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Abstract: In current clinical practice, functional limitations due to chronic musculoskeletal diseases
are still being assessed subjectively, e.g., using questionnaires and function scores. Performance-based
methods, on the other hand, offer objective insights. Hence, they recently attracted more interest as
an additional source of information. This work offers a step towards the shift to performance-based
methods by recognizing standardized activities from continuous readings using a single accelerometer
mounted on a patient’s arm. The proposed procedure consists of two steps. Firstly, activities are
segmented, including rejection of non-informative segments. Secondly, the segments are associated to
predefined activities using a multiway pattern matching approach based on higher order discriminant
analysis (HODA). The two steps are combined into a multi-layered framework. Experiments on data
recorded from 39 patients with spondyloarthritis show results with a classification accuracy of 94.34%
when perfect segmentation is assumed. Automatic segmentation has 89.32% overlap with this ideal
scenario. However, combining both drops performance to 62.34% due to several badly-recognized
subjects. Still, these results are shown to significantly outperform a more traditional pattern matching
approach. Overall, the work indicates promising viability of the technique to automate recognition
and, through future work, assessment, of functional capacity.

Keywords: physical therapy; activity recognition; accelerometry; tensor decomposition; classification
with rejection

1. Introduction

Monitoring of chronic diseases has received a lot of attention over the last decade. One such
disease is (axial) spondyloarthritis (axSpA). Its symptoms include inflammation of the spinal region,
sometimes also the extremities. Eventually, ossification of the spine may occur, severely limiting
a patient’s functional capacity and general mobility. The disease is treated with anti-inflammatory
drugs, but physical therapy and exercising are an equally important part of the treatment [1]. Moreover,
physical therapy and exercises yield insight into the remaining functional capacity. This information
complements disease activity, judged from, among others, MRI scans or protein levels in blood
samples [2]. Standard exercises include e.g., stretching, core stability exercise, muscle strengthening
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and exercises mimicking activities of daily living (ADL). These are judged subjectively by the
physician or therapist. In addition, functional capacity is rated by the patient himself using patient
questionnaires such as the Bath Ankylosing Spondylitis Functional Index (BASFI) [3]. More recently,
the interest in objective performance-based methods has risen. The simplest way to achieve an
objective quantification is timing e.g., using a chronometer. However, this can easily be automated via
patient monitoring and has proven to be significant [4,5]. A key step in computing duration or other
performance-related features automatically is the detection and recognition of the relevant activities
from a continuous datastream. This has the additional advantage that the monitoring can be moved to
a home environment and the physician can be provided with the data to track a patient’s evolution.

In the past, physical activity recognition often suffered from several disadvantages due to the
available technology and the required computational power. For example, vision-based approaches
have been available for some decades and continue to be used, but they are subject to spatial restrictions.
Moreover, they are sensitive to specific problems such as lighting conditions. Nevertheless, they have
obtained good results in e.g., visual surveillance and human computer interaction [6,7].

Since then, new options became available with the advent of relatively cheap wearable technology.
These sensors are attached to the user’s body and can be applied in everyday situations rather than in
limited setups. This is of particular importance in patient or elderly monitoring. Data acquisition can
more easily be moved into the home environment.

Different kinds of sensors have been used, many of them multimodal. Accelerometers, measuring
linear accelerations, are very common. They are also often combined with gyroscopes, supplying
angular velocities, and magnetometers, yielding changes in magnetic fields, in an inertial (magnetic)
measurement unit (IMU). Additionally, GPS can be incorporated as well. Although adding sensors
yields more, potentially valuable, information, this has to be weighted against power consumption,
a major concern in wearables, particularly when measuring over longer periods of time. High-energy
batteries still tend to be bulky and cumbersome [8], whereas miniaturization is a key concept in
wearable technology. Within these limits, many applications have been designed. As an example,
full-body motion capture can be achieved using many sensors to track the movement of all body
parts [9]. Furthermore, several studies have used accelerometers to study energy expenditure and
sedentary behaviour over longer periods of time [10–15].

The latter is a common example of long-term monitoring. This approach can be extended
to include recognition of ADL such as sitting, walking, running, cycling etc. [16–20]. This is of
potential interest to construct personal profiles and to improve general health. Sliding windows
are a common technique for this kind of recognition. First, a window length and a step size for
window advancement over the measured signals are (e.g., multi-channel accelerometry) are defined.
Then, from each window, features can be extracted. A classifier can be trained based on these
features to attribute an activity label to every window. Many studies follow this approach, but there
is a lot of variability in its implementation. Studies vary in, for example, which and how many
sensors are being used, the positioning of the sensors on the body, the window length and overlap,
the time/frequency/wavelet features extracted from each window and the choice of classifier [21,22].
No consensus seems to exist as to what is the best possible setup, although comparisons in specific cases
offer some conclusions [23,24]. It can be assumed this depends on the activities under consideration.
Yet, good results have been obtained with several setups. The studies agree that the number of sensors
should be limited for users’ convenience [25–27].

