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Abstract: Modern scientific visualization is web-based and uses emerging technology such as
WebGL (Web Graphics Library) and WebGPU for three-dimensional computer graphics and WebXR
for augmented and virtual reality devices. These technologies, paired with the accessibility of
websites, potentially offer a user experience beyond traditional standalone visualization systems.
We review the state-of-the-art of web-based scientific visualization and present an overview of existing
methods categorized by application domain. As part of this analysis, we introduce the Scientific
Visualization Future Readiness Score (SciVis FRS) to rank visualizations for a technology-driven
disruptive tomorrow. We then summarize challenges, current state of the publication trend, future
directions, and opportunities for this exciting research field.
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1. Introduction

Web-based visualizations allow consumers to access information and data by visiting a website.
This way of distribution is, in many ways, superior to traditional software applications that require
download and installation. Further, it facilitates scientific collaboration through sharing data and
results among researchers, and being web-based also allows for the silent deployment of data and
code updates. The latter is especially important in times of continuous growth of datasets.

We expect the field of scientific visualization in the web browser to play an increasingly important
role. This gain in popularity requires research on scalable algorithms for renderings on clients and
mobile devices [1]. Many successful visualizations of the last decade already support web-based
display such as ParaViewWeb [2], ViSUS [3], and XML3D [4]. However, obstacles related to web-based
visualizations include insufficient computational resources, storage restrictions, network latency,
and low internet bandwidth. Current research tackles these problems and tries to optimize usability
and the user experience beyond the comfort of easy global access and cross-platform deployment.
Specifications about scientific visualizations in engineering, medicine, biology, and life sciences include
mostly volumetric data. These volumetric datasets are regular and irregular samples of vector and
scalar fields [5]. Volumetric data in the web browser often renders using the popular JavaScript API
WebGL 2.0 that enables interactive graphics rendering with programmable shaders [6]. By introducing
the Hyper Text Markup Language 5 (HTML5) canvas element in 2014 for easy manipulations of 2D
and 3D visualizations with JavaScript, WebGL grew in popularity [7]. We provide a detailed analysis
and discussion of recent WebGL developments for distinct scientific disciplines in Section 6.

WebGL supports two- and three-dimensional renderings. Developers can design complex scenes
with textures, meshes, and different shaders. The popularity of HTML5 and especially WebGL led
to an extensive cross-browser and cross-platform compatibility of WebGL since 2011. WebGL, as an
implementation of OpenGL, allows graphics processing unit (GPU)-based rendering and acceleration
without any third-party browser plugins. Before WebGL, developers used Java applets to create
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rich visualizations. However, these applets required a sometimes complicated Java installation
on the client. Another contender was Flash, which also allows interactive graphics in the web
browser. However, the maintenance of different runtimes and the increasing popularity of WebGL
contributed to the extinction of these technologies. Moreover, WebGL provides easy prototyping
and fast rendering for interactive content, and the advantages of graphics standards and shader
languages [8]. Another benefit is the availability of GPU-capabilities in the browser environment,
which allows the use of hardware-accelerated 3D graphics for client-side rendering.

Overall, WebGL plays a crucial role in today’s visualization community. In this survey,
we present the state-of-the-art techniques used in web-based scientific visualization and discuss
modern approaches for scientific application across disciplines.

2. Survey Scope and Structure

The term scientific visualization, a sub-field of computer graphics, describes interdisciplinary
visualization of three-dimensional scientific phenomena. Examples are visualizations for medical,
biological, meteorological, geological, and architectural purposes that aim to render surfaces,
volumes, and many others realistic. Occasionally, scientific visualizations include dynamics and
time-dependent data [9].

For the scope of this review, we classify data into two large categories: spatial and non-spatial data.
Spatial data includes space-describing characteristics such as location, distance, size, and orientation,
e.g., longitude–latitude and x-y-z coordinates. Non-spatial data does not contain any spatial references.
Scientific visualization (SciVis) mostly targets spatial data, whereas information visualization (InfoVis)
commonly targets non-spatial data or abstract, non-scientific purposes. In this survey, we focus
on scientific spatial data visualizations in 3D. However, authors sometimes combine scientific and
information visualization. For example, non-spatial data like metadata in tables, plots, graphs, or texts
can support three-dimensional volumetric medical or biological data.

Our survey focuses on open source visualizations that use WebGL. While some software
libraries target explicitly scientific visualizations, developers often build off general WebGL rendering
frameworks, e.g., Three.js [10]. To set the stage for presenting state-of-the-art scientific visualizations,
we first describe standard visualization techniques and technicalities of graphical web-based rendering.
In this context, Section 4 discusses the importance of data and related handling implications. Section 5
then presents recently published papers categorized by their scientific domain. We also review generic
cross-scientific tools to enhance and support scientific visualization on the web. We then discuss
existing scientific visualization works, identify the current state of publication trends, and present
directions for future work in Section 6.

2.1. Scientific Visualization (SciVis) Future Readiness Score

To quantify the preparedness of scientific visualizations regarding state-of-the-art technology,
we introduce the SciVis Future Readiness Score (FRS). This score includes selected key performance
indicators, which are technical features that estimate how well a visualization may succeed in the
rapidly changing world of computational infrastructure. The standardized SciVis Future Readiness
Score allows researchers to compare visualizations across domains. Specifically, we evaluate the
overall codebase of a visualization with five subcategories: (a) code availability, (b) regular updates,
(c) useful documentation, (d) user and developer support, and (e) WebGL version. We also
examine the used client-server infrastructure, whether the visualization includes responsive design,
virtual and augmented reality capabilities, and the chosen software license. We first score each
performance indicator individually and then calculate a weighted average for the final SciVis FRS
score. As part of this state-of-the-art report, we calculate the SciVis FRS for the presented applications,
projects, libraries, and frameworks reviewed in this survey as follows:

SciVisFRS =
1

Number of Categories
× ∑ Score for Individual Feature (1)
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This formula results in a SciVis FRS between 0 and 1, and a higher score indicates a better future
preparedness for a visualization. The SciVis FRS for each tool can be found in Table 1. We calculate each
feature as a score between 0 and 1. This represents either a binary ranking such as code available with
yes (1) or no (0), and documentation available yes (1) or no (0), or a weighted ranking such as WebGL
version 1.0 encoded as 0.5 and the more recent WebGL version 2.0 encoded as 1. For client-server
infrastructure, we rank as follows; fully client (1), cloud-based (1), client-server (0.5), and server (0).
Responsive design, and virtual and augmented reality scores are both binaries as well.

3. Representation Types and Techniques in Web-Based Visualization

Here, we describe fundamental and basic concepts in computer graphics and the technical aspects
of visualizations.The visualization process consists of several steps to transform raw data into a final
visualization [11]. Recent technological developments allow visual computer graphic techniques to be
enabled in the browser. These techniques are often implemented with WebGL, a plugin-free Javacript
API for rendering 2D and 3D visualizations with support of the graphical processing unit (GPU).
The actual process of rendering using the GPU is a process where 3D data is converted into a 2D image
on a screen [7]. Rendering distinguishes between the categories surface and volume rendering. In the
following section, we describe surface and volume rendering and how web-based rendering works.

3.1. Surface and Volume Rendering

Surface rendering offers different techniques and algorithms in computer graphics, such as
raycasting, ray tracing, radiosity (finite element modeling), scanline rendering, rasterization, and
others. When rendering, the reflected light on a surface depends on material properties like reflection,
absorption, or transmission, described by ambient, diffuse, and specular characteristics [12]. One of
the most popular and frequently used rendering techniques is raycasting. Ray casting calculates the
points of intersection with the surface of an object and can be a very compute-intensive operation when
visualizing large volumes at interactive rates [1]. This is often the case for scientific data. A specific
algorithm of raycasting is ray marching, where iterative marching along the ray is performed to
find intersections with the surface of solid geometries. Often implemented in a fragment shader,
these image-based approaches process each pixel independently and allow performance and quality
enhancements [1].

Furthermore, ray tracing allows sophisticated graphical renderings. Compared to raycasting,
this technique additionally includes secondary and tertiary rays in the fragment shader. Sometimes,
local lighting—reflected or refracted light—and shadows can be used to render the object.
The ray-tracing method generates sharp images by determining precise ray directions from the
object’s geometry [13,14]. Another rendering technique in computer graphics is radiosity. The method
computes the inter-reflection of light within diffuse environments and the global illumination of the
environment independent of the viewer position [12]. In general, ray tracing and radiosity are more
complex to produce but can deliver photorealistic results [7].

Besides the implementation of different approaches for rendering surfaces, a large amount
of visualization performs volume rendering. A volume is commonly represented as a set of
images. Consequently, volume rendering is a technique that composes two-dimensional slices
of images into a three-dimensional volumetric data set. The source of this volumetric data is
usually three-dimensional data, for instance, from computer simulations or medical CT and MR
scanners. For a useful visualization, imaging from different viewpoints and adding different shapes
enhances surfaces, density or opacity of objects and scenes [5,15]. As volume rendering is often
used in medical applications, web-based rendering techniques that use textures are common, such as
XTK [16]. Ray-casting based on the GPU is still the state-of-the-art technique for rendering volumetric
datasets [1,17].
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3.2. Rendering in the Browser

Over the last years, new technologies such as WebGL and HTML5 Canvas enable hardware
accelerated renderings directly in the web browser. This allows fully client-side applications that do
not require a server component. However, server-side rendering infrastructure is still commonly used
as well, but both methods have advantages and disadvantages. The main difference is that client-side
rendering allows for real-time user interaction with a trade-off of higher computational workload [18].

Overall, rendering techniques in the web browser were individually classified in recent papers.
Shi et al. [18] proposed to distinguish between model-based and image-based rendering. Model-based
remote rendering transmits all 3D data or models from the server to the client. In contrast, image-based
rendering implies that the server does 3D graphics rendering, and the resulting images are transmitted
to the client. Image-based rendering is, therefore, a more lightweight computation on the client-side.
Discher et al. [19] distinguish here between a thick client, similarly to Shi et al.’s model-based
rendering, and a thin client, such as the image-based rendering. Similarly, Raji et al. [20] distinguish the
implementation of scientific visualizations in data-space or image-space. A data-space implementation
is, for example, loading a dataset into the browser and rendering it with frameworks and libraries
such as WebGL or VTK.js [21]. In contrast, an exemplary image-based implementation is ParaView’s
ArcticViewer [22], a mobile-friendly web visualization command-line tool using JavaScript or NodeJS.
The goal is to improve the in-browser user experience by serving on-demand prerendered images
of datasets. Nevertheless, these prerenderings can generate high numbers of images that might not
be used by the user at all [20]. Evans et al. [7] proposed another classification for remote rendering
approaches and named them graphics commands, pixels, and primitives or vectors, and combined
techniques. Graphics commands are described by intercepted low-level draw calls to the GPU that
are passed to the client, where pixels are basic rendering methods of the full image by the server
then displayed by the client. Primitive or vectors use feature extraction techniques on the server-side
to obtain vector data that are rendered by the client. Last, combined techniques were proposed by
multiple scientific visualization tools, for example, ParaViewWeb [2] as a multi-platform to access
ParaView’s rendering cluster within the browser [7].

