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Abstract: Whereas server-side programs are essential to maintain databases and run data analysis
pipelines and simulations, client-side web-based computing tools are also important as they allow
users to access, visualize and analyze the content delivered to their devices on-the-fly and interactively.
This article reviews the best-established tools for in-browser plugin-less programming, including
JavaScript as used in HTML5 as well as related web technologies. Through examples based on
JavaScript libraries, web applets, and even full web apps, either alone or coupled to each other, the
article puts on the spotlight the potential of these technologies for carrying out numerical calculations,
text processing and mining, retrieval and analysis of data through queries to online databases
and web services, effective visualization of data including 3D visualization and even virtual and
augmented reality; all of them in the browser at relatively low programming effort, with applications
in cheminformatics, structural biology, biophysics, and genomics, among other molecular sciences.
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1. Introduction

Slightly over 20 years ago, a small commentary by Prof. L. Stein in Trends in Genetics anticipated
the impact that “web applets” were to have on how scientists browse, visualize, and analyze biological
data available online [1]. Web applets are small programs that run inside clients, i.e., web browsers,
as opposed to programs that run on servers. They therefore provide immediate feedback, allowing
off-server computations and interactive display of online material, with the additional advantages
that can be run offline, not overloading servers, and protecting data privacy as data never leaves the
user’s computer. Prof. Stein’s discussion focused on the three most widespread web applet platforms
available at that time, which were ActiveX controls, Java applets, and HTML-embedded scripts in the
(totally unrelated to Java) JavaScript language [1]. Of these platforms, today JavaScript is by far the
best established, most popular, and most developed tool, while the plugin-based alternatives (ActiveX,
Java, Flash) increasingly loose support in web browsers. The purpose of this article is to put on the
spotlight the powerful features of current JavaScript, both intrinsic and when coupled to HTML5,
CSS, WebGL and related technologies, and to demonstrate its power for browsing, visualizing, and
analyzing biological data. The reader will find out that JavaScript has evolved far beyond the tool for
small, simple web applets it used to be 15–20 years ago, now being capable of complex operations
and highly integrable with online resources and computer hardware, allowing even non-professional
programmers to build complex applications that rely exclusively on client-side JavaScript, running on
the client as “web applications”, or “web apps” for short, that are delivered entirely as web pages.

JavaScript is the trademarked but common name for a high-level programming language
standardized as ECMAScript, which is delivered from servers to clients (personal computers, tablets,
smartphones) together with HTML code, and executed at the client, i.e., at web browsers through
built-in engines that do not require any plugins. JavaScript was born to control HTML objects and
thus give interactivity and dynamism to web pages. However, it has evolved immensely in the last
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decade, linked to the development of technologies such as AJAX, asm.js/Emscripten/WebAssembly,
CSS, HTML5, JQuery, JSON, Node.js, WebGL, and Web Workers, while plugin-based tools like ActiveX,
Java, and Flash lost support. Moreover, the first JavaScript engines were slow interpreters, but recent
years have seen much faster virtual machines and even just-in-time compilers like Google Chrome’s
engine, V8, where machine code is emitted dynamically and optimized to the kinds of data being
handled. This and other developments that redound in increasing the speed and performance of
modern JavaScript engines allow complex tasks to be carried out within web pages on the browser.
Note that although new JavaScript engines are much faster than original interpreters, there is little
agreement about how fast JavaScript actually is and about how it compares to other languages in
terms of speed. It is clear that it has matured enough to be of practical use, as this article attempts to
highlight; but moreover, many benchmarks show that under certain conditions it gets close to compiled
languages like C++, especially when it can profit from optimizations that static compilation cannot
foresee. This statement becomes more important in the light that bug-free C++ optimizations are hard
to achieve, especially for non-experts, bringing JavaScript closer to compiled languages regarding
practical utility by scientists.

Writing JavaScript programs is facilitated by the high-level nature of the language, and their use
is facilitated by the lack of specific downloads or setups, because they are built into the webpage
structure. The browsers’ JavaScript engines connect directly to HTML DOM objects, greatly facilitating
data input and output, even interactively and with graphics, granting simplified cross-platform access
to multiple functions that would be hard to achieve in other languages, especially for non-expert
programmers, including high-level graphics, (live) video and audio processing, connections to online
databases and web services, etc., all accessible through relatively simple methods. Given all these
advantages, plus the ready availability of JavaScript engines in all free modern web browsers, even in
smartphones and tables, it was natural that scientists would try it out as the fabric for applying their
ideas into programs.

