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Abstract: Scientists routinely analyse and share data for others to use. Successful data (re)use relies
on having metadata describing the context of analysis of data. In many disciplines the creation
of contextual metadata is referred to as reporting. One method of implementing analyses is with
workflows. A stand-out feature of workflows is their ability to record provenance from executions.
Provenance is useful when analyses are executed with changing parameters (changing contexts) and
results need to be traced to respective parameters. In this paper we investigate whether provenance
can be exploited to support reporting. Specifically; we outline a case-study based on a real-world
workflow and set of reporting queries. We observe that provenance, as collected from workflow
executions, is of limited use for reporting, as it supports queries partially. We identify that this is due
to the generic nature of provenance, its lack of domain-specific contextual metadata. We observe
that the required information is available in implicit form, embedded in data. We describe LabelFlow,
a framework comprised of four Labelling Operators for decorating provenance with domain-specific
Labels. LabelFlow can be instantiated for a domain by plugging it with domain-specific metadata
extractors. We provide a tool that takes as input a workflow, and produces as output a Labelling
Pipeline for that workflow, comprised of Labelling Operators. We revisit the case-study and show how
Labels provide a more complete implementation of reporting queries.

Keywords: workflow; provenance; domain-specific annotation

1. Introduction

Computational data analysis has become an inseparable part of today’s scientific practice [1].
The research ecosystem is now richer, where, in addition to the traditional accumulation and
consumption of scientific knowledge as literature, we observe the accumulation and consumption
of scientific data [2]. Scientists have new responsibilities in this data-rich environment; they need to
devise ways to (1) deal with the data deluge and analyse data in automated yet transparent ways (2)
share the data produced so that others can re-use it in follow-on studies. Metadata plays a key role in
both avenues.

On the side of data sharing, metadata is needed for data discovery and interpretation [3].
Of particular importance is metadata describing the context of a scientific study that produces the
data. Context commonly refers to:
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• Study Subjects; such as the species, the stellar objects or the geographical regions that the data
is about.

• Study Factors; these correspond to controlled variations within the research method used.
One example could be the space of parameter values for a simulation. Another could be the
different diets fed to lab mice prior to data collection.

• Data Origins; if the data is generated first hand from lab/field work, then origin often corresponds
to certain attributes of study subjects, e.g., the gender and age of humans from which DNA has
been sampled. If data is derived from already existing datasets then origin corresponds to
attributes such as, data catalog names, versions, or access end-points.

In order to provision this contextual metadata, in recent years, the practice of reporting has emerged.
Several disciplines have introduced guidelines [4] and models [5] to ensure that core contextual
metadata can be created. Reporting can describe both physical and computational parts of studies.
One key characteristic of reporting is its emphasis on fine-grained modelling of context. A study may
embody multiple contexts involving multiple subjects, factors and alternate source datasets. In such
cases reporting requires that each output should carry as metadata the distinct context that has led
to its creation. As of today, reports primarily describe physical parts of studies and the metadata is
manually curated by scientists.

On the side of data analysis scientists are equipped with diverse tools for automation.
Scientific workflow engines [6–9], scripting platforms [10,11] are examples of such tools. Workflow engines
in particular are favoured as they enable process transparency in addition to automation. Workflows make
analytical processes explicit by modelling them as a network of analysis tasks and dataflow
dependencies among tasks. Furthermore workflow systems automatically collect metadata,
called workflow provenance, from analysis runs. Workflow provenance is also a network of task
executions and the data consumed/produced by tasks. The data derivation paths within workflow
provenance are commonly referred to as lineage. Lineage becomes particularly important when
workflows encode iterated analyses ran over a large permuted set of parameters. In such cases
lineage links analysis outputs to corresponding parameters [12]. Workflow systems exploit lineage to
streamline workflow executions, through debugging, error/change propagation.

Against this outlook, we can see that on the one hand side there is a requirement, and on the
other side there is a supply of metadata. As of today these two kinds of metadata are at a disconnect;
meaning, workflow provenance is minimally exploited for reporting. As a result the reporting of
computational data analyses remains adhoc. Data is either left unannotated or superficially annotated,
where some high-level characteristics of the analysis design are described, yet the context(s) that
arise in analysis execution are left out. Adhoc reporting relies on the fact that context information is
implicitly available in file names, file headers or in data values.

The reasons for the metadata disconnect are two fold:

• Workflow provenance is generic. In order to allow processing of diverse scientific datasets using
equally diverse tools; workflows systems are designed to be oblivious to what data and tasks
internally represent. This is also known as the “black-box approach”, which generates provenance
graphs comprised of opaque nodes [13]. Meanwhile, for reporting, we require domain-specific
information on data and tasks. Henceforth workflow provenance requires further annotation in
order to be useful in reporting.

• Workflows as automation artefacts proliferate data generation. A workflow is rarely run once,
typically ran several times to explore the effects of parameter or input changes on outputs. As a
result manual annotation of workflow outputs can be a daunting task for scientists. In a recent
survey scientists have stated that they receive ample automation support for performing the
analyses, much less so for post-analysis activities such as result management, annotation
and sharing [14].
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Past research has investigated the annotation of provenance graphs [15,16]. However,
the requirements of reporting bring fresh challenges, which reveal gaps not addressed with state
of the art techniques.

Early approaches have focused on manually annotating a workflow’s design to denote fixed
characteristics of tasks or task data. Design annotations can state, for example, that a task (hence
consequently all its executions) consume a genomic sequence and perform sequence alignment.
Meanwhile reporting requires dynamic characteristics that surface only at runtime, such as, the specific
species/subject whose genome is sequenced, or the values of parameters used during alignment. In [17]
Ailamaki et al. observe that automated processing of this category dynamic metadata is a crucial
requirement for scientific data management. Recently we observe that acquisition of runtime attributes
as metadata and their propagation is being added as a feature to workflow systems, specifically in the
Galaxy [7] and Wings [8]. This feature relies entirely on the user’s manual tagging of each individual
input dataset. In the case of Galaxy, tags get propagated to all descendants of data regardless of the
nature of data processing in individual steps. In the case of Wings in addition to annotating datasets
the user is expected to configure elaborate rules on how metadata may propagate from inputs to
outputs, as a result we have not observed a use of this feature in existing Wings workflows [18].

Scientific disciplines have standardised data formats, where data is accompanied with embedded
contextual metadata. VOTable, HDF5, FITS in earth-observation and astronomy [17]; BAM, VCF,
FASTQ, Blast Report in life science [19] are examples of such formats. The state of the art exploits
data formats in two major ways. First one is raw-data processing tools such as NoDB [20] and
Fastbit [21], which utilise various indexing techniques so that data can be kept in its raw form but
can be loaded and queried when necessary. These approaches assume a vertical column-oriented
organisation for data, where some of the columns may comprise metadata.The first drawback here is
that not all scientific formats are column-oriented, in many cases metadata is often found in a dedicated
file header. The second aspect is that these tools focus on single files and they are unaware of the
dataflow of a scientific analysis. Data in one file rarely refers to data in other files, and recovering this
information without the explicit dataflow is a research question on its own [22]. In our setting we
have the explicit dataflow (lineage) in the workflow description and provenance, and this information
needs to be augmented with information extracted from data. ARMFUL [23] is a recent work in the
area of scientific workflows that investigates how raw data indexing can be combined with dataflow
information. This approach assumes data-parallelism in workflows where an analysis is mapped onto
an input file collection, producing a corresponding file collection, and the raw data indexing is applied
to files. Rich fine-grained metadata can be generated and queried in combination with the dataflow.
This approach is very close in spirit to LabelFlow, however, it is tightly coupled with positional indexing
(that of FastBit et cetera) and therefore devotes itself entirely to tabular data formats. Furthermore
a comprehensive empirical survey [24] have revealed that workflows are largely comprised of data
grooming/adaptation steps, where during adaptation, data is stripped of its standard formatting and
several data copies can be created, furthermore data granularity can change throughout the workflow
where in one step the workflow may perform analyses on individual items, whereas in the next
step it may perform one analysis/adaptation on the entire collection. Therefore, it is necessary that
annotation takes into account the reality of (1) data adaptation and the fact that data may not always
carry embedded metadata, and (2) the collection-item-level nature of analyses.

Finally, in past work, computational “lineage” or dataflow has been used synonymously with
“origin”, meaning, all data that is on the lineage of a result is considered to be the origin of that
result [25]. In the context of scientific reporting origin has a more restricted interpretation than
computational lineage.

In this paper, we hypothesise the following: The scientific context found in an embedded, implicit
form (in data formats, file names), can be made explicit as annotations over data. Prior empirical
evidence has shown that workflow tasks belong to predetermined functional categories [24]. We argue
that such a categorisation turns workflow provenance from an opaque graph into a roadmap with
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which we can (1) determine sources of implicit context and (2) the scope of reach of that context.
We implement our techniques with technology-independent provenance models and we showcase
their benefit using real-world workflows. We make the following contributions.

• LabelFlow, a generic framework, that can be plugged with discipline-specific metadata extractors,
for annotating datasets. Central to this framework is a set of labelling operators for minting and
propagating annotations.

• Labelling Pipelines, which are shadow annotator processes deduced per scientific workflow.
The labelling pipeline of a workflow can be used for annotating results for all executions of
that workflow. We provide a practical algorithm that consumes a workflow description and its
activities’ functional categories and produces a labelling pipeline.

• An implementation of LabelFlow based on technology-independent standard provenance models
and its validation using a case study.

Early requirements for LabelFlow and the basics of our case study were published earlier in
two workshop papers [26,27]. This current submission gives a complete formal specification and
implementation for LabelFlow.

The paper is organised as follows. In Section 2 we introduce an example case-study workflow and
the landscape of metadata surrounding workflows. Here we also discuss the requirements of reporting
and the shortcomings of generic provenance. Afterwards, in Section 2 we provide an the architectural
overview of our approach to provenance annotation. In the sections that follow we elaborate on the
components of this architecture. In Section 4 we describe LabelFlow in detail, outlining Label Model,
Labelling Operators and the generation of Labelling Pipelines. In Section 6 we revisit the case workflow
to assess the utility of having explicit domain-specific metadata for reporting. In Sections 7 and 8 we
outline related work and discuss LabelFlow critically in comparison to related work. We conclude
in Section 9.

