of samples.

In Figure 7, we see the pipelines, accuracy, weights in the Ensemble, and mean fit
time. The pipelines #2, #6, #9, #14, #17, #18, #22, #23, #24, #25, #26, #27, #28, #29, #30, #31,
and #32 were out of the Ensemble, even with some of them showing high accuracy, which
leads us to conclude that Auto-Sklearn uses other criteria to assign weights to pipelines in
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the Ensemble. Pipelines #25, #26, #27, #28, #29, #30, #31, and #32 exceeded the established
processing time limit. Pipelines #1 and #21 had the greatest weight in the Ensemble
and are highlighted in the pipeline comparison section (C) in Figure 7. Pipeline #1, blue
node, presents a feature agglomeration technique as a feature preprocessing primitive and
libsvm_svc classifier. Pipeline #21 presents a feature polynomial technique as a feature
preprocessing primitive and SGD classifier. We noticed that the pipelines that presented
greater mean fit time have SG as a classifier.

Table 2 shows the Ensemble model metrics generated by AutoML. The accuracy,
precision, recall, and f1-Score have maximum values (optimal values) equal to 100%,
demonstrating exceptional results. Support values represent the numbers of samples in
each class.

Table 2. Ensemble model metrics for sorting tuna samples.

Class Precision Recall F1-Score Support

0 1.0 1.0 1.0 7
1 1.0 1.0 1.0 5
2 1.0 1.0 1.0 3
3 1.0 1.0 1.0 4

accuracy 1.0 1.0 1.0 19
macro avg 1.0 1.0 1.0 19
weight avg 1.0 1.0 1.0 19

The ROC curve is shown in Figure 9. The area under the curve of the four classes
representing the freshness of tuna meat equals 1.0, corroborating that the model assertively
predicts 100% of the classes.
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The feature importance graph is shown in Figure 10. The hueHSI feature was consid-
ered the most relevant for the Ensemble, followed by the hueHSV feature. The histR and B
features were considered equally important to the Ensemble, having less relevance than
the previous ones. The other features were not important.

To illustrate how well-used the class balancing techniques were, we generated the CM
from a prediction made by the Ensemble for freshness tuna classification, Figure 11. We
realized that 100% of the samples were classified assertively.

For salmon classification, AutoML generated thirty-six pipelines, as shown in Figure 8. The
RF, LDA, Adaboost [67], libsvm_svc, Extra Tree, PA, KNN, MLP, Decision Tree (DT) [68],
Bernoulli naïve Bayes (bernoulli_nb) [69], and GB classifiers were tested. Pipelines #3, #4,
#20, #22, #30, #31, #32, #33, #34, #35, and #36 were left out of the Ensemble. We highlight that
pipelines #3, #4, #20, and #22 were out of the Ensemble, even with high accuracy. Pipeline
#30 had low accuracy, while pipelines #31, #32, #33, #34, #35, and #36 had a processing
time greater than the established limit and were not considered in the Ensemble. Pipelines
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#1 and #29 were considered the most important in the Ensemble and are highlighted in
section (C) of Figure 8. Pipeline #1, blue nodes, presented with the Extra Tree technique as
a primitive feature preprocessor and MLP classifier. Pipeline #29, orange nodes, presented
the fast_ica technique as a primitive feature preprocessor classifier bernoulli_nb. We realize
that the biggest mean fit time is linked to the GB classifier.
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The precision, recall, f1-score, and accuracy metrics of the AutoML-generated Ensem-
ble for salmon freshness rating are shown in Table 3. As with the tuna dataset metrics, the
salmon dataset is displayed at its’ maximum values, the best possible values, showing how
easy it was to extend the proposed CVS to another context.

Table 3. Ensemble model metrics for sorting salmon samples.

Class Precision Recall F1-Score Support

0 1.0 1.0 1.0 6
1 1.0 1.0 1.0 9
2 1.0 1.0 1.0 6

accuracy 1.0 1.0 1.0 21
macro avg 1.0 1.0 1.0 21
weight avg 1.0 1.0 1.0 21

The ROC curve shown in Figure 12 presents an area value equal to 1.0 for all classes
of salmon freshness levels, corroborating the excellent results of the Ensemble.