Despite the progress in activity recognition, the techniques mentioned above are ill-suited
to detect the activities under consideration for assessment of functional capacity. They are short
and transitional in contrast to the repetitive longer nature of e.g., walking, running or cycling.
Therefore, a pattern-matching approach is more effective than the common sliding windows [28].
Some window-based studies do include transitions, but in a strongly restricted setup e.g., with 40 s
quiet sitting or standing to separate activities [29]. Pattern approaches have been used before in limited
setting, for example to recognize the occurrence of sit-to-stand transitions [30]. The limited setting stems
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from the fact that the problem is particularly difficult. In any realistic setting many non-informative
movements occur and should be rejected. Hence, patterns should capture enough variance inherently
present in the activity, but still be discriminative towards non-informative activities. When dealing
with patients, this variability is even more pronounced as compared to healthy subjects [31,32].
Mostly, the necessary variability in patterns is captured via Dynamic Time Warping (DTW), allowing
the signal to adapt to a pattern [33,34]. Another possibility is decomposing activities in simple motion
primitives and applying a bag-of-features model [35].

In order to recognize patterns in the data, they should first be detected. This is challenging
because many similar shapes due to activities that are not of interest are most likely part of the data.
Moreover, activities are not always well separated from each other e.g., a subject might stand up
and start walking immediately. One solution, particularly suitable to sliding window approaches,
is merging the stages of detection and recognition. This technique adds a specific rejection class to the
data and processes it as any other class [28]. Alternatively, detection can be dealt with implicitly using
Hidden Markov Models (HMM) [36]. It can also be modelled explicitly based on signal energy [37]
or using a multi-resolution segmentation based on prior knowledge of the expected length of all
activities [38].

The effectiveness of both detection and recognition can be improved by taken into account
structure and interdependence of the data. For example, accelerometers measure along several
axes. Moreover, similarities between activities can also be used to improve their contrast to other
activities. Once the data is converted to a multiway structure (tensor), more elaborate feature extraction
methods such as Higher Order Discriminant Analysis (HODA) can be used. This technique was
introduced in the last decade and has proven very successful in fields as diverse as image classification,
brain-computer interfaces and handwritten digit recognition [39].

This paper describes a novel approach for automatic detection and recognition of activities related
to functional capacity in axSpA patients from a single arm-worn accelerometer. It aims to show the
structure of the data can be exploited and has added value on top of the common DTW matching
when combined with HODA. To this end the stages of detection (segmentation) and recognition are
addressed and assessed, both independently and jointly. The obtained results are intended as a step
towards assessment of functional capacity in the home environment.

2. Materials and Methods

This Section starts with a description of the data collected in the University Hospital of Leuven.
Next, it discusses the tensorial data representation based on dynamic time warping (DTW). It allows
to use higher order discriminant analysis (HODA) as feature selection approach. Simple pattern
matching features will be introduced as well as a benchmark. Once all these building blocks are in
place, the general approach for both detection and recognition can be outlined. Finally, the Section
ends by describing the performed experiments.

2.1. Data

Data was recorded in two sessions at different points in time. Despite the slight differences
between the two sessions discussed below they were pooled to increase the sample size and to
study the impact of heterogeneous conditions. The merged dataset includes patients diagnosed
with axial spondyloarthritis (axSpA) as defined by the ASAS classification criteria [40], verified by
an expert rheumatologist at the University Hospitals, Leuven. The acquisition protocol was approved
by the Medical Ethics Committee of the University Hospitals Leuven (ML 5236). All test subjects
provided written informed consent before participating. Both recordings took place at the Division of
Rheumatology, University Hospitals, Leuven.

In total, 39 patients were measured, 23 male and 16 female. The patients’ average functional
capacity, estimated using the BASFI score, was 3.16/10, with higher values indicating a decreased
capacity. All patients were equipped with a 32Hz accelerometer mounted on the biceps of the right
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(dominant) arm to record acceleration across the longitudinal and the transversal axes. This position
was chosen as a compromise between arm and body movement. On the one hand, it is on the upper
arm which implies it can capture activities such as reaching. On the other hand, it remains close to
the center of mass of the patient and captures mostly the general movement of the body. In contrast,
positioning on e.g., the wrist would allow more details on arm movements, but its higher degrees of
freedom due to the longer kinematic chain obscure whole-body movements.

The protocol consisted of the patients performing a series of physical tasks based on the BASFI
questionnaire in a randomized order. Each task was performed twice to provide test-retest reliability.
After an initial validity study on the first data set [5], six tests remained. Table 1 presents a summary of
the activities. As can be seen, half of the selected activities are repeated five times. In combination with
the maximum speed requirement, this minimizes the test-retest variability.

Labels for training and testing purposes were obtained by manual segmentation and labelling
performed by students of the Faculty of Rehabilitation Sciences under the supervision of a physical
therapist. Directions were given beforehand and the results were checked by the therapist to minimize
the impact of individual raters.

Despite the pooling of the recording sessions, two differences need to be mentioned.

• The first session, consisting of 28 patients, is recorded with a bi-axial accelerometer (Sensewear
Pro 3 Armband, Bodymedia Inc., Pittsburgh, PA, USA). The remaining 11 subjects were
equipped with the tri-axial Shimmer3 (Shimmer, Dublin, Ireland) since the Sensewear sensor
had been discontinued. Two Shimmer axes were selected to correspond to the Sensewear setup.
The remaining axis was left out.

• In the second recording, only four out of six selected activities were performed, lieDown and
maxReach were not present. Nevertheless, all six activities are included in the study to allow
for a wider variability. Table 1 indicates the number of patients that performed the activity in its
last column.

Table 1. Abbreviation and descriptions of the six activities performed in the experimental protocol.
The last column shows how many patients performed the activity.

