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Abstract: Deadband algorithms are implemented inside industrial gateways to reduce the volume
of data sent across different networks. By tuning the deadband sampling resolution by a preset
interval ∆, it is possible to estimate the balance between the traffic rates of networks connected by
industrial SCADA gateways. This work describes the design and implementation of two original
deadband algorithms based on statistical concepts derived by John Bollinger in his financial technical
analysis. The statistical algorithms proposed do not require the setup of a preset interval—this is
required by non-statistical algorithms. All algorithms were evaluated and compared by computing
the effectiveness and fidelity over a public collection of random pseudo-periodic signals. The overall
performance measured in the simulations showed better results, in terms of effectiveness and fidelity,
for the statistical algorithms, while the measured computing resources were not as efficient as for the
non-statistical deadband algorithms.

Keywords: data reporting; SCADA; deadband; send-on-delta; industrial computing; financial
computing; OPC; fieldbus

1. Introduction

Statistical methods in manufacturing procedures for quality control were investigated by
Friedman [1]. The statistical and temporal properties of crossings at a certain level by random signals
in manufacturing process control were first with the send-on-delta sampling scheme by Ellis [2,3].
However, in manufacturing supervision and control networks, more attention is given to the volume of
data generated by the messages than to the power and computing resources required to send them [4].
The first OPC (OLE technology for process control) standard [5], established at the beginning of 1990s,
was the OPC deadband, which is a send-on-delta sampling schema for data-reporting algorithms in
industrial gateways, used to reduce the volume of data sent from the fieldbus (networks of devices
such as transmitters and actuators) to the SCADA (supervisory control and data acquisition) network
layer in a manufacturing environment. Variants of the same algorithm have been introduced by the
NI LabView tool [6] and Lonworks technology [7]. The absolute deadband (AD) schema is known in
the signal processing literature as conventional send-on-delta (SoD) in order to differentiate it from
the other algorithm variants [8]. It is considered deterministic because it requires a preset interval of
oscillations where the signal should be limited a priori.

The SoD schema is a natural, signal-dependent, temporal, event-based data report schema, while
Bollinger’s financial theory can be considered as a signal-independent prediction schema [9].

Using the deadband concept, a continuous time signal y(t) is sampled and a new report is sent
when the value of the physical variable being sensed deviates from the value included in the most
recent report by a preset interval, ±∆, where ∆ > 0. Using the statistical approach, a new report is sent
when the value of the physical variable being sensed deviates from the value included in the most
recent report by a non-related statistical indicator with a preset interval ∆.
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The objective of this work is to implement statistical algorithms based on Bollinger’s theory as
alternatives to the conventional SoD sampling scheme, which is an event-based data-reporting strategy.

The experimental results showed a performance enhancement of the statistical deadband
algorithms over the non-statistical send-on-delta schema. In order to reproduce the algorithms
comparison in R [10], the pseudo-code of all of the algorithms in this paper have a corresponding
function in the deadband package [11]. The algorithms described in the pseudo-code represent
the concept to obtain the algorithm output, sample by sample, as in the online working mode.
The corresponding functions in the package process the collection of all outputs for all input samples
in a finite time period. The functions in the package have been developed to compare the overall
performance of a hypothetical device that embeds a hardware or software implementation of the
corresponding pseudo-code algorithms.

This paper is organized as follows. Section 2 presents an introduction to the OPC deadband
concepts that are related to the data collection process and the algorithms. Section 3 presents
Bollinger’s technical analysis. Section 4 presents the two original deadband algorithms. Section 5
provides the simulation results developed by using the deadband package. Finally, Section 6 draws
some conclusions.

2. OPC Deadband and Event-Based Reporting Strategy

In sensors literature, the absolute deadband algorithm is explored as an SoD event-based control
problem and usually makes the prior assumption that an event generator is established in advance.
Then suitable control laws are calculated in order to ensure the stability of the original system [3].

In sensor networks literature, [12] SoD event-based approaches are proposed in order to
provide a trade-off between the effectiveness and resource utilization/energy efficiency. Diaz et
al., in Reference [13], introduced a dynamic SoD by using a network adaptive scheme over network
transport protocols for remote controlled sensors. Hirche et al., in Reference [14], introduced the
concept of a relative SoD by adding a proportional factor to ∆ of the conventional deadband, according
to the amplitude of the signal. Suh, in Reference [15], proposed the addition of a linear predictor in the
conventional SoD reconstructor schema, in order to reduce the number of samples transmitted. After
a sensor value transmission, a linear predictor computes the future sensor value based on the past
values. If the difference between the current value and the predicted value is larger than a prefixed ∆,
the sensor value is transmitted.

