
 informatics

Article

Selective Wander Join: Fast Progressive
Visualizations for Data Joins

Marianne Procopio 1,* , Carlos Scheidegger 2, Eugene Wu 3 and Remco Chang 1

1 Department of Computer Science, Tufts University, Medford, MA 02155, USA; remco@cs.tufts.edu
2 Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA;

cscheid@email.arizona.edu
3 Department of Computer Science, Columbia University, New York, NY 10027, USA; ewu@cs.columbia.edu
* Correspondence: marianne.procopio@tufts.edu

Received: 29 January 2019; Accepted: 14 March 2019; Published: 25 March 2019
����������
�������

Abstract: Progressive visualization offers a great deal of promise for big data visualization; however,
current progressive visualization systems do not allow for continuous interaction. What if users
want to see more confident results on a subset of the visualization? This can happen when users
are in exploratory analysis mode but want to ask some directed questions of the data as well. In a
progressive visualization system, the online aggregation algorithm determines the database sampling
rate and resulting convergence rate, not the user. In this paper, we extend a recent method in
online aggregation, called Wander Join, that is optimized for queries that join tables, one of the most
computationally expensive operations. This extension leverages importance sampling to enable
user-driven sampling when data joins are in the query. We applied user interaction techniques that
allow the user to view and adjust the convergence rate, providing more transparency and control
over the online aggregation process. By leveraging importance sampling, our extension of Wander
Join also allows for stratified sampling of groups when there is data distribution skew. We also
improve the convergence rate of filtering queries, but with additional overhead costs not needed in
the original Wander Join algorithm.

Keywords: progressive visualization; online aggregation; interaction; information visualization

1. Introduction

Responsive visual exploration typically requires that the underlying data be available at interactive
speeds. This requirement can be easily met when data resides in memory, but such a solution is not
scalable. As the amount of data increases, the data must be stored on disk or in a remote database.
As a result, the queries used to populate the visualization can take minutes, hours or longer to return,
resulting in long wait times between each of the user’s interactions and diminishing the user’s ability
to quickly explore the data.

This lag is exacerbated if the analysis queries involve joining data across multiple database
tables. For example, consider the following database query that finds the average customer spending
per region:

SELECT AVG(orders.order_total), location.region
FROM orders, customers, location
WHERE orders.customerID = customer.customerID AND
customer.locationID = location.locationID
GROUP BY location.region

The query must read data from three separate tables, combine them together using the expressions
in the WHERE clause, partition the resulting data by location.region, and finally compute the average

Informatics 2019, 6, 14; doi:10.3390/informatics6010014 www.mdpi.com/journal/informatics

http://www.mdpi.com/journal/informatics
http://www.mdpi.com
https://orcid.org/0000-0002-9518-1259
http://www.mdpi.com/2227-9709/6/1/14?type=check_update&version=1
http://dx.doi.org/10.3390/informatics6010014
http://www.mdpi.com/journal/informatics

Informatics 2019, 6, 14 2 of 21

order_total for each region. JOIN operations are well known to be costly [1]. To compute fully
accurate results, the join operation requires at minimum full scans of all input tables, and naive
implementations take quadratic time in the sizes of the tables.

Progressive visualization is a recent technique to adapt to the ever-increasing data processing
latency problem. At its core, Selective Wander Join is a progressive visualization system that enables
the user to prioritize data analysis of interest while performing exploratory analysis, optimized for
queries involving aggregation across multiple tables in data joins. Individual components of the
visualization are selected and the underlying data is weighted appropriately so that these records are
sampled more often in the online aggregation process. This lets the aggregation values converge faster,
but still allows for all components of the visualization to be sampled and estimated values updated.

To achieve this, we integrate the idea of importance sampling [2] into a recent online aggregation
method, called Wander Join [3] and describe how to perform this prioritization. Additionally,
by applying importance sampling to Wander Join, we can ensure even sampling of different groups
when there is an uneven distribution of data across the grouping attribute. We can also show
that changing weights of individual records can speed up convergence for queries involving filters.
Importance sampling adds additional overhead and bookkeeping not found in the original Wander
Join algorithm but we show its impact does not significantly affect performance and performs no
worse than Wander Join.

Since Selective Wander Join leverages importance sampling to enable userdriven interactivity in
the sampling process, we applied interaction techniques that allows the user to monitor and control
the sampling rate of each group. This gives users more transparency into the online aggregation
process and prioritizing their data of interest. We describe a visualization design leveraging common
progressive visualization techniques to show how to apply the Selective Wander Join algorithm in
Section 6 and present a demonstration study of the visualization with expert users in Section 7.

Through this work, we claim the following 3 contributions:

• Extended online aggregation methods to support joins for common visualization queries, such as
filtering and grouping.

• A method for providing a uniform convergence rate for all GROUP BY categories, regardless of
data membership in each group.

• An application of common interaction techniques to view and adjust sampling rates in
progressive visualizations.

For the remainder of this paper, we will discuss relevant work in database and visual analysis
systems. We will go into more detail on the original Wander Join algorithm, its limitations and our
implementation and interface. We discuss our contributions, their methods and evaluation and finally
our conclusion and future work.

2. Related Work

There is a clear need for maintaining highly responsive visual interfaces for exploring larger and
larger databases. To achieve this, there has been recent interest in co-designing interactive visualization
with the underlying data processing systems that compute the results rendered on the screen [4,5].
In this section, we review related work from both the visualization community, which focuses on visual
analysis systems for large scale data, as well as the database community on scalable query processing.

2.1. Progressive Visual Analytics

Progressive Visual Analytics (PVA) techniques have become more common in the visualization
community to address the challenge of big data. In a paper by Mühlbacher et al. [6], the authors
described the interactions between the user and the automation along two dimensions: “direction of
information” and “entity of interest”. Although this organization does not uniquely apply to PVA but
more broadly to all other types of automation, the paper suggests the means in which a user can affect

Informatics 2019, 6, 14 3 of 21

the outcomes of automation. Using this definition, our proposed Selective Wander Join approach falls
under “Control” and “Execution” in that the purpose of Selective Wander Join is to provide the user
with the ability to prioritize (or cancel) the execution of the queries.

More specific to PVA, Angelini et al. recently conducted a review of existing PVA techniques [7].
Similar to the paper by Mühlbacher et al., the work of Angelini et al. is not a survey, but
a characterization of PVA techniques and a set of recommendations for future designs. Some
commonalities between these techniques include the goal of alleviating the wait time in long or slow
computation, the need to present to the user partial (incremental) results, and the design challenge of
allowing users to provide feedback either with the intermediary results or the algorithm itself. However,
while these design goals might be similar, the implementation and approach could sometimes differ
significantly. Below we summarize some of the most relevant papers and techniques to our proposed
system and discuss how Selective Wander Join differs.

The proposed Selective Wander Join aims at providing user guidance during the computation of
expensive JOIN queries in databases. This topic differs from some other PVA approaches that focus on
the steering of machine learning or data mining techniques, such as those by Stopler et al. on mining
sequential data [8], Pezzotti et al. on steering t-SNE [9], and Turkay et al. on the designs of PVAs for
high-dimensional data [10].

Focusing on PVA for database queries, systems such as sampleAction [11,12] directly employ
online aggregation and interface concepts from the original CONTROL project [13] and evaluate
their efficacy in real-world conditions. This system was instrumental in showing that users benefited
from seeing immediate results alongside incrementally improving accuracies, and that users felt more
empowered to actively explore their data instead of waiting for queries to complete. Their results
also highlight the value of existing research in effective ways to visualize approximate and improving
results. For example, Zgraggen et al. conducted a study to understand the effect of latency and
blocking on user exploration [14]. The authors find that instantaneous results or results delivered in
a progressive manner lead to a user discovering more insights. Similarly, Moritz et al. report that
analysts using their system that delivers instantaneous but partial results (using sampling) felt more
confident with their analysis outcomes [15].