2. Workflows, Provenance and Reporting: A Case

In this section, we provide an example Astronomy workflow [28] from the Taverna system [29] and
its provenance. We also identify the requirements of reporting as queries over workflow provenance,
which we illustrate with common queries adopted from the Provenance Challenge [30]. We believe the
example workflow is representative of scientific workflows because:

• It contains the commonly observed type of activities in workflows and reflects their occurrence
percentage. As we discuss in Section 3, a comprehensive survey has categorised activity
functionalities to certain Motifs, our workflow’s activities have the data analysis and data retrieval
motifs as well as extensive data adaptation.

• Analyses and data retrievals in this workflow are configured by input parameters, which, as we
discuss in Section 2.3, become an important hook for querying provenance.

• It illustrates the genericity of workflow provenance, our prime motivation, which limits the
use of provenance for reporting. It also illustrates the n − by − m pattern in provenance,
which can be observed in workflows and negatively impacts the utility of both generic and
annotated provenance.

While our case involves a Taverna example, our approach is primarily system-independent and
builds on standard models of workflows and provenance.

2.1. Layers of Provenance

Taverna workflows are comprised of tasks, input/output ports of tasks and the dataflow links among
ports. Figure 1 illustrates our workflow that takes as input a set of galaxy names (list_cig_name),
and outputs extinction values per galaxy (data_internal_extinction). The workflow retrieves data,
from remote astronomical databases (Steps 1 & 2) and uses this information to calculate extinction
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values (Step 3). The unnumbered tasks in between are adapters, which perform (Data) Extraction,
Format Trans f ormation and similar. Taverna supports simple structural typing of data. Ports of tasks
can be defined to hold data Items or nested Collections of data items.

Figure 1. Sample workflow from Astronomy developed by the Wf4Ever project that takes as input a
set of galaxy names, and outputs extinction values per galaxy.

Figure 2 provides an illustration of the execution of this workflow with two input galaxies.
The information given in Figure 2 also makes up the core of workflow provenance.

An important capability found in most workflow systems is iterated execution. Taverna achieves
iteration by allowing tasks with ports having mismatching structural data types to be composed.
e.g., a task that emits a collection of galaxy ids may be composed with a follow-on task that consumes
a single id. In this case the follow-on task will be iterated. Similarly a task producing a single item can
be composed with follow-on that accepts a collection, in this case the output would be wrapped into a
collection of depth acceptable by the follow-on task.

Iteration is a crucial feature for scientists to run analyses on different subjects (galaxies in our
example), or, to perform factorised analyses by changing input configurations (not shown in our
example). Here we skip the details of Taverna iteration [31], as it is beyond the scope of our work.
However, iteration does have an impact on annotation and reporting, which we summarise as follows:

• Iteration proliferates data generation. In our example in Figure 2 the number of outputs increases
linearly with inputs (n inputs produce 2n outputs). In cases of complex factorised analyses,
where tasks are run on (cartesian) combinations of inputs, the increase in outputs becomes
polynomial. As such, automation in annotation is a crucial requirement.

• Iteration is an intricate feature of workflows. It requires understanding nested collection structures
as well as creating cartesian combinations of items from collections. When utilised correctly,
iteration is the primary mechanism making provenance an index linking the subjects and
factors of an analysis to corresponding results. However, in certain cases, such as to avoid
repeated and costly invocation of remote services or for quicker data adaptation, iteration can
be by-passed. This is illustrated with the “Flatten_List” step in Figure 2. All the steps in the
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workflow are repeated for each input, whereas “Flatten_List” is executed once, processing data of
multiple galaxies at a single step. This (anti)pattern, also known as the “n− by−m problem”,
breaks input-to-output traceability; and, as we shall identify later in this section, it is one of the
main factors that reduce the utility of provenance for reporting.

Figure 2. A fragment of execution illustrated for the Astronomy workflow.
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In order to represent the trace of Figure 2, workflow systems utilise generic vocabularies.
In Figure 3 the top “Workflow” layer contains the abstract specification of a workflow task in the
Wfdesc model [32]. Wfdesc is a “node and directed-arc” RDF graph [33], where nodes are typed
as Processes (tasks), and their Input/Outputs (ports). The middle “Provenance” layer provides a
PROV-compliant [34] graph, containing an Activity node (rectangle) representing one execution of
the workflow task, and two Entity nodes (ovals) representing the data consumed and produced by
the Activity. At the data layer in Figure 3 we have data values stored within files (denoted with disk
shapes). Most workflow systems including Taverna, adopt a separated storage scheme for data and
provenance, where data is often stored in the file system and the provenance metadata is stored in
graph/triple stores or relational databases.

Domain-specific annotations (denoted with grey-shaded boxes in Figure 3) are attached onto
generic metadata. We identify two categories of domain-specific annotations. Static annotations are
those at the “workflow” layer, which represent data/process characteristics valid for all executions of
the workflow. e.g., Specifying that the semantic type of an input is a galaxy id. Most workflow systems
support static annotations. Dynamic annotations are those at the “provenance” layer; they represent
characteristics that may change from execution to execution. e.g., Specifying that the input of a
particular task is the id for the Andromeda Galaxy (M31).

Figure 3. Illustration of Static and Dynamic Metadata at different layers of workflow provenance.

2.2. Modelling Workflows and Provenance

We now introduce a basic formalism for representing workflows and provenance with the
following assumptions:

• We adopt a port-based modelling of communication among tasks. This is the approach taken
in Taverna [29], Wings [8], Vistrails [9] systems, and it is also adopted by abstract models like
Wfdesc [32] and D-PROV [35].

• We assume that a workflow is a directed acyclic graph of analytical tasks and dataflow
dependencies among ports of tasks. We assume that provenance is a directed acyclic graph
of (data) entities and influence relations among entities (produced/consumed by activities).
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• We exclude information on the semantics of task iteration. Workflow systems all provide their
own means to repeatedly apply tasks to data. The lack of iteration configuration specifics
does not affect LabelFlow’s ability to operate. LabelFlow operates at the level of individual task
invocations, and a task’s execution footprint in provenance is the same in all mentioned workflow
systems [31]. Meanwhile workflow systems differ in the way they reflect data granularity in
provenance [31]. In Taverna an iterated task would be consuming individual items in a collection,
whereas in Vistrails there is not collection modelling therefore all iterations would appear to
consume/produce a single entity.

Throughout our formalisation we use S to the set of Strings.

Definition 1. Workflow w
A workflow is denoted with the triple 〈PRO, POR, LINK〉 as well as the functions inPort, outPort,
src and snk;
PRO is the set of processor names.
POR is the set of port names.
LINK is the set of dataflow links among ports.
inPort ⊆ PRO× POR and outPort ⊆ PRO× POR are two interface relations that mapping processors to
their inputs and output ports.
src ⊆ LINK× POR and snk ⊆ LINK× POR are two functions that map links to their source and sink ports.

Definition 2. Provenance trace Pw

The provenance trace obtained from a particular run of w is denoted with the tuple 〈ACT, ENT〉 as well as the
relations wasGenBy, used, hadMember, hadPlan, invocations, input, output;
ACT is the set of activities.
ENT is the set of (data) entities.
hadItem : ENT × ENT ×N+ is a relation, which designates that a collection-type entity has an item at the
designated nesting level.
input ⊆ ACT × POR→ ENT is a function, which maps an activity and a port pair to the input entity that
has been used by the designated activity at the designated port.
output ⊆ ACT× POR→ ENT is a function, which maps an activity and a port pair to the output entity that
has been generated by that activity at that port.
invocations ⊆ PRO× ACT is a relation, which maps a processor in the workflow to the activities which are
invocations of that processor during the workflow execution. Due to iteration a processor can map to multiple
activities in the provenance trace. invocations is the inverse relation of the hadPlan function.
in f luencedBy ⊆ ENT × ENT is a relation that maps an entity to another, where the generation of the former
is influenced by the latter.
in f luencedBy∗ ⊆ ENT × ENT is a relation that holds the transitive closure of influence relations.
The intentional rules for computing the influence relations is as follows:

influencedBy(F, E) :- input(A, P, E), output(A, Q, F )
influencedBy(D,C) :- influencedBy(D, I), hadItem(C,I)
influencedBy(D,I) :- influencedBy(D, C), hadItem(C,I)
influencedBy*(F, E) :-influencedBy(F, E)
influencedBy*(F, G) :-influencedBy*(F, E), influencedBy*(E, G)

Example 1. (Workflow, Provenance Trace) In the left hand side of Table 1 we illustrate our formalisation
with predicates outlining a simple workflow containing two processors (SesameXML and Extract_RA).
The diagrammatic view of predicates is given in Figure 4 where we denote set types with nodes, and functions
and relations with arcs.
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Table 1. Formal specification of an example workflow w1 and its provenance Pw1.

w1 = < PRO, POR, LINK >
PRO = {SesameXML, Extract_RA}
POR = {p1, p2, p3, p4}

LINK = {l1}
inPort = {< SesameXML, p1 >,< Extract_RA, p3 >}

outPort = {< SesameXML, p2 >,< Extract_RA, p4 >}
src = {< l1, p2 >,< l1, p3 >}
snk = {< l1, p3 >}
Pw1 = < ACT, ENT >

ACT = {a1, a2, a3}
ENT = {e1, e2, e21, e22, e3, e4}

hadItem = {< e2, e21, 1,>,< e2, e22, 1 >}
invocations = {< SesameXML, a1 >,< Extract_RA, a2 >,< Extract_RA, a3 >}

input = {< a1, p1, e1 >,< a2, p3, e21 >, ...}
output = {< a1, p2, e2 >,< a2, p4, e3 >, ...}

Figure 4. Diagrammatic view w1 and Pw1.