The main objective of an event-based reporting strategy is to avoid sampling periodically and
rather only sample when a quantized data change occurs, from one possible value to the next.
The OPC standard, set by the OPC Foundation R©, extends the data report schema to networks in
order to open software application interoperability between automation and control applications, field
device applications controller (such as Proportional–Integral–Derivative—PID or sensors), and office
applications [16]. The basic principle of OPC operation is that an OPC client, a SCADA software for
example, transfers data to/receives data from fieldbus devices by using an industrial gateway, named
the OPC server. The OPC client can operate either locally, or via a local or remote network. In this case
the server accesses field devices via drivers.

In order to explain how the OPC deadband algorithm reports the data from the fieldbus (left
side) to the networks (right side), as outlined in Figure 1, we consider a sampled signal y(t) at the
OPC server, originating from a field device connected to the OPC server using a dedicated hardware
and software library. The first step in Figure 1 is the generation of the signal at the field device or a
DCS (distributed control system). Then, samples of y(t) are acquired at the OPC server, which reports
to the OPC client. The sensed samples are those that deviate from the values included in the most
recent report, called the cache (ycache(t)). From the fieldbus side, we assume the physical sampling
rate of y(t), is established and pre-configured by the field technology vendor. This sampling rate is
represented by the parameter ServerScanRate in the OPC server and determined by using the field
device vendor library [17,18]. From the SCADA/OPC client side, the reported changes of y(t) are
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received at an update rate negotiated by the OPC server and client—the OPC client requests the
subscription to changes by the RequestedUpdateRate parameter and the OPC server responds by the
RevisedUpdateRate, either by accepting the proposed rate or, if it is too high, by downgrading the rate
to the ServerScanRate. In most cases, the ServerScanRate is a physically bounded value in the field
device and is also specified inside the OPC server device driver.

IP NetworkPoint-to-Point or 

Fieldbus Network

Gateway to IP Network

SCADA/OPC Client

OPC Server

DCS 

1. Signal produced

at Fieldbus layer.

2. Signal samples are

adcquired  by the

OPC Server at 

“Server Scan Rate”.

3. Samples are +ltered

by using deadband

algorithm at the

Update Rate. 

4. A reduced number

of samples are

received for

deadband values<1

Figure 1. Overview of the steps to receive the samples at the OPC client.

The deadband algorithm is applied by the OPC server to the sampled signals y(t) to determine
which one may be reported to the OPC client at the update rate. According to the send-on-delta
(SoD) schema, it can skip the samples that do not representing relevant changes for the OPC client.
At reception, the OPC client uses the zero-order hold (ZOH) strategy, where the last received data are
held at the SCADA application until new data arrive. Therefore, the missing data are estimated by
holding the value of the last received sample.

The OPC clients are used to monitor and control client/server network applications, the deadband
algorithm parameter is tuned in order to minimize the amount of data sent from the OPC server to
the client [19–22]. The number of requests and responses in the supervision network can increase
exponentially with a high frequency of samples sent by the gateway [23]. For such a reason, the
OPC client has to indicate that the amount of data being sensed deviates from the value included in
the most recent report by using a parameter called the deadband percentage, or d, which is defined as
the percentage that a relevant value must change by before the value is out of the client’s interest.
Changes in values out of the client’s interest are not sent, reducing the amount of data delivered over
the network.

The Absolute Deadband Algorithm

The absolute deadband (AD) algorithm, known also as constant deadband in sensors
literature [14], is applied to each new sample y(t) provided by the OPC server at the update rate. First,
the gateway computes the interval ∆ using the deadband parameter d as expressed by Equation (1):

∆ = (EUmax − EUmin)d 0 ≤ d ≤ 1, (1)

where d is the deadband percentage; and EUmin and EUmax are the lower and upper bounds of an
analog signal previously calibrated for some phenomena and typed in the device description [24,25].
The difference (EUmax − EUmin) is the preset interval. For example, considering a thermometer for the
human body, these values are typically bounded from 35 to 42 degrees Celsius, representing the preset
interval for a limited temperature range, known a priori.