There has been recent research that focuses on the interaction techniques of PVA. For example,
ProgressiveVis [16] provides a toolkit that lets users ask for more points in visible location of a
scatterplot. Similarly, Rosenbaum et al. [17] allow the user to steer the visualization and prioritize data
regions of interest. InsightsFeed [18] demonstrates interface controls and visualization augments for
progressive visualization steering.

Our proposed Selective Wander Join builds on top of the existing research, but with an emphasis
on user-steering of multi-way JOIN queries in databases. JOINs are common in data analysis but are
expensive to compute. Leveraging the recently published Wander Join technique [3], Selective Wander
Join allows the user to direct computation resources towards aspects of the JOIN operations that are
more relevant or time-sensitive to the user’s analysis goals.

2.2. Data Systems for Interactive Data Exploration

Prior to the rise of PVA, a common method for supporting responsive interactive visualizations
was to precompute different types of partial results or data structures that can speed up query execution.
Different classes of queries, such as grouping or filtering on different attributes, warrant different
methods of precomputation.

Data cubes have been widely used in the recent visualization literature [19–23]. In short, they
efficiently store the results of a carefully crafted aggregation query (as in the above SQL query) that
can be used to answer similar aggregation queries. To illustrate, if we JOIN a table by the attributes
(region, month) and store the COUNT(*) for each combination of (region, month) values, then we
can use this table to more quickly compute the COUNT of any grouping or filtering operation over

Informatics 2019, 6, 14 4 of 21

region, month, or both. The key is that subsequent queries only access the grouping attributes in the
data cube.

Unfortunately, due to the necessary size and cost of computing, the data cube increases
exponentially as the number of data dimensions increases. In addition, the data cube restricts queries
to referencing the predetermined grouping attributes. This is undesirable in modern data exploration
where the analyst may not know the exact set of tables and attributes she wants to analyze up front.
In these cases, the user would need to wait minutes or hours to re-build the appropriate data cubes for
each new query.

A second popular approach in visualization is to use sampling to reduce the number of records
that need to be read from billions or trillions to hundreds or thousands [24–29]. This approach is
promising because the potential latency reduction is considerable. However, typical sampling systems
still rely on offline preprocessing where these systems assume a set of predetermined queries that the
analyst will use (i.e., known query workload) in order to build a representative sample of the original
data [30,31]. Once the samples are computed, the analyst’s queries are executed using the smaller,
sampled data to speed up the computation. Clearly, this has similar limitations as data cubes. What is
needed is an approach that, with minimal setup, can flexibly and quickly respond to analysis queries
without a restriction that the queries conform to a predetermined template.

There are a number of other techniques that can be used to support visual exploration and
analysis of big data. Researchers have also explored the use of predictive prefetching [32–35] and
specialized databases such as column stores [36] and in-memory databases [37]. Additionally, systems
such as ScalaR [34] use a combination of these techniques. For a more comprehensive review of these
techniques and their use in visualization, refer to the survey by Godfrey et al. [38].

2.3. Online Aggregation, Ripple Join, and Wander Join

Although the classic approach to improve query response times is to precompute all possible
results, this can require a long wait time before the user sees any result. To address this issue, there has
been recent interest in online aggregation algorithms that do not require precomputation and instead
select samples “online” when the user submits a new query via the visualization. Such algorithms can
provide real-time (approximate) query results as the systems draw samples from the database while
executing the query.

The goal of this work is to reduce the number of samples necessary to achieve a desired error
bound at a given confidence level. Reducing this sample complexity potentially means that the number
of input records that need to be read can be reduced by orders of magnitude as compared to fully
reading the input tables.

Extending the original online aggregation algorithm by Hellerstein et al. [39], Ripple Join was
designed specifically to optimize JOIN queries in online aggregation [40]. Although Ripple Join is
an order of magnitude more efficient than Hellerstein’s online aggregation algorithm, unfortunately,
Ripple Join still requires sample sizes that can be impractical for the interactive needs of visualization
applications. For a query that joins tables A and B, the Ripple Join algorithm samples records from each
table independently, and then checks whether or not they satisfy the JOIN condition, but often the join
of two randomly chosen records is highly unlikely to pass. Thus, the number of records that need to
be sampled can be very large before the confidence interval converges to a satisfactory level and the
approximate query result is sufficiently close to the ground truth.

The Wander Join algorithm was recently introduced to address this issue [3]. Instead of sampling
randomly from each table, Wander Join samples randomly from table A and then chooses a record
from table B that the record can join with. This method increases the convergence rate of the query,
resulting in less wait time for the user to achieve a higher confidence estimate.

Although Wander Join is a significant improvement over prior techniques for executing JOIN
queries, it is not directly suited for PVA. A key limitation is that it draws samples independently of
the WHERE and GROUP BY filters in the query. This problem is worsened when few records are able to

Informatics 2019, 6, 14 5 of 21

satisfy the filters, such as when the user is interested in a small segment of the dataset, or when the
groups in the GROUP BY query exhibit skew. Crucially, these two conditions are common in PVA.

Although Wander Join performs significantly faster than previous online aggregation algorithms,
Wander Join does not support user steering in the online sampling process. The original online
aggregation algorithm did propose the notion of index striding to allow all groups of a GROUP BY query
to converge at the same rate, and also enable the user to change the sampling rate of each group.
However, this required a priori knowledge of what groups would be queried, as proper indexing
structures and clustering were needed to support this method of sampling.

We evaluated Wander Join in PVA settings where users want to dynamically filter on expensive
JOIN queries, and extended its techniques to reduce the sample complexity for this class of query
workloads. This extension of Wander Join, which we call Selective Wander Join, addresses the needs of
PVA where users often select subsets of data resulting in executing expensive JOIN queries with highly
selective filters.

3. Wander Join Algorithm

Wander Join represents the state of the art in online aggregation across JOINs, providing online
aggregation support for computing summary statistics such as sums and counts. More importantly,
it intelligently selects which records to join with by modeling the JOINs as a join graph and walking
along edges to find valid joined data. Figure 1 shows an example join graph for joining tables A, B and
C. Each row (e.g., a1, a2, ...) represents a record in one of the tables, and an edge between two rows
means that the two records can be joined in a natural join. Wander Join selects one record in table A,
then randomly selects a path to table B, and repeats for table C. These edges are maintained by indexes
on the tables. Indexes are a common database method to speed up access to each record, however
these indexes need to be precomputed when data is loaded into the database.

Figure 1. In Wander Join, JOINs are modeled as a graph, and random walks are taken along valid paths
to select a sample.

An estimate of the aggregate value is returned after each walk. Since random walks will not
return the uniform distribution needed to generate an unbiased estimate, Wander Join uses the
Horvitz-Thompson estimator. This removes bias by dividing the value to be aggregated by the probability
of having chosen the path taken to reach that value. For example, assuming the tables A, B and C can
be joined across their common dimensions:

A(d1, d2) ./ B(d2, d3) ./ C(d3, d4) (1)

We run a query to sum over the dimension d4. Wander Join selects a2 from the join graph
below. It then randomly selects one of the edges leading from a2 to table B, resulting in either b1
or b2 as the next record. If it picks b2 then c1, c2 or c3 is chosen next according to the graph. The
probability of selecting this path is 1

5 ×
1
2 ×

1
3 . Let v(d4) be the value of the d4 attribute for this sample.

The Horvitz-Thompson estimator would return: v(d4)/(1
5 ×

1
2 ×

1
3).