Early approaches to visualize 3D content in the web used two ISO standards, VRML and X3D,
as file or scene formats. Then, the rendering relied on these declarative markup approaches, such as the
extensible 3D graphics standards X3D [23], X3DOM [24], and XML3D [4], which enable 3D graphics
content creation to be more accessible for the web developer within HTML5 [7]. X3DOM extends
to code the X3D standard directly in the browser with plugin-free 3D capabilities and interacts as
front-end and back-end system with the possibility to integrate AJAX [5,7]. Last, the XML3D standard
is an HTML5 extension utilizing the DOM for direct scene hierarchy building and manipulation [25].
These 3D graphics standards are still used in a variety of reviewed publications and visualization
projects. Additionally, some tools exploit CPU-based two-dimensional rendering with the use of the
XML-based file format Scalable Vector graphics (SVG), whereas HTML5’s canvas element is used
for drawing with WebGL, frequently by integrating the power of the GPU. GPU-based rendering
in the browser is exploited by polygon-based approaches or raycasting techniques, as described in
Section 3.1. Meshes are thereby generated and passed to the client and uploaded to the GPU for
polygon-based rendering. However, other techniques stream the meshes from a server. For example,
WebGL offers GPU-based raycasting, which is beneficial for producing high-quality images and
reducing the amount of data transfer to save the CPU-GPU bandwidth [17]. WebGL’s rendering
pipeline consists only of two programmable stages of the graphics pipeline: the vertex shader and the
fragment shader. Within the WebGL context, the main computation fulfilled by the vertex shader is
processed to generate fragments, which are the input for the fragment shader. The fragment shader
determines, for instance, the final color of a pixel in the visualization. As the increasing popularity
of the WebGL API, many WebGL-based engines, libraries, and frameworks have been developed.
One of the most frequently used in various application fields is Three.js, which is a JavaScript API for
rendering and animating three-dimensional models in the browser [10].
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3.3. Virtual and Augmented Reality in the Web

The broader availability in Virtual Reality (VR) or Augmented Reality (AR) applications within
recent years has also led to the use of VR and AR as display environments for browser-based
visualizations. This modern form of direct user interaction with 3D content offers both new
opportunities and challenges for developers. Besides the rendering of regular 2D and 3D data within
the browser, a growing amount of tools, libraries, and frameworks recently support the possibility of
using the WebVR technology. Including a virtual reality or augmented reality displaying environment
in browser-based visualizations primarily depends on the necessity and use of cases in the scientific
area and the possible availability of hardware such as headsets or glasses. The web needs to be
well equipped for ensuring high-quality virtual reality experiences and low-latency communication.
By the end of 2019, WebVR (https://immersive-web.github.io/webvr/spec/1.1/) has been declared
as deprecated and is being replaced with the WebXR Device API (https://immersive-web.github.io/
webxr/). WebXR supports both AR and VR, where the acronym XR should refer to the spectrum of
hardware, applications, and techniques used for Virtual reality, Augmented reality, and other related
technologies (https://www.w3.org/TR/webxr/). WebVR or WebXR can be implemented in different
ways in the browser. The web framework A-Frame (https://aframe.io/) is one of the most popular
and straightforward options to create a WebVR-compatible 3D scene directly within a plain HTML file
without installation of plugins and without the need to understand new JavaScript code. A-Frame
is a JavaScript client-based text/tag system and enables client-side virtual reality environments and
applications that run in a web browser [26]. Developed by the Mozilla Virtual Reality group, A-Frame
also has one of the largest VR communities.

4. Data and File Formats

Notably, the growth of so-called “Big Data” and advances in cloud computing shifted many
applications away from using local scientific data storage. For outsourcing advantages of visualizations
in the web browser, this “Big Data” needs to be compact in memory while still being efficient in
usage. The goal of web-based rendering of extensive scientific data involves maintaining speed,
performance, and quality. Consequently, it requires powerful approaches in terms of data structures,
compression, storage or reduction, etc. For interactive web-based visualization, efficient data handling
is an important aspect. While data reduction is a significant strategy to render large datasets in
the browser, these methods involve, for instance, filtering or sampling, model-based abstraction,
binned aggregation, or hybrid reduction methods [27]. Another fundamental method that needs
to be considered is data preprocessing, which mostly includes tasks such as data normalization
(e.g., statistics, image processing, and graph analysis). In the visualization process introduced by
Haber and McNabb [11], data enrichment and enhancement are the first transformation steps
that need to be done. For example, we can first apply some forms of interpolations in the data,
cleaning, noise reductions, filtering, or smoothing operations. After the preprocessing stage, we map
the visualization as an abstract object from the derived data described by attributes like geometry,
color, time, luminosity, surface material, transparency, etc., and render the visualization in the last
step to produce a displayable image [1,11]. As discussed in Section 2, we classified data into two
categories—spatial and aspatial, where the latter is primarily used for information visualization and
spatial data mostly for scientific visualizations. In scientific visualization, popular data types are
volumetric data, vector field data, and particle-based data [28]. The scientific data usually comes
from varieties of sources like images from microscopes or medical equipment and machines, sensors,
or other computer simulations. In terms of data, appropriate file formats can have a high impact
on rendering quality and performance. The most common file formats for visualizing scientific
data on the web are OBJ (Wavefront file format specification) and STL (STereoLithography) [29] for
three-dimensional purposes.

https://immersive-web.github.io/webvr/spec/1.1/
https://immersive-web.github.io/webxr/
https://immersive-web.github.io/webxr/
https://www.w3.org/TR/webxr/
https://aframe.io/


Informatics 2020, 7, 37 6 of 35

5. Scientific Applications of Web-Based Visualization

In this section, we categorize recent web-based visualization application into the most represented
scientific application domains. Beside providing a description of technical and implementation details
for the reviewed state-of-the-art papers in each specific field, we show an overview of these applications
in Table 1. Moreover, we provide a resource that allows other researchers to perform data mining
on all analyzed papers and find additional details regarding our calculations of the SciVis Future
Readiness Score: https://github.com/mpsych/SciVis-Web.

https://github.com/mpsych/SciVis-Web
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Table 1. Overview of web-based 3D visualization applications and libraries described in the scientific literature based on their key performance indicators and
calculated SciVis Future Readiness Score (FRS), sorted by publication year. The provided URLs are either GitHub repositories, links, or demos to the projects belonging
to the author’s publications.

Name, Authors, Reference & URL 1 Codebase
Infra-Structure Responsive Design VR/ AR 2 License SciVis FRS 3

Code Available Updates Documentation Support WebGL

Medicine

Movania and Feng [30] 7 7 7 7 1.0 client 3 7 n/a 0.3125

Mani and Li [31] 7 7 7 7 1.0 cloud-based 7 7 n/a 0.1875

SliceDrop [32] https://slicedrop.com/ 3 3 3 3 1.0 client 3 7 MIT 0.8125

XTK [16] https://github.com/xtk/X 3 3 3 3 1.0 client 3 7 MIT 0.8125

Virag et al. [33] 7 7 7 7 1.0 client-server 3 3 n/a 0.375

BrainBrowser [34] https://brainbrowser.cbrain.mcgill.ca/ 3 3 3 3 1.0 client-server 3 7 GPL 0.75

OpenAnatomyBrowser [35] https://github.com/mhalle/
oabrowser/tree/master

3 7 3 7 1.0 client-server 3 7 n/a 0.5

BUTTERFLY [36] https://github.com/Rhoana/butterfly 3 3 3 3 1.0 client-server 3 7 MIT 0.75

Qiao et al. [37] 7 7 7 7 1.0 client-server 3 3/7 n/a 0.3125

MedView [38] https://github.com/FNNDSC/medview 3 3 3 3 1.0 client-server 7 7 MIT 0.625

FiberWeb [39] www.imeka.ca/fiberweb 7 7 7 7 1.0 client 3 7 closed source 0.3125

NeuroCave [40] https://creativecodinglab.github.io/
NeuroCave/

3 7 3 3 2.0 client(-server) 3 3 n/a 0.8125

Min et al.[41] 7 7 7 7 7 client-server 7 7 n/a 0.07

Med3D [42] https://github.com/UL-FRI-LGM/Med3D 3 7 3 3 2.0 client-server 3 7 BSD 0.6875

Kokelj et al. [43] 7 7 7 7 2.0 client-server 3 3 n/a 0.4375

BrainTrawler [44] upon request 7 7 7 7 client-server 3 7 n/a 0.2857

CoreSlicer [45] https://github.com/louismullie/coreslicer 3 3 3 3 2.0 client-server 7 7 MIT 0.6875

Moraes et al. [46] (integrated in https://github.com/tfmoraes/
invesalius3)

integrated in
other platform

7 7 7 2.0 client-server 3 7 GPL 0.4375

Zhang [47,48] 7 3 7 7 2.0 client-server 3 7 n/a 0.4375

FiberStars [49] https://lorifranke.github.io/FiberStars/ 3 3 3 3 2.0 client-server 3 7 MIT 0.8125

https://slicedrop.com/
https://github.com/xtk/X
https://brainbrowser.cbrain.mcgill.ca/
https://github.com/mhalle/oabrowser/tree/master
https://github.com/mhalle/oabrowser/tree/master
https://github.com/Rhoana/butterfly
https://github.com/FNNDSC/medview
www.imeka.ca/fiberweb
https://creativecodinglab.github.io/NeuroCave/
https://creativecodinglab.github.io/NeuroCave/
https://github.com/UL-FRI-LGM/Med3D
https://github.com/louismullie/coreslicer
https://github.com/tfmoraes/invesalius3
https://github.com/tfmoraes/invesalius3
https://lorifranke.github.io/FiberStars/
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Table 1. Cont.