Activity Description # Patients

getUp getting up starting from lying down 39
lieDown lying down from stance 28

maxReach reaching up as high as possible 28
pen5 picking up a pen five times as quickly as possible 39

reach5 reaching up five times as quickly as possible 39
sts5 sit-to-stand from a chair 5 times as quickly as possible 39

2.2. Data Representation

The data representation consists of two steps: defining relevant activity patterns from training
data and transforming data based on these patterns to a tensorial representation. Figure 1 summarizes
the approach. Alternatively, simple features can be derived directly after the pattern matching step,
as discussed at the end of this Section. Throughout, data are assumed to be available as annotated
segments, rather than as a continuous acceleration datastream. How to derive these segments will be
discussed in Section 2.4.

2.2.1. Pattern Definition with Dynamic Time Warping (DTW)

A general pattern for every activity can be constructed from training data segments by means of
dynamic time warping (DTW). The basic implementation has been applied for decades. It matches two
signals, possibly of different lengths, by stretching them to minimize a cost function e.g., the Euclidean
distance between the warped curves [41]. Figure 2 shows an example for two damped sinusoidals



Informatics 2018, 5, 20 5 of 19

with slightly different frequencies. As can be seen, DTW scales shapes along the length of the signal,
but because of this it can be prone to errors when large amplitude differences occur. Extension
techniques such as derivative dynamic time warping have been introduced to alleviate this issue [42].
In the current setup however, the shape differences stem from the change in orientation, that is,
the gravity component of the acceleration. It has the same amplitude for all subjects performing
an activity, except when slight pose differences occur. Therefore, DTW extensions have not
been considered.

Figure 1. Overview of the data representation. First, dynamic time warping (DTW) is used on sets
of activity training segments to create activity patterns for all activities mentioned in Table 1. Next,
a new data segment is matched on these patterns with DTW. Finally, the deformed representations are
resampled and grouped in a tensor as a new multiway representation of the data segment. In this ideal
case depicted here, the match is perfect for the correct class and random noise for the other classes.

Figure 2. An illustration of Dynamic Time Warping. The full curve is warped to match the dashed
curve according to the arrows.

In order to use DTW to construct a pattern for each activity in the current setup, two DTW
extensions are needed. Firstly, each trial consists of two channels instead of one. They have to be
matched jointly between channels (multi-channel matching). Secondly, more than two segments should
be matched to obtain common patterns over all training data (multi-segment matching). This has been
implemented in a Matlab toolbox by Zhou and De la Torre [43]. Therefore, if training data has been
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selected, six patterns can be derived by applying DTW once for all segments belonging to the same
activity class. Each pattern consists of two pattern channels.

2.2.2. Simple Pattern Features

Tensorizing the matched data increases the complexity of the algorithm, as discussed further.
Simpler pattern matching features are proposed as an alternative for comparison to assess the added
value of the tensors. They are extracted at the layer of the deformed segments in Figure 1. At that
layer, training or test segments are matched against the patterns. For each match, DTW provides an
euclidean distance measure to assess the similarity between the warped segment and the template.
Overall, this yields a distance for every activity class pattern per segment. Hence, these distances can
be used directly as feature vector. Starting from the derived activity patterns, the approach can be
summarized as follows, both for training and unknown, new, segments:

1. Match the segment to an activity pattern using DTW. This is a simple match between the
two-channel segment and a two-channel pattern. Its result is a two-channel deformed segment
and a distance score.

2. Repeat the first step for all activity patterns.

It is possible to directly derive the class label from the feature vector by a simple approach:
the minimal distance to a pattern most probably points to the associated class as label. Yet, all distances
together yield more information than only this minimum. Therefore, the full feature vector will be
used as benchmark for further analysis.

2.2.3. Tensor Construction from Activity Patterns

Tensors are a data construct in multilinear algebra, an extension of matrices [44]. A tensor has
multiple modes. For example, a single-mode (or one-way) tensor with n elements is a vector denoted
with a bold character z ∈ Rn. A dual-mode (two-way) tensor is a matrix, e.g., with n rows and m
columns, denoted with a bold capital A ∈ Rn×m. Stacking l such matrices yields a tensor A ∈ Rn×m×l ,
called a three-way tensor or, alternatively, a tensor of order three. Such a general tensor is represented
by a calligraphic font.

Starting from the activity patterns defined earlier, a tensorial representation for any activity
segment is constructed in four steps.

1. Match the segment to an activity pattern using DTW. This is a simple match between the
two-channel segment and a two-channel pattern. Its result is a two-channel deformed segment.

2. Repeat the first step for all activity patterns.
3. Resample all deformed segments to a common length. A length of 150 samples was empirically

selected for this study.
4. Stack all resampled deformed segments into a time × channel × activity tensor. Here, this yields

a 150× 2× 6 tensor.

The reasoning behind the approach is as follows. If segments represent a certain activity,
the match between DTW and the pattern will be good and the deformed signal will still resemble
the pattern. On the other hand, deformations to match other activity patterns will be more random.
Hence, the constructed tensor contains information about how well a segment resembles each of
the activities. This is captured in the simple DTW features mentioned before, but they compress
information into a single variable per activity, whereas the tensor approach preserves more localized
similarity information.

2.3. HODA Features

A tensor is classified into an activity class based on features extracted from it using Higher Order
Discriminant Analysis (HODA) features. HODA combines multilinear subspace methods with Fisher’s
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discriminant analysis to solve a special case of the Tucker decomposition [39]. The implementation
is provided in the Novel tensor toolbox for Feature Extraction and Applications (NFEA) [45] which
requires the use of the tensor toolbox by Kolda and Bader [46].