Informatics 2019, 6, 14 6 of 21

A walk will fail if a record does not pass a filter specified in the query. In this case, the aggregate
value is treated as 0 to keep the Horvitz-Thompson estimator for SUM unbiased, since this sample is in
the probability space of the distribution. However, this slows convergence of the estimate. For the
rest of this paper, we treat the convergence rate as measuring the reduction of the estimate’s relative
standard error for the SUM aggregation:

η =
z
√

v√
N

E
(2)

where v is the variance of the estimate, E, and N is the number of samples taken (
√

v√
N

is the standard
error of the estimate). z is the z-score for the half width of the given confidence level. As the number of
samples increases, the relative error approaches 0.

The relative error allows us to compare convergence rates over different queries.

3.1. Using Wander Join in Visual Exploration

In order to evaluate the effect our changes to Wander Join made, we reimplemented the Wander
Join algorithm in Python and compared its performance to Selective Wander Join. To ensure that the
comparison is fair, we: (1) evaluated the performance of the two algorithms based on the number of
samples needed to reach convergence instead of clock time where language, experimental platform,
etc. can affect the results, (2) used the same experiments described in the original Wander Join paper,
and (3) extended the evaluation to include queries relevant to PVA where filtering using the WHERE and
the GROUP BY clauses are common.

3.1.1. Data

Based on the original Wander Join paper, we evaluated the performance of Wander Join using
Transaction Processing Performance Council Benchmark H (TPC-H), a synthetically generated dataset
that simulates a data warehouse, and includes a set of queries that represent common analysis queries
by business analysts. For our evaluation, we used four sizes of TPC-H data: 1 MB, 10 MB, 100 MB,
and 2 GB. However, we found that regardless of the data size, the performance profile remains the
same, likely due to the nature that TPC-H data is generated by drawing from an even distribution. As
a result, we only report the evaluation results using the 10 MB dataset to reduce the impact of disk
access delays during testing.

3.1.2. Validation Experiment

To verify that the accuracy of our Wander Join implementation is consistent with the original,
we ran a validation experiment comparing performances for the following query to reach 95%
confidence level:

SELECT sum(l_quantity)
FROM part, lineitem
WHERE part.p_partkey = lineitem.l_partkey

Figure 2 shows the number of samples needed to achieve various relative error values for the
two implementations. The results of this experiment show that both implementations of Wander Join
required the same number of samples to achieve the same confidence interval, thus validating that our
implementation is faithful to the original.

Informatics 2019, 6, 14 7 of 21

Figure 2. The relative error at 95% confidence level for our Python implementation of Wander Join and
the original PostgreSQL implementation of Wander Join for 1 to 10,000 samples. Our reimplementation
of the algorithm converges at the same rate as original Wander Join for a JOIN query with no filtering
or GROUP BY in the query.

3.1.3. Evaluating GROUP BY Queries

We first evaluated Wander Join’s performance for GROUP BY queries. We limited the dataset to
have 40 different part sizes:

SELECT sum(l_quantity)
FROM part, lineitem
WHERE part.p_partkey = lineitem.l_partkey
GROUP BY part.p_size

This resulted in 40 groups, with an even distribution of the 60,175 records across all groups. It took
approximately 25,000 total samples for each group to reach a maximum of 0.05 relative error. However,
there are many situations where the records are not evenly distributed across all groups, such as time
based events, or different categories where some categories are more popular than others. These types
of datasets are common in the real world and often used in the visualization community.

Figure 3 compares the number of samples needed for all groups to converge to the same relative
error for both the uniformly distributed and skewed datasets. It now takes Wander Join over 50,000
samples to achieve the same 0.05 relative error across all groups, nearly double the number of samples
for an evenly distributed dataset. The group with 22% of the data is sampled more often than the
other groups and reaches 0.05 relative error first. However, it is still sampled while the other groups
converge, reducing the rate of convergence for the remaining groups, but also improving the relative
error of the dominant group. The group with 22% of the data reaches 0.01 relative error while the other
groups reach 0.05. This is 5 times higher in error of the estimate and a user cannot accurately compare
the group estimates.

Informatics 2019, 6, 14 8 of 21

Figure 3. The number of samples needed for Wander Join and Selective Wander Join to achieve 0.05
relative error for all 40 groups in a GROUP BY query. Selective Wander Join and Wander Join require the
same number of samples when the data is evenly distributed across all groups. However, Wander Join
requires twice as many samples when 22% of data falls into 1 of the 40 groups. The more skewed the
distribution is, the more samples Wander Join needs. Selective Wander Join samples evenly from all
groups regardless of the distribution.

3.1.4. Evaluating Wander Join Using a Real World Dataset

The previous evaluation of Wander Join relies on the synthetic TPC-H dataset in accordance
to the evaluation shown in the original Wander Join paper [3]. While TPC-H has been widely used
in evaluating database systems, it is not representative of common data exploration tasks using
visualization systems. In this section, we present an evaluation of Wander Join using the ASA Data
Expo 09 [41] (commonly referred to as the “flight dataset” in the visualization community [20,22]). This
dataset consists of a table with over 7 million records of commercial airline arrivals and departures
across the United States in 2008 and an auxiliary data table with nearly 4500 rows of plane information.
The total size of these two tables is approximately 675 MB.

Using the flight dataset, we evaluated Wander Join’s performance on unevenly distributed data.
Our query was to find the total number of flights per plane engine type:

SELECT count(*)
FROM plane_data, flights
WHERE plane_data.tail_num = flights.tail_num
GROUP BY plane_data.engine_type

This required a join between the flights and plane information tables and resulted in a highly
skewed distribution. Turbo-Fan and Turbo-Jet were the most common engine type, with 68% and 27%
of the flights respectively. Turbo-Prop had 4% of the flights while four other engine types all were less
than 1% of the remaining flights.

With this dataset, when the most common engine type (Turbo-Fan) reaches 0.01 relative error, the
four least common engine types are still above 0.1 relative error, while another engine type (Turbo-Prop)
had relative error above 0.04. This high discrepancy in error of the estimate prevents a user from
accurately comparing the group estimates. These relative errors are reached after approximately 11,000
samples. However, waiting for all groups to achieve 0.05 relative error would require over 977,000
samples, nearly two orders of magnitude more samples and time spent waiting before being able to
compare group estimates.

3.1.5. Evaluating Selective Queries

In further testing, we evaluated the performance of Wander Join with queries involving
WHERE clauses:

SELECT sum(l_quantity)
FROM part, lineitem
WHERE part.p_partkey = lineitem.l_partkey

Informatics 2019, 6, 14 9 of 21

AND part.p_size <= X
AND lineitem.l_quantity <= Y

This query returns the number of total parts sold for parts with sizes smaller than or equal to
X and when the number sold per order is Y or less. X and Y were varied to filter out 0% to 99% of
all rows in the full JOIN. If a filter is highly selective, most records do not pass the filter conditions
(meaning the selectivity is the percent of rows that pass the filter conditions compared to the full JOIN
without filtering).

Figure 4 shows the relative error for each level of filtering after 10,000 samples were taken for
Wander Join. Note that when the selectivity is 10% (i.e., a “highly selective” filter because the WHERE
clause in the query filters out 90% of the data), the uniform sampling approach of Wander Join can be
inefficient. This is because most of the samples drawn by Wander Join in this highly selective query
will be considered a “failed walk” as these samples do not satisfy the WHERE condition.

Figure 4. The relative error at 95% confidence level of Wander Join after 10,000 samples over varying
levels of selectivity for the TPC-H dataset with scale factor of 0.01 and 60,175 rows in the full JOIN.
The selectivity is the percent of records in the full JOIN that pass the filter conditions.The lower the
selectivity percentage is, the slower the rate of convergence.