Name, Authors, Reference & URL 1 Codebase
Infra-Structure Responsive Design VR/ AR 2 License SciVis FRS 3

Code Available Updates Documentation Support WebGL

Biology, Chemistry & Molecular Science

PV [50] https://biasmv.github.io/pv 3 7 3 3 2.0 client-server 7 7 MIT 0.5625

JSmol [51] https://sourceforge.net/projects/jsmol 3 3 3 3 1.0/7 client-server 3 7 LGPL 0.75

bioWeb3D [52] https://github.com/jbogp/bioWeb3D 3 3 3 3 1.0 client-server 3 7 AFL 0.75

iView [53] https://github.com/HongjianLi/iview 3 7 7 7 1.0 client 3 7 Apache/MIT 0.4375

Chemozart [54] https://github.com/mohebifar/chemozart 3 7 7 7 1.0 client-server 3 7 Apache 0.375

ChemDoodle [55] https://web.chemdoodle.com 3 3 3 3 1.0 client 3 7 GPL 0.8125

3Dmol.js [56] https://github.com/3dmol/3Dmol.js/http://3Dmol.
csb.pitt.edu

3 3 3 3 1.0 client 3 7 BSD 0.8125

3D-Lab / Molecular Rift [57,58] https://github.com/
Magnusnorrby/MolecularRift

3 3 3 3 7 client-server 3 3 GPL 0.9286

Bio3D-web [59] http://thegrantlab.org/bio3d/Webapps 3 3 3 3 7 client-server 7 7 GPL2 0.6429

Mwalongo et al. [17] 7 7 7 7 2.0 client-server/
cloud-based

3 7 n/a 0.375

MolMil [60] http://gjbekker.github.io/molmil//https://github.
com/gjbekker/molmil

3 7 3 3 1.0 client 3 7 LGPL 0.6875

CmPIweb [61] http://CmPIweb.CELLmicrocosmos.org. 3 7 7 7 1.0 client-server future
work

7 n/a 0.3125

HiC-3D-Viewer [62] https://github.com/mohamed-amine-
guerras/HiC3DViewer

3 3 3 3 2.0 client-server 7 7 GPL 0.6875

LiteMol [63] https://www.litemol.org/ 3 3 3 3 2.0 client-server 3 3/7 Apache 0.875

Web3DMol [64] https://web3dmol.net/ downloadable
on website

7 3 3 1.0 client 3 7 n/a 0.6875

OmicsNet [65] http://www.omicsnet.ca. 7 3 3 3 2.0 client-server 7 future
work

n/a 0.625

NGL [66,67] http://arose.github.io/ngl / https://github.com/
arose/ngl

3 3 3 3 2.0 client-server 3 7 MIT 0.8125

HTMol [68] http://htmol.tripplab.com/https://github.com/
tripplab/HTMoL

3 3 3 3 2.0 client-server future
work

7 MIT 0.75

MegaMol [69] https://megamol.org//https://github.com/
UniStuttgart-VISUS/megamol

3 3 3 3 2.0 client-server 3 7 BSD 0.8125

iCn3d [70] https://github.com/ncbi/icn3d 3 3 3 3 2.0 client-server 7 7 public domain 0.6875

ProteinVR [71] https://durrantlab.pitt.edu/protein-vr/ 3 3 3 3 2.0 client-server 3 3 BSD 0.9375

https://biasmv.github.io/pv
https://sourceforge.net/projects/jsmol
https://github.com/jbogp/bioWeb3D
https://github.com/HongjianLi/iview
https://github.com/mohebifar/chemozart
https://web.chemdoodle.com
https://github.com/3dmol/3Dmol.js
http://3Dmol.csb.pitt.edu
http://3Dmol.csb.pitt.edu
https://github.com/Magnusnorrby/MolecularRift
https://github.com/Magnusnorrby/MolecularRift
http://thegrantlab.org/bio3d/Webapps
http://gjbekker.github.io/molmil/
https://github.com/gjbekker/molmil
https://github.com/gjbekker/molmil
http://CmPIweb.CELLmicrocosmos.org.
https://github.com/mohamed-amine-guerras/HiC3DViewer
https://github.com/mohamed-amine-guerras/HiC3DViewer
https://www.litemol.org/
https://web3dmol.net/
http://www.omicsnet.ca.
http://arose.github.io/ngl
https://github.com/arose/ngl
https://github.com/arose/ngl
http:// htmol.tripplab.com
https://github.com/tripplab/HTMoL
https://github.com/tripplab/HTMoL
https://megamol.org/
https://github.com/UniStuttgart-VISUS/megamol
https://github.com/UniStuttgart-VISUS/megamol
https://github.com/ncbi/icn3d
https://durrantlab.pitt.edu/protein-vr/
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Table 1. Cont.

Name, Authors, Reference & URL 1 Codebase
Infra-Structure Responsive Design VR/ AR 2 License SciVis FRS 3

Code Available Updates Documentation Support WebGL

Physics

MeshLabJS [72] https://www.meshlabjs.net// https://github.
com/cnr-isti-vclab/meshlabjs

3 7 3 3 1.0 client-server 7 7 AGPL 0.5

Chandler et al. [73] 7 7 7 7 1.0 client-server future
work

7 n/a 0.1875

OpenJSCAD https://openjscad.org// https://github.com/jscad/
OpenJSCAD.org

3 3 3 3 7 client or
client-server

7 7 MIT 0.714

iSpy WebGL [74] http://cern.ch/ispy-webgl/ https://github.com/
cms-outreach/ispy-webgl

3 3 3 3 2.0 client 3 future
work

MIT 0.9375

VRMath2 [75] https://vrmath2.net/ https://vrmath2.net/VRM2/ 3 3 3 7 1.0 client-server 3 3 copyright 0.75

SPOT [76] https://github.com/ElsevierSoftwareX/SOFTX_2018_
178

3 7 3 3 7 client-server 7 7 Apache 0.5

CAD3A [77] http://cad3a.ge.imati.cnr.it/webapp/ / https://
github.com/KKaty/CAD_PatternComputation

7 3 7 3 2.0 client-server 3 7 MIT 0.5625

HexaLab [78] https://github.com/cnr-isti-vclab/HexaLab / https:
//www.hexalab.net/

3 3 3 3 2.0 client 7 7 MIT 0.75

Abubu.js [79] https://github.com/kaboudian/abubujs / https://
chaos.gatech.edu/NGL_CSF/

3 3 3 3 2.0 client 3 7 MIT 0.875

QMWebJS [80] http://www.parvis3d.org.es/qmweb/ / https://
github.com/EdgarFigueiras/QM_Particles_WebGL

3 3 7 3 2.0 cloud-based 7 beta n/a 0.625

WWT http://worldwidetelescope.org/webclient/ / https://
github.com/WorldWideTelescope

3 3 3 3 2.0 client-server 3 7 MIT 0.8125

https://www.meshlabjs.net/
https://github.com/cnr-isti-vclab/meshlabjs
https://github.com/cnr-isti-vclab/meshlabjs
https://openjscad.org/
https://github.com/jscad/OpenJSCAD.org
https://github.com/jscad/OpenJSCAD.org
http://cern.ch/ispy-webgl
https://github.com/cms-outreach/ispy-webgl
https://github.com/cms-outreach/ispy-webgl
https://vrmath2.net/
https://vrmath2.net/VRM2/
https://github.com/ElsevierSoftwareX/SOFTX_2018_178
https://github.com/ElsevierSoftwareX/SOFTX_2018_178
http://cad3a.ge.imati.cnr.it/webapp/
https://github.com/KKaty/CAD_PatternComputation
https://github.com/KKaty/CAD_PatternComputation
https://github.com/cnr-isti-vclab/HexaLab
https://www.hexalab.net/
https://www.hexalab.net/
https://github.com/kaboudian/abubujs
https://chaos.gatech.edu/NGL_CSF/
https://chaos.gatech.edu/NGL_CSF/
http://www.parvis3d.org.es/qmweb/
https://github.com/EdgarFigueiras/QM_Particles_WebGL
https://github.com/EdgarFigueiras/QM_Particles_WebGL
http://worldwidetelescope.org/webclient/
https://github.com/WorldWideTelescope
https://github.com/WorldWideTelescope
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Table 1. Cont.

Name, Authors, Reference & URL 1 Codebase
Infra-Structure Responsive Design VR/ AR 2 License SciVis FRS 3

Code Available Updates Documentation Support WebGL

Geography, Meteorology & Archaeology

3DHOP [81] https://github.com/cnr-isti-vclab/3DHOP 3 3 3 3 2.0 client or
client-server

3 future
work

GPL 0.9375

GPlates portal [82] http://portal.gplates.org/ 7 3 3 3 2.0 cloud-based 3 7 GPL 0.75

WebGL Globe https://experiments.withgoogle.com/chrome/
globe

3 3 3 3 2.0 client 3 7 Apache 0.875

Koeva et al. [83,84] no url provided 3

PolarGlobe [85] http://cici.lab.asu.edu/polarglobe/ 7 7 3 3 2.0 client-server 3 7 copyright 0.5625

3DAV [86] https://github.com/Prieston/3dav 3 7 3 3 2.0 client 7 7 n/a 0.625

Discher et al. [19,87] 7 7 7 7 2.0 client-server 3 3 n/a 0.4375

Liu et al. [88] https://github.com/liusir2000/visAirPollutant 3 7 3 7 2.0 client-server 7 7 n/a 0.4375

EddyViz [89] https://vizlab.rutgers.edu/eddyviz.html 3 7 3 3 2.0 client-server 7 7 n/a 0.5625

Boutsi et al. [90] 7 3 7 7 2.0 client-server future
work

3 n/a 0.5

Cross-Scientific Applications

ParaViewWeb [2] https://www.paraview.org/web 3 3 3 3 7 client-server 3 7 BSD 0.6875

Desprat et al. [91] https://github.com/caro3801/3DP2P 3 7 7 7 1.0 client-server 7 7 n/a 0.25

Tapestry [20] https://github.com/seelabutk/tapestry 3 7 3 7 7 cloud-based 3 7 MIT 0.5714

Hadjar et al. [92] http://193.194.91.152/test/ / https://
datavizcerist.shinyapps.io/dataviz/

7 7 7 7 2.0 client-server 3 3 n/a 0.4375

Voxer [93] https://github.com/cad420/voxer 3 3 3 3 7 client-server 3 7 n/a 0.7857

Substrate [94] https://github.com/aplbrain/substrate 3 3 3 3 2.0 client-server 7 7 Apache 0.6875