2. Timeline of JavaScript in Science

Tracing the use of JavaScript in science through a search for “JavaScript” in PubMed abstracts
reveals first uses by 1996, a rise to ~15 new articles per year between 2007 and 2012, and a burst
afterwards (Figure 1). The most repeated words in the titles of these articles highlight interactivity,
visualization, ease of use, and online availability (Figure 1, inset). Applications of JavaScript in
these publications range from visualization to database and data processing in the domains of
medicine (many providing interactive access to database systems and others simplifying calculations,
visualization, and collaborations online), psychology (notable examples are online tests), and basic
natural sciences most remarkably in biology and chemistry. The deeper focus of this article, biology
and chemistry applications, spans tools for bioinformatics, genomics, molecular biology, structural
biology, cheminformatics, and more.

Tables 1–3 list JavaScript-based web apps and libraries associated to molecular biosciences from
reviewed literature (Table 1), from unreviewed resources (Table 2), and other JavaScript tools not
directly intended for molecular biosciences but with potential applications in it (Table 3). This
article goes through some of these web apps and libraries and their combinations, exploring the
implementation of advanced technologies exclusively in the web browser, highlighting simplicity
for the programmer and open accessibility, and more broadly the utility of client-side JavaScript
programming in scientific research, education, and outreach.



Informatics 2017, 4, 28 3 of 18
Informatics 2017, 4, 28  3 of 18 

 

 
Figure 1. Tracking the use of JavaScript in science. Number of articles containing the word 
“JavaScript” in the title or abstract, yearly from 1990 to 2017. Inset: The 10 most frequent words in the 
titles of these articles. Data for 2017 was linearly extrapolated from counts by 1 August 2017. 

Table 1. Web apps and libraries of use in molecular biosciences, that rely entirely or largely on 
JavaScript, described in scientific literature. See text for details on many of these tools. 

Tool and Reference Brief Description
Data visualization 
Protael [2] Protein data visualization library for the web. 
JSAV [3] The first JavaScript-based interactive sequence alignment viewer. 
MSAViewer [4] Interactive JavaScript visualization of multiple sequence alignments. 
jHeatmap [5] Library to display HeatMaps in the browser. 

BioJS [6] 
Framework for biological data visualization, on which several libraries 
have been built (a collection featuring some of them is available [7]). 

PhyD3 [8] Library for phylogenetic tree visualization in the browser. 
Molecular visualization and editing 

JSmol [9] 
A full molecular viewer and editor program and library. See text for 
details. 

NGL Viewer [10], 3Dmol.js 
[11], PV, Molmil [12], LiteMol 

Various molecular viewers which profit from WebGL technologies better 
than JSmol providing nicer and smoother rendering, but which are much 
more limited in capabilities beyond visualization. Most work as 
embeddable libraries but are also available as full web apps. 

JSME [13] 
A library to create and edit small molecules graphically, often used as the 
starting point for subsequent calculations or database queries. 

CH5M3D [14], Chemozart 
[15] 

Libraries to edit molecules in 3D. 

Full web applications 

PsychoProt [16] 
A tool to analyze amino acid variation in proteins in terms of protein 
physical chemistry, to aid in the analysis of sequence alignments and deep-
sequencing-based tolerance to substitutions maps.  

Sequence Manipulation Suite 
[17] 

A collection of tools to handle, build, and analyze DNA and protein 
sequences. 

PDB-Explorer [18] An interactive map to browse the Protein Data Bank. 

Figure 1. Tracking the use of JavaScript in science. Number of articles containing the word “JavaScript”
in the title or abstract, yearly from 1990 to 2017. Inset: The 10 most frequent words in the titles of these
articles. Data for 2017 was linearly extrapolated from counts by 1 August 2017.

Table 1. Web apps and libraries of use in molecular biosciences, that rely entirely or largely on
JavaScript, described in scientific literature. See text for details on many of these tools.

Tool and Reference Brief Description

Data visualization

Protael [2] Protein data visualization library for the web.

JSAV [3] The first JavaScript-based interactive sequence alignment viewer.

MSAViewer [4] Interactive JavaScript visualization of multiple sequence alignments.

jHeatmap [5] Library to display HeatMaps in the browser.

BioJS [6] Framework for biological data visualization, on which several libraries have been
built (a collection featuring some of them is available [7]).

PhyD3 [8] Library for phylogenetic tree visualization in the browser.

Molecular visualization and editing

JSmol [9] A full molecular viewer and editor program and library. See text for details.