For Wander Join to achieve 0.01 relative error in this highly selective query, 208,000 samples
would be needed. In contrast, the full JOIN of this query requires 60,175 rows. It is clear that in this
case, the effectiveness of Wander Join is not only significantly reduced but Wander Join is over 3 times
slower than running the full JOIN.

4. Limitations of Wander Join

The above experiments demonstrate both the potential of Wander Join and its limitations. Wander
Join can support fast, iterative queries that do not require pre-computation and storage. This gives it
great potential for use in progressive analytics. Further, it supports JOINs that allow for flexible data
analysis. In sum, Wander Join represents the state-of-the-art in online aggregation techniques.

However, Wander Join also has its limitations. While Wander Join is designed to be agnostic to
the front-end visualization, it is a “black-box” algorithm that doesn’t allow a user to direct or interact
with the sampling process. We propose that this is a missed opportunity because sampling in Wander
Join is inherently iterative and online. As the user sees the continuing outputs of Wander Join, it could
aid the user’s analysis process if she has the ability to “guide” Wander Join to sample from different

Informatics 2019, 6, 14 10 of 21

parts of a skewed dataset, thereby getting answers more quickly in areas of the visualization that she
is more interested in.

Also, as shown in the experiments above, in cases where the query involves highly selective filters
(with the use of the WHERE clauses) or when the data is unevenly distributed between groups in a GROUP
BY clause, Wander Join can suffer from a performance point of view.

Unfortunately, since these highly selective filters and unevenly distributed datasets are common
in visualization applications, extending Wander Join is necessary before it can be readily adopted by
visualization researchers and practitioners.

5. Selective Wander Join: Wander Join for Visual Data Exploration

To address the limitations described above, we extended Wander Join to develop Selective Wander
Join. The key algorithmic insight in Selective Wander Join is to take the WHERE and GROUP BY clauses
into account when drawing samples from the database by prioritizing samples that are more likely
to satisfy the filters. We achieve this by integrating the idea of importance sampling [2] into Wander
Join, which allows us to prioritize samples by weighting them based on their importance to the query.
Wander Join samples uniformly (the weight of each record is the same for all records), which can
degrade the convergence rate under filtering and GROUP BY queries. By adding importance sampling,
we can sample non-uniformly by changing record weights.

Importance sampling allows the user to influence the sampling process. It may be that the user
does not want all groups to converge at the same rate. She is interested in seeing high confidence
results from some of the groups more quickly than others. In this case, she can change the sampling
rate of each group, and therefore increase or decrease the convergence rate for the targeted group.
We designed an interface that will allow the user to see the sampling ratio of all groups relative to one
another, and change the sampling rate by adjusting the weight applied to each group (Discussed in
Section 6).

We can also apply importance sampling to uniformly sample from all groups in a GROUP BY query,
resulting in all groups converging at the same rate, regardless of the number of records in each group.
This is useful in progressive visualizations where users need to make visual comparisons between
groups and different convergence rates can prevent the user from making accurate comparisons.
We weight each record based on the number of records that also fall into that record’s group and
start sampling from the table containing the GROUP BY attribute. This allows Selective Wander Join to
uniformly sample based on group instead of uniformly by record and all groups converge at the same
rate. Now the user is not waiting for a group with low membership to converge.

We also apply importance sampling for filter queries to reduce the number of overall samples
needed. For filter queries, we set the weight to 0 for records that do not pass the filters. This prevents
Selective Wander Join from sampling the record again in the future, thereby reducing sample failures
and the overall number of samples needed to reach convergence. All other records are sampled from
uniformly. We do this online while sampling and update a record’s weight to 0 if it does not pass
the filter.

We implemented Selective Wander Join by extending our Python Wander Join implementation
to use importance sampling. The source code for our implementation of Wander Join, Selective
Wander Join and the evaluations are publicly available on Github (https://github.com/promarand/
SelectiveWanderJoin), as well as the data used in our evaluations.

The following sections discuss how we applied importance sampling in more detail, as well as
our evaluation of the methods and comparison to Wander Join.

5.1. Optimizing for Group By Queries

As discussed in Section 3.1.3, GROUP BY queries are ubiquitous in exploratory analysis. More often
than not, the data rendered by a bar chart or heat map is computed as the result of a GROUP BY query
over the x, or x and y, axis attributes.

https://github.com/promarand/SelectiveWanderJoin
https://github.com/promarand/SelectiveWanderJoin

Informatics 2019, 6, 14 11 of 21

Since Wander Join uniformly samples each record from the underlying table, each group’s
convergence rate depends on the proportion of records that belong to the group. Thus, it can take a
large number of samples before the algorithm draws a record for an unpopular group. This prevents
the user from making comparisons between groups during the online aggregation process, negating
the benefits of progressively updating estimates.

5.1.1. Method

Our approach to optimizing for GROUP BY queries is to use importance sampling to uniformly
sample from each group to ensure an uniform convergence rate. We achieve this desired outcome by
weighting the records in each group relative to the number of records in the group and the number
of total groups. Specifically, we set the weight of each record in the table referenced in the GROUP BY
clause as:

ωi =
1

αβ
(3)

where α is the number of records that are in the same group as record i (as calculated when the index is
updated) and β is number of distinct groups. The intuition is that we want to sample from each group
evenly, and sample each record within each group evenly. The 1

α term ensures uniform sampling of
records in a given group, while 1

β ensures uniformly sampling from each group.
With this weighting, Selective Wander Join randomly selects from the GROUP BY table first,

guaranteeing even sampling from each group. The records in the next tables are weighted uniformly
as before. Using Figure 1 as an example, assume table A contains the attribute we will group on
and records a1...an will be weighted according to Equation (3). Records in table B and table C will be
weighted uniformly. We do not need to adjust their sampling rates since we have already guaranteed
even sampling by group from reweighting records in table A.

5.1.2. Evaluation

We ran the same GROUP BY query as in Section 3.1.3 on the evenly distributed TPC-H dataset,
where equal number of records fell into each group. As expected, Selective Wander Join and Wander
Join required the same number of samples to reach 0.05 relative error across all groups.

However, Selective Wander Join’s advantages lie in unevenly distributed datasets. We also tested
with the same flight dataset and query as in Section 3.1.4, where there is an uneven distribution of plane
engine types across flights. Selective Wander Join only required 10,000 samples out of the 7 million
records in order for all engine types to reach 0.05 relative error. Wander Join required over 975,000
samples for all groups to reach 0.05 relative error.

We compared the number of samples Selective Wander Join and Wander Join needed for all
groups to reach 0.1 to 0.05 relative error, in 0.01 increments. As shown in Table 1, for each of these tests,
Selective Wander Join only required 1% of the number of samples as Wander Join for the engine type
query—resulting in a significant increase in performance on these queries.

Table 1. The number of samples needed by Selective Wander Join and Wander Join for all groups to
achieve the same relative error rate for the flights GROUP BY query.

Relative
Error

Selective
Wander Join

Wander
Join

Sample
Ratio

0.05 9982 977,432 1.021%
0.06 3928 579,110 0.678%
0.07 3010 439,061 0.685%
0.08 1836 321,732 0.571%
0.09 1725 238,492 0.723%
0.10 1351 221,116 0.611%

Informatics 2019, 6, 14 12 of 21

5.2. Optimizing for Highly Selective Queries

Filtering data is a common task of exploratory analysis [42]. Consider a retail company business
analyst interested in the average a customer spends on clothing, as opposed to all the items her
company sells. Her query uses a filter to limit the average calculation to only include clothing items.
This filter affects the selectivity of the query: the more restrictive the filter is, the more data is filtered
out, resulting in a highly selective query. As seen in Section 3.1.5, Wander Join’s performance in this
scenario can be worse than executing the exact query.

5.2.1. Method

Conceptually, our approach to optimize Wander Join for highly selective queries is to prune out
samples that do not pass the filter. By eliminating those records, we prevent sample failures and can
converge with less samples (and therefore faster) than Wander Join.