1 Uniform Resource Locator; 2 Virtual Reality / Augmented Reality; 3 Future Readiness Score.

https://github.com/cnr-isti-vclab/3DHOP
http://portal.gplates.org/
https://experiments.withgoogle.com/chrome/globe
https://experiments.withgoogle.com/chrome/globe
http://cici.lab.asu.edu/polarglobe/
https://github.com/Prieston/3dav
https://github.com/liusir2000/visAirPollutant
https://vizlab.rutgers.edu/eddyviz.html
https://www.paraview.org/web
https://github.com/caro3801/3DP2P
https://github.com/seelabutk/tapestry
 http://193.194.91.152/test/
https://datavizcerist.shinyapps.io/dataviz/
https://datavizcerist.shinyapps.io/dataviz/
https://github.com/cad420/voxer
https://github.com/aplbrain/substrate
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5.1. Medical Applications

Web visualization in medical sciences can have useful advantages in offering computing resources
to hospitals and clinics without much computational power [46]. Moreover, another use case
for web-based visualization of medical data is remote medicine and distributed diagnosis [47].
Compared to other scientific disciplines, medical imaging is one of the most challenging and
can lead to computing-intensive visualization scenarios due to the need for high-quality images,
scalability, and interaction possibilities in visualization tools [5]. Another growing field is the
popularity of visualization web tools for medical education of students, especially exploiting graphical
3D web technologies within human anatomy education, see, for example, in [35,95–99]. More on
medical education application can be found in Preim and Saalfeld’s review [100]. A real-time surgical
training system developed by Mani and Li [31] targeted further educational purposes using WebGL
and X3D.

In 2017, Halle et al. [35] published the Open Anatomy Browser within Brigham Women’s
Hospital’s Open Anatomy Project intending to democratize medical knowledge and share data for
students, doctors, researchers, and the general public. The tool is a web-based atlas viewer showing
3D anatomical models, including image cross-selections of labeled structures and collaborative
tools. The browser is created with Google’s Angular web framework, such as AngularUI
(https://angular.io/), and incorporates the 3D models with WebGL and Three.js. An example

screenshot from the project’s website is illustrated in Figure 1.

Figure 1. Screenshot of the Open Anatomy Browser with the 3D human head and neck atlas from the
projects’ website https://www.openanatomy.org/ [35] showing bones and cartilage in different colors
and a cross-sectional panel on the left.

As medical visualization is often concerned with medical images from computer tomography
(CT) or magnetic resonance (MR) scanners, creating 3D visualization of medical data is classified
into surface extraction and volume rendering [101]. Especially volume data is commonly rendered
using GPU support, which was shown by Congote et al. [5] as one of the earliest publications on
implementing WebGL for medical data sets in 2011. The authors concluded that WebGL is a valid
and promising technology for interactive visualizations. This was proved in the following years by
an increasing number of publications in the medical field using WebGL visualization. Jacinto et al.
introduced another early-stage image-based approach for medical applications [102] using VTK on the
server-side while the Three.js framework is on the client-side [10] for visualization and segmentation of
medical images. A client-server platform for the visualization and analysis of the 3D fractal dimension

https://angular.io/
https://www.openanatomy.org/
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of MRI data was proposed by Jiminez et al. [103]. Marion and Jomier [104] developed a system
that allows users to visualize 3D datasets online without external plugins and demonstrated their
system on the 3D virtual anatomies modeled from medical images of anonymous patients. In 2012,
researchers were already interested in visualizing 3D volumetric data with WebGL on mobile devices
acting as thin clients and discovering approaches to render those 3D structures, for example, the work
of Noguera et al. [105] and the volume visualizations of medical data sets by Movania and Feng [30]
on the computer, tablets, and mobile devices. All these medical visualization possibilities have been
developed over the years and improved by WebGL’s stable release 2.0 in 2017. Similarly, this approach
was succeeded by Qiao et al. [37] with a website for rapidly viewing, processing, and reconstructing
large-scale 3D medical volumes on the mobile internet. As of today, in the medical imaging field,
Digital Imaging and Communications (DICOM) is still the de facto standard and is often accompanied
by large amounts of metadata with related information about the patient or medical procedures [106].
Visualizing DICOM computer tomography (CT) images by using WebGL was presented by Hou et
al. [107] in 2015 with server-side GPU acceleration, and most recently in a new web-based tool by
Mullie et al. [45]. The latter developed a web toolkit CoreSlicer, for analytics morphomics in Computed
tomography (CT) scans, and took advantage of WebGL’s GPU acceleration as well. One of the few
web-based visualizations without WebGL was presented by Min et al. [41] in 2018. Their medical image
viewer written in Java for telemedicine includes 3D functions, e.g., volume rendering and surface
rendering for regions of interest and a fly-through function. These 3D features allow a more accurate
and efficient diagnosis. The application accesses a medical image database remotely, while surface
rendering is based on the extraction of edges or contours of 2D tomographic images and constructs
triangular patches. The 3D model is rendered with the Marching Cube Algorithm [108] generating
vertices data and normal data. Other web-based medical visualization approaches of the last years
have mainly integrated with WebGL. In 2019, Moraes et al. [46] described and analyzed a web-based
distributed system for interactive visualization of medical volumes by using a server structure for
data preparation and then interpret the data on the client-side with WebGL and Three.js. The authors
showed their results on a regular desktop browser and Android and iOS mobile devices. The authors
aim to integrate their visualization into their previously developed software for reconstructing CT
and MRI images called InVesalius (https://invesalius.github.io/). Another valuable publication was
recently presented by Zhang [47,48] for web-based medical data visualization and for improving
network-based collaboration. The technology of the software platform is based on MySQL, Node.js,
and shader code with GPU-based WebGL by developing a new raycasting algorithm. For the rendering
of 3D medical images, the author used a novel graphics lighting and specular shading algorithm
for enhancing features of interest, such as a post-color attenuated voxel classification algorithm and
lighting effect. A visualization is shown in Figure 2.

Figure 2. Rendered 3D medical images with WebGL-based raycasting algorithms showing different
organs: (a) Image of the whole human heart with surrounding tissue, (b) heart without surrounding
tissue but with a part of the bones inside the muscles, (c) thorax with the bone structure, and (d) only
the bone structures. Source: [47].

https://invesalius.github.io/
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Furthermore, intersections between medicine and biology exist in biomedical applications.
They typically focus on visualizations that enable rendering of particle systems by raycasting and
volumes with ray-marching [8]. We will review these recent publications in Section 5.2.

In the last years, an enormous number of visualization techniques, software, and tools has been
developed for neuroscientific purposes and might be one of the broadest fields among medical
imaging applications. Research within the neuroscientific field consists in large parts of brain
imaging to understand the functioning of the human brain. Analyzing the brain has become
an emerging topic in recent years. Mainly due to the large size of data, e.g., different types of
Electroencephalography (EEG), CT, or MRI (Magnetic resonance imaging), the application of novel
approaches is necessary. A variety of papers in scientific web-based visualization implement the
powerful JavaScript library X toolkit (XTK) [16], which offers WebGL rendering for neuroimaging
data and supports a vast amount of neuroimaging formats like DICOM, NIFTI (Neuroimaging
Informatics Technology Initiative), MGH or MGZ formats from the Massachusetts General Hospital,
Nearly Raw Raster Data (NRRD), VTK PolyData, Freesurfer meshes, STL, and TrackVis, as well as
label maps, color tables, and surface overlays and many more. Besides the popular X toolkit,
BrainBrowser [34] is another JavaScript library based on WebGL built to visualize 3D surface
and volumetric neuroimaging data in any modern web browser without requiring plugins. The
framework can be integrated into any web-based platform and uses WebWorker, a canvas-based
viewer allowing slice-by-slice traversal of 3D or 4D volumetric data. Supported neuroimaging data
formats by BrainBrowser are, for example, MNI OBJ, Freesurfer binary, and Freesurfer ASC, custom
JSON-based formats.

SliceDrop [32] is a web-based viewer for medical imaging data, including volume rendering and
axis-aligned slice views. The medical image data are, therefore, dropped into the browser or selected
from a file picker. SliceDrop eliminates security issues by letting the data stay in the local client context,
thereby not uploading it onto a remote website. Later, MedView [38] was presented with the idea of
a newer version of SliceDrop [32]. The authors of MedView implemented a web-based software for
real-time collaborative neuroimage visualization. XTK [16] was used for the client solution, where each
client has all the data, whereas the ViewerJS library (https://github.com/FNNDSC/viewerjs) and the
Google Drive Realtime API were used for remote collaboration. Ashwini and Kwon [109] published
another exemplary tool that implemented its graphical user interface with the popular XTK library.
The authors acquired teravoxel-sized 3D neuronal and microvascular brain images and developed an
image processing pipeline for real-time 3D visualization that allows researchers to collaborate.

In 2017, a full pipeline for working with massive connectomics datasets was introduced with the
BUTTERFLY middleware [36], which was developed in collaboration with neuroscientists. The large
data were compressed a priori with an specifically tailored compression method for fast transmission
between server and browser client. BUTTERFLY integrates various web-based solutions for data
management and storage as well as semantic queries, integrates 2D and 3D visualizations with
interactive editing, and graph-based analysis. Notably, the 3DXP viewer renders the 3D visualization
of neuron geometries with the X3DOM WebGL library [24] and has a user interface with keyframe
recording (see Figure 3).

https://github.com/FNNDSC/viewerjs
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Figure 3. Interactive scenes with zoom, pan, and scroll visualize 3D polygonal mesh reconstructions
of a connectomics data set in 3DXP with progressively rendered geometries: (a) Left image shows
twenty neurons stretching through a 100 µm3 volume. (b) Cell bodies (soma) and (c) left image shows
a dendrite with two synaptic connections. URL: https://github.com/rhoana/3dxp. Source: [36]..

Before the release of WebGL 2.0 and its performance upgrades, Ledoux et al. [39] presented
Fiberweb, a web tool for visualizing dMRI and tractography data of NIFTI and TrackVis files,
using WebGL and Three.js. Most recently, the interactive web-based tool FiberStars [49] was introduced
to visualize large 3D MRI and tractography data sets within the browser, complemented by displaying
detailed two-dimensional data and meta data attached to each file. FiberStars is based on VTK.js [21]
for processing the data files as well as Facebook’s open source framework React.js (https://reactjs.org/)
for the user interface. React.js provides simple usability to explore and analyze the data interactively.
Similarly to BUTTERFLY, the authors proposed the compression of the large brain imaging data sets
for efficient storage [110].