Definition 3. Data trace Dw A data trace is comprised of the values of all entities used or generated during a
particular run of a workflow. (In our formalism data and provenance traces capture information of a particular
run, we therefore omit any run identifier). We define the data trace for a workflow Dw as the combination of
data traces of its processors Dp. Specifically; value ⊆ ENT × S is a function, which maps an entity in the
provenance trace to the String representation of the value stored for that entity in the data layer (typically the file
system), then the data trace for an activity, processor and workflow is defined as follows:

[H]Da = {v ∈ S | ∃e∃p(value(e, v) ∧ (input(a, p, e) ∨ output(a, p, e)))}, (1)

Dp =
⋃

{a∈|invocations(p,a)}
Da, (2)

Dw =
⋃

p∈PRO
Dp (3)
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2.3. Using Provenance for Reporting

One can query workflow provenance to select and organise workflow results based on the context
i.e., input configurations they originate from. In their reporting interfaces workflow systems often hide
the provenance graph or the query result from the user but instead provide other views commonly
spreadsheet like tables listing all data artefacts over a single thread of lineage. Vistrails’s Spreadsheet
View [9] (see Figure 5) or Graph2Tab [36] are examples. We believe the presentation of (provenance)
graphs and presentation of results is separate and very important research thread, which we has not yet
received sufficient attention [37]. In this paper, we focus on provenance queries that underpin reports.

In Table 2 we provide three queries, which are adapted from queries of the Provenance
Challenge [25,30]. These are common provenance queries, which are comprised of first locating
a node of interest and then traversing the lineage relations in a provenance graph. In fact 5 out of 9 of
the Provenance Challenge queries [30] are based on restrictions on either data values or annotations,
which are assumed to exist. Note that in this paper we do not intend to advance the state of the art
on what possible queries can be over provenance. Our focus is be able to fully implement common
workflow provenance queries.

Figure 5. A provenance report from Vistrails that show data generated at each step of the workflow for
a particular parameter setting.

Q1 has two parts; first part seeks data by its origin, second part seeks detailed information on
origin. The analysis in our example workflow is intended to run on data of multiple subjects. Q2 seeks
to find all (intermediary and final) outputs that belong to one subject, i.e., M31, Andromeda Galaxy.
Q3 seeks results of a particular activity, extinction calculation. This activity takes 3 input parameters:
the two parts of a coordinate and a file path for morphology data.

Table 2. Three Provenance Queries for Reporting Data.

Q.1 Which results are coordinates obtained from the Sesame database, from which
database catalogs are they obtained.

Q.2 Select all results belonging to the Andromeda Galaxy.

Q.3 Select extinction calculation results for the Andromeda Galaxy, where the
morphology parameter setting was 0.45.
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As part of our case-based validation we implement queries as node selections and traversals over
generic versus annotated provenance graphs. We use the “-G” and “-A” suffixes with query names
to denote the nature of provenance they are run on. We measure query result precision as follows.
To understand the utility of provenance for reporting we differentiate between True Accuracy vs. Lineage
Accuracy of results to a query. All results obtained to all our queries (expressed as intentional rules over
our formal model) has 100% Lineage Accuracy. Meanwhile these results may not have True Accuracy.
A result has True Accuracy if it falls in the scope implied by the query (e.g., for Q1 the results that
actually contain coordinate data that is retrieved from the Sesame database, not the results computed
using those coordinates or their descendants. Or for Q2 the results that actually contain data belonging
to galaxy M31 but not galaxy M32 and so on). In Figure 6 We present the True Precision of results,
which we define as:

# of Truly Accurate results
Total # of results

Q1-G: We can realise Q1 partially over generic provenance. For the first part, the intent is
to obtain data retrieved from the Sesame database or its local copies generated through adapter
steps. Here we use lineage as a pseudo (replacement) mechanism to denote data origin. We seek
results, whose derivation path includes and invocation of the SesameXML processor, which we know
accesses the Sesame database. We’re unable to implement the second part of the query, which inquires
catalog information. This is to be found embedded in the VO Table XML String, outputted from the
SesameXML processor, as a combination of a tag name and a fragment of string value within that tag.
Given that there are diverse data formats even in the context of astronomy there is no systematic way
to place value restrictions with the provenance and query models outlined above. Let s denote the
SesameXML processor of our workflow; then Q2 formally is:

(PARTIAL)
answer(D) :- PRO(s), PRO(s,P), invocations(s, A), output(A,P,O), influencedBy*(D,O)

Roughly one third of the results whose derivation path includes a Sesame DB lookup actually
contain data that is retrieved from Sesame (See Q1-G precision in Figure 6). Remaining two thirds
of results are those that are computed through analyses by using the data obtained from Sesame.
As workflow activities are observed as black-boxes in provenance, we have opaque lineage that tells
us there is some influence relation among data artefacts but falls short of differentiating between:

• lineage based on value-copying/data adaptation.
• lineage based on any other analytical computation

Designating origin via path-based linkage to an element identified in workflow design is weakly
precise; yet it is robust to increases in the workflow inputs. Increasing the number of galaxies in a
workflow run does not alter the fact that only one thirds of outputs are copies of data from the Sesame
Database. The source catalog information sought in the second part of query is available within some
of the data values, i.e., in the XML output of the SesameXML activities, there is a field that specifies the
catalog (the relevant subpart in Sesame DB) that the result comes from. However when these results
are stripped of their XML padding the catalog information is no longer associated with retrieved
coordinates (outputs of the Extract_RA and Extract_DEC steps). Therefore this part of the query
cannot be implemented.

Q2-G: We realise Q2 by seeking the input data node with value M31 and later traversing
provenance to find all data products that have this node in their lineage. Formally;

answer(D) :- ENT(e), value(e,"M31"), influencedBy*(D,e)

Figure 6 shows the precision for this query. Recall that iteration was by-passed at the Flatten_List
step, which consumes data belonging to all input subjects, thereby obfuscating the traceability between
results and the subject. As a result Q2-G, which exploits lineage in provenance, rapidly looses its
precision as an index as the workflow is run with increasing number of subjects.
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Q3-G: Q3 is also encoded partially. The predicate stating that morphology parameter should be
0.45 requires access to morphology parameter’s values. On the other hand, the extinction calculation
activity accepts as input a configuration parameter file name, rather than the actual parameter value.
This value is available in outputs of upstream adapter steps, or in the output of extinction calculation.
However within these data values, the morphology information is present in tab delimited texts
where multiple numeric values are present. Similar to Q1 this prohibits to build a mechanism to
systematically predicate over a fragment of those texts. Therefore we omit the morphology value
restriction, only seeking extinction values computed for a particular galaxy’s coordinates. Let x denote
the calculate_internal_extinction processor of our workflow, then Q3 formally is:

(PARTIAL)
answer(O) :- PRO(x),invocations(x,A),ENT(e),value(e,"M31"),influencedBy*(I,e),

input(A,_,I),output(A,_,O)

As extinction calculation activity accepts inputs, which are no longer accurately traceable to input
galaxy names (post Flatten_List), the resulting query precision is as equally bad as Q2-G (see Figure 6).

Our case highlights the following issues:

• Correct implementation of iteration is a pre-requisite for provenance being useful in reporting.
Queries that seek results belonging to a particular input (subject or factor) require discrete
reachability between inputs and respective outputs. When traceability is broken, provenance,
either generic or annotated, is of little use. The lack of discrete traceability that causes the sharp
loss of precision in Q2-G and Q3-G is not a problem that we’re trying to solve with LabelFlow.
In prior work we’ve tackled this problem and shown that workflows can be analyzed to check
whether their provenance will have the n-by-m pattern, i.e., lack of discrete traceability [31].
We find it important to highlight this pattern in the context of this paper, because, as we shall see
in Section 6 if it exists in provenance it equally reduces provenance utility even after labelling.

• Domain specific information is key for reporting. Q1 seeks static, whereas Q2 and Q3 seek
dynamic attributes, yet we realised our queries over generic provenance. In the absence of
metadata, in order to find nodes of interest, we were forced to put selective criteria on data
values (Q2-G and Q3-G), or in attributes like name (Q1-G). This approach proved to have the
following disadvantages:

– Due to the separated storage of data and provenance seamless implementation of provenance
queries was not possible. In fact for queries Q2-G and Q3-G, as a precursor, we identified
which node in the provenance graph corresponds to the M31 galaxy by first scanning through
the data values stored in the file system.

– As we realise queries over implicit information, and as there is no structure or vocabulary
restrictions on this information, our approach is adhoc. e.g., the informativeness of a name
for a workflow port or activity is at the disposal of workflow designer, names can be freely
given and the same activity (e.g., Sesame database lookup) can have different names across
workflows. Similarly in Q3-G we were unable to implement morphology criteria part of
query as the data values were not self-describing and structured enough to allow a systematic
implementation of this criteria.

• Transparent lineage is needed for reporting. One of our queries (Q1-G) was seeking data based
on its origin. In our implementation we represented this with a query where we sought nodes
that have some lineage relation to designated origin node. Our answers to this query were partly
correct. This is because of we were using opaque lineage relations, a typical result of black-box
workflow provenance. Opaque lineage tells us that one data artefact influences the other, but
it does not specify the specific nature of this influence. On the other hand Q1-G requires more
transparency, it seeks those data artefacts that descend from an origin artefact via a particular
influence relation, i.e., value-copying.
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A natural question that may arise is “Are the queries representative of the user’s requirements
for reporting?”. We believe that queries in a workflow provenance setting are not entirely arbitrary.
The user is equipped with a fixed set of hooks/abstractions with which she can inquire the provenance.

• she can ask for outputs of analytical tasks based on input configurations, (the quintessential
workflow provenance query)

• she can inquire data origin for data retrieved from external databases (a typical motif in
scientific workflows)

In addition, in this section we illustrated that fully and systematically implementing these queries
over generic provenance was not possible. In the following section we introduce the LabelFlow
approach for addressing the requirements identified above.

Figure 6. Precision of results when queries are run over generic provenance.