2.3.1. Tucker Decomposition

The Tucker decomposition decomposes a tensor Y ∈ RI1×I2×I3 into a smaller tensor, called the
core tensor, and factor matrices. The principle is illustrated in Figure 3. The core tensor G ∈ RR1×R2×R3

is multiplied by matrices A ∈ RI1×R1 ,B ∈ RI2×R2 and C ∈ RI3×R3 along the first, second and third
mode, respectively. Mode-1 and mode-2 multiplication are equivalent to left and right multiplication
in case of matrices. In general, mode-n multiplication will be indicated by ×n. Hence, the Tucker
decomposition in Figure 3 can be written as:

Y = G ×1 A×2 B×3 C + E (1)

In which E ∈ RI1×I2×I3 is an error term.
Equation (1) is a decomposition because it expresses the content of a tensor as a combination of

interactions of vectors, namely, the columns of the factor matrices. Therefore, if common factor matrices
can be found for a given set of tensors, their core tensors all express the full content of the original
tensors in the multilinear space spanned by the factor matrices. The elements of the core tensors are
then used as discriminative features. Discovering such common factor matrices in a class-informed
way is the goal of the algorithm called HODA, discussed next.

Figure 3. Illustration of a Tucker decomposition [45]. A tensor Y can be decomposed as a core tensor G
and factor matrices A, B and C, one for each mode.

2.3.2. Higher Order Discriminant Analysis (HODA)

HODA aims to construct common factor matrices by jointly decomposing a set of N-way tensors.
This can be achieved with an explicit joint formulation, but the more common and elegant way is
the formulation in terms of a decomposition of a single tensor of order N + 1. That is, it has been
shown that stacking all tensors along an additional mode and performing a Tucker decomposition
disregarding the factor matrix of this last mode is equivalent to the joint formulation [39]. Such a
decomposition is in general not unique. However, uniqueness can be enforced by constraints such
as orthogonality or nonnegativity. HODA finds common orthogonal factor matrices via an iterative
procedure attempting to maximize Fisher’s ratio [39] based on the class labels. A full mathematical
derivation is outside the scope of this paper.

Once the common factor matrices have been found, the individual core tensors resulting from
the original tensor observations can be vectorized and serve as training features. Moreover, the factor
matrices can be used on new observations, e.g., test data, to find the core tensor and hence test features.
These features can subsequently be used with any classification approach. The full HODA procedure
is presented graphically in Figure 4. The graphical depiction is limited in its possibility to express
N-way tensors for N > 3. Therefore, all higher-order tensors are represented as cubes.
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Figure 4. Graphical summary of the HODA procedure. An (N + 1)-way tensor is obtained by stacking
the N-way training tensors. The orthogonal Tucker decomposition maximizing Fisher’s ratio yields the
factor matrices A and core N-way core tensors G(k) vectorized as training features. Applying the factor
matrices on test data similarly yields the test features [45].

2.4. Detection and Recognition

So far, the focus has been on the building blocks for activity recognition starting from accelerometer
segments. Yet, this first requires detecting these segments in continuous data streams. The process
consists of two steps. Firstly, potential segments of interest are detected. This process is independent
of any features (simple or HODA) used for further stages. Secondly, non-informative segments should
be discarded.

2.4.1. Segment Identification

Segments of interest are identified by looking at the signal variability. The dynamic regions of the
signal are subsequently separated from the more static ones. This separation was implemented as a
step-wise adaptive approach [47].

1. The continuous data is filtered with a low-pass butterworth filter of the fourth order, with a cut-off
frequency of 1.6 Hz. This corresponds to 10% of the signal bandwidth. To judge the general
movement pattern, low frequencies are the most important ones.

2. A rough segmentation splits the signal into windows of two seconds, with 50% overlap.
Segments are marked as dynamic based on their standard deviation and range, compared to
empirical thresholds obtained from preliminary analysis of the training data.

3. Refinement of the dynamic regions is achieved by shrinking or extending the static regions in
between dynamic segments based with half a second. The decision is based on the difference in
variance between half-second regions and is identical for the start and end of a region, so the
discussion will be limited to the start. The initial second of a static region serves as baseline.
Extension is accepted if the second starting at half a second before the current start has a variance
which is maximally 10% higher than the baseline. This tries to grow the static region without
incorporating too much movement. Shrinking is accepted if the variance of the second starting at
half a second later than the current start is at least 10% lower. This tries to eliminate movement at
the start of the region.

4. The above procedure is carried out independently for different channels. The detected dynamic
regions are subsequently joined over all channels. Static gaps of less than a second in
between dynamic regions are discarded if the means of the regions are similar. As a last step,
dynamic regions of less than two seconds are discarded.
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2.4.2. Rejection

Rejection involves discarding segments representing activities that are of no interest in this study.
It is challenging because the rejection class is heterogeneous and cannot always be fully known
beforehand since patients can perform any movement, whereas for the activity classes, their general
characteristics are known. A workaround is the use of a one-class classifier for each class of interest.
In this case however, an estimate of the data to be discarded is available from training data.