Besides the use of CT and different types of MRIs in neuroscience, researchers are interested in
neurobiological data, such as large-scale voxel-level connectivity data or gene expression collections in
the brain. The web-based visualization of this neurobiological data was targeted by BrainTrawler [44],
an analytics framework for an iterative exploration of heterogeneous big brain data. BrainTrawler
allows real-time exploration of data and relates it to the hierarchical structure of conventional
anatomical atlases. The framework’s technological aspects are implemented with classical volume
rendering such as multi-planar reformation to visualize volumetric data in its original spatial,
anatomical environment.

Furthermore, the integration of augmented or virtual reality in medical visualization can be
a valuable feature for surgical planning and clinical applications. Virag et al. [33] have shown
early applications for using augmented reality with WebGL, Three.js, and WebRTC (Web Real-Time
Communication) accessing the camera and rendering an image remotely. WebRTC provides web-based
real-time communication without the use of further plug-ins. The authors also used JSARToolKit,
a JavaScript augmented reality library that allows the video tracking of a physical marker. The thought
of using VR for neuroimaging purposes was followed in 2018 with the web-based application
NeuroCave by Keiriz et al. [40] for visualizing structural and functional connectome datasets in
virtual reality environments (see Figure 4). The authors used Three.js for the 3D scenes and GPU
hardware architecture. Another approach for a web-based virtual reality environment in medical
visualization was taken by Kokelj [43], again by combining WebGL with WebVR. The authors included
Med3D [42], an open source web-based 3D medical data visualization framework, and integrated
volumetric raycasting of 3D scalar data. Hadjar et al. [92] applied their WebVR approach to openly
available health data from web portals. The WebVR-based system paired the A-Frame framework
with Node.js, a low-level environment for executing JavaScript on server-side. The authors were able
to run their visualization in all main browsers and mobile devices.

https://github.com/rhoana/3dxp
https://reactjs.org/
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Figure 4. Investigating connectome data from different perspectives in NeuroCave. Left side shows
the connectome in the anatomical space and the intrinsic space on the right with color legend right
bottom. A neuroscientist is shown in the top of the image exploring the 3D data with a VR headset.
Users are allowed to switch between standard and VR modes. Source: [40].

5.2. Biology, Chemistry, and Molecular Visualizations

Molecular or particle data visualizations emerge from various scientific fields such as physics,
life science, or chemistry. Consequently, they are presented in the following as an interdisciplinary
section together with biological and chemical web-based applications. Molecules or particles are
visualized directly, consisting of one or multiple atoms. Mostly, each atom is represented as a sphere
with a center, a radius, and a different color depending on the type of atom [111]. Molecular or particle
data can either be an abstract static model or consist of dynamic data. Exploring and analyzing data
sets with high numbers of molecules or particles, and thereby maintaining a high-quality interactive
visualization is a challenging problem. However, interactive rendering can facilitate the analysis and
exploration of these data sets [28].

Popular JavaScript libraries for the visualization of particle data originated from
the field of molecular sciences, primarily WebGL-based viewers, such as LiteMol [63],
MolMil [60], NGL [66,67], SpiderMol[112], 3DMol.js [56], and PV [50]. The NGL viewer
(http://proteinformatics.charite.de/ngl) [66,67] is accompanied by its compressed binary file format
[113]. Most of these libraries are based on WebGL, where NGL and PV are both based on Three.js.
Each of these molecular visualization libraries yields advantages and disadvantages depending on
the users’ respecting implementation context. For instance, the frameworks JSmol [51], 3Dmol.js [56],
and Web3DMol [64] are concerned with pure 3D representations of the molecular structure, but the
editing of molecules in 3D is not possible. However, this feature was included by the WebGL-based
tool ChemDoodle [55] for editing the structure of the molecule, similarly to the WebGL-based molecule
visualizer Chemozart [54]. Another example is Kekule.js [114], which is not based on WebGL but allows
the user to detect, search, and compare molecule structures such as 2D-to-3D conversions. Most of
these reviewed works are primarily embeddable libraries but are also available as full web apps.

Shi et al. [64] mention that PV and 3DMol.js are not diverse compared to alternative tools
in terms of representation and functionality. On the other hand, NGL might not be flexible
enough for molecular representation by showing distinct parts of a protein in different modes.
Nevertheless, further memory-efficient and scalable extensions for the WebGL-based molecular
viewer NGL were introduced in 2018. Mwalongo et al. [17] points out that none of these existing
molecular viewers provide modern rendering techniques to visualize dynamic data. This is especially
due to polygon-based rendering that limits quality and scalability for molecules with high numbers
of atoms. An additional difficulty is that for each dynamic change, large amounts of triangle
data need to be uploaded to the GPU. To target this challenge, Mwalongo et al. [17] present a
web-based visualization for dynamic molecular data based on WebGL GPU-based raycasting where

http://proteinformatics.charite.de/ngl
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each sphere represents an atom [17]. The authors implemented the client-side code by using a
WebSocket connection to the server to obtain the raw visualization data. WebGL is used for GPU-based
raycasting techniques to render the objects and enables them to render millions of atoms in the
browser. An example of Mwalongo’s approach is displayed in Figure 5 with a capsid of papillomavirus
consisting of 1.3 million atoms.

Li et al. [53] take advantage of their WebGL protein-ligand viewer by exploiting stereoscopic 3D
effects such as anaglyph, parallax barrier, and oculus rift. The latter provides a lightweight possibility
to use virtual reality using a headset.

Figure 5. Gallery with various example screenshots from different interactive web-based molecule
viewers. Top from left to right: (1) NGL viewer [67] showing surface of HIV-1 colored by chainindex
from http://proteinformatics.charite.de/ngl; (2) Mwalongo et al. [17] displays a papillomavirus
with 1.3 M atoms; (3) Web3DMol showing a Myoglobin molecule from a seal [64], retrieved from
https://web3dmol.net/; Bottom row from left to right: (1) iview [53] rendering a CCR5 chemokine
receptor-HIV entry inhibitor maraviroc complex with the anaglyph effect using chromatically opposite
colors for stereoscopic effect; (2) a molecule from PV [50]; (3) iCn3d displaying a tumor suppressor in
spectrums color with DNA [70] from https://www.ncbi.nlm.nih.gov/Structure/icn3d/full.html.

Researchers in life science are interested in investigating time-resolved motions of biological
macromolecules by dynamic molecular technologies. In 2018, the interactive streaming and
visualization of dynamic 3D molecules were pursued by the HTMoL platform [68] and another
similar project called MDsrv [115]. While HTMol uses GPU acceleration, both tools MDsrv and
HTMoL allow interactive dynamic web-based visualizations of dynamic molecular trajectories through
intuitive graphical user interfaces (GUIs) but require the users to set up their servers [116]. MegaMol is
another framework that was proposed for particle-based visualization with a client-server approach
by establishing a WebSocket server with the capability of visualizing MD simulations on the web.
The framework focuses on prototyping and research, and is suitable for large scientific data sets and
remote visualization. Although it was originally developed for particle-based data sets as a standalone
desktop application, in 2006 Gralka et al. [69] recently introduced new algorithms and techniques of
MegaMol for web and remote visualization by using WebGL. MegaMol is supporting STL and glTF
formats and rendering the data with GPU-based raycasting. Moreover, different web applications
specialized for molecular science are analyzed in a paper by Abriata [117], such as Martinez et al. [118].
Hildebrand et al. [116] discuss a further detailed review of molecular dynamic simulation viewers.
The importance of HTML5 and WebGL for macromolecular visualizations and computer-aided drug
design is reviewed by Yuan et al. [119].

http://proteinformatics.charite.de/ngl
https://web3dmol.net/
https://www.ncbi.nlm.nih.gov/Structure/icn3d/full.html
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Despite a large amount of effort that has been taken towards molecule visualization using
life science web applications, implementations in other biological and chemical contexts showed a
more hesitant growth and development. In general, a high number of applications in the biological
and bioinformatics field, such as the presented molecule viewers, focus on providing visualizations
based on structure data that is available through biological databases, such as the Protein Data Bank
(PDB) [120,121] or the Nucleic Acid Database (NDB) [122]. These source databases can easily be
accessed as they are open source. For example, many tools apply the previously presented molecule
viewers in combination with other data analysis tools. Web3DNA has been published by Li et al. [123]
to visualize 3D nucleic acid-containing structures, relying on the JSmol [51] framework to visualize the
3D models. A further example is the Cancer3D tool [124], which combines 2D and 3D plots to analyze
3D patterns of cancer mutations out of cancer subset data. Besides the 2D exploration of cancer data,
where the authors used their previously developed Protael viewer [125], they integrated an interactive
analysis of 3D patterns for cancer mutations in cancer subsets by using the 3DMol [56] framework.

BioWeb3D [52] was an early approach using WebGL and Three.js for biological 3D data
visualization applications. The tool allows simultaneous visualization of multiple large datasets as
JSON, XML, or CSV files. It aims to support the interpretation of biological data, especially for unknown
patterns in the data or untrained researchers. A tool with a similar name in the bioinformatics context
presented in 2016, is Bio3D-web [59]. The authors introduced an online application for analyzing
the sequence, structure, and heterogeneity of protein families with the possibility for researchers
to analyze structural dynamics and evolution to predict protein dynamics. The tool is based on
the Bio3D R-package from 2014 and uses Shiny’s (Shiny, http://shiny.rstudio.com) reactive online
web application framework. The application visualizes a protein’s interactive 3D structure and is
complemented with additional 2D plots like PCA, correlations analysis, dendrograms, ranks, chemical
components, etc.

Analyzing genome and protein sequences is a highly research-intensive area that has yielded a
variety of visualization software and tools. The HiC-3D Viewer [62] was developed as a WebGL-based
tool to explore HiC genomics and gene sequences in 3D. The authors used the Three.js library to
display large genomes, while the server-side was implemented with a Python and Flask framework.
An illustration of the user interface can be found in Figure 6. A further tool, called CmPIweb, was
presented by Kovanci et al. [61], providing visualizations and analysis of protein and gene localizations
within cells (see Figure 6). The tool was initially developed based on Java but alternatively presented
as a web-based visualization version using PHP, Three.js, and the D3.js library (https://d3js.org/).