In practice, when a filtering query is issued, we set the weight of each record uniformly. As we
sample, if we encounter a record that fails the filter, we set the record’s weight to 0 and consider this
sample a failure. Although we still have a failure in the same sense as Wander Join, the key difference
is that by setting the weight to 0, we guarantee that we never sample this failed record again. This
is beneficial since Wander Join’s sampling is with replacement; any record can be sampled multiple
times, regardless of whether the record has failed the filter criteria once before. The bigger benefit is
that this record is pruned from all paths that lead to it. Using Figure 5 as an example, we see that two
possible paths to sample are a1→b1→c2 and a1→b2→c2. If Selective Wander Join selects a1, then b1,
then c2 and record c2 fails the filter, c2’s weight is now 0 and is pruned. Now not only has a1→b1→c2
been eliminated as a possible path, but also a1→b2→c2. By pruning out the failed record, we prevent
any path from sampling that record again.

Figure 5. (a) A JOIN graph for a 3 table JOIN. Each record starts with a weight of 1. If Selective Wander
Join chooses the path a1→b1→c2 and c2 fails the filter, c2 is pruned. (b) The resulting JOIN graph after
pruning. Note that the path a1→b2→c2 has been pruned even though we never selected that path.
Pruning out c2 prevents any path from sampling c2 again for this query.

5.2.2. Evaluation

We ran the same filtering queries as in Section 3.1.5, varied the part.p_size and lineitem.l_quantity
filter to achieve levels of 0% to 99% filtering and used the same 10MB TPC-H dataset:

SELECT sum(l_quantity)
FROM part, lineitem
WHERE part.p_partkey = lineitem.l_partkey
AND part.p_size <= X
AND lineitem.l_quantity <= Y

Figure 6 captures the results of the selective filter queries. The lower the selectivity percentage,
the larger improvement over Wander Join. For the 1% selective filter query, Selective Wander Join
achieved 0.08 relative error after 10,000 samples, while Wander Join had 0.22 relative error. In terms of
number of samples, Wander Join needed 65,000 to reach 0.08 relative error. Selective Wander Join is an

Informatics 2019, 6, 14 13 of 21

improvement over Wander Join by reducing the sample complexity by 85% (and there by speeding up
convergence by a factor of 6).

Figure 6. The relative error at 95% CI for both systems after 10,000 samples over various levels
of selectivity for the TPC-H dataset. The lower the selectivity percentage, the slower the rate of
convergence. By pruning out records that fail the filter, our relative error is less than standard Wander
Join at 1% selective filter.

Selective Wander Join outperformed Wander Join at all selective filter queries and performed the
same at the 100% selective filter query (since no records were filtered out). Although not shown, the
filters can be on single or multiple values, as well as attribute values. When the filter condition is
dependent on an attribute or involving a range, this makes prepruning via an index difficult.

Since online pruning requires sampling a record in order to prune it, one concern may be that
we won’t sample the same path multiple times if our data is much larger than the number of samples
being taken. However, we did see that the same path can be selected multiple times in this case, and
pruning can prevent this. We tested a query with a 99% selective filter on the TPC-H data scaled
to 1 GB. This resulted in 6 million possible paths. We sampled 10,000 times and saw 117 different
failed paths that were chosen twice or more. Pruning would have prevented these multiple failures.
Additionally, we ran the 99% selective filter query to 0.08 relative error on both Wander Join and
Selective Wander Join. It took Selective Wander Join 5000 (or 10%) fewer samples than Wander Join to
achieve this relative error.

5.2.3. Extensions

A natural extension of online pruning would be to preprune out any records that do not pass the
filters before starting sampling. This will prevent any failures from occurring and greatly increase
the convergence rate. We performed an initial test of this idea on the 1 GB TPC-H dataset, and 99%
selective filter query, meaning the WHERE clause filtered out 99% of the data. This resulted in 345
samples needed to reach 0.08 relative error. For online pruning it took 56,000 samples due to the high
number of first failures.

This concept will be beneficial as long as the time required to preprune is insignificant over
sampling time. Further work into effective methods of prepruning and evaluation are needed.

Informatics 2019, 6, 14 14 of 21

5.3. Trading Complexity for Usability

Progressive visualization systems require additional complexity beyond that of the underlying
approximate query processing algorithm supporting them. Progressive visualization systems need
to process and render query results in a human interpretable form. Interaction in the visualization
system also increases algorithmic complexity.

Selective Wander Join extends Wander Join that optimizes sampling for visual analysis tasks and
enables user interaction in the sampling process. This requires an increase in memory and computation
time over that of the original Wander Join implementation. However, this increase in complexity
allows for more effective use of the Wander Join algorithm in progressive visualization and the overall
time increase may be offset by the reduced number of samples needed in the overall query execution.

Since we’re keeping track of weights for each record in the database, there is additional space and
time costs to consider for Selective Wander Join beyond that of the original Wander Join implementation.
Additional storage is need to maintain the weight for each row being used in the query. However,
since the weight is either 1 or 0 for filtering queries, only one bit of storage is needed. For a dataset
with one billion rows, we will only need 125 MB. However, we also need to store the row index along
with the weight. Assuming 1 billion rows again, each index can be stored in 30 bits. The total memory
needed would be less than 4 GB, which can easily fit in memory in today’s consumer systems.

Group By queries require additional memory. The first table in a group by query uses a fractional
weight, while the remaining tables use binary weights (1 or 0). If we allow 32 bits to store the fractional
weight, the total space needed to store the row index and weight for the first table in a group by query
would be less than 8 GB in a table with 1 billion rows. The remaining tables in the Group By query
require the same space as a table in a Filter query if the Group By query also includes filters. Otherwise,
no weights need to be stored and rows are sampled uniformly.

Table 2 shows the amount of memory needed to store the weights and row indexes for different
sized tables in filtering or grouping queries.

Table 2. The amount of memory needed to store the weights and row indexes per table of various table
sizes. This assumes 31 bits per row index and 1 bit for a binary weight. The first table sampled in a
Group By query with a join requires more bits to store the fractional weights. The remaining tables
in the Group By query require the same space as a table in a Filter query if the Group By query also
includes filters. Otherwise, no weights need to be stored and rows are sampled uniformly.

Table Size
(Rows)

Filter
Query

Group By Query
(First Table)

10 k 40 kB 80 kB
100 k 400 kB 800 kB
1 M 4 MB 8 MB

10 M 40 MB 80 MB
100 M 400 MB 800 MB

1 B 4 GB 8 GB

Although there is additional memory and bookkeeping required, this increase in complexity
allows for effective progressive visualization systems. Progressive visualization systems will trade
off the decrease in data access speed to allow just the filtered data to be returned and allow for
user-driven sampling.

6. User-Driven Sampling in Selective Wander Join

In addition to the performance improvement of Selective Wander Join over the original algorithm
in both selective and GROUP BY queries, we note an additional benefit of Selective Wander Join when
used in progressive visualization systems. Typical online aggregation algorithms (including the
original online aggregation algorithm [39], Ripple Join [40], and Wander Join [3]) for progressive

Informatics 2019, 6, 14 15 of 21

visualizations are non-parametric in that they are executed in the background and the users cannot
manipulate the behavior of the algorithms. Our proposed Selective Wander Join algorithm can function
in the same way. However, in addition, it affords a “free parameter” that allows the user to interactively
guide and focus the sampling process towards specific parts of the query that are most pertinent to the
user’s interest that can further speedup the execution of the query.

Specifically, in Selective Wander Join, by applying importance sampling, the user can readjust
the weights so that groups of interest are sampled more often. This allows the estimate to converge
faster while also allowing uniform sampling of the remaining groups. Additionally, groups of even
less interest can be weighted to be sampled less often, or not at all if the weight is set to 0.