As a second step, the gateway verifies the sampling deadband equation, also known as the
absolute deadband (AD) equation. In other engineering control applications, this is also known as the
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trigger-function or amplitude-sensitive equation [26–28]. Given a sampled signal y(t) at t = t∗, it is
defined as:

|yt∗ − ytcache | > ∆. (2)

In Equation (2), yt∗ represents the current sample value at the update rate and ytcache is the last
data report sent by the algorithm to the remote SCADA/OPC client and saved in cache memory.

The device implementing the AD algorithm, as summerized in Algorithm 1, verifies, sample by
sample, each new value of the Equation (2) to decide whether the current sample value is out of the
client’s interest or has to be reported.

The OPC deadband algorithm is the absolute deadband algorithm combined with a network
strategy report, which is found in most industrial communication systems, such as the OPC-XML
advanced polling and publisher/subscriber approach technology, OPC 2.x/3.x, OPC-UA, Lonworks,
and the NI LabView standards [5].

Algorithm 1 Absolute Deadband (AD)

procedure ABSOLUTE DEADBAND (EUmin, EUmax, yt∗ , ytcache , d)

∆← (EUmax − EUmin) · d

if |yt∗ − ytcache | > ∆ then

send yt∗ . Signal will be sent

ytcache ← yt∗ . Update the last recorded signal

else

discard yt∗

end if

end procedure

3. The Bollinger Financial Technical Analysis

In 1983, John Bollinger introduced a set of technical analysis tools for the financial market named
Bollinger Bands TM. The key of Bollinger Bands is the price volatility represented in the Bollinger
formulas by the standard deviation σ and the moving average. Financial traders use the outputs of
Bollinger Bands with other technical indicators in order to predict the future price and choose the
position to take with regard to the monitored asset. The indicators work with time series of stock
market closing prices over periods of 10, 20, and 50 days.

In the case of industrial monitoring, we have a time series representing the samples of y(t). For
each t = t∗, Equation (3) defines the moving average (mave) of a time series y(t) over n periods:

mavet∗ =
t=t∗

∑
t=t∗−n+1

yt/n. (3)

Since, in Equation (3), the moving average uses n data values, the first time t∗ at which mavet∗

can be calculated is t∗ = n. For this reason, the adaptation of Bollinger’s theory to a sampled signal is
applicable after the acquisition of n consecutive samples. Similarly, let n be the period of variance at
t = t∗; then σ2

t∗ is defined as:

σ2
t∗ =

t=t∗

∑
t=t∗−n+1

(yt −mavet∗)
2/(n− 1). (4)
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The band components are constructed using a center line and an upper and lower band, defined
respectively as:

centerlineBBt∗ = mavet∗ (5)

upperBBt∗ = mavet∗ + k ∗ σt∗ (6)

lowerBBt∗ = mavet∗ − k ∗ σt∗ . (7)

The parameter k is a width multiplier and represents the distance, in units of standard deviations,
from the center line to each band. In stock market financial analysis, Reference [29] recommends the n
and k values shown in Table 1 for bands construction.

Table 1. Recommended Width Parameters for Bollinger Bands.

Periods (n) Multiplier (k)

10 1.9

20 2.0

50 2.1

While, in finance, n represents the number of days spent on price observations, in engineering
applications, the period n may represent other temporal unit scales and the required observations
could be more than fifty. Instead of number of days, in this study, n is considered a time sequence of
consecutive samples at the OPC server.

In Bollinger technical analysis, the values of k = 2 and n = 20 are considered as a reference case
and the other combinations are used to expand the reference case. In Reference [30], the Bollinger
bands are used to detect defections in patterned fabric and the reference values of n and k were 20
and 2, respectively. For most financial analyses, the default choice for the average is a simple moving
average, but other types of averages can be employed as needed [31].

For each y(t∗) with t∗ > n, the Bollinger theory introduces two indicators derived directly from
the bands:

%Bt∗ =
yt∗ − lowerBBt∗

upperBBt∗ − lowerBBt∗
. (8)

As defined in Equation (8), the volatility indicator, %Bt∗ , measures the relative proximity of the
sample value to the previous period. It typically varies from 0 to 1, but it can occasionally exceed these
values: when the value of %B trends to 1, the value moves to the upper band; and when %B trends to
0, the value moves to the lower band.