3. Architecture and Assumptions

Figure 7 illustrates the LabelFlow architecture. We undertake labelling as an offline process,
which comes after the design (Step a1) and execution (Step a2) of scientific workflows.
Workflow executions generate data and generic provenance, which make up our primary source
of information for obtaining domain-specific metadata. We represent metadata with attribute-value
pairs called Labels. We perform labelling through processes called Labelling Pipelines. Pipelines are
created per scientific workflow (Step b1), using the workflow’s description and workflow annotations
called Moti f s. Motifs are the result of a previous study [24] in which we analysed 240 workflows
from 4 systems to identify the nature of data processing in workflows. Moti f s is a taxonomy of
task functions in workflows [38]. This study has shown that a minority (30%) of tasks perform the
scientific heavy lifting in a workflow through analysis, visualisations or data collection; whereas the
remainder majority (70%) is dedicated to data adaptation. We use motif annotations when generating a
Labelling Pipeline by composing Labelling Operators. More specifically a task’s Moti f informs which
labelling operator should stand in for that task in the associated Labelling Pipeline, and how that
operator should be configured. Labelling Operators delegate the duty of extracting domain-specific
Labels from data values to Labelling Functions (Step b2). Operators take care of the layering and
propagation of Labels over PROV compliant provenance graphs (Step b3).
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Figure 7. LabelFlow Architecture.

In implementing LabelFlow we assumed that:

• Labelling Functions are available for domains and support an invocation interface that allows
them to be plugged intoLabelFlow.

• Workflow tasks are annotated with an extended form of Moti f annotation called a
Labelling Speci f ication. Note that Moti f s only describe a task’s function. Meanwhile, tasks have
input/output ports and we require information on which ports shall receive labels and if/how
ports are related. We discuss the information within Labelling Speci f ications in the next section.
The mechanism to create Labelling Speci f ications is left out of scope in this paper.

4. LabelFlow Framework

In LabelFlow we associate core labelling behaviour with workflow tasks. We achieve labelling
through MINT and PROPAGATE operators. Table 3 lists all Motifs in our case workflow, some were
illustrated (with right-hand side callouts) earlier in Figure 1. The scientifically significant activities
are hotspots of data that can be used for minting domain specific labels which make explicit the
contextual information found in data values. In our case these are the tasks for obtaining of Galaxy
information from repositories (those with the Data Retrieval Motif) and the local extinction calculation
(Data Analysis Motif). Our case also illustrates that data’s inception and its subsequent use can be
separated by several adapter tasks. For most adapters, task functionality implies certain transparency
over the lineage between task inputs and outputs; the task’s outputs are built by copying values of
inputs. We exploit this transparency to extend the reach of annotations over a data artefact to its copies,
through propagation of metadata.
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Table 3. Workflow Motifs, whether they imply value-copying, and the associated labelling behaviour.

Motif Value-Copying Example in Case Labelling Behaviour

Data Analysis
Data Retrieval
Data
Visualization

N/A
“SesameXML”,
“VII_237”,
“calculate_int_extinction”

mint

Augmentation I m−1−−→O Not present in case. propagate

Extraction I 1−m−−→ O
“Extract_DEC”,
“Extract_RA”

propagate

Split I 1−1−−→ O Not present in case. propagate

Merge I 1−1−−→ O “Flatten_List” propagate

Filter I 1−1−−→ O “Select_logr25_Mtype” propagate

Combine I m−1−−→ O Not present in case. propagate

MINT obtains labels by invoking the external labelling function associated with a workflow
task. The function expects as input all data artefacts that were used and generated by a particular
invocation of the task. Mint operator is responsible for scouring the PROV trace to obtain the inputs
and outputs of all invocations of that task and forward these to the labelling function. The labelling
function will then extract metadata from data values and return them to the mint operator as labels.
Finally the MINT operator attaches those labels on to the data artefacts nodes in the provenance graph.
PROPAGATE transfers labels from designated inputs of a task to designated outputs by creating
clones of labels. Note that labels may need to be propagated from multiple input (source) ports. In this
case the propagate operator will create a union set of labels. MINT and PROPAGATE are generic,
they can be used to decorate the traces of workflow tasks (from different workflow systems) as long as
their execution is recorded in PROV.

In addition, we provide two further operators, namely DISTRIBUTE and GENERALISE.
These operators cater for the collection-oriented nature of data and propagate labels upwards/downwards
along the collection-item structure of data nodes in a PROV trace. While DISTRIBUTE and
GENERALISE are also generic in behaviour, they have been developed primarily in response to
Taverna workflow system’s iteration behaviour. Recall that MINT and PROPAGATE were associated
with tasks. DISTRIBUTE and GENERALISE are associated with dataflow links that connect two
ports, which by definition produce and consume data of mismatching structured types. In cases
where the task at one end of a dataflow link produces a collection, and the other end consumes an
item, DISTRIBUTE is responsible for propagating labels from the top-level collection to each item
at a specified depth. In cases where the activity at one end produces individual items in a collection,
and the other end consumes the collection GENERALISE is responsible for propagating labels from
items to the enclosing collection at a specified depth.

In the following section formally introduce LabelFlow.

5. LabeFlow Model

Definition 4. Label Definition A label definition is the tuple 〈n, t〉 ∈ S× T. n is the label name, t is the
type designator with T = {QName, String, Integer, Datetime}. Currently LabelFlow implementation only
supports String typed labels. We represent label definitions with the relation Lde f ⊆ S× T.

Definition 5. Label Instance (short: Label) A label is denoted with the triple 〈d, v, t〉 ∈ S× S× ENT. Here d
is the name of the label definition, v is the label value and t is the target data entity in the provenance trace to
which the label is attached. We refer to the domain of label instances with L = S× S× ENT. We denote the
label space populated by LabelFlow when for a particular run of workflow with the relation Lins ⊂ L.
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Definition 6. Label Vector A label vector is denoted with the tuple 〈n, D〉 ∈ S× 2S is a named set of label
definitions. Label and label vectors would be specific to each scientific domain.

Example 2. (Label Definition, Label Vector, Label Instance) In Table 4 we illustrate the label space for the
simple workflow w1 of Figure 4. We illustrate four label definitions and a vector comprised of those label
definitions. Note that, we do not further utilise label vector or label definitions in our formalisation, however in
the LabelFlow implementation, they serve a practical purpose, which we discuss in Section 5.1. The label space
denoted with Lins would have no labels but these would get created during the labelling process.

Table 4. Label definitions and a snapshot of the label space for w1.

Lvec = < “astro”, {“re f erenceURI”, ‘re f erenceCatalog”, ...} >
Lde f = {< “re f erenceURI”, String >,

< “re f erenceCatalog”, String >,
< “hasMorphology”, String >,
< “hasSubject”, String >,

Lins = {< “hasSubject”, “M31”, e2 >,
< “re f erenceCatalog”, “Sc = Simbad”, e2 >,
< “re f erenceCatalog”, “N = NED”, e2 >,
< “re f erenceURI”, “http : //cdsws.u− strasbg. f r/”, e2 >}

Definition 7. Domain-Specific Labelling Functions LabelFlow assumes that external (domain-specific)
functions that create labels support a common interface. We denote the set of all such functions with
F = { f | dom( f ) = 2S ∧ rang( f ) = 2L}

Definition 8. Mint Function Mint : PRO× 2POR × S→ L is a function that generates labels by utilising
the provenance trace, the data trace and a domain-specific labelling function. Its specification is as follows:

Mint(p, T, f ) =
⋃

<a,t>∈{a|invocations(p,a)}×T

(pipe(Da, f )× {e ∈ ENT | output(a, t, e)})

Mint accepts as input a processor p, a set of target ports T ⊂ POR, which are outputs of p, plus
a domain-specific labelling function f ∈ F. Within Mint for each invocation {a | invocations(p, a)}
and target port t ∈ T combination we obtain the data trace of that invocation Da. We apply the given
domain-specific labelling function to the data trace, pipe(Da, f ) (Here we borrow the pipe higher-order
function from functional programming). The domain-specific labelling function returns a set of
label definition and value pairs (For convenience let’s call these proto-labels). We then bind these
proto-labels to the output e of the activity a with a cartesian product.

Definition 9. Propagate Function Propagate : PRO× 2POR × 2POR → L is a function that produces labels
for the outputs of an activity using the labels of its inputs. Its specification is as follows:

Propagate(p, S, T) =
⋃

<a,s,t>∈{a|invocations(p,a)}×S×T

{< d, v, f >| ∃e∃ f (Lw(d, v, e) ∧ input(a, s, e) ∧ output(a, t, f ))}

Propagate accepts as input a processor p, a set of source/input ports of p, S ⊂ POR; a set of target/output ports
T ⊂ POR. Within Propagate for each invocation a, source port s and target port t combination we obtain all
labels of the entity e used by the activity a at source port s, For each label bound to e, we create a label bound to
the output f at target t of a.

Definition 10. Generalize Function Generalize : PRO× POR×N+ → L is a function that produces labels
for a collection entity using the labels of its items at a designated nesting level. Its specification is as follows:

Generalize(p, r, n) =
⋃

{a|invocations(p,a)}
{< d, v, c >| ∃k∃c(Lw(d, v, k) ∧ output(a, r, k) ∧ hadMember(c, m, n))}
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Generalize accepts as input a processor p, an output port of p, r ∈ POR, and a nesting level n.
For each invocation a of p we obtain the labels attached to the output entity k generated by the activity
at port r. For each label bound to k, we create a label bound to the collection entity c that holds k as its
item at nesting level n.

Definition 11. Distribute Function Distribute : PRO × POR × N+ → L is a function that copies over
labels of a collection entity to items at a designated nesting level. Its specification is as follows:

Distribute(p, r, n) =
⋃

{a|invocations(p,a)}
{< d, v, i >| ∃k∃i(Lw(d, v, k) ∧ output(a, r, k) ∧ hadMember(k, i, n))}

Distribute accepts as input a processor p, an output port of p, r ∈ POR, and a nesting level n. For each
invocation a of p we obtain the labels attached to the output entity k generated by the activity at port r. For each
label bound to k, we create a label bound to the item i that is a member of collection k at nesting level n.