NGL Viewer [10], 3Dmol.js [11],
PV, Molmil [12], LiteMol

Various molecular viewers which profit from WebGL technologies better than
JSmol providing nicer and smoother rendering, but which are much more limited
in capabilities beyond visualization. Most work as embeddable libraries but are
also available as full web apps.

JSME [13] A library to create and edit small molecules graphically, often used as the starting
point for subsequent calculations or database queries.

CH5M3D [14], Chemozart [15] Libraries to edit molecules in 3D.

Full web applications

PsychoProt [16]
A tool to analyze amino acid variation in proteins in terms of protein physical
chemistry, to aid in the analysis of sequence alignments and
deep-sequencing-based tolerance to substitutions maps.

Sequence Manipulation Suite [17] A collection of tools to handle, build, and analyze DNA and protein sequences.

PDB-Explorer [18] An interactive map to browse the Protein Data Bank.

Wikipedia Chemical Structure
Explorer [19]

An interactive 2D structure and substructure search engine for small molecules
inside Wikipedia.

ChemCalc [20] Calculates molecular formulas, molecular weights, elemental compositions, and
isotopic distribution. Works as full web app or as an API for JavaScript calls.

ChemInfo.org A portal to a variety of web-based tools for cheminformatics and related fields,
including the PDBExplorer and ChemCalc listed above.
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Table 2. Some unreferenced web apps of direct use in molecular biosciences, that rely entirely or largely
on JavaScript.

Tool Brief Description and URL

Data visualization

Comparing contact predictions
and contact maps

Web apps to compare protein contact maps from structures or models to
residue-residue contact predictions from Gremlin [21], EVFold [22], and
RaptorX [23] contact predictions at
http://lucianoabriata.altervista.org/pdbms/

Examples of interactive open data
from research articles by this
author

Interactive visualization of data from articles:
http://lucianoabriata.altervista.org/papersdata/ Interactive 3D
visualization of published biomolecular models:
http://lucianoabriata.altervista.org/modelshome.html

Molecular visualization and editing

Hack-a-mol
Interconvert 2D and 3D molecular structures, SMILES and other codes,
and coordinate files in several formats:
https://chemapps.stolaf.edu/jmol/jsmol/hackamol.htm

Virtual Molecular Model Kit

A web app that provides easy access to JSmol’s model editing ability,
also using JSME and API calls to external webservices and databases to
provide a full online molecular modeling experience:
http://chemagic.org/molecules/mini.html

PDB manipulation suite
A growing suite of functions for manipulating PDB files online, for
example shifting residue numbers, getting amino acid sequences, and
mapping data to B-factors: http://lucianoabriata.altervista.org/pdbms/

Miscellaneous

MultiProtScale
Client-side version of Expasy’s ProtScale server, which handles multiple
sequences simultaneously: http:
//lucianoabriata.altervista.org/multiprotscale/multiprotscale.html

CD fitter and simulator Fit and simulate far-UV protein circular dichroism spectra:
http://lucianoabriata.altervista.org/tests/cd2.html

Table 3. Free JavaScript tools not directly intended for, but with potential utility in, molecular
biosciences. The listing is by no means extensive, and mainly tries to convey the reader a feel of
the kinds of available tools and the potential of the technologies.

Tool Brief Description, Possible Uses, and URL

Charts

Google Charts, uvCharts,
Chartist.js

They offer very complete sets of chart types, and are very customizable:
https://developers.google.com/chart/
http://imaginea.github.io/uvCharts/
http://gionkunz.github.io/chartist-js/

ChartJS, Highcharts JS, Flot
Also very complete, but here grouped together because they all provide
support for older web browsers, yet deliver high-quality graphics,
interactivity, and animations in modern browsers. http://www.chartjs.org/

Smoothie Charts Especially suited for plotting streamed data in real time.
http://smoothiecharts.org/

D3.js, n3-charts, Ember charts

D3.js has very broad applications, which allows charting in multiple
formats not covered by the libraries mentioned above. Libraries like
n3-charts and Ember charts make plotting through D3.js easier.
https://github.com/d3/d3/wiki/Gallery
http://addepar.github.io/#/ember-charts/overview
http://n3-charts.github.io/line-chart

http://lucianoabriata.altervista.org/pdbms/
http://lucianoabriata.altervista.org/papersdata/
http://lucianoabriata.altervista.org/modelshome.html
https://chemapps.stolaf.edu/jmol/jsmol/hackamol.htm
http://chemagic.org/molecules/mini.html
http://lucianoabriata.altervista.org/pdbms/
http://lucianoabriata.altervista.org/multiprotscale/multiprotscale.html
http://lucianoabriata.altervista.org/multiprotscale/multiprotscale.html
http://lucianoabriata.altervista.org/tests/cd2.html
https://developers.google.com/chart/
http://imaginea.github.io/uvCharts/
http://gionkunz.github.io/chartist-js/
http://www.chartjs.org/
http://smoothiecharts.org/
https://github.com/d3/d3/wiki/Gallery
http://addepar.github.io/#/ember-charts/overview
http://n3-charts.github.io/line-chart
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Table 3. Cont.