Figure 6. Left: The user interface of the HiC-3DViewer [62] shows chromatin interactions of a Yeast
genome where intra- and inter-chromatin interactions are displayed in the form of white straight lines;
Right: The user interface of CmPIweb [61] visualizes the citrate cycle and the glycolysis pathway inside
an animal cell. The complete cell with pink opacity is shown in the center of the UI with additional
glycolysis pathway on the left. Components of the cell like ribosomes, mitochondium, etc. can be
selected on the left in different color schemes.

Recently, Zhou et al. [65] proposed Omicsnet, a novel platform built upon WebGL and Three.js, for
visualizing biological networks in 3D space for different organisms. Network-based approaches

http://shiny.rstudio.com
https://d3js.org/
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in biological sciences have increased in importance to examine interconnections of molecular
entities, for example, protein–protein interactions to understand biological systems. Comparable
non-web-based tools for biological network visualization were either downloadable standalone
desktop programs or needed the installation of plugins. Omicsnet allows the user to create different
types of molecular interaction networks and explore them in 3D space by uploading one or multiple
lists of molecules such as genes, proteins, microRNAs, transcription factors, metabolites, graphs files,
and many more into the browser. An example of Omicsnet can be found in Figure 7.

Figure 7. A few captions from the gallery of the Omicsnet website [65] rendering large biological
networks with Three.js. From left to right: (1) A three-dimensional composite network composed
of around 2000 nodes and 4000 edges, with halo effect on seeds, enriched pathway highlighted in
light blue. (2) Omicsnet showing a force-directed miRNA-gene target network. (3) Zoomed in view
the network.

Moreover, virtual reality approaches have been taken in the life science field as well, for example,
3D-Lab [57]. 3D-Lab was developed as a collaborative web-based platform for automatic 3D molecular
modeling and data sharing to facilitate drug discovery and design. The authors enhanced their
platform by an open source virtual reality tool called Molecular Rift [58].

Recently, Cassidy et al. [71] presented their tool ProteinVR for molecular visualization. In contrast
to other VR molecular visualization programs, which have to be downloaded as a standalone desktop
program, the authors developed their program fully web-based. They used the diverse Babylon.js
(https://www.babylonjs.com/) library, which is mainly used in gaming contexts.

5.3. Physics

The publishing field in physics applications spans a wide space, from engineering to mechanical
sciences, from simple to professional tools or biophysical to chemophysical, and as an intersection
to other scientific fields. Thereby, applications mainly depend on the complexity of the experiment
or task and can help to optimize the design and engineering of experiments. However, similarly to
the molecular visualizations presented in Section 5.2, physical sciences can be concerned with the
visualization of particles or atoms. For instance, Chandler et al. [73] proposed a WebGL-enabled
visualization of smoothed particle hydrodynamics (SPH) simulations. This fluid simulation method
performs computations on a moving set of particles with physical properties depending on the
selected fluid. The authors used two interactive volume rendering methods, direct octree rendering,
and conversion to a uniform grid.

Most recently, Figueras et al. presented QMwebJS [80], which consists of a Particle Creator and
Particle Visualizer both build upon Three.js, Stat.js, dat.GUI, and CCapture. QMwebJS allows the
visualization of the temporal evolution of 3D distributions such as creating, editing, and exporting
3D models based on a particle sampling method. Wavefunctions are represented as a collection
or cloud of points to a certain time. Figure 8 shows QMwebJS on the right. Preceding QMwebJS,
the authors developed another WebGL-based tool, QMBlender [126], which focuses on particle-based
visualizations of 3D quantum wave function dynamics and is an add-on module for the open
source tool Blender (https://www.blender.org/) for 3D modeling, rendering, and animation [127].
Besides the use in creating animations and gaming, Blender is a popular framework in scientific

https://www.babylonjs.com/
https://www.blender.org/
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visualization contexts but still requires local download. Kent et al. [128] showed the use of Blender
for 3D graphics in several scientific fields. Other examples of scientific visualizations that build
on Blender have been taken in biology for visualizing cell membranes [129], fluid solutions [130],
astrophysical visualization [131], and similar applications to the presented methods on molecular
dynamics visualization [132]. However, most of these scientific visualization approaches still require
the download of Blender, but addons can enable export to web browser-compatible formats.

Figure 8. Examples of web-based visualizations in particle physics. Left: Chandler et al. [73] showing
WebGL-based rendering of the gravity-free collision of two spherical fluid elements in two different
time steps. Right: Visualization of the decay of hydrogen with the tool QMwebJS [80].

Significant projects in particle physics such as collision experiments at CERN (European
Organization for Nuclear Research) with the Large Hadron Collider required advanced visualization
methods and were visualized with their own developed framework iSpy WebGL [74]. The researchers
aimed to visualize events, detected and reconstructed by experiments at CERN, using Three.js with a
client-side application (https://github.com/cms-outreach/ispy-webgl). Besides producing images
and animations of the collision events of particles for the public, the authors integrated a stereo view.
They applied Virtual Reality with Google’s Cardboard (https://arvr.google.com/cardboard/) but plan
the integration of the WebVR API as well in the future (see Figure 9 left).

Another web-based physics application was developed in 2019 by Kaboudian et al. [79] for
investigating complexity and nonlinear dynamics in solitons and fractals. This library especially
renders 1D and 2D visualizations but was also used to visualize 3D wave simulation data sets. The
authors developed their computing paradigm by using WebGL along with their developed library
Abubu.js by the use of vertex and fragment shader code.

Diblen et al. [76] applied their open science platform SPOT on multidimensional data sets, for
instance, on a data set for dark matter models. The authors targeted multiple scientific disciplines
besides physics to enable secure data sharing on their platform. The framework allows users to edit
visualizations, interactively store data in the cloud, and, although it is not based on WebGL, it offers
OpenGL accelerated rendering with GPU. However, Diblen et al. focus primarily on the visualization
of 2D graphics.

Furthermore, Computer-Aided Design solutions (CAD) are an important part of prototyping,
engineering, and physical simulations. However, in this article they are only briefly reviewed in terms
of scientific visualizations as these tools are primarily used in the industry. Most of these browser-based
visualizations have not yet been implemented with WebGL, yielding the potential for future research.
A free browser-based tool, called OpenJSCAD [133], offers a JavaScript interface for programmatic
modeling of 2D and 3D designs directly in the browser, similarly to VRMath2 [75], a tool based on
X3D and X3DOM. The latter was originally developed for educational purposes in STEM fields, but
use cases in various scientific fields were also identified. The authors presented a prototype for virtual
reality with Cardboard VR but targeted the WebVR API’s implementation in the future (see Figure 9
right). Recently, Lupinetti et al. [77] proposed their work for CAD models based on WebGL technology
with an application to visualize and enhance CAD assembly models.

Similar 3D online content processors, but not only for 3D CAD models, address specifically
triangle and hexahedral meshes. For example, the HexaLab project [78], which interactively
generates and displays hexahedral meshes for physics applications is based on WebGL. Those
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hex meshes contain complex internal structures and can be better explored with real-time
visualization. Similarly, MeshLabJS (https://github.com/cnr-isti-vclab/meshlab) allows editing 3D
models represented as triangle meshes in the browser [72]. MeshLabJS supports many formats such as
PLY, STL, OFF, OBJ, 3DS, VRML, and X3D and runs the C++ code compiled into JavaScript.

Figure 9. Examples of VR for physical applications on mobile phones. Left: iSpy WebGL [74] renders a
collision event from CERN on a mobile phone in binocular mode. Right: Yeh et al. [75] showing the
3D stereoscopic virtual reality of a helium atom with their tool VRMath2.

Beyond these applications, a large part of visualizations in physics takes part in astrophysics.
Astrophysical imaging visualizations and simulations are concerned with massive amounts of complex
data and require high computational performance and memory. Terabytes of data sometimes originate
from telescope observations across the electromagnetic spectrum making the storage and management
of raw data such as the visualization of the processed data a challenge [128]. The importance
of observations within astrophysics and astronomy led to the growing development and use of
web-portals in recent years [134]. Dykes et al. describe that the lack of 3D visualization on the web
for cosmology is a computational expense. Those large theoretical datasets require high-performance
computing resources for visualizations, which is a remaining challenge for visualization solely in
the browser. While web-based astronomy is often performed with ParaviewWeb as a client-server
approach [2], Dykes et al. use Splotch [135] as visualization engine, an open source scientific
visualization framework, to build a client-server tool, as shown in Figure 10. The authors use dat.GUI
(https://github.com/dataarts/dat.gui) and various filters to investigate the properties of galaxies.
For a review of these web-based approaches for astrophysical observatories, the reader is referred
to Dykes et al. [134]. In general, the current state-of-the-art web-visualizations for astronomy and
cosmological data try to map large multi-resolution images within the browser environment using
JavaScript mainly in 2D, for example, Bertin et al. [136]. Nevertheless, three-dimensional rendering
approaches and the possibility of user interaction are necessary to explore and analyze the data
successfully. The worldwide telescope (WWT) [137] offers a scientific data visualization platform as
WebGL-powered application, which acts as a virtual sky in a 3D environment. The users can explore
the sky across the electromagnetic spectrum with data from NASA’s Great Observatories; explore
planetary surfaces and elevation maps, solar system bodies, and asteroids to view stars; and import
their data and images. An example is illustrated in Figure 10.

https://github.com/cnr-isti-vclab/meshlab
https://github.com/dataarts/dat.gui
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Figure 10. Left: Showing a lightcone visualized by Dykes et al. [134] with spectral energy distribution,
where size and intensity are scaled by the stellar mass of the the full volume of 136,298 galaxies
interactively at >30 FPS for visual emphasis. Right: Screenshot of the user interface from the World
Wide Telescope at http://worldwidetelescope.org/webclient/ with images of our solar system and
the sun in the center. The user can interactively explore the sky with different modes and telescope
imagery in a 3D environment. Planets from our solar system are rendered with WebGL.

Pomarède et al. [138,139] presented useful web-based visualizations using Sketchfab to study and
create maps of the universe or cosmos. Sketchfab (https://sketchfab.com/) is a WebGL-based platform,
tool, and community for 3D models and textures, providing VR interfaces. Moreover, the community
of Sketchfab consists of 3D artists and developers who share their creations online for other users.
Pomarède et al. used the platform to create visualizations of cosmic flows and velocity to map the
distribution of matter in the universe for a better understanding of galaxy motions and to improve the
discovery process for astrophysicists. The visualizations can be found in Figure 11.