In practice a Label is an object that adheres to the Label Instance class given in Figure 8.
Labels are comprised of a de f inition, target and value. The target and value (both of type String)
represent a simple key-value based metadata structure. The target uniquely identifies a data artefact,
which the label describes and the value holds the annotation content. A label is typified its de f inition.
A LabelVector is a named collection of label definitions. We use label vectors to configure the execution
of labelling operators. A label vector informs label propagation operators to the kinds of labels they
should pick up from parts of the provenance graph and propagate to other parts. Label and label
vector definitions would be specific to each scientific domain or investigation, and can be used to
decorate workflows from these domains. In the following section we elaborate how we practically
deliver the labelling functions, which we outlined formally.

LabelFlow is a generic framework, which requires configuration for use in a particular domain.
Formally;

Definition 12. LabelFlow is the tuple < O, T >, where:
O = {MINT, PROPAGATE, GENERALISE, DISTRIBUTE} is the set of labelling operators.
T is a tool that can take as input a scientific workflow w and generate a labelling pipeline for that workflow Πw.

Definition 13. A particular configuration of LabelFlow is the 8-tuple < O, T, F, w, Πw, Pw, Dw, Lw > where:
F is a set of domain-specific labelling functions.
w is a Motif annotated scientific workflow.
Πw is the labelling pipeline for w.
Pw is a provenance trace for a particular execution of w.
Dw is a data trace for a particular execution of w.
Lw is an initially empty label space that supports the information model given in Section 5 to hold labels
generated during execution of Πw .
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Figure 8. UML Class Diagram denoting information model of Labels.

5.1. Labelling Operators

We will now describe MINT, PROPAGATE, GENERALISE, DISTRIBUTE operators these
are implementations of the labelling behaviours specified formally in the previous section
(Definitions 8–11). For each operator, we give a high-level behavioural view as UML activities [39]
and provide an algorithmic specification. The auxiliary methods used by operators are given in the
Appendix. We also provide UML’s Activity diagram notation reference in the Appendix.

Definition 14. MINT Operator is a computational process that is configurable as given in Figure 9. It accepts
as input a processorId, a f unctionId, and a targetList. The processorId is the identifier of an (analytical)
task in workflow w, whose provenance and associated data artefacts will be exploited to generate labels. The
f unctionId is the identifier for the domain-specific label provisioning function. targetList contains identifiers
of those output ports of the designated task, that will be the target of labels generated.

The MINT operator reads data trace Dw and provenance trace Pw, and upon execution submits
the labels to the label space Lw. The procedural specification of this operator is given in Algorithm 1.
Here we obtain all invocation records of the processor designated by the processorId, for each
invocation record we obtain all data related to that invocation (inputs/outputs) As Taverna uses
the file system for its data storage layer, these are references to files. We submit data to the labelling
function named f unctionId. The function returns a set of labels that are to be associated with the
target outputs, finally we associate these labels with all data artefacts that have appeared at a port
in the targetList. The computational complexity of Algorithm 1 is O(t.N) where N is the number
of invocations of processorId and t is a constant denoting the number of targetList. Scientifically
significant processors typically have a single output port so often t = 1.



Informatics 2018, 11, 5 19 of 38

Figure 9. Mint Operator Specification.

Algorithm 1: Mint
Input: processorId, f unctionId, targetList
labellingFunction← getFunctionFromRegistry( f unctionId);
foreach activity in getInvocations(processorId, provStore) do

activityData←getAllActivityData(activity, provStore, dataStore);
Labels← labellingFunction.invoke(activityData);
foreach output in targetList do

outData←getActivityOutData(activity, output);
BoundLabels←bindLabelsToData(outData, Labels);

end
submitLabels(BoundLabels, labelStore);

end

Definition 15. PROPAGATE Operator is a computational process, that is configurable as given in Figure 10.
It accepts as input a processorId, a srcList and a targetList . The processorId is the identifier of an (adapter)
task, which has a Moti f implying a value copying relation from its inputs to its outputs (recall Table 3).
The srcList contains identifiers of those input ports of the designated task, from which labels are to be picked up.
The targetList contains identifiers of output ports to which labels shall be propagated.

The PROPAGATE Operator reads the label space and provenance trace Lw and Pw and updates
the label space Lw with propagated labels. The procedural specification of this operator is given in
Algorithm 2. Here we first obtain the invocation record of processors with designated processorId,
for each invocation we obtain the labels of data nodes at a source port in srcList , we aggregate them
with set Union and, finally we associate these labels with all data artefacts that have appeared at a
port in the targetList. The practical utility of the Label Vector comes into play during propagation.
We anticipate that re-usable domain specific labelling functions will generate labels exhaustively.
They will mint labels for all recognisable metadata in a data file. In a workflow setting however we may
not want to propagate all of those labels to all data copies in the scientists workspace. We therefore limit
propagation by focusing on the labels, whose definition are in the label vector. The Label Vector would
typically contain label types that represent input parameters/configurations of a workflow/processor.
In our case study these are subject the data is about, the coordinates of the object and calibration
settings for analytical steps (e.g., morphology). The computational complexity of Algorithm 2 is
O(s.t.N) where N is the number of invocations of processorId and s and t are constants denoting the
size of srcList and targetList, i.e., input output ports among which label propagation occurs.



Informatics 2018, 11, 5 20 of 38

Figure 10. Propagate Operator Specification.

Algorithm 2: Propagate
Input: processorId, srcList, targetList
foreach activity in getInvocations(processorId, provStore) do

LabelDe f initions← getLabelVector();
foreach output in targetList do

foreach outData in getActivityOutData(activity, output, provStore) do
Labels← ∅;
foreach input in srcList do

foreach inData in getActivityInData(activity, input, provStore) do
Labels← Labels ∪ getLabels(inData, LabelDe f initions, labelStore);

end
end
BoundLabels← bindLabelsToData(outData, clone(Labels));

end
submitLabels(BoundLabels, labelStore);

end
end

Definition 16. DISTRIBUTE/GENERALISE Operators are computational processes, that are configurable
as given in Figure 11. They accept a processorId, an src and a depthDi f f erence. These operators are designed
to propagate labels up and down the structure hierarchy of collection-typed data artefacts in provenance. While the
MINT and PROPAGATE are labelling proxies for tasks, these are labelling proxies for dataflow links in the
workflow, specifically those links with structural data type mismatches between the ports at the link’s two ends.
The processorId and src parameters jointly identify an output port of a particular processor (the source end of a
mismatched datalink). The level of mismatch is specified with the depthDi f f erence.

Consider the case where one processor, by definition, produces an output of a collection, which
has depth 1 and is linked to a follow-on processor that consumes single items (i.e., of nesting depth 0).
This case corresponds to a depthDi f f erence of 1 among two ends of a dataflow link. In order to
adjust for this mismatch we would have to push down the labels associated with the output collection
occurring at port src of the designated processor to the collection’s items that are two-level deep in the
data structure. We achieve this by using the DISTRIBUTE operator. The reverse procedure of pulling
up labels is performed by the GENERALISE operator. Similar to the PROPAGATE operator the
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DISTRIBUTE/GENERALISE operators read the label space Lw and provenance trace Pw and update
the label space Lw. The procedures that for these operators are given in Algorithms 3 and 4 respectively.

The computational complexity for Algorithms 3 and 4 is O(N) where N is the number of
invocations of processorId. We do not use the getInvocations method as we did in other operators.
We instead use getAllGeneratedOutputs which returns outputs from all invocations. We then loop over
this collection to push down or pull up labels to other entities at designated nesting levels. These other
entities are obtained by a single method call (getEnclosingCollection in the case of GENERALISE and
getItems in the case of DISTRIBUTE.

Figure 11. Distribute and Generalise Operator Specifications.

Algorithm 3: Distribute
Input: processorId, src, depthDi f f erence
LabelDe f initions← getLabelVector();
foreach outData in getAllGeneratedOutputs(processorId, src, provStore) do

Labels← getLabels(outData, LabelDe f initions, labelStore);
foreach item in getItems(outData, depthDi f f erence, provStore) do

BoundLabels← bindLabelsToData(outData, clone(Labels));
submitLabels(BoundLabels, labelStore);

end
end

Algorithm 4: Generalise
Input: processorId, src, depthDi f f erence
LabelDe f initions← getLabelVector();
OutData← getAllGeneratedOutputs(processorId, src, provStore);
foreach coll in getEnclosingCollections(OutData, depthDi f f erence, provStore) do

Labels← ∅;
foreach item in getItems(coll, depthDi f f erence, provStore) do

Labels← Labels ∪ getLabels(item, LabelDe f initions, labelStore);
end
BoundLabels← bindLabelsToData(coll, clone(Labels));
submitLabels(BoundLabels, labelStore);

end
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5.2. Labelling Pipelines

In order to put the capability encapsulated by operators into action we use labelling pipelines.
We formally define the elements of pipeline generation as follows:

Definition 17. Labelling Speci f ication, Annotated Workflow An annotated workflow w is the triple <

PRO, POR, LINK > together with the functions pSpec and lSpec. pSpec : PRO→ S, maps processors of the
workflow to their Labelling Specification, which encapsulates information necessary for a labelling operator to run.
The range of pSpec is the string representations of the domains of Mint and Propagate (recall from Definitions 8
and 9; dom(Mint) = PRO× 2POR × S and dom(Propagate) = PRO× 2POR × 2POR). lSpec : LINK → S
maps dataflow links to their labelling specifications. The range of lSpec is the string representations of the
domains of Generalize and Distribute (recall from Definitions 10 and 11; dom(Generalize) = PRO× POR×
N+ and dom(Distribute) = PRO× POR×N+).

In practice, a Labelling Speci f ication is an object that is an instance of concrete classes given
in Figure 12. Notice that the MintSpec and PropagateSpec represent information passed as input
to the respective operators, whereas the AdjustSpec represents the input of GENERALISE and
DISTRIBUTE operators. A labelling specification of an annotated processor can be of types MintSpec
or PropagateSpec only.

Definition 18. Labelling Pipeline Generator T is a tool provided as part of LabelFlow that accepts as input an
annotated workflow w and produces as output a labelling pipeline Πw for w.

Definition 19. Labelling Pipeline is a specification for a computational process comprised of (1) sub-processes based
on calls to MINT, PROPAGATE, GENERALISE and DISTRIBUTE operators (as per Definitions 14–16)
and (2) control-flow relations among those processes. So Πw =< OP, CTRLINK >.