Selective Wander Join offers fine grained control of the sampling process for groups and provides
interaction techniques that are unique to the system. The goal of our interface design is to demonstrate the
ease of integrating Selective Wander Join into existing systems with established progressive visualization
concepts. In Figure 7, we show a traditional progressive visualization where uncertainty is encoded as
error bars and transparency. Weights for each group are also encoded on the visualization with a black
bar as a percentage from 0 to 100%. The higher the percentage, the higher the sampling rate.

Figure 7. Demonstrating uncertainty encodings of relative error for bar charts using error bars and
transparency. Weights for each group are encoded on the visualization with a black bar as a percentage
from 0 to 100%. The higher the percentage, the heavier the weight (and therefore higher sampling rate).

In order for the user to adjust the weights of groups, we require a control on the visualization that
displays the current weight and provides a method to adjust it. Figure 8a provides weight information
and adjustment control via a vertical slider bar. The user can select a group of interest, which pops up
a vertical slider bar showing the current weight of that group. The user can adjust the slider to increase
or decrease the weight (and therefore the sampling rate) of the selected group.

Informatics 2019, 6, 14 16 of 21

(a) (b)

Figure 8. Two methods of controlling sampling rates in the progressive visualization. Our initial
designs proposed a slider for fine granularity (a). Based on our findings from our user study, we refined
the controls to be three buttons: High, Normal and Off (b). Users generally only used three positions of
the slider and did not need fine grained control of sliders.

7. Expert User Study

We conducted a user study to observe how users would interact with user-driven sampling in
Selective Wander Join, as well as receive feedback on our interface design and interaction controls.

7.1. Study Setup

We presented the system to three expert data analysts from a national research laboratory in
separate evaluation sessions. All expert analysts were male and had 5 to 10 years of experience in
data analysis. Their primary analysis tools are MATLAB and internally developed C++ applications to
process and analyze sensor data. None use progressive visualizations or approximate values during
analysis, as their current tools process data sequentially and then present results.

After a brief introduction and training on the use of Selective Wander Join, using the interface
shown in Figure 9, we asked the participants to complete two tasks using the visualization to analyze
a subset of the flight dataset. The participants were allowed as much time as they needed and were
allowed to ask questions during the process. After the completion of the tasks, the participants
answered a post-hoc questionnaire where they reported their findings and provided feedback about
the system.

Figure 9. The interface used in the user study, to answer GROUP BY engine queries for the flight dataset.

Task 1 asked the analysts to find the engine type with the most number of flights. Task 2
asked the analysts to determine which of two given engine types had the fewer number of flights.
The visualization is reset between tasks. The first task requires the users to evaluate all the groups in
order to identify the engine type with the most flights. The second task encourages the users to focus

Informatics 2019, 6, 14 17 of 21

only on a subset of the groups. These two tasks allow us to contrast how users utilize the weights
adjustments when there are groups of specific interest versus an exploratory comparative task.

The interface included a bar chart (shown in Figure 9) to support the query needed to complete
both tasks, with the bar chart updating with new estimated values and relative error once per second.
As described in the previous section, the transparency of the bars reflected the relative error of each
group, and weight adjustments were made by a slider. The visualization was written in JavaScript
and used the Python implementation of Selective Wander Join described in Section 5 for the back-end.
Weight adjustments were sent to the Selective Wander Join back-end immediately and sampling rates
were updated accordingly. No artificial delays were added beyond the latency in communication
between the JavaScript front-end and Python back-end.

7.2. Results

7.2.1. Task 1 Results

Which engine type had the most number of flights? We found that all analysts were able to complete
this task quickly as they answered correctly on their first attempt and prior to all groups reaching
0.01 relative error. As the relative errors across all groups began to reduce, we found that the analysts
applied the weight adjustments in two different ways. Two analysts used the weight adjustment to
narrow down the number of groups they needed to compare, by turning off the sampling for groups
that clearly had too low of an estimate to be considered for the most number of flights. The third
analyst instead left all the weights the same until he wanted to confirm the estimates of certain groups.
In this case he increased the weight of the groups he was interested in as opposed to reducing the
weight of the uninterested groups.

7.2.2. Task 2 Results

Between Turbo-Prop and Reciprocating, which engine type had the fewer number of flights? All analysts
were able to complete this task quickly and easily by adjusting the weights upon start of the task.
By phrasing the task as a comparison of specific groups, this ensured that the analysts were interested
in only a subset of the available groups in the visualization. During this task, two of the analysts used
the weight adjustment to decrease weights to 0 for all but the two specified groups. The third analyst
increased the weight of the two specified groups instead of reducing the weight of the other groups.

7.3. Discussion

All analysts were able to complete the tasks without difficulty. They all adjusted the sliders to
increase the sampling rate of interested groups. It is worth noting that a given analyst would use the
weight adjustment in a similar way regardless of task. The same analysts that decreased weights to 0
in Task 1 also decreased weights to 0 in Task 2. The third analyst increased the weight of important
groups in both tasks.

7.3.1. Efficacy of the Selective Wander Join Visual Interface

Overall, the analysts found the interface easy to use and the transparency for relative error helpful.
One analyst remarked that they “waited for the color change” to be more confident in the estimate of
that group and that he was “waiting for the darker blue to know it converged more”.

The sliders served their purpose in offering weight adjustments, but may not have been the most
efficient interaction technique if the user wanted all groups to return to the same sampling rate. One
analyst said that once sliders were moved out of the center position, it was “difficult to recenter, and I
would have to turn all of them up”. This would set all groups to the maximum slider position and
weight but still allow equal sampling rates from all groups.

Informatics 2019, 6, 14 18 of 21

7.3.2. Weight Adjustments

By observing how the analysts used the weight adjustment sliders and discussions with them
after the tasks were complete, we found that users did not want or need the multiple levels of control
over sampling groups that a slider provided. They either turned sampling for groups off or moved
the sliders to the maximum position. Therefore we refined our interaction technique by replacing the
sliders with a three button interface: High, Normal and Off. This new design is reflected in Figure 8b.
For future work, we aim to formally evaluate the effectiveness of the simplified design versus the use
of continuous sliders.

7.3.3. Timing of Weight Adjustments

We also noticed that the time when the analysts adjusted the weights would differ. For Task 2,
when the analysts knew which groups would be relevant prior to issuing the query, we saw them
immediately adjust the weights to prioritize those groups. In Task 1, they waited until they understood
the general trends before adjusting weights. We also asked them specifically if they would prefer
setting weights ahead of time or during the processing of the query. One of the analysts stated mid
query adjustments were sufficient, as “the weights are easy to change once it has started”. This also
supports another analyst’s statement that they would want the option to adjust the weights during the
query, since they want a “first look, then adjust the weights”.

8. Conclusions

We present Selective Wander Join, a progressive visualization system that extends online
aggregation to enable interactive data exploration. Selective Wander Join improves on the latest
online aggregation algorithm, Wander Join, by using importance sampling. This allows Selective
Wander Join to converge faster on highly selective WHERE queries and converge uniformly on all groups
in GROUP BY queries, regardless of data distribution. Selective Wander Join also provides a method for
the user to adjust the convergence rate for each group, allowing users to prioritize groups of interest.
We also presented interface designs and interaction techniques that would enable Selective Wander
Join to integrate into a progressive visualization system.

We showed that Selective Wander Join outperforms Wander Join on filtering queries and performs
equally as well on non-filtering queries. We also showed that Selective Wander Join requires up to 50%
fewer samples than Wander Join to converge on all groups in a GROUP BY query.