The feature importance graph shown in Figure 13 highlights that the peaks of the HSV
histogram, represented by the histR, histG, and histB features, are extremely relevant for
the Ensemble, with the histR feature being the most pertinent. Feature R also has central
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importance, and finally feature G and intensityHSI appear in the chart, but to lesser extent
than those mentioned. The other features appear without relevance.

Finally, to illustrate the relevance of applying class balancing techniques and mitigate
the possibility that minority classes could be misclassified, we present in Figure 14 the CM
of the prediction made by the Ensemble for the classification of salmon freshness. The
samples were assertively classified in their entirety.
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5. Conclusions

This paper describes a CV solution for tuna and salmon meat samples’ freshness
classification. The CVS provides a useful CV application combined with ML methods
to estimate tuna freshness in four categories, and the freshness of salmon in three cate-
gories. The system includes image acquisition, preprocessing techniques, extraction of
characteristics from color spaces, and classification using AutoML. We use Auto-Sklearn
to quickly and reliably find the best combinations of preprocessing, feature preprocessor,
and balancing techniques, as well as classifiers to classify tuna and salmon meat freshness
through colorimetric parameters extracted from meat sample images. To analyze freshness
levels, we used the PipelineProfiler, which enables the interactive exploration of pipelines
generated by AutoML systems.

As the datasets of tuna and salmon samples were unbalanced, and given the impor-
tance of assertively classifying minority classes, we chose to use the SMOTE technique
to balance the classes due to the commercial value of the fish. We noticed that 100% of
pipelines used numeric and categorical transformations as the preprocessing primitive.

For tuna classification, thirty-two pipelines were analyzed; four exceeded the 720 s
time limit set for the tuning. Eight pipelines were dropped out of the Ensemble for
exceeding the 720 s processing limit.

The Ensemble generated by AutoML was composed of pipelines #1 (libsvm_svc
classifier), #3 (RF classifier), #4 (RF classifier), #5 (libsvm_svc classifier), #7 (RF classifier),
#8 (RF classifier), #10 (PA classifier), #11 (QDA classifier), #12 (LDA classifier), #13 (RF
classifier), #15 (RF classifier), #16 (RF classifier), #19 (MLP classifier), #20 (MLP classifier),
#21 (SGD classifier). Pipelines #1 and #21 had the greatest weights in the composition of the
Ensemble. In total, 100% of the pipelines used numerical and categorical transformation
techniques in the preprocessing primitive.

The metrics used to evaluate Ensemble’s performance for tuna classification were
accuracy, ROC curve, precision, recall, f1-score, and confusion matrix (CM). All metrics pre-
sented values equal to 100% assertiveness, an excellent result demonstrating the adequacy
of the CVS built for the task of classifying tuna meat freshness.

We used the same method to rate salmon freshness with the encouraging results
obtained in the tuna experiment and to check whether CVS could easily be used in other
grading contexts using color standards. As we did with the tuna experiment, we also
used the SMOTE technique as class balancing. The AutoML tested thirty-six pipelines
and generated an Ensemble composed of twenty-five pipelines, obtaining accuracy, ROC
curve, precision, recall, f1-score, and confusion matrix (CM) metrics at their maximum
values, with 100% assertiveness, demonstrating the power of CVS and ease of use in other
contexts. Six pipelines passed the 720 s processing limit. One hundred per cent of the
pipelines used numerical and categorical transformation techniques in the preprocessing
primitive. The pipelines that make up the Ensemble are #1 (MLP classifier), #2 (MLP
classifier), #5 (LDA classifier), #6 (MLP classifier), #7 (MLP classifier), #8 (MLP classifier), #
9 (RF classifier), #10 (Extra Tree classifier), #11 (RF classifier), #12 (RF classifier), #13 (RF
classifier), #14 (MLP classifier), #15 (RF classifier), # 16 (RF classifier), #17 (RF classifier),
#18 (RF classifier), #19 (RF classifier), #21 (PA classifier), #23 (KNN classifier), #24 (LDA
classifier), #25 (DT classifier), #26 (MLP classifier), #27 (MLP classifier), #28 (MLP classifier),
and #29 (bernoulli_nb classifier). Pipelines #1 and #29 were the ones with the greatest
weight in the Ensemble. The presence of the GB classifier in the pipeline was associated
with a greater mean fit time.