We will first illustrate labelling pipelines and later discuss how pipeline generator works.

Figure 12. UML Class Diagram denoting information model of Labelling Specifications.

5.2.1. Example Labelling Pipeline

For the case-study workflow given earlier in Figure 1 the labelling pipeline is given in Figure 13
using UML Activity Diagram notation. For each of the three scientifically significant activities in
the workflow, namely SesameXML, VII_237 and calculate_ internal_ extinction (in Figure 1) there
is a corresponding MINT process in the labelling pipeline (in Figure 13). This is because all three
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processors had associated labelling specifications (extended Motif annotations) of type MintSpec
(in Figure 12). Label specifications of these processors have become sets of constant-valued inputs
(denoted with value-pins ) for each corresponding MINT process in the pipeline. For example for the
SesameXML step in the workflow, the corresponding MINT process is configured with:

• String value of “SesameXML” for the processorId input parameter.
• String value of “SesameLabeller” for f unctionId input parameter,
• a Set containing the String value “return” for targetList input parameter.

Using this input triple the MINT process is undertaken by calling the operation detailed in
Algorithm 1, which will decorate data outputs that appear at the port named “return” of processor
“SesameXML” with labels obtained through invocation of domain-specific function “SesameLabeller”.
Recall from the specification of MINT process that it reads from data and provenance traces Dw and
Pw and writes to the label space Lw. In addition, unlike all other operators, MINT does not read
from the label space as it generates labels in the first place. As a result MINT processes can start
simultaneously upon the start of labelling pipeline (denoted with a fork of control links from start
node to all three MINT processes).

For some of the data adapter steps in our case-study workflow, namely Extract_RA, Extract_DEC,
Select_logr_Mtype, Flatten_List, Flatten_List_2, we have PROPAGATE processes in the labelling
pipeline. The labelling specifications, of type PropagateSpec, associated with these adapter processors,
has become input configurations for the PROPAGATE processes in the pipeline. The labelling
specifications denote from which input ports (srcList) to which output ports (targetList) label
propagation should occur. Note that the Format_ conversion step in our workflow, despite being
a data adapter having the FormatTrans f ormation Motif, does not have a corresponding labelling
process in the pipeline. This is because, as per Table 3, FormatTrans f ormation is not a Motif for which
a labelling behaviour has been defined. Consequently Format_ conversion step does not have an
associated labelling specification and therefore has no footprint in the labelling pipeline. As per its
specification the PROPAGATE process reads from and write to the label space Lw. In order for a
PROPAGATE process to run, all other processes in the pipeline that decorate data at ports in the
srcList parameter of that PROPAGATE process shall be completed. This requirement is represented
with control flow links among relevant processes in the pipeline.

The pipeline in Figure 13 also contains a GENERALISE and DISTRIBUTE processes to
propagate labels along data structure hierarchies in cases of mismatched data types at the two ends
of a dataflow link. One example is the GENERALISE process, which is configured to propagate
labels of the nodeList output of Extract_RA processor one level up to their enclosing collection,
as it is these collections that get consumed by the follow-on processor Flatten_List in the workflow.
There is a difference in the way GENERALISE/DISTRIBUTE processes are included in a labelling
pipeline when compared to the way MINT and PROPAGATE processes are included. MINT and
PROPAGATE processes are directly informed by annotations in the form of labelling specifications
(either a MintSpec or a PropagateSpec) associated with processors in the workflow. On the other hand
there is no such annotation for the GENERALISE/DISTRIBUTE processes. Their inclusion happens
through an analysis of dataflow links in the workflow and the corresponding creation of labelling
specifications of type AdjustmentSpec (Figure 12). We discuss the details of labelling pipeline creation
in the next section.
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Figure 13. The labelling pipeline for the case-study workflow.
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5.2.2. Pipeline Generation Procedure

The procedure followed by the Labelling Pipeline Generator is given in Algorithm 5.
Inputs w f Processors and w f Datalinks are the set of Processors and Datalinks that make up a
workflow w. The procedure initialises two empty collections pipelineOps and pipelineCtrlLinks to
hold the Labelling Operators and the Control Links within the result pipeline Πw. The procedure is
comprised of two phases for populating these two collections.

The first phase begins by traversing all processors of w to check whether that have associated with
them a labelling specification. If that is the case then the labelling specification is transferred to Πw,
more specifically it will be added to the pipelineOps collection. In case a processor in the workflow has
no labelling specification associated, then it will simply be skipped. As a follow-on step we eliminate
dangling PROPAGATE operators. Dangling operators are those that are configured to obtain labels
from source ports, where no labelling operator is configured to populate. The final step in the creation
of labelling operators is the addition of GENERALISE or DISTRIBUTE type adjustment operators.
We do this by iterating over every datalink in workflow w (items of w f Datalinks). We check whether
the source of the datalink is being labelled by any of the MINT or PROPAGATE type operators.
If that is the case, and if the datalink is one which is unbalanced due to mismatched datatypes of
ports at its two ends then we create a corresponding adjustment specification either DISTRIBUTE or
GENERALISE and add it into the pipelineOps collection.

In the second phase we create control flow links. We do this by iterating over operators in the
pipeline, finding each the operator’s predecessor operators and creating control links among them.
The predecessors of a PROPAGATE operator can be multiple and they are those that have as their
labelling target a port that is in the source port list of PROPAGATE. Adjustment type operators
GENERALISE or DISTRIBUTE have a single predecessor, which is the one that has as labelling
target the source port of adjustment operator.

We represent the labelling pipeline from this procedure with the Wfdesc workflow model [32].
Note that the pipeline is comprised of operators and control flow links. The repetitive application
of labelling for multiple invocations of processors and for multiple label kinds in a label vector are
handled within the labelling operators. Therefore the basic model of Wfdesc in representing processes
and their dataflows is sufficient for us in representing our pipeline. The details of how this abstract
representation is mapped to a concrete executable form is provided in the following Section.

5.3. Implementation

We have implemented LabelFlow in Java [40]. The auxiliary functions that LabelFlow uses to access
the provenance and label spaces (given in Table A1) are methods of a single Java class. Our default
implementation supports a PROV-O [41] based RDF representation of provenance. We have chosen
PROV-O and RDF because they are the most common encoding among PROV implementations listed
in [42]. We use SPARQL queries to implement the provenance accessor methods within Table A1.
For performing the query precision analysis in our case study we implemented provenance queries as
Java methods that build upon the auxiliary functions of LabelFlow in Table A1. As provenance traversal
is a rather standard process we do not elaborate on these query methods. Querying provenance in its
native storage form (be it Relational, RDF or XML) is always undoubtedly more efficient than querying
through APIs. We have relied on an API as we wanted to abstract away from any storage technology
for labelling and querying is an aid to the labelling process.
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Algorithm 5: Pipeline Generation
Input: w f Processors, w f Datalinks
pipelineOps← ∅;
pipelineCtrlLinks← ∅;
/* PHASE-1: Create Labelling Operators */
foreach processor in w f Processors do

if hasLabellingSpec(processor) then
pipelineOps← getLabellingSpec(processor);

end
end
do

f ound← f alse;
danglingOperator← null;
foreach op in pipelineOps do

if isPropagate(op) and isDangling(op) then
danglingOperator← op;
f ound← true;
break;

end
end
if f ound then

remove(pipelineOps, op);
end

while f ound;
foreach link in w f Datalinks do

if isLinkSourceLabelled(link, pipelineOps) & isImbalanced(link) then
pipelineOps← createAdjustmentSpec(link);
break;

end
end
/* PHASE-2: Create Control Links Among Operators */
foreach op in pipelineOps do

if isPropagate(op) then
foreach src in getSrcList(op) do

predecessorOp← getOperationWithTarget(src);
if predecessorOp < > null then

pipelineCtrlLinks← createCtrlLink(predecessorOp, op);
end

end
end
else if isGeneralise(op) or isDistribute(op) then

predecessorOp← getOperationWithTarget(getSrc(op));
pipelineCtrlLinks← createCtrlLink(predecessorOp, op);

end
end
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In our default (RDF-based) implementation a label definition is represented with an OWL
Datatype property. Label instances are RDF statements where the subject corresponds to the target of
the label, the predicate is the datatype properties and objects are metadata values of type xsd:string.
The Provenance and Label spaces are RDF files in turtle syntax. For each workflow run we load
these into in-memory Jena [43] models. These could also be loaded into a single model in case native
(SPARQL) querying of labelled provenance is desired. The sample provenance and label spaces used
in the performance evaluation of LabelFlow can be accessed from the source code repository here [40].
We have tested the PROV compliance of provenance traces we use with the ProvToolbox online
validator [44].

Labelling pipelines are represented in an abstract manner with Wfdesc [32]. This abstract
representation can be converted to a concrete executable form using any workflow language that
supports a simple data flow among activities, and can access resources exposed through Java APIs.
For our case-study tests we interpret the abstract Wfdesc specification by traversing the activities in
the topological order of their respective workflow elements in the scientific workflow, and make API
calls to invoke respective operators. Note that the pipeline is only responsible for coordinating the
execution of labelling operators, whereas the core of labelling takes place within operators.

5.4. Performance of LabelFlow

We did a performance evaluation of LabelFlow by running the case study workflow with increasing
number of inputs. The evaluation was performed on a MacBook Pro with 2.9 GHz i7 CPU and 16 GB
RAM. Figure 14 presents the execution time (in micro seconds) for the entire total and four each kind
of operator. As expected LabelFlow performance is linearly dependent to the number of processor
iterations that are in turn driven by the number of workflow inputs. For our case study workflow
Label Minting and Propagation take up almost the all of the time of labelling. Mint and Propagate
operators operate on data of processors, whose iteration increase as the input increases. On the other
hand the Generalize and Distribute operators are always executed a single time because the processors
they are associated with (the infamous Flatten_List steps causing the n-by-m pattern in provenance)
are executed once, even though the input size increases. Also recall from Section 2.1 that for the single
input case (n = 1) some processors (and consequently their associated propagate/mint operators)
run 2n times . So even in the case of single input Propagation takes more time than Distribution
or Generalization. Ultimately the break down of the total labelling time into categories would be
dependent on the workflow. As stated in Section 3, our earlier empirical survey of workflows revealed
that an average of 70% of activities is data adaptation. So for each workflow we can anticipate that
labelling workflows for those workflows would contain the propagate operator to that degree, and
that propagation would be the most significant portion of labelling.