For every patient, the informative segments are known in the continuous dual-channel
acceleration signals. Hence, if the segmentation is run, all segments not overlapping with the known
activities are examples of the rejection class. In other words, this allows to increase the set of known
segments and labels for each patient by introducing a rejection class label. Therefore, the problem can
simply be solved as a classical multi-class approach. A random forest with 250 trees was selected for
its ability to model complex boundaries [48]. A uniform prior was imposed to avoid too strong a bias
towards the rejection class. Individual trees were constructed by random resampling of the data with
an in-bag-fraction of 0.65. Other than that, standard settings in Matlab’s TreeBagger have been used.

2.5. Experiments

All experiments were performed in Matlab R2017b (The Mathworks, Natick, MA, USA). Three
aspects of the approach were tested. A first experiment solely focuses on recognition, that is, it starts
from already segmented data with given class labels. A second experiment assesses the segmentation
approach, neglecting any class labels. Finally, the third experiment brings together segmentation and
classification. The first and the third experiment include a comparison between the methods applied
on simple features or HODA features. The statistical significance of the results of this comparison
is assessed with a sign test, a non-parametric test for the difference of medians of two populations,
implemented by Matlab’s signtest.

2.5.1. Recognition

To evaluate recognition only, a ‘closed world’ scenario is used. All activities are available as
segments and all available segments can only be one of the six classes listed in Table 1. Data is
processed as leave-one-subject-out (LoSo). It is a crossvalidation approach consisting of 39 folds,
one for each patient. In every fold, data from 38 patients is used as training data with the remaining
patient as test data. The manual class identifications are used as ground truth labels.

Simple and HODA features are calculated as described in Sections 2.2 and 2.3. Summarizing,
in every fold, the following steps are carried out:

1. Class-specific patterns are derived from the training data using DTW.
2. Data segments, both training and test, are warped to all training class patterns. This yields

deformed segments with the associated distances as simple features.
3. The deformed segments are converted to a tensorial representation.
4. HODA derives the discriminative subspaces and core tensors based on the training data.

As toolbox parameters, the quality of the approximation is set to 98.5 and the subspaces are
derived via generalized eigenvalue decomposition.

5. The subspaces defined by the factor matrices are used to extract the core tensors for the test data.
6. Training and test HODA features are obtained by vectorization of the core tensors.
7. Test data is evaluated via a multiclass-trained linear discriminant analysis classifier (LDA) for

both types of features [49].

The segments are expected to be relatively dissimilar, so a more complex classifier such as the
random forest mentioned earlier is not necessary here. In contrast, it might lead to overfitting. LDA is
a simple linear classifier with less hyperparameters. Due to its linear nature, it leads to more robust
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models. It is implemented in Matlab as fitcdiscr. Results will be assessed using accuracy per subject
as well as a confusion matrix over all subjects.

2.5.2. Segmentation

Segmentation is performed for every patient as outlined in Section 2.4.1. It is expected that many
segments will be found, among which also the informative ones given as training data. This experiment
matches the detected segments with the given ground-truth, discarding all other detected segments.
Aspects to be assessed include whether all informative segments have indeed been detected and
how accurate this detection is. The latter is quantified by the Sørensen-Dice coefficient [50] (SDC).
Given segments X and Y, it can be defined as:

SDC(X, Y) =
2|X ∩Y|
|X|+ |Y| (2)

It can be considered as a percentwise measure of overlap between X and Y.
Note that segmentation is independent of the type of features used later for recognition.

Therefore, no comparison is provided.

2.5.3. Combination

The last experiment is similar to the first as it also runs with the LoSo setup and compares
simple features to HODA features. However, as described earlier, a rejection class is introduced.
Moreover, the test data segments are no longer predefined through manual delineation, but are
obtained through segmentation, as in the previous experiment. The aim is to reject non-informative
segments and correctly classify the others. Several measures will be used to assess the performance:

• The number of false detections FD is the amount of segments classified as belonging to one of the
six classes, whereas they should be in the rejection class.

• Detection True Positive Rate (DTPR) is the ratio of the number of segments that have (correctly)
been accepted and the number of actual informative segments. It is an alternative for the number
of false negatives, that is, missed detections (FN). Whether segments are classified correctly is
irrelevant for the DTPR, only the difference between accepted and rejection is assessed.

• The pure accuracy ACCp is the classification accuracy when only looking at the accepted segments.
This neglects the impact of FD and FN.

• The actual accuracy ACCa is the most complete measure of performance. It is the classification
accuracy taking into account both FDs and FNs as misclassifications.

3. Results

This section subsequently discusses the results of the three experiments: Recognition, Segmentation
and Combination.

3.1. Recognition Results

Figure 5 shows a bar plot of the classification accuracy for all subjects using HODA features.
The average accuracy is 94.34% (std 9.24%). Moreover, the figure shows that perfect recognition was
achieved for 25 subjects. A further four subjects had accuracies higher than 90%, six others between
80% and 90% and three more between 70% and 80%. Only a single subject had an accuracy lower
than 70%.

The boxplot in Figure 6 offers a comparison between the simple features and HODA. The latter
outperforms the former with a highly significant difference (p < 0.01). Simple features lead to
an average classification accuracy of 78.21% (std 17.74), a difference of 16%. Only 8 subjects achieve
perfect recognition.
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Figure 5. Classification accuracy for each subject using HODA features.
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Figure 6. A comparison of the classification accuracy using LDA on simple and HODA features.