The second indicator, called the BandWidth, is defined in Equation (9):

BandWidtht∗ =
upperBBt∗ − lowerBBt∗

centerlineBBt∗
. (9)

It is used to recognize the beginning and end of increasing and decreasing values. Both parameters
can also be used together to recognize trend patterns.

4. Bollinger Deadband and Volatility Deadband Algorithms

In this section, we propose the Bollinger deadband and the volatility deadband algorithms.
The first algorithm, described in Section 4.1, performs the same logic as the absolute deadband (AD)
approach but assumes the preset interval is the range between the upper and lower bands of the
Bollinger theory. For this reason, it was named the Bollinger deadband (BD). The second algorithm,
detailed in Section 4.2, does not use the bands and does not calculate any ∆. It compares the volatility
indicator, %B, to the deadband percentage parameter, d, and discards the sample if the indicator is
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less than or equal to the percentage deadband. For this reason, it was named the volatility deadband
(VD) approach.

Since both algorithms, BD and VD, require n consecutive samples at the beginning of algorithm
in order to calculate the moving average, no samples are reported until after the n-th sample.

4.1. Bollinger Deadband: An Algorithm Using the Upper and Lower Bands

For a sample of y(t) at t = t∗, the algorithm computes ∆ as in Equation (10):

∆t∗ = (upperBBt∗ − lowerBBt∗)d 0 ≤ d ≤ 1. (10)

Let yn(t) be a vector of n consecutive samples sent by any sensor or device to the OPC server.
Its size is the same as the number of periods adopted to compute the upper and lower bands. Let k
be the multiplier in Bollinger’s theory and d be a real number representing the deadband percentage.
For each new value of the series yn(t) at t = t∗, the proposed Bollinger deadband algorithm computes
the SoD sampling schema assuming ∆ as in Equation (10). This is described in the pseudo-code
presented in Algorithm 2.

Algorithm 2 Bollinger Deadband (BD)

procedure BOLLINGER DEADBAND (yt∗ , yn(t), n, k, d, ytcache )

if yn(t) < n then . No filter for the first n periods

yt(n). Enqueue(yt∗) . Add to the top

send yt∗ . Current value will be sent

else

mave← mean(y(−n) : yt∗)

σ← (yti−mave)2

n

∆← (upperBB− lowerBB) · d

if |yt∗ − ytcache | > ∆ then

ytn . Dequeue . Remove from the bottom

ytn . Enqueue(yt∗) . Add to the top

send yt∗ . Current value will be sent

ytcache ← yt∗ . Update the cache

else

ytn . Dequeue . Remove from the bottom

ytn . Enqueue(yt∗) . Add to the top

discard yt∗

end if

end if

end procedure

The two algorithms, BD and VD, adopt the values of n = 20 and k = 2 as default values such as in
other engineering applications that use the Bollinger theory [32]. An analytic investigation discussed
by Leeds in Reference [33] shows how to derive the bands from a general time series expression by
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fixing k and n. Therefore, the use in this work of the standard and recommended values from the
literature, k = 2 and n = 20, has the primary benefit of one being able to use the standard practical
technical analysis concepts.

4.2. Volatility Deadband: An Algorithm Using the Volatility Indicator

Algorithm 3 describes the volatility deadband approach in pseudo-code. It uses the moving
average and standard deviation, but it is different from the Bollinger deadband due to the following
two characteristics:

1. The VD algorithm does not use the last cached sample, ytcache , in the computation of the next
sample; and

2. The VD algorithm does not build a ∆ interval, but the BD algorithm does.

Algorithm 3 Volatility Deadband (VD)

procedure VOLATILITY DEADBAND (yt∗ , yn(t), n, k, d)

if yn(t) < n then . No filter for the first n periods

yt(n). Enqueue(yt∗) . Add to the top

send yt∗ . Current value will be sent

else

mave← mean(y(−n) : yt∗)