In Figure 15 we present the percentage of time taken by the domain-specific labelling functions
within the time taken in the mint operator. Performance of minting will largely determined by the
performance of these external functions, which would need to perform IO on the data files. For our
case study for all input sizes external function took up more than 60% of total minting time.
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Figure 14. Total execution time of labelling for our case study workflow in increasing number of iterations.

Figure 15. Percentage of the time taken by external Mint function within the total time taken by the
Mint operator.

6. Revisiting Case-Study

In order to assess the benefit of labels in reporting we have used LabelFlow to annotate execution
traces of our case-study workflow. As prerequisite to obtaining a labelling pipeline for this workflow
we performed the following:

• we implemented three simple domain-specific labelling functions, one for each scientifically
significant step in the workflow (as discussed in Section 5.2.1). These functions can parse the
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data consumed/generated by these activities and create labels that correspond to either input
configurations (context) or data origin.

• we associated Labelling Specs with workflow activities according to the information model given
in Figure 12. For the data adapter activities, for which a corresponding labelling behaviour is
given (Table 3), we created PropagateSpecs and for the scientifically significant activities, we
created MintSpecs, pointing to the labelling functions.

This time we implement the queries in Table 2 using label-based annotations (denoted with the
“-A” suffix). The precision in obtaining relevant results for each query is given in Figure 16.

Q1-A Rather than using lineage as a pseudo mechanism to seek coordinates retrieved from
Sesame Database, we now inquire about data origin directly using labels. Formally;

answer(E,C) :- L_ins("referenceURI, "http://cdsws.u-strasbg.fr/",E),
L_ins("referenceCatalog", C, E)

We use re f erenceURI, re f erenceCatalog datatype properties created for our case study. Note
we are now able to fully implement the query and seek the source catalog information about the
coordinates. As Figure 16 shows, with label-based queries we are able to retrieve with 100% true
accuracy the data that comes from the Sesame database and its local copies.

Q2-A In this query we use the hasSubject label to seek results about a particular galaxy. Formally;

answer(E,G) :- L_ins(‘"hasSubject",G,E), member(G,["M31","UGC 454"]),
L_ins("referenceCatalog", G, E)

Note that a typical characteristic of scientific data repositories is that they use heterogeneous
identification schemes. So, in Astronomy a Galaxy has several identifiers from respective databases.
The Visier and Sesame databases accesses within our example workflow use different identifiers.
Therefore in our query, we need to refer to all possible domain identifiers of a Galaxy. As seen from
Figure 16, the precision deteriorates as it was the case with Q2-G. A combination of broken factorial
design (at the Flatten_List step) and liberal label propagation causes inaccurate labels to be created.
While each output from “SesameXML” bears the correct label denoting the associated galaxy, all items
in the output of “Flatten_List” would bear a set of labels (for all galaxies), even though each contains
the data of one. Recall from our case-study that iteration is not sustained at the Flatten_List step,
in other words it is executed only once consuming all galaxy coordinates. Meanwhile as per its Motif,
we know that this step builds its output by coalescing all items in the input collection. As a result
our labelling pipeline will first generalise all labels and compute a label for the top-level collection
element consumed by Flatten_List. This label will get propagated to Flatten_List’s output, which is a
list. On the other hand, this list is not consumed as a whole by downstream activities, instead each
item in it is used. Therefore each item inherits the labels from the enclosing list (through a distribute
operator). As a result, we end up with inaccurately labelled items.

Q3-A We are now able to fully represent Q3. Let x denote the calculate_internal_extinction
processor of our workflow then Q3:

answer(O) :- PRO(x),invocations(x,A), input(A,_,I), output(A,_,O),
L_ins("hasSubject", G, I1), member(G,["M31","UGC 454"]),
L_ins("hasMorphology", "0.45", O)

The labelling function for the calculate_internal_extinction step creates hasMorphology labels for
the output to capture the context represented by the morphology input parameter. When we look at
the precision of Q3-A it also deteriorates with increasing inputs. This is because the coordinate inputs
to the extinction calculation are inaccurately labelled due to upstream Flatten_List step.

As discussed in Section 2.3 the existence of the n-by-m pattern (or the lack of discrete traceability)
is a critical characteristic that determines the utility of provenance. Even after labelling, we observe
the same sharp decrease in precision of Q2-A and Q3-A (in Figure 16).
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We now review related work, followed by a critical discussion of our case-based assessment.

Figure 16. Precision of results when queries are run over annotated (labelled) provenance.

7. Related Work

LabelFlow brings together two capabilities, (1) the provisioning of domain-specific annotations
by promoting data to become metadata, and (2) the propagation of annotations among nodes in the
provenance graph. We therefore review related work in these two categories.

7.1. Obtaining Annotations

In early works on provenance annotation [45,46], the primary focus has been on capturing
(through manual annotations) the static metadata, characterising elements of a workflow description
and propagating those characteristics to execution provenance.

Cao et al. [16] were the first to focus on dynamic metadata. This work brings annotation
capabilities to a desktop application that allows users to perform analyses by interacting with remote
services available on a Grid. The authors propose the use of specialist Annotators that crawl over data
nodes in a provenance graph that are known to be of a specific domain type (e.g., a BLAST [47] report
from Bioinformatics). Annotators can parse data values in known formats and can create annotations
using data values. Here the objective is to create metadata exhaustively by exploiting all possible
metadata headers/fields in a data file. On the other hand the authors do not discuss how this rich
metadata will be utilised by the application.

In [48] Sahoo et al describe the SPADE system, where they highlight dynamic metadata, and
they too exploit data artefacts as the source of metadata. The authors propose using “semantic
provenance modules”, similar to Cao’s domain-specific annotators to create elaborate metadata.
They propose such modules be inserted in-between analytical steps in workflows. Similar to
Cao’s work, SPADE focuses on providing one particular domain-specific ontology and elaborate
metadata conforming to that ontology. Note that this approach requires altering the original scientific
workflow to denote points of interruption, where the annotator will execute. The details of SPADE
implementation is not available [48] , given their ontology, we presume the resulting metadata would
be rich semantic annotations

In a recent paper De Oliviera et al. [49] question “how much domain data should be in
provenance?”. Their answer is that it should be under the control of the user. De Oliviera’s approach,
named ARMFUL in a follow-on paper [23] is a dynamic metadata provisioning capability tailored
to support parallel scientific workflow systems. Similar to our labelling functions, they associate
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user-designed Extractor classes with outputs of selected workflow activities. These extractors utilise
raw data indexing techniques (e.g., FastBit) to generate metadata in the form of attribute-value pairs.
Similar to SPADE, De Oliviera’s approach requires alterations to the original workflow to denote the
extractor class per activity. The need to embed the metadata generation capability into the workflow
is justified by a need to have and query this metadata while the workflow is still running. In the
parallel workflow setting workflow activities are long running, and one way to detect anomalies in the
execution is to retrieve intermediary results based on domain specific characteristics and to inspect
them. ARMFUL and SPADE systems are closest in spirit to LabelFlow as they combine domain-specific
metadata with dataflow information.

The distinctive aspects of LabelFlow compared these are:

• it is non-intrusive to the execution of workflow. As the metadata is sourced from the data, as long
as the data values are kept, annotation can take place as an offline process any later time. As it is
offline, however, LabelFlow may miss out on metadata that is available only at runtime and does
not get serialised into task outputs.

• is not tied to a particular raw data form or indexing technology. In our survey of workflow
Motifs [24] we observed that metadata is not always presented as additional columns in a tabular
layout. It is often found in dedicated headers as in a Blast Report, a Variant Call File or a NIFTI
file header for fMRI data.

• it focuses on capturing the context that surrounds a particular analytical activity. All prior
approaches focus on extracting metadata that they assume exists within raw data. As illustrated
in our case study workflow, context may not be consistently available within the data, therefore
we focus on the cases where the context is spread out among input parameters and data copies.
As we use labelling functions that consume all data (input/output) associated with an activity,
we provide a mechanism to weave back this context and propagate it to data copies.

7.2. Propagating Annotations

Attribute propagation has been first studied in the context of part-whole relations in
Object-Centered systems [50] and in Description Logics [51], where attributes of parts can be considered
attributes of wholes and vice versa. In [50] authors describe an attribute propagation mechanism in
Object-Oriented databases that exploits the part-whole relations. Two types of propagation is outlined
invariant and trans f ormational, where the latter is typically used to aggregate attributes of parts to
obtain an attribute for the whole (e.g., a car’s weight is the sum the weight of all its components).

Metadata propagation has been explored in digital library research. In [52] authors accelerate
the curation of shared research work products through propagation of basic metadata, such as
authorship, subject, or publication date, from the research articles to their supplementary material
(data, visualisations, charts). Such propagation may result in incorrect annotations (e.g., not all charts
of a paper may have been authored by the same person). Authors propose that inaccuracies are later
corrected via manual curation.

Propagating annotations of data artefacts to other data artefacts by exploiting provenance has
been studied in the context of databases. In DBNotes [53] authors track query results to corresponding
source tuples for Select-Project-Join-Union queries. DBNotes uses set union to gather all annotations
over source tuples to obtain an annotation set for the result. In [54] authors describe a logic-based
approach, which exploits semantics of relational query operators to propagate of schema-level semantic
annotations through queries. Rules for propagation of annotations through each relational operator is
represented as a logic constraint. Authors speculate that such an approach can find applicability in
semi-automated annotation of workflows.