We have only just scratched the surface on optimizing online aggregation for visual analysis.
There are multiple opportunities for future work to explore. Adding preprocessing such as pruning
out records that do not pass query filters would improve convergence rates even further. There are also
other heuristics that can be applied to group sampling, such that importance sampling is not based
solely on size, but on inherent stratification or the inherent skewness of the data. Additionally, there’s
the option to explore importance sampling as applied to rare or extreme values, so they are not missed
in the sampling process. Additionally there may be optimizations in the calculation and storage of
weights that can be explored.

There are other methods of sampling besides importance sampling that could be used in Selective
Wander Join. One possible method is perceptual based sampling that leverages perception functions.
Previous work in approximate query processing and perception [43,44] has shown this method can
render approximate visualizations that are visually indiscernible from exact answer visualizations.

Overall, Selective Wander Join has been shown to be an improvement over current online
aggregation methods for visualization tasks and through future work it can become an even more
capable system.

Author Contributions: Conceptualization, M.P., C.S., E.W. and R.C.; Methodology, M.P., C.S., E.W. and R.C.;
Software, M.P., C.S., E.W. and R.C.; Validation, M.P., C.S., E.W. and R.C.; Formal Analysis, M.P., C.S., E.W. and
R.C.; Investigation, M.P., C.S., E.W. and R.C.; Resources, C.S., E.W. and R.C.; Data Curation, M.P., C.S., E.W. and
R.C.; Writing—Original Draft Preparation, M.P., C.S., E.W. and R.C.; Writing—Review, Editing, M.P., C.S., E.W.

Informatics 2019, 6, 14 19 of 21

and R.C.; Visualization, M.P., C.S., E.W. and R.C.; Project Administration, R.C.; Funding Acquisition, C.S., E.W.
and R.C.

Funding: This work was supported in part by National Science Foundation (NSF) 1527765, 1564049, 1513651,
1452977, and DARPA FA8750-17-2-0107.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Selinger, P.G.; Astrahan, M.M.; Chamberlin, D.D.; Lorie, R.A.; Price, T.G. Access path selection in a relational
database management system. In Proceedings of the 1979 ACM SIGMOD international conference on
Management of data, Boston, MA, USA, 30 May–1 June 1979; pp. 23–34.

2. Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970,
57, 97–109. [CrossRef]

3. Li, F.; Wu, B.; Yi, K.; Zhao, Z. Wander Join: Online Aggregation via Random Walks. In Proceedings of
the 2016 International Conference on Management of Data, San Francisco, CA, USA, 26 June–1 July 2016;
pp. 615–629.

4. Wu, E.; Battle, L.; Madden, S.R. The case for data visualization management systems: Vision paper.
Proc. VLDB Endow. 2014, 7, 903–906. [CrossRef]

5. Wu, E.; Psallidas, F.; Miao, Z.; Zhang, H.; Rettig, L.; Wu, Y.; Sellam, T. Combining Design and Performance
in a Data Visualization Management System. In Proceedings of the Conference on Innovative Data Systems
Research, Chaminade, CA, USA, 8–11 January 2017.

6. Mühlbacher, T.; Piringer, H.; Gratzl, S.; Sedlmair, M.; Streit, M. Opening the black box: Strategies for
increased user involvement in existing algorithm implementations. IEEE Trans. Vis. Comput. Graph. 2014,
20, 1643–1652. [CrossRef] [PubMed]

7. Angelini, M.; Santucci, G.; Schumann, H.; Schulz, H.J. A Review and Characterization of Progressive Visual
Analytics. Inform. Multidiscip. Dig. Publ. Inst. 2018, 5, 31. [CrossRef]

8. Stolper, C.D.; Perer, A.; Gotz, D. Progressive visual analytics: User-driven visual exploration of in-progress
analytics. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1653–1662. [CrossRef] [PubMed]

9. Pezzotti, N.; Lelieveldt, B.; van der Maaten, L.; Hollt, T.; Eisemann, E.; Vilanova, A. Approximated and
user steerable tsne for progressive visual analytics. IEEE Trans. Vis. Comput. Graph. 2016, 23, 1739–1752.
[CrossRef] [PubMed]

10. Turkay, C.; Kaya, E.; Balcisoy, S.; Hauser, H. Designing Progressive and Interactive Analytics Processes for
High-Dimensional Data Analysis. IEEE Trans. Vis. Comput. Graph. 2017, 23, 131–140. [CrossRef] [PubMed]

11. Fisher, D.; Popov, I.; Drucker, S. Trust me, I’m partially right: Incremental visualization lets analysts explore
large datasets faster. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
Austin, TX, USA, 5–10 May 2012; pp. 1673–1682.

12. Fisher, D. Incremental, approximate database queries and uncertainty for exploratory visualization.
In Proceedings of the 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), Providence,
RI, USA, 23–24 October 2011; pp. 73–80.

13. Hellerstein, J.M.; Avnur, R.; Chou, A.; Hidber, C.; Olston, C.; Raman, V.; Roth, T.; Haas, P.J. Interactive data
analysis: The control project. Computer 1999, 32, 51–59. [CrossRef]

14. Zgraggen, E.; Galakatos, A.; Crotty, A.; Fekete, J.D.; Kraska, T. How Progressive Visualizations Affect
Exploratory Analysis. IEEE Trans. Vis. Comput. Graph. 2016, 23, 1977–1987. [CrossRef] [PubMed]

15. Moritz, D.; Fisher, D.; Ding, B.; Wang, C. Trust, but Verify: Optimistic Visualizations of Approximate
Queries for Exploring Big Data. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, Denver, CO, USA, 6–11 May 2017.

16. Fekete, J.D. Progressivis: A toolkit for steerable progressive analytics and visualization. In Proceedings of
the 1st Workshop on Data Systems for Interactive Analysis, Chicago, IL, USA, 17–21 October 2015; p. 5.

17. Rosenbaum, R.; Schumann, H. Progressive refinement: More than a means to overcome limited bandwidth.
In Proceedings of the IS&T/SPIE Electronic Imaging, San Jose, CA, USA, 24 January 2009; p. 72430I.

http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.14778/2732951.2732964
http://dx.doi.org/10.1109/TVCG.2014.2346578
http://www.ncbi.nlm.nih.gov/pubmed/26356878
http://dx.doi.org/10.3390/informatics5030031
http://dx.doi.org/10.1109/TVCG.2014.2346574
http://www.ncbi.nlm.nih.gov/pubmed/26356879
http://dx.doi.org/10.1109/TVCG.2016.2570755
http://www.ncbi.nlm.nih.gov/pubmed/28113434
http://dx.doi.org/10.1109/TVCG.2016.2598470
http://www.ncbi.nlm.nih.gov/pubmed/27514056
http://dx.doi.org/10.1109/2.781635
http://dx.doi.org/10.1109/TVCG.2016.2607714
http://www.ncbi.nlm.nih.gov/pubmed/28113667

Informatics 2019, 6, 14 20 of 21

18. Badam, S.K.; Elmqvist, N.; Fekete, J.D. Steering the craft: UI elements and visualizations for supporting
progressive visual analytics. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2017;
Volume 36, pp. 491–502.

19. Stolte, C.; Tang, D.; Hanrahan, P. Polaris: A system for query, analysis, and visualization of multidimensional
relational databases. IEEE Trans. Vis. Comput. Graph. 2002, 8, 52–65. [CrossRef]

20. Lins, L.; Klosowski, J.T.; Scheidegger, C. Nanocubes for real-time exploration of spatiotemporal datasets.
IEEE Trans. Vis. Comput. Graph. 2013, 19, 2456–2465. [CrossRef] [PubMed]

21. Liu, Z.; Jiang, B.; Heer, J. imMens: Real-time Visual Querying of Big Data. In Computer Graphics Forum; Wiley
Online Library: Hoboken, NJ, USA, 2013; Volume 32, pp. 421–430.