σ← (yti−mave)2

n

%B← ytcache−lowerBB
upperBB−lowerBB

if |%B| > d then

ytn . Dequeue . Remove from the bottom

ytn . Enqueue(yt∗) . Add to the top

send yt∗ . Current value will be sent

else

ytn . Dequeue . Remove from the bottom

ytn . Enqueue(yt∗) . Add to the top

discard yt∗

end if

end if

end procedure

In the VD algorithm, we assume that the %B indicator is a reference percentage for a dynamic
preset interval realized by the upper and lower bands. The absolute value of %B is used in this
algorithm because it can occasionally exceed the interval [0, 1]. When %B moves closer to 0, the
samples of y(t) move to the lower band; when %B moves closer to 1, the samples of y(t) move to the
upper band. A volatility contraction for changes in samples of y(t) causes a narrowing of the band,
and thus, increases the sensitivity for less relevant changes.
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5. Simulation Results

Algorithms 1–3 were designed for runtime use when the OPC server receives samples that flow
from field devices for an undefined time. In order to compare the overall performance of the algorithms,
we developed an R package, named deadband, to compute each algorithm over a preloaded time series
in a defined time interval.

The moving average and Bollinger band functions were imported from the package TTR developed
in Reference [34]. The preloaded time series in the deadband package were generated from sampling
the public dataset Pseudo Periodic Synthetic Time Series from the UC Irvine KDD Archive [35] built in
Reference [36].

The original dataset, before sampling, used to generate the subset in the deadband package,
was built by using Equation (11):

y(t) =
7

∑
i=3

1
2i sin

(
2π

(
22+i + rand(2i)

)
~t
)

0 ≤~t ≤ 1. (11)

The original dataset was made up of ten series of 100,000 data points generated from t = 0
and t = 1, and the amplitude values ranged from −0.5 to +0.5. Each of the ten series represents
a pseudo-periodic signal y(t). These signals can be considered a random mix of ramp, step, and
pseudo=periodic sinusoidal signals such as in real manufacturing production plants using OPC
gateways [37].

Since, in most OPC servers, the ServerScanRate is pre-configured between 200 and 300 ms,
the simulations are grouped using all sampling rates. The preloaded dataset in the deadband package
was generated from the original dataset of Equation (11) by sampling all ten pseudo-periodic times
series at 210 ms, 240 ms, 252 ms, and 300 ms rates [38]. Figure 2a–d show plots of all ten signals
sampled at 210, 240, 252, and 300 ms respectively and ordered from y1(t) to y10(t).

For construction, all of the generated pseudo-periodic signals yi(t) have already defined
engineering unit (EU) upper and lower bounds of:

• EUmax = +0.5, and
• EUmin = −0.5,

respectively.
The simulations explored the filtering effectiveness and the fidelity by using the Euclidian distance

between the reconstructed signals at the SCADA/OPC client, after the deadband processing was
computed at the OPC server. The deadband package includes the functions deadbandAD, deadbandBD,
and deadbandVD to compute the AD, BD, and VD deadband algorithms. All functions process the
algorithms over a limited time interval in order to generate data for comparisons.

Using the preloaded time series in the deadband package, the code in algorithm 1 shows an
example of the deadbandAD code function when it processes the first time series in the first column
of the preloaded data table, which is related to sampling at 240 ms. The offset parameter represents
the number of samples shifted out before beginning the calculation of the moving average in the
deadbandBD and deadbandVD functions. This parameter was also included in the deadbandAD function
in order to align the simulation results in the same time interval. The simulation shows the use of
the deadbandBD and deadbandVD algorithms with deadband percentage d = 0.01, the period n = 20,
and the multiplier k = 2.

In all evaluated simulations in this paper, the adopted values of the d parameter were 0.001,
0.01, 0.02, 0.05, 0.10, 0.20, 0.30, 0.45, 0.60, and 0.99. In order to consider all d values, the functions
deadbandAD, deadbandBD, and deadbandVD were repeated in a simulation loop in an R script.
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(b) Pseudo-periodic signals sampled at 240 ms
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(c) Pseudo-periodic signals sampled at 252 ms
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(d) Pseudo-periodic signals sampled at 300 ms

Figure 2. Pseudo-periodic signals sampled at (a) 210, (b) 240, (c) 252, (d) 300 milliseconds.