What sets LabelFlow apart from annotation propagation over white-box database provenance
is that it operates over grey box provenance. In a scientific workflow setting, data structures and
computations are diverse, hence we cannot make the restrictive assumptions on the structure of data
(as relations and tuples), and the kinds of data-processing (relational queries). On the other hand
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our empirical analysis on workflows and the Motif categorisation has shown that certain types of
computation (data adapters) are not entirely arbitrary, and their operation can be made explicit in a
rough-cut manner through semantics annotations specifying, from which inputs to which outputs
value-copying occurs. We will discuss the implications of the grey-box in the next section.

8. Discussion

Revisiting the case-study revealed that the combination of liberal label propagation with broken
factorial design can lead to inaccurate labels, which shows that this (anti)pattern not only degrades
the standalone use of provenance traces but also degrades the operation of provenance enhancement
applications, as our annotation approach.

Our propagation of labels is liberal as it is a combination of the following behaviours:

• We act on partial information (grey-box transparency denoting some value-copying occurring
between inputs and outputs of an activity). When an activity invocation consumes a collection of
items with distinct labels, and produces another collection of items, grey-box transparency does
not allow us to accurate propagate labels item-wise. So instead we first GENERALISE labels to
the top level input collection and PROPAGATE them to the top level output collection.

• To further expand the reach of labels we DISTRIBUTE labels at the top level collection to each item.

Other provenance annotation approaches do not have the inaccuracy issue either because:

• they do not support propagation of labels as in SPADE [48] or De Oliviera’s [49] approach,
• they do not support a fine-grained provenance capability where annotations from distinct fine

grained sources need to be managed as in the Galaxy workflow system’s metadata propagation
feature [7].

• or they require the user to not only supply the initial annotations but also the rules of propagation
per workflow activity as in the Wings workflow system [8].

Rather than having these restrictions, a promising solution could be integrating workflow analysis
with labelling. The workflow analysis rules can deduce whether lineage traces from multiple sources
will be joined up at an activity invocation or not. We anticipate that by superimposing the label
generation and propagation capabilities of activities as additional rules, the tool can also inform us
whether labels from disparate sources will be joined up or not. This approach would not solve the
inaccurate label propagation problem but would provide source points of potentially inaccurate labels.
These could be provided as feedback to the user, prompting her to refactor the design configurations of
her workflow. We plan to investigate these in our future work. A buggy label minting function could
lead to inaccurate labels, LabelFlow does not provide a remedy for labels that are minted erroneously
in the first place. We believe that this risk can be minimised by developing external labelling functions
against standard data formats and pooling such functions in a library.

The cost involved in adapting our system is the manual annotation of workflow activities with
labelling specifications and developing labelling functions for the focal data generation points in
workflows. These are one-time costs. Both labelling specs and labelling functions can be reusable
as tasks in workflows are underpinned by common components from local libraries as in Kepler [6]
Vistrails [9] and Galaxy [7] workflow systems, or from both local and remote catalogues [55] as in
Taverna [29]. A function that is capable of extracting labels from the VO Table of Sesame DB Inquiry
could be reused in any workflow involves Sesame DB querying. Similarly the labelling spec generated
for one processor is re-usable for all occurrences of that processor in workflows.

Earlier we mentioned that we designed MINT and PROPAGATE operators with re-usability in
mind. Given that our operators decorate standard PROV traces, they have the potential to be used for
labelling traces of workflow systems other than Taverna. Assessing the re-usability of our operators
remains part of our future work.

As we saw in related work, any attempt at automating the generation of dynamic metadata
has to assume the existence of a metadata extraction capability, i.e., labelling functions. The cost
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of developing such functions can be minimised by exploiting existing libraries in parsing and
transforming standardised scientific data formats. As guidance we provide the methodology that we
followed in creating domain-specific labelling functions for the case-study workflow:

• Start by identifying a metadata profile that is applicable to your domain. Profiles are lightweight
metadata schemas, typically comprised of a set of attributes. Profiles find increasing use in the
context of data publishing. In our case-study this was the Astronomy Visualisation Metadata
scheme available at the UK Digital Curation Center portal [3].

• Check whether there are existing tools/extractors that can produce metadata conforming to this
profile. In our case a tool did not exist. However there were several VOTable parsers, or plain
XML parsers we could utilise, we the latter.

• Develop a label minting function that either wraps an existing tool or is built afresh, which returns
labels, whose definition correspond to attributes from the applicable metadata profile.

• For a workflow or group of workflows identify provenance querying hooks, these are input
parameters that can be permuted at run time, or processor configurations determined during
workflow design. Create a labelling vector that is comprised of label definitions that would carry
this information. In our case this was simply a subset of the AVM metadata profile.

We think the most suitable user group to build labelling functions are developers who build
the library of analytical processors for workflow systems. These re-usable processors are called
Components in Taverna, Tools in Galaxy and Modules in Vistrails. Within Taverna a Component is an
analytical or data adaptation step wrapped into a sub-workflow. If the component that a developer
has built performs an analytical or data retrieval task, then the developer can also build the associated
labelling function. If the component is instead a data adapter, then the developer simply needs to
specify the data copying relationship from the adapters inputs and outputs, which will be saved as a
Labelling Specification. Then, there will be users who run workflows built out of components from
the library. These users will be posing their provenance queries with abstractions/hooks typical in a
workflow provenance setting (input parameters, activity configurations). To pose a query over labels,
the user would need simply select the corresponding label definitions for the hooks.

With labels we have adopted a very simplistic model to represent metadata. This can be viewed
as a middle-ground between having no explicit metadata and having fully-fledged ontology-based
representations that conceptually describe provenance artefacts [56], and interlink them with entities
in the Linked Open Data (LOD) cloud [57]. In our case we are attempting at annotation at a very fine
grain, we have therefore opted for a simple representation.

9. Conclusions

In this paper we described an architecture where (1) we use workflows and provenance traces
associated with annotation behaviour as a roadmap to collect and propagate domain specific metadata
and (2) we use data values as the source of domain specific metadata in the form of labels. We described
two core operators, which operate at the granularity of workflow tasks and either create labels or
propagating labels over a provenance graph depending on the function undertaken by the workflow
task. We further described two operators that operate at the granularity of data artefacts shared
among tasks (produced by one, consumed by the other). These operators propagate labels along the
Collection-Item structure of data.

We assessed the utility of LabelFlow architecture and labels with a case-study. We observed that
labels allow us to fully implement reporting queries, which in the absence of labels were only partially
implemented. On the other hand we observed that correct implementation of iteration is crucial in
order for both raw and labelled provenance to be useful.
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Appendix A.

Appendix A.1. Auxiliary Methods

The methods utilised by labelling operators to access and update the PROV compliant provenance
space and the data and label spaces is given in Table A1.

Table A1. Auxiliary methods used for annotating PROV compliant traces.

getInvocations(processorId:String, provStore:String):String[0..n]
Obtains identifiers of all the PROV : activity nodes in the trace that are documented to have occurred
using processorId as a PROV : plan.

getAllGeneratedOutputs(processorId:String, port:String, provStore:String):String[0..n]
Obtains identifiers of all the PROV : entity (data) nodes in the trace that have been in a qualified
PROV : generation relationship with some activity, where the activity has occurred according to a
PROV : plan of identifier processorId and the generated data had role (PROV : hadRole) port.

getAllActivityData(activityId:String, provStore:String) :String[0..n]
Obtains identifiers all the PROV : entity (data) nodes in the trace that have been in a PROV : usage or
a PROV : generation relationship with the designated activityId.

getActivityOutData(activityId:String, port:String, provStore:String):String[0..n]
Obtains identifiers of the PROV : entity (data) nodes in the trace that are in a PROV : generation
relation with the designated activityId, where the generation is qualified stating that the data node
played the role (PROV : hadRole) identified with port.

bindLabelsToData(dataId:String, labels:LabelInstance[0..n]) :LabelInstance[0..n]
Returns a copy of the labels, where the target of each copy is set to the designated data record.

clone(labels:LabelInstance[0..n]):LabelInstance[0..n]
Creates a copy of all the labels in the input set .

submitLabels(labels:LabelInstance[0..n], labelStore:String)
Stores all the label instances in the designated label space.

getItems(coll:String, depthDifference:Integer, provStore:String):String[0..n]
Obtains identifiers of PROV : entity (data) nodes in the trace that are contained (PROV : hadMember)
by the designated PROV : Collection coll at depthDi f f erence level deep.

getLabels(item, labelDefinitions, labelStore:String) :LabelInstance[0..n]
Obtains all the labels, whose target is the designated item.

getEnclosingCollections(items:String[0..n], depthDifference:Integer,
provStore:String):String[0..n]
Obtains the identifiers of PROV : Collection nodes in the trace, which at depthDi f f erence level deep
contain (PROV : hadMember) the designated items.

Appendix A.2. UML Activity Diagram Syntax

Table A2 provides a subset of elements from this notation and their definitions as per UML
reference model.



Informatics 2018, 11, 5 35 of 38

Table A2. UML Activity Diagram elements notation and definitions.

An activity diagram is a graph of nodes denoting a process comprised of steps of computation and flows
of (primarily) control (and optionally) data among steps.

An action/activity node (rounded rectangle) denotes a computational step. An action is an atomic step
which is not further broken into sub-steps, whereas an activity is a group of actions or sub-activities.

Start node (solid circle) is a control node at which flow starts when an activity is invoked.

End node (hollow circle with solid circle inside) is a control node that stops all flows in an activity.

Fork node (thick line segment) is a control node that has one incoming edge and multiple outgoing edges
and is used to split incoming flow into multiple concurrent flows. Join node is a control node that has
multiple incoming edges and one outgoing edge and is used to synchronise incoming concurrent flows.

Control flow edge (arrow) is an edge denoting flow of control from one activity to another.

Object node (rectangle) is an edge denoting flow of data from one activity to another.

A data store nodes (rectangle) are stereotyped object nodes, which denote non-transient data that is
persisted during the computational process.

Object flow edge (arrow) is an edge denoting flow of data during a computational process. An object flow
edge is one that connects two nodes, where at least one is an object node. A value pin is special kind of
input pin defined to provide constant values as input.

Pins (small rectangle at edge of rounded rectangle) are object nodes used to denote inputs/outputs to
activities. A value pin is a special kind of input pin, which denotes constant-valued inputs to an activity.
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