Assessment can also be done on the level of confusion between activities. The conclusions will be
illustrated for HODA, but are similar for the simple features. Table 2 displays the confusion matrix
for all activities. It shows that all occurrences of lieDown and maxReach are perfectly recognized.
Moreover, they have no confusion with other activities at all. Reach5 and getUp are only missed twice.
Another observation is some confusion between the repeated activities. Most importantly, pen5 is
sometimes estimated to be sts5 (five occurrences) or reach5 (five occurrences). This can be explained
by the fact that the movement of the arm is similar in these cases.

Table 2. Confusion matrix of the classified activities using HODA features over all 39 subjects. Correct
detections are highlighted by the gray-shaded diagonal.

Predicted Labels
getUp lieDown maxReach pen5 reach5 sts5

A
ct

ua
ll

ab
el

s

getUp 76 0 0 0 1 1
lieDown 0 56 0 0 0 0
maxReach 0 0 56 0 0 0
pen5 0 0 0 68 5 5
reach5 0 0 0 1 76 1
sts5 2 0 0 3 2 71
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3.2. Segmentation Results

The results of the segmentation of all subjects can be seen in Figure 7. All informative segments
were detected. Although several detections cover only a small part, the majority of the detections is
accurate with an average SDC of 0.8932 (std 0.1202). However, the distribution is highly skewed since
94.81% of the segments obtained an SDC higher than 0.7.

The SDC’s calculation only takes into account correctly identified segments, that is, overlapping
with the given segments for informative activities. However, non-informative segments have been
detected as well, segments where activity occurs that should be rejected. On average 55.61 additional
segments were found, with a maximum of 87. The next section discusses how well all of these can be
discarded while still retaining the informative segments.

1 5 10 15 20 25 30 35 39

Subject

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ørensen - Dice coefficient

Figure 7. Segmentation performance for all subjects expressed as boxplots of individual Sørensen-Dice
Coefficients (SDC) of the segments. All informative segments were detected.

3.3. Combination Results

The number of false detections, the percentage of correct detections and the accuracies, with and
without taking into account the formers, are given in Table 3 for both HODA and simple features.

The number of false positives is decreased by applying the classifier. From the average 55.61,
for HODA, only 2.90 remain, with a maximum of 16. Ten subjects correctly rejected all spurious
activities. In contrast, the simple features still have an average of 7.90 false detections, with a maximum
of 21 and only for a single subject, all false detections were rejected.

Rejection is a trade-off, balanced with the amount of correct detections. For HODA, on average,
85.36% of the segments are detected, but large differences between individuals occur. 14 subjects detect
all segments, but four only detect less than 60% of them. Using the simple features, 82.16% of the
features are detected. The sign test indicates a significant difference in the DTPR (p = 0.0436).

The last two columns bring everything together. ACCp is equivalent to the performance for
the classification experiment performed in this study, but the detected segment boundaries are
used, rather than the ideal ones. Moreover, non-detected segments are dropped. As a consequence,
for HODA, classification accuracy drops on average from 94.34 to 86.72%. Subject one only recognizes
half of the activities and subject five only one third of them. In contrast, 12 subjects recognize all
detected activities perfectly and nine more recognize more than or equal to 90% correctly. The result for
the simple features improves from 78.21 to 82.91%. This signifies that the segments that were rejected
could not be recognized easily and were wrongly classified even if segmented perfectly. Despite this
increase, HODA outperforms the simple features significantly (p = 0.0326).
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Table 3. Results for the combination of segmentation and classification expressed with the number
of false detections (FD), the Detection True Positive Rate (DTPR), the pure accuracy (ACCp) and the
actual accuracy (ACCa) using HODA and simple features.

HODA Simple
Subject FD DTPR ACCp (%) ACCa (%) FD DTPR ACCp (%) ACCa (%)

1 3 0.5 50 18.1818 9 0.25 50 5.8824
2 16 0.8750 71.4286 20.8333 15 0.625 60 13.0435
3 8 0.8750 85.7143 37.5 12 0.875 100 35
4 5 0.6250 80 30.7692 7 0.625 80 26.6667
5 6 0.7500 33.3333 14.2857 12 0.5 0 0
6 10 0.8750 85.7143 33.3333 19 0.875 71.4286 18.5185
7 3 1 75 54.5455 8 0.75 100 37.5
8 5 0.7500 66.6667 30.7692 6 1 87.5 50
9 5 0.7500 100 46.1538 15 0.75 83.3333 21.7391
10 4 0.5 100 33.3333 13 0.625 80 19.0476
11 7 0.6250 80 26.6667 10 1 37.5 16.6667
12 3 0.9167 81.8182 60 10 0.75 100 40.9091
13 0 0.5 100 50 7 0.9167 81.8182 47.3684
14 2 0.8333 90 64.2857 7 0.8333 100 52.6316
15 2 1 75 64.2857 6 0.8333 100 55.5556
16 3 0.8333 80 53.3333 5 0.8333 100 58.8235
17 2 0.9167 90.9091 71.4286 15 0.9167 81.8182 33.3333
18 0 1 91.6667 91.6667 2 1 83.3333 71.4286
19 0 1 91.6667 91.6667 6 0.8333 100 55.5556
20 1 1 100 92.3077 4 0.9167 81.8182 56.2500
21 0 1 83.3333 83.3333 1 0.8333 100 76.9231
22 6 0.8333 90 50 21 0.6667 87.5 21.2121
23 2 1 83.3333 71.4286 6 0.75 100 50
24 0 0.8333 100 83.3333 0 0.75 100 75
25 0 0.8333 100 83.3333 4 1 83.3333 62.5
26 2 1 91.6667 78.5714 4 1 75 56.25
27 0 1 100 100 1 1 91.6667 84.6154
28 1 0.9167 81.8182 69.2308 10 0.75 55.5556 22.7273
29 0 0.9167 100 91.6667 6 0.8333 100 55.5556
30 0 1 100 100 3 1 91.6667 73.3333
31 2 0.6667 100 57.1429 6 0.7500 100 50
32 2 1 91.6667 78.5714 9 0.9167 90.9091 47.619
33 2 0.9167 90.9091 71.4286 7 0.8333 90 47.3684
34 1 0.8333 100 76.9231 8 1 91.6667 55
35 2 1 83.3333 71.4286 5 0.8333 70 41.1765
36 1 0.8333 80 61.5385 8 0.9167 81.8182 45
37 6 0.5833 85.7143 33.3333 10 0.5833 71.4286 22.7273
38 0 1 100 100 8 0.9167 90.9091 50
39 1 1 91.6667 84.6154 3 1 83.3333 66.6667