22. Pahins, C.A.; Stephens, S.A.; Scheidegger, C.; Comba, J.L. Hashedcubes: Simple, low memory, real-time
visual exploration of big data. IEEE Trans. Vis. Comput. Graph. 2017, 23, 671–680. [CrossRef] [PubMed]

23. Wang, Z.; Ferreira, N.; Wei, Y.; Bhaskar, A.S.; Scheidegger, C. Gaussian Cubes: Real-Time Modeling for
Visual Exploration of Large Multidimensional Datasets. IEEE Trans. Vis. Comput. Graph. 2017, 23, 681–690.
[CrossRef] [PubMed]

24. Agarwal, S.; Mozafari, B.; Panda, A.; Milner, H.; Madden, S.; Stoica, I. BlinkDB: Queries with bounded errors
and bounded response times on very large data. In Proceedings of the 8th ACM European Conference on
Computer Systems, Prague, Czech Republic, 15–17 April 2013; pp. 29–42.

25. Ding, B.; Huang, S.; Chaudhuri, S.; Chakrabarti, K.; Wang, C. Sample+ Seek: Approximating Aggregates
with Distribution Precision Guarantee. In Proceedings of the 2016 International Conference on Management
of Data, San Francisco, CA, USA, 26 June–1 July 2016; pp. 679–694.

26. Kamat, N.; Jayachandran, P.; Tunga, K.; Nandi, A. Distributed and interactive cube exploration.
In Proceedings of the 2014 IEEE 30th International Conference on Data Engineering (ICDE), Chicago,
IL, USA, 31 March–4 April 2014; pp. 472–483.

27. Li, X.; Han, J.; Yin, Z.; Lee, J.G.; Sun, Y. Sampling cube: A framework for statistical olap over sampling data.
In Proceedings of the 2008 ACM SIGMOD international conference on Management of data, Vancouver, BC,
Canada, 10–12 June 2008; pp. 779–790.

28. Fekete, J.D.; Primet, R. Progressive analytics: A computation paradigm for exploratory data analysis. arXiv
2016, arXiv:1607.05162.

29. Im, J.F.; Villegas, F.G.; McGuffin, M.J. Visreduce: Fast and responsive incremental information visualization
of large datasets. In Proceedings of the 2013 IEEE International Conference on Big Data, Santa Clara, CA,
USA, 6–9 October 2013; pp. 25–32.

30. Chaudhuri, S.; Das, G.; Narasayya, V. Optimized stratified sampling for approximate query processing.
ACM Trans. Database Syst. 2007, 32, 9. [CrossRef]

31. Park, Y.; Cafarella, M.; Mozafari, B. Visualization-aware sampling for very large databases. In Proceedings
of the 2016 IEEE 32nd International Conference on Data Engineering (ICDE), Helsinki, Finland, 16–20 May
2016; pp. 755–766.

32. Doshi, P.R.; Geraldine, E.; Rosario, G.; Rundensteiner, E.; Ward, M. A strategy selection framework for
adaptive prefetching in data visualization. In Proceedings of the 15th International Conference on Scientific
and Statistical Database Management, Cambridge, MA, USA, 9–11 July 2003; pp. 107–116.

33. Chan, S.M.; Xiao, L.; Gerth, J.; Hanrahan, P. Maintaining interactivity while exploring massive time series.
In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology, Columbus, OH, USA,
19–24 October 2008; pp. 59–66.

34. Battle, L.; Chang, R.; Stonebraker, M. Dynamic prefetching of data tiles for interactive visualization.
In Proceedings of the 2016 International Conference on Management of Data, San Francisco, CA, USA,
26 June–1 July 2016; pp. 1363–1375.

35. Cetintemel, U.; Cherniack, M.; DeBrabant, J.; Diao, Y.; Dimitriadou, K.; Kalinin, A.; Papaemmanouil, O.;
Zdonik, S.B. Query Steering for Interactive Data Exploration. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR), Asilomar, CA, USA, 6–9 January 2013.

36. Stonebraker, M.; Abadi, D.J.; Batkin, A.; Chen, X.; Cherniack, M.; Ferreira, M.; Lau, E.; Lin, A.; Madden, S.;
O’Neil, E.; et al. C-store: A column-oriented DBMS. In Proceedings of the 31st International Conference on
Very Large Data Bases, Trondheim, Norway, 30 August–2 September 2005; pp. 553–564.

http://dx.doi.org/10.1109/2945.981851
http://dx.doi.org/10.1109/TVCG.2013.179
http://www.ncbi.nlm.nih.gov/pubmed/24051812
http://dx.doi.org/10.1109/TVCG.2016.2598624
http://www.ncbi.nlm.nih.gov/pubmed/27875182
http://dx.doi.org/10.1109/TVCG.2016.2598694
http://www.ncbi.nlm.nih.gov/pubmed/27875183
http://dx.doi.org/10.1145/1242524.1242526

Informatics 2019, 6, 14 21 of 21

37. Kemper, A.; Neumann, T. HyPer: A hybrid OLTP&OLAP main memory database system based on virtual
memory snapshots. In Proceedings of the 2011 IEEE 27th International Conference on Data Engineering
(ICDE), Hannover, Germany, 11–16 April 2011; pp. 195–206.

38. Godfrey, P.; Gryz, J.; Lasek, P. Interactive visualization of large data sets. IEEE Trans. Knowl. Data Eng. 2016,
28, 2142–2157. [CrossRef]

39. Hellerstein, J.M.; Haas, P.J.; Wang, H.J. Online aggregation. ACM SIGMOD Rec. 1997, 26, 171–182. [CrossRef]
40. Haas, P.J.; Hellerstein, J.M. Ripple joins for online aggregation. ACM SIGMOD Rec. 1999, 28, 287–298.

[CrossRef]
41. Wickham, H. ASA 2009 Data Expo. J. Comput. Graph. Stat. 2011, 20, 281–283. [CrossRef]
42. Shneiderman, B. The eyes have it: A task by data type taxonomy for information visualizations. In Proceedings

of the IEEE Symposium on Visual Languages, Boulder, CO, USA, 3–6 September 1996; pp. 336–343.
43. Alabi, D.; Wu, E. PFunk-H: Approximate query processing using perceptual models. In Proceedings of the

Workshop on Human-In-the-Loop Data Analytics, San Francisco, CA, USA, 26 June–1 July 2016; p. 10.
44. Wu, E.; Nandi, A. Towards Perception-aware Interactive Data Visualization Systems. In Proceedings of the

DSIA Workshop, Chicago, IL, USA, 26 October 2015.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TKDE.2016.2557324
http://dx.doi.org/10.1145/253262.253291
http://dx.doi.org/10.1145/304181.304208
http://dx.doi.org/10.1198/jcgs.2011.1de
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Progressive Visual Analytics
	Data Systems for Interactive Data Exploration
	Online Aggregation, Ripple Join, and Wander Join

	Wander Join Algorithm
	Using Wander Join in Visual Exploration
	Data
	Validation Experiment
	Evaluating GROUP BY Queries
	Evaluating Wander Join Using a Real World Dataset
	Evaluating Selective Queries

	Limitations of Wander Join
	Selective Wander Join: Wander Join for Visual Data Exploration
	Optimizing for Group By Queries
	Method
	Evaluation

	Optimizing for Highly Selective Queries
	Method
	Evaluation
	Extensions

	Trading Complexity for Usability

	User-Driven Sampling in Selective Wander Join
	Expert User Study
	Study Setup
	Results
	Task 1 Results
	Task 2 Results

	Discussion
	Efficacy of the Selective Wander Join Visual Interface
	Weight Adjustments
	Timing of Weight Adjustments

	Conclusions
	References