Comparing the accuracy metric of our work with all the results listed in Table 1, none
of them reaches 100%, noting that our CVS can represent an alternative for testing in
the contexts of related works. Comparing our research with previous work specifically
related to tuna classification, Lugatiman, Fabiana, Echavia, and Adtoon. [36] presented
a KNN-based solution with 86.6% accuracy. Moon, Kim, Xu, Na, Giaccia, and Lee [37]
proposed a CNN for the same task, obtaining an accuracy of 88%. For the classification of
salmon freshness, the authors. achieved an accuracy of 84% for Atlantic salmon and 85%
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for Pacific salmon. Our research presents classification models with greater accuracy than
the studies [36,37].

We emphasize that we are not comparing the sample collection protocol and extracting
features from the images in our study with the studies [36,37]. However, we understand
that these approaches directly affect the quality of the constructed classification models.
We are just presenting an alternative CVS model to the CVS models of Lugatiman et al. and
Moon et al., after an exhaustive combination of data preprocessing, feature preprocessor,
classifiers, and balancing results models with greater accuracy.

The main contributions of this research stand out: construction of a controlled envi-
ronment for sample collection that can be implemented to standardize the classification
of the samples by the specialist; an easily extendable script extractor feature for other
food contexts; and the analysis of several ML models for a variety of tuna and salmon
meat freshness. We concluded that the development of hardware and protocol for image
collection, datasets with color pattern information, and ML models’ application could be
considered reliable, fast, and nondestructive to classify tuna and salmon meat extracted
using sashibo.

Limitations were the low amount of tuna and salmon meat samples, emphasizing this
as a recent study. Data collection is dependent on the availability of fish and the access that
the industry and restaurant allow us. For future assignments, we suggest tests with more
samples and with models not covered by AutoML. DL approaches will be considered as
soon as a dataset containing a larger volume of samples is available.

Author Contributions: Conceptualization, E.C.M., L.M.A. and J.G.d.A.T.F.; methodology, E.C.M.,
L.M.A. and J.G.d.A.T.F.; software, E.C.M. and L.M.A.; validation, E.C.M., L.M.A. and J.G.d.A.T.F.;
formal analysis, E.C.M.; investigation, E.C.M.; resources, E.C.M., L.M.A. and J.G.d.A.T.F.; data
curation, E.C.M.; writing—original draft preparation, E.C.M.; writing—review and editing, E.C.M.,
L.M.A. and J.G.d.A.T.F.; visualization, E.C.M., L.M.A. and J.G.d.A.T.F.; supervision, L.M.A. and
J.G.d.A.T.F.; project administration, L.M.A. and J.G.d.A.T.F. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Images and scripts for automatic generation of datasets containing
color features are available at https://github.com/erikamedeiros/informatics.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sun, D.-W. Computer Vision Technology for Food Quality Evaluation; Academic Press: Cambridge, MA, USA, 2016.
2. Olafsdottir, G.; Martinsdóttir, E.; Oehlenschläger, J.; Dalgaard, P.; Jensen, B.; Undeland, I.; Mackie, I.M.; Henehan, G.; Nielsen, J.;

Nilsen, H. Methods to evaluate fish freshness in research and industry. Trends Food Sci. Technol. 1997, 8, 258–265. [CrossRef]
3. Dutta, M.K.; Issac, A.; Minhas, N.; Sarkar, B. Image processing based method to assess fish quality and freshness. J. Food Eng.

2016, 177, 50–58. [CrossRef]
4. Bremner, H.A.; Sakaguchi, M. A critical look at whether freshness can be determined. J. Aquat. Food Prod. Technol. 2000, 9, 5–25.

[CrossRef]
5. Szeliski, R. Computer Vision: Algorithms and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010.
6. Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020.
7. Brosnan, T.; Sun, D.-W. Inspection and grading of agricultural and food products by computer vision systems—A review. Comput.

Electron. Agric. 2002, 36, 193–213. [CrossRef]
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