AVG 2.8974 0.8536 86.7272 62.3391 7.8974 0.8216 82.9061 44.0922
STD 3.3150 0.1576 14.2076 25.0301 4.7395 0.1630 20.3669 20.7116

The last column shows the combined effects of the previous three columns and represent
the complete performance of the system. For HODA, it drops with 24% to an average of 62.34%.
As a general system, this is insufficient. Yet, for some subjects, the performance is much better. The low
performance is due to several badly-predicted subjects. 13 have an accuracy below or equal to 50%.
On the other side of the scale, 11 perform better than 70% and four above 90%. Three subjects achieved
perfect detection and recognition, yielding a global performance of 100%. The performance difference
with the simple features is immediately apparent and highly significant (p < 0.01). The large difference
might seem surprising given the previous two columns with much smaller differences, but it can be
explained by the high number of false positives. As an example, subject 38 has 12 target occurrences of
activities. The simple features approach detects 11 of them. Ten out of these 11 are classified correctly.
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However, eight false positives are considered as wrongly classified, leading to an actual accuracy
of 50%.

Finally, performance can be grouped by activity rather than by subject. Table 4 gives an overview
for the HODA features. The same trends as in the confusion matrix in Table 2 can be observed.
The non-repetitive activities perform better. This might be due to the fact they resemble often-occurring
activities such as walking. Overall, the problem is mostly with sts5 which has an actual recognition
performance of only 55.13%.

Table 4. Performance for the combined segmentation and classification, grouped by activity, expressed
as the Detection True Positive Rate (DTPR), the pure accuracy (ACCp) and the actual accuracy (ACCa)
using HODA features.

DTPR ACCp (%) ACCa (%)

getUp 0.9103 95.7746 87.1795
lieDown 0.875 100 87.5

maxReach 1 100 100
pen5 0.8718 79.4118 69.2308

reach5 0.7436 93.1034 69.2308
sts5 0.8333 66.1538 55.1282

4. Discussion

The results show that the newly proposed activity recognition approach with HODA outperforms
a more standard direct comparison based on the distances derived from dynamic time warping,
both in a closed world scenario and in the inclusion of false and missed detections. The significant
improvement is due to taking into account the entire signals, not only the reduced similarity
information. Of course, it should be noted that the final feature space with HODA offers more degrees
of freedom for the classifier since it is generally of higher dimensionality, around 30. Nevertheless,
this is not only an advantage because it also increases the danger of overfitting.

It is also apparent that large differences between subjects exist. As an example, Table 3 shows
performances ranging from 18 to 100%. This shows that the effectiveness of the model greatly
depends on the subject. In this study, training was performed in a leave-one-subject-out approach.
Hence, a subject-independent model was produced. As an alternative, data from the subject to be tested
could either be part of the training set or only subject-specific data could be used. A model constructed
in this way is expected to perform better for a specific subject, but it is less generally applicable.

Another factor influencing the performance is the manual labelling of the data. It is not exhaustive,
so some false detections might actually be correct. These detections have not been checked manually
afterwards. Moreover, in this case, correct segments would have ended up in the set of examples for
rejection, leading to a less discriminative choice of features.

The performance is also determined by the choice of approach and features. The methods
employed in this study heavily rely on pattern matching, based on the hypothesis that the acceleration
pattern captures the entire activity. As much relevant variability as possible was captured through DTW
and HODA-derived subspaces. Nevertheless, patterns also contain inherent noise in the sense that
parts of the movement are not defining aspects of a particular activity. Current results are promising
for many subjects, but an earlier study on the Sensewear dataset showed that much is to be gained
by combining pattern features with more general statistical features [47]. In the future, it could be
beneficial to merge the feature set obtained by HODA with the statistical features employed there.
This is especially true for segmentation. The recognition results based on ideal segments are very good,
but due to falsely rejected or only partly covered segments this performance drops in the final result.