Figure 11. Sketchfab animation from the work in [139] where colors represent velocities and flows of
matter in the universe. Knots are highlighted with redder tones with accelerated motion and bluer
tones for less motion of the matter. The image shows a large scale flow pattern in the Shapley
Concentration (a supercluster containing the highest number of galaxies in our close universe).
Galaxies are attracted by gravitational attractors and and move away from empty regions; More
on https://sketchfab.com/pomarede.

5.4. Geographical Visualizations

The massive amounts of Earth data in previously reviewed topics on galaxies and planets intersect
with use cases for geographical mappings and rendering. In general, geographical, meteorological,
and ecological visualizations are concerned with spatial or spatial-temporal data. They are one of

http://worldwidetelescope.org/webclient/
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the most common data types and have large application fields, releasing a heterogeneous collection
of different Web3D systems. Geospatial data includes, for example, aerial imagery, such as satellite,
radar, or LiDAR data, as well as 3D city models and GPS data, digital terrain models, or point clouds.
Moreover, so-called geographic information systems (GIS) can easily handle geospatial data, but are
frequently not able to run in the browser. However, client-side rendering of 2D geospatial data can be
applied with frameworks such as Leaflet (https://leafletjs.com/) or OpenLayers (https://openlayers.
org/), whereas 3D rendering of geo-data is rather less implemented on the web. Nevertheless, new
applications are developed for specific use cases in the browser environment, and a large amount of
these are based on WebGL.

Feng et al. [140] introduced one of the first 3D geo-visualization systems using WebGL in 2011.
WebGL served as a powerful rendering engine but the applicability in practice was only limited due
to the complex server structure. OpenWebGlobe [141] rapidly followed this approach with a virtual
globe solution with large scale rendering and imagery data display for custom applications. Similarly,
WebGL Globe (https://experiments.withgoogle.com/chrome/globe), an open platform for geographic
data visualization based on Three.js, was developed by the Google Data Arts Team. The platform
supports data in JSON format where the users can create their virtual globe.

In 2013, Cesium.js [142] was released, remaining one of the most popular WebGL libraries for
3D geospatial web visualization until today. Cesium.js supports a vast amount of data formats and
allows fast rendering. Kraemer et al. [143] compared the usefulness of Cesium.js, X3DOM, and Three.js
for geospatial applications in a case study. The authors elaborate that each of the three frameworks
yields advantages and disadvantages, such as different requirements and target groups. Cesium.js,
for example, aims directly geographical applications and is advantageous for spatial reference systems
handling geospatial coordinates and data. This advantage of geo-specific support is not given by
Three.js, which needs further extension by other libraries. On the other hand, Three.js is flexible,
offers direct access to WebGL, has a large community, a broad range of applications, and allows
streaming of massive point clouds. Even if X3DOM has geo-specific support within X3D, it includes
only a few coordinate reference systems. In the case study, Kraemer et al. showed that X3DOM did not
meet the requirements in their use cases [143].

The advantages of Cesium.js for creating a virtual globe were exploited by generating interactive
geological and environmental visualizations, for instance, by Mueller et. al [82] in the GPlates Web
Portal (http://portal.gplates.org/). This portal allows fast, interactive visualization of geophysical
and geological data sets, which are draped over terrain models. The authors used beside the WebGL
powered library Cesium.js, also JQuery, and implemented their portal with a cloud-based infrastructure
with Amazon-Cloud [82]. Moreover, Cesium.js is a possibility for loading and visualizing large-scale
urban 3D models. This approach was followed by Miao et al. [144]. 3D geographic scenes visualizations
based on WebGL supported the implementation of a digital city roaming system. The authors converted
the 3D scene models to glTF (GL Transmission Format) and demonstrated their system on the city
model of New York City.

Especially research on climate or meteorological data and their visualization have emerged in
the last decades. Researchers have also been more concerned with climate warming, ecological, and
environmental issues. PolarGlobe is another example of a web-based platform based on Cesium.js,
enabling the three-dimensional visualization of multidimensional, time-varying climate data on a
virtual globe [85]. The server takes care of dimension reduction, linear transformation, and video
encoding, while the browser restores the data and visualizes it with GPU-based client-rendering via
WebGL. The authors used lossy video compression techniques for improving the transmission of a
significant amount of time series data over the web and realize real-time data rendering. The user
interface with interactive climate visualizations of the Earth is shown in Figure 12.

https://leafletjs.com/
https://openlayers.org/
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Figure 12. Left: Interactive visualization in the user interface of PolarGlobe showing wind speed on
the Earths’ surface with rendered vector data. Screenshot from http://cici.lab.asu.edu/polarglobe/.
Right: System demonstration of the graphic user interface of PolarGlobe indicating temperature data
with animation and different modes. (a): Temperature in 2012 over the North Pole in panorama view
of the Globe; (b1,b2): Animation of temperature data over Greenland in two different points of time;
(c): Wind vector data of a winter cyclone; (d): Vertical profile visualization of temperatures; (e): Value
picking of temperatures. Source: [85].

Additional frameworks visualizing climate, meteorological, and environmental data have been
proposed. With the release of WebGL in 2011 as new standard for 3D graphics rendering in the browser,
Congote et al. [5] demonstrated one of the first applications visualizing meteorology data. The authors
applied volume rendering on a medical imaging and weather radar data sets, the latter represented
as 2D images scanned from the surrounding atmosphere. The authors aimed to visualize volumetric
data with WebGL and created an interactive visualization of the radar data to different points in
time. A further scientific visualization can be found for environmental science, recently proposed by
Liu et al. [88]. The authors presented a method for interactive three-dimensional visualization of air
pollutants. Their advanced technology is based on Three.js and can display other scientific datasets
such as meteorological or hydrology data. Single pollution particles are visualized, and the pollutant
density can be estimated.

Another challenge in web-based rendering is the motion effects of spatial objects.
However, Cesium.js offers several types of animation and motion, but yet no interactive
motion is possible. For more information and a detailed table on currently available WebGL
visualization frameworks, libraries, and projects for geospatial capabilities, the reader is referred
to Evangelidis et al. [86]. The authors investigate the functionalities involving both animation and
moving capabilities of 3D models. The software tool provides dynamic creation of user-defined virtual
geospatial worlds, including user-selected animated and moving 3D models [86].

Some geospatial data types are point clouds, for example, applied as streamable 3D content.
Point clouds facilitate the representation of real-world objects and environments. Technologies
acquire them with LiDAR, radar, aerial, and digital cameras [87]. Most recently, Discher et al. [19]
presented their web-based interactive system of massive 3D point clouds with WebGL. The authors
distinguished between thick and thin clients. On thin clients, the images are rendered with the
server component and only displayed in the client, in contrast to a thick client where the rendering
process takes part in the client with Cesium.js. The server-side rendering for thin clients was based on
OpenGL, glbinding (https://github.com/cginternals/glbinding) and GLFW (https://www.glfw.org/
index.html). Displaying 2D models as well as stereoscopic panoramas of the geographic scene was
implemented with Three.js and WebVR Polyfill (https://github.com/immersive-web/webvr-polyfill)
to enable WebVR on any device [19].

Moreover, some forms of geographical visualizations are concerned with marine or ocean data.
Besides many other types of geological visualizations, the previously described web portal GPlates [82]
demonstrated the visualization of seafloor plans, as seen in Figure 13. Further tools that primarily
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focus on web visualization of oceanography can be found in [89,145]. Resch et al. [145] used WebGL
for visualizing 4D marine geo-data in a client-server approach. They describe the implementation of
time-dependent geo-data. Furthermore, the authors discuss challenges and requirements, especially
for implementing spatial-temporal data on the web. Comparatively, EddyViz [89] used Three.js for
their software to visualize natural phenomena such as ocean eddies and water circulation in 3D
(see Figure 13 left). These visualizations can be helpful for scientists or students in oceanography,
meteorology, and environmental sciences.

Figure 13. Left: Sea floor mapping from GPlates [82] showing the Marianna Arc in the Pacific
Ocean. Right: Interface with dat.GUI showing Ocean eddies during the year 2007 close to a coastline.
Various ocean eddies are categorized in different colors, yellow depicting cyclonic (water moving
counterclockwise) eddies and purple depicting anti-cyclonic eddies (water moving clockwise). Scientist
can identify that yellow/cyclonic eddies are more in the south, while purple ones are in primarily
located in the north. Source: [89].

Another field with intersections of geographical science is archaeology. During the last years,
various high-quality 3D archaeological representations on the web have been developed. In 2016,
Galeazzi et al. [146] presented the ADS 3D Viewer, a web-based visualization tool for the management
and analysis of archaeological 3D data. The viewer relies on the 3D Heritage Online Presenter
(3DHOP) (http://www.3dhop.net/), a free WebGL-based library for 3D web-based rendering
using multi-resolution encoding [81]. 3DHOP has been integrated in several cultural heritage and
archaeological projects. This approach was followed in 2019 by Boutsi et al. [90], developing a
web-based cultural heritage visualization platform with multi-resolution models from large-scale
archaeological sites and complex historical assets complemented with supportive multimedia content.
The authors used 3D and 2D cultural and geospatial data along with data compression and GPU
support. Besides the rendering with WebGL and Three.js, the platform uses the 3DHOP framework
as well.

A few years ago, web-based Virtual Reality was implemented as an efficient and fast way
to represent architectural and archaeological objects for cultural heritage by Koeva et al. [83,84].
The authors integrated VR in a web-portal with high-resolution spherical panoramas, maps,
frame images, and GPS coordinates for cultural heritage.

5.5. Cross Scientific Toolkits Supporting Scientific Visualization

Most scientific visualizations are developed for a specific use case and allow only a restricted
application in other areas. In contrast, other publications on web-based tools or software have a
general character and enable the implementation across different domains and use cases. One popular
example is ParaViewWeb, proposed by Jourdain et al. [2] in 2011. ParaViewWeb is a data
analysis and visualization platform as well as a JavaScript library powered by the VTK framework.
It is nowadays in use for multiple scientific purposes and in many Kitware, Inc. web projects
(https://www.paraview.org/web). It can even be implemented for mobile devices by applying
ParaView’s ArcticViewer (https://kitware.github.io/arctic-viewer/index.html).

http://www.3dhop.net/
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Another cross scientific tool is Tapestry, presented by Raji et al. [20], a decoupled architecture to
implement scientific visualization as a microservice within an open source platform. For interactive
visualizations backed with server computation, cloud computing was applied with Amazon Web
Services (AWS). Taspestry can help other researchers to easily integrate their visualization into
lightweight web pages. Previously, the authors developed a method for encapsulating and embedding
interactive 3D volume rendering into standard web pages [147]. Particularly for scientific purposes,
the incorporation of visualizations in informative websites can be a valuable addition to make
research-based content more accessible to a broader audience.