5.1. Effectiveness and Fidelity

The mean rate of messages λ is defined as the mean number of transmissions per unit time. In the
SoD scheme, the effectiveness p is defined as the reduction of the mean rate of messages in comparison
to periodic sampling for a given resolution [39–41]. It is defined by Equation (12):

p =
λT
λ

(12)

where λT is frequency in the periodic sampling scheme and λ is the mean rate of messages in the SoD
scheme. Since, in our scenario, the samples reported by the OPC server are a subset of the samples
received from the field sensors, we express the effectiveness as the ratio of samples reported by the
deadband algorithm and the total number of samples for the evaluated sampling rate: 210 ms, 240 ms,
252 ms, and 300 ms.
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The mean effectiveness for all yi(t), with i = 1, . . . , 10, grouped by sampling rate, is shown in
Figure 3a. In Figure 3a, an increase in the number of filtered samples, by tuning the d parameter,
results in a smoother curve for the VD algorithm. This effect permits more granularity in tuning the d
parameter using the VD algorithm than the AD algorithm.
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Figure 3. Effectiveness and L2 norm comparison for AD, VD and BD algorithms. (a) Mean of deadband
effectiveness over all signals grouped by sampling rate; and (b) Mean of L2 norm over all deadband
signals grouped by sampling rate.

Fidelity is a measure of the similarity between the original signal sampled at the ServerScanRate
and the remote reconstructed signal by using the samples reported by the deadband algorithm. The L2
norm distance was computed for all yi(t), with i = 1, . . . , 10. The results for each sampling rate
group, given as means over all yi(t), are shown in Figure 3b. In Figure 3b, the distance performed
by the VD algorithm is represented by the lower curve of the L2 norm mean. This simulation of the
signals reconstructed from the samples filtered by the VD algorithm presents a higher fidelity than the
corresponding AD and BD algorithms for the same values of d.

Table 2 presents the averages of the normalized effectiveness and fidelity, calculated for the
sampling rates of 210, 240, 252, and 300 ms. For values of d up to 0.2, the numerical results in Table 2
show a reduction of samples when using the BD algorithm, more than twice as much as when using the
VD algorithm. Additionally, in terms of the distance of the reconstructed signal from the original signal,
the BD algorithm reports lower L2 norm values than the VD approach. In terms of the granularity of
the effectiveness results by tuning the d parameter, the graphs in Figure 3a show a smoother evolution
of the VD curves than BD for d values over 0.2.

Table 2. Averages of effectiveness and fidelity values calculated for each simulated sampling rate,
after normalization.

Effectiveness Fidelity

d AD BD VD AD BD VD

0.01 66% 11% 2% 5% 5% 5%
0.05 92% 40% 9% 13% 5% 7%
0.1 96% 60% 17% 25% 6% 12%
0.2 97% 77% 31% 46% 8% 28%
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5.2. CPU Usage Benchmarks

Since the application domain of these algorithms is mainly in embedded systems, a comparison
of the CPU time usage was evaluated using the microbenchmarks package [42]. Figure 4 shows the
mean of the overall CPU time used to compute all yi(t), with i = 1, . . . , 10, for each of the algorithms:
AD, BD, and VD. The CPU time measurement test was repeated 1000 times for each algorithm and
thus we have 3000 benchmarks on the x-axis. The log scale in y expands the visual difference between
the computation time of the BD and VD approaches. These two algorithms, as expected due to the
presence of the moving average, require more CPU time than the AD algorithm. The increase in the
mean CPU time from the AD to the BD algorithm was about 79%, while the increase from the AD to
the VD algorithm was about 66%.

1e+09

0 1000 2000 3000
benchmarks

tim
e

expr

AD

BD

VD

Figure 4. Computation benchmark comparison.

6. Conclusions

This study’s approach was partially statistical, because it adopted a financial theory used on the
stock market, but the evaluation of the simulation results followed the metrics of effectiveness and
fidelity for signal processing. The objective was to use the statistical approach in order to design a
new family of algorithms for gateways of fieldbus networks, embedded systems, and remote sensors
monitored by SCADA/OPC systems. The original family of statistical SoD or deadband schemes
includes two algorithms: the Bollinger deadband (BD) and volatility deadband (VD) approaches.
The fidelity was measured as the L2 norm distance. An increase in the L2 norm distance means
a decrease in fidelity because the reconstructed signal is more distant from the original signal.
Therefore, the signals reconstructed by using the samples of BD can be considered closer to the
original signal than the VD algorithm. On the other hand, the signals filtered by the VD algorithm are
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quantitatively sampled more than those filtered by the BD algorithm, as reported in the effectiveness
shown in Figure 3a.
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