Looking more in detail at the results in Table 3 reveals a recurring issue. The data description
mentioned that two datasets were merged to increase population size and strengthen the conclusions.
In the analyses, the first 11 subjects belong to the most recent data acquisition with the Shimmer,
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whereas the last 28 are recorded with the Sensewear Armband. In all recognition experiments,
the Sensewear set outperforms the Shimmer, both with the HODA and the simple features.
For the HODA features in the closed world scenario, the performance difference amounts to 10%.
Also, in segmentation, the difference between the datasets is noticeable. The 11 Shimmer subjects
seem to have been segmented less accurately, e.g., subject five and ten. This might be because the
segmentation becomes more difficult if the activities under consideration are executed in a shorter
time span without interruption or with immediate displacements afterwards. Ideally, the signal would
be static in between activities and the activities themselves would be executed fluidly, without pauses.
In (emulated) real-life settings, these ideal conditions are not always fulfilled. Finally, in the overall
performance measure ACCa, the gap grows to more than 40% due to worse rejection and recognition.
With the simple features, both datasets perform worse and the difference between them increases
further. The results lead to the conclusion that HODA, apart from performing better, also succeeds in
shrinking the performance gap between the two datasets.

Several explanations can be mentioned: more activities are taken from the Sensewear set and
segmentation seems more successful due to more standardized behaviour, e.g., pauses in between
activities. A more important issue is likely the sensor itself. The Sensewear is an armband with
a built-in strap, meaning that its positioning with respect to the arm is more likely to be similar
between subjects. The Shimmer has to be attached manually. Moreover, it contains three axes instead
of two. Although care has been taken to attach the sensor and select the axes corresponding to the
Sensewear, no further correction other than normalization with respect to the magnitude of gravity was
applied to harmonize the two datasets. Many calibration parameters could introduce small differences.
The performance difference is hence likely caused by three effects: differences within the Shimmer
dataset are larger due to sensor setup, there are differences between the datasets and the Sensewear
data has more influence in the training process due to its higher number of subjects. In further studies,
it would therefore be advised to use the same sensor for all recordings. This did not happen here
because the Sensewear was no longer available. Also, a future study could compare the sensors more
explicitly, which was not the aim here. In this study, data from both sets contribute to the classifier and
influence the results. In itself, this shows that HODA can obtain good results and is more robust against
the heterogeneity than simple DTW features. Yet, performing the identical study on two separate sets
of the same size with the different sensors might further clarify the impact of the sensor type.

The most important drawback of the algorithm is its high computational cost. If more activities
would be considered, it would even be higher. Training can be done in advance, but testing alone is
also costly. In its current state, it is not suitable for real-time use. Structuring the data and applying
HODA is not computationally expensive. The repeated application of DTW proves to be the biggest
concern. It could be alleviated by using existing dedicated hardware. However, in the context of
assessment of functional capacity, computational cost is not an issue. Current practice consists of
a weekly BASFI assessment. Disease evolution over time could be tracked in more detail by a daily
automatic assessment, which can be reported to the clinician when available. This could detect
fluctuations during the week, but also between weekly meetings. Real-time recognition could be useful
e.g., to detect and correct maladaptive poses through direct feedback, which is another possible aim.
In that case, another approach is preferable.

The study is part of a larger aim for assessment of functional capacity by objective means. For this
reason, the data was acquired from axSpA patients rather than healthy subjects. As mentioned in the
introduction, patient data is more difficult to classify. The study shows that HODA features, exploiting
the structure in the data, outperform simple pattern features in this difficult setting.

Furthermore, it addresses the problem of the limited applicability of pattern detection compared
to sliding window approaches. This is achieved through the approach to rejection, first looking for
dynamic segments and then rejecting non-informative segments as rejection class. The reason for
rejection can be three-fold. Firstly, the rejection class serves as a model. If similar non-informative
segments are segmented, they can be rejected. Secondly, some segments are only partly segmented,
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which diminishes their resemblance to the class pattern. Hence, they are rejected by the final classifier.
Thirdly, some activities are badly recognized to begin with, even when ideally segmented. This might
lead to them resembling the collection of rejection segments rather than their own class. This shows
that, through segmentation, the continuous problem can be converted into a discrete one. Subsequently,
the same approach as with sliding windows can be implemented, making the rejection class part
of a multi-class problem. The current approach has the advantage to explicitly aim for meaningful
segments, whereas this is not guaranteed with basic windowing.

The setup of the protocol, together with the less limited applicability make it possible to have
patients potentially record themselves in the home environment. Using a single sensor makes it
easy to set up. Moreover, because only accelerometry is needed, the sensor will suffer less from
power restrictions.

A next step would try to extract activity characteristics related to the functional capacity. A typical
example already used in practice is activity duration. In this regard, the low number of false detections
for the majority of subjects is a key strength. False detections would introduce meaningless assessment
characteristics. A lower detection rate is less important as long as enough data is available to still
assess the functionality. As a results, the current algorithm can be considered a building block for
further research.

5. Conclusions

This paper introduced an approach to segment and recognize six activities from single arm-worn
accelerometer. Data segments are extracted based on the variance of the acceleration. They are
represented as multiway data structures (tensors) containing pattern similarity derived with Dynamic
Time Warping. Next, Higher Order Discriminant Analysis serves to extract subspaces for the classes,
resulting in data features. A Random Forest with an additional rejection class finally classifies the data
into one of the activity classes.

The setup was evaluated on a dataset of 39 axSpA patients and compared to a simpler direct DTW
similarity approach. HODA segmentation and classification showed good performance individually,
but their combination led only to good results for part of the subjects, in particular a subset of the data
that was recorded with another device. The evaluation shows the viability of the approach which
significantly outperforms the benchmark’s performance. For future work, statistical features could be
included to improve performance, particularly for rejection.
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