Furthermore, a high number of publications aimed to support collaborative web visualizations
and data sharing. Recently, Voxer [93], a platform for creating, customizing, and sharing scientific
visualizations, has been introduced by Yang et al. The system decouples the user interface from system
space and encapsulates data processing and the rendering as a web-service. Voxer provides a user
interface for domain experts to create and customize different visualization pipelines responding to
their specific requirements. The authors rendered 3D volume data with OSPray [148], a fast CPU-based
ray-tracing framework, VTK for the back-end, and React.js for the front-end.

Another 3D collaborative editor using WebGL and WebRTC was presented by Desprat et al. [91].
The authors targeted interactivity and real-time updates within 3D scenes visualization and a
small asynchronous message system, primarily to overcome the difficulties related to real-time
network collaboration of shared 3D models. By exploiting WebGL for the client, the users are
allowed to edit the 3D scenes. The data transmission is exchanged and updated by using WebRTC
(Web Real-Time Protocol) (https://webrtc.org/). The authors evaluated their application based on
three experiments and concluded to handle more significant scenes using adaptive rendering and
enhancing data streaming in future work. While remote streaming is still a remaining challenge in
today’s web-based visualization, it has already been tackled to be improved by several techniques.
Previously, before WebGL version 2.0, Lavoué et al. [149] proposed a solution using a progressive
compression algorithm for 3D graphic data with colors, by producing a binary format which allows
decompression for data streaming in the web browser. Compression is a helpful feature for web-based
visualization suffering from latency and heterogeneous client devices. Several of the presented
publications in this review make use of the advantages of data compression [19,49,73,85,90,113].
Besides both the tool of Desprat et al. [91] and Virag et al.’s [33] medical implementation, the use
of WebRTC can go beyond communication such as shown by Tamm et al. [150]. The authors used
WebRTC for remote rendering with image and video streams and planned to implement a collaborative
application in the future.

Recently, Matelsky et al. [94] introduced their Substrate package implemented with Python
and Three.js for data visualization, communication, and code reuse across diverse research teams.
The package allows scientists to rapidly build compelling three-dimensional scenes and visualizations.
Furthermore, the authors developed a Python module to access and interact with their WebGL-based
Substrate package within Python’s Jupyter environment and thereby not requiring the researcher to
have any JavaScript or WebGL knowledge.

6. Discussion and Directions for Future Work

This review identifies geographical data with 3D maps and terrain visualization; molecular data
viewers for biology or chemistry; and for the medical research field, brain imaging data, among the
major scientific application fields for browser-based visualizations. Analyzing the future readiness
for each application, we discovered many tools and frameworks mostly among molecular sciences
yielding higher average scores than tools in other scientific domains. Visualization researchers have
long been interested in a browser-based environment for molecular viewers despite the number of
available desktop tools [111]. This might have led to the development of sophisticated state-of-the-art
molecular viewers. In contrast, we can still determine a lack of 3D visualization abilities and tools
for astronomy data that are web-capable [134]. We also note a strong remaining potential in further

https://webrtc.org/
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scientific disciplines to investigate options for developing web-based visualizations or using existing
open source approaches to support their research. The introduced future readiness score indicates
promising applications in each domain, which can be used as interdisciplinary examples or built upon
for future research. Furthermore, we estimate that primarily the open source character of web-based
tools and the sharing of datasets will help the scientific community advance their research and
contribute to more collaboration. Some of the reviewed publications are concerned with integrating
real-time updates and fast data transmission for live collaboration. This offers the possibility for
multiple users working in the same environment and has been implemented by some applications,
such as WebRTC, or real-time APIs, such as Google Drive. Technical aspects of remote scientific
visualization in the browser are still concerned with minimizing latency and improving rendering
performance in the browser. Fast data transfer and streaming to the client by finding new ways
for efficient data compression and encoding are fundamental for the visualization of large datasets.
Depending on the type of dynamics and animations, interactive and scalable visualizations can also
influence these technical aspects. Another factor in web-based visualization is the importance of
choosing an appropriate infrastructure. The reviewed frameworks’ dominant infrastructure is a
client-server approach with browser-side rendering and image transfer to the client. However, some
of the reviewed tools use a full client or even a cloud-based infrastructure. Recently, client-based
rendering might be the most promising infrastructure, especially for platform-independent interactive
visualizations. With continuous improvements and lightweight visualization techniques, remote
visualization might undergo a constant shift to completely browser-based rendering as well as new
server-side technologies such as cloud computing. Further technical progress in this area can be
convenient for thin clients, particularly mobile phones or tablets. Overall, we have found that ~70% of
applications use responsive web design and aim to improve their visualization for multiple mobile
devices. Nevertheless, implementing WebGL for browser-based tools has limitations on specific
handheld devices. However, the attractiveness of using the browser on different devices expands.
The number of WebGL-based applications is growing among scientific visualization, as they overcome
most deficiencies of traditional tools.

In the following, we analyzed the use of WebGL in scientific publications. As WebGL was first
introduced in 2011 and the stable release of WebGL 2.0 occurred in 2017, we focused on this timeline
in our analysis. We executed a search with Google Scholar for each scientific application field analyzed
in this paper. For each year since 2011, we noted the number of publications per scientific discipline
and created a trend chart (see Figure 14). The line plotted in orange shows the papers, including the
keywords Scientific visualization and WebGL. Overall, we can see an increasing trend of publications
each year using WebGL, and we, therefore, expect web-based visualization to become progressively
crucial for various scientific fields.
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Figure 14. Trend analysis tracking of publications using WebGL since 2011. For individual scientific
fields the number of publications containing the keyword WebGL is plotted for each year.

In terms of future work, the presented papers in this review include directions or possible
improvements that can be made. At first, more massive scientific datasets require new solutions
and techniques in data transmission between browser and server, compression methods, or data
preprocessing. For example, Moraes et al. [46] suggest improvements in triangle mesh generation and
that using automated tools could be impressive in the future. Zhang et al. [48] consider designing some
advanced interpolation techniques for dealing with volumetric data and highlight the importance
of user interactions for web-based visualization, allowing users to change features in user interfaces
dynamically. Furthermore, the integration of new web technologies such as WebCL (Web Computing
Language) for high-performance parallel computing (https://www.khronos.org/webcl/) of both
central processing unit (CPU) and graphics processing unit (GPU) is an advantage for WebGL-based
data rendering. MedView [38] pointed out the necessity of an overall improved mobile experience
for the user. Other applications target future work by exploring web standard protocols such as
Web-Sockets or WebRTC, for interactive web-based collaborative visualization or the development of
new JavaScript modules to enable in-app video calls based on WebRTC. Moreover, deploying remote
visualization software as cloud services in large cloud frameworks provides the possibility for services
used by many simultaneous users. Further tools will focus on topics such as scalability and issues on
the server-side, transferring larger datasets, supporting various rendering styles at different levels of
detail, or investigating new compression algorithms for faster computing. Last, we reviewed multiple
applications planning to work on integrating virtual or augmented reality, which will be an upcoming
topic within the next years. By evaluating the future readiness of recent work, we found that using
cross-platform web-based applications plays a crucial role, and each scientific research area yields
pioneers with sophisticated open source state-of-the-art visualizations.

https://www.khronos.org/webcl/
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7. Conclusions

In this review, we have discussed a variety of state-of-the-art scientific visualizations implemented
in the browser. High quality, useful remote visualizations of growing and more complex scientific
data sets require new approaches, techniques, and algorithms. However, recent web-based
visualization frameworks and tools occasionally suffer from latency and network bandwidth issues.
Therefore, further research and improvements in new techniques and algorithms are needed to
address these challenges. While some of the presented WebGL-based approaches use the possibility
of GPU-accelerated rendering on both desktop computers and mobile devices, fully client-based
rendering or novel compression algorithms can be up-and-coming methods for independent
visualizations. Moreover, we found that WebGL is a continually increasing trend among 3D web-based
visualizations in various scientific disciplines. Especially physics and medicine frequently exploit
the advantages of WebGL, while other scientific fields such as chemistry and biology follow this
publication trend with an increasing amount of publications each year. Finally, we explored the future
readiness of individual software tools and frameworks. The future-readiness calls out for the need
for open source research. It indicates new tendencies of implementing virtual or augmented reality
within a web-based environment or the significance of responsive tools executable on different devices.
Our discussion showed that several approaches still have limitations concerning rendering on thin
clients such as mobile phones or tablets. Furthermore, virtual and augmented reality for the web is
still in its beginnings and will emerge within the next years. Nevertheless, we believe that continuous
technical progress and developments can push visualizations on the web to an even higher level and
the browser to become one of the preferred platforms for scientific visualizations.
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HTML5 Hyper Text Markup Language 5
WebGL Web Graphics Library
WebXR Web Cross Reality (augmented and virtual reality)
WebRTC Web Real-Time Protocol
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graphics for large complexes. Bioinformatics 2018, 34, 3755–3758. [CrossRef] [PubMed]

67. Rose, A.S.; Hildebrand, P.W. NGL Viewer: A web application for molecular visualization. Nucleic Acids Res.
2015, 43, W576–W579. [CrossRef] [PubMed]

68. Carrillo-Tripp, M.; Alvarez-Rivera, L.; Lara-Ramírez, O.I.; Becerra-Toledo, F.J.; Vega-Ramírez, A.;
Quijas-Valades, E.; González-Zavala, E.; González-Vázquez, J.C.; García-Vieyra, J.; Santoyo-Rivera, N.B.; et al.
HTMoL: Full-stack solution for remote access, visualization, and analysis of molecular dynamics trajectory
data. J. Comput. Aided Mol. Des. 2018, 32, 869–876. [CrossRef]

69. Gralka, P.; Becher, M.; Braun, M.; Frieß, F.; Müller, C.; Rau, T.; Schatz, K.; Schulz, C.; Krone, M.; Reina,
G.; et al. MegaMol–a comprehensive prototyping framework for visualizations. Eur. Phys. J. Spec. Top.
2019, 227, 1817–1829. [CrossRef]

70. Wang, J.; Youkharibache, P.; Zhang, D.; Lanczycki, C.J.; Geer, R.C.; Madej, T.; Phan, L.; Ward, M.; Lu, S.;
Marchler, G.H.; et al. iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular
structures. Bioinformatics 2020, 36, 131–135. [CrossRef]
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