Tool Brief Description, Possible Uses, and URL

Mathematics and statistics

NumCalc.com A very complete scientific calculator at http://numcalc.com/

LALOLib and Mlweb

Very complete libraries for mathematics in the browser, with tools for
advanced matrix algebra, statistics, optimization, and machine learning.
Can be used as libraries for web apps or through a complete environment
(LALOLab) similar to that of stand-alone math programs, with its own
plotting capabilities. See http://mlweb.loria.fr/

Numeric.js
Another powerful library for mathematics in the browser, also usable
through an environment similar to that of stand-alone math programs.
http://www.numericjs.com/

ConvNetJS, synaptic.js, brain,
mind, DN2A

Libraries for neural networks and deep learning, covering from simpler
utilities like data and function approximation and regression, to
self-organizing maps, image regression and object identification, deep
learning, and linguistics. Most can be trained and used online, or trained
offline and used online.
http://cs.stanford.edu/people/karpathy/convnetjs/
http://caza.la/synaptic/#/
https://github.com/harthur/brain
https://github.com/stevenmiller888/mind
https://github.com/dn2a/dn2a-javascript

jsfft, FFT.js, FFT in many
languages, DSP.js, timbre.js

Libraries for Fast Fourier Transforms; together cover direct and inverse
transforms, real and complex convolutions, discrete transforms, and other
functions (plus, some are actually full packages for signal processing):
https://github.com/dntj/jsfft
https://www.nayuki.io/page/free-small-fft-in-multiple-languages
https://github.com/corbanbrook/dsp.js
http://mohayonao.github.io/timbre.js/

Math.js, Sushi, numbers.js, jstat,
rift, science, glMatrix

Other math libraries, some with unique features or tailored for specific
applications (for example, rift is intended for games, glMatrix, and Sushi for
efficient matrix calculations)

Strings

String.js Functions that extend those of standard JavaScript strings
http://stringjs.com/

textmining and text-miner

Two similar packages for text mining:
https://www.npmjs.com/package/textmining
https://www.npmjs.com/package/text-miner/
Potentially useful for mining contents in large corpuses of scientific text;
Figure 1B of this article was built using such techniques. Text-miner
includes lists of stopwords in four languages.

RiTa.js and nlp-compromise
Two libraries for natural language processing:
https://rednoise.org/rita/index.php
https://nlp-expo.firebaseapp.com/

User interfaces

WebGazer [24]

Eye tracking library that uses common webcams to infer eye-gaze locations
of the user on the web page in real time. Could be used to facilitate
molecular visualization as shown in the proof-of-concept example at
https://lucianoabriata.altervista.org/jsinscience/jsmolwebgazer/
jsmolwebgazer.html

Tangle Library to create reactive documents, i.e., which interact with the user in a
contextual manner and virtually immediate response.

MathJax Library to display formatted maths in the browser.

http://numcalc.com/
http://mlweb.loria.fr/
http://www.numericjs.com/
http://cs.stanford.edu/people/karpathy/convnetjs/
http://caza.la/synaptic/#/
https://github.com/harthur/brain
https://github.com/stevenmiller888/mind
https://github.com/dn2a/dn2a-javascript
https://github.com/dntj/jsfft
https://www.nayuki.io/page/free-small-fft-in-multiple-languages
https://github.com/corbanbrook/dsp.js
http://mohayonao.github.io/timbre.js/
http://stringjs.com/
https://www.npmjs.com/package/textmining
https://www.npmjs.com/package/text-miner/
https://rednoise.org/rita/index.php
https://nlp-expo.firebaseapp.com/
https://lucianoabriata.altervista.org/jsinscience/jsmolwebgazer/jsmolwebgazer.html
https://lucianoabriata.altervista.org/jsinscience/jsmolwebgazer/jsmolwebgazer.html
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Table 3. Cont.

Tool Brief Description, Possible Uses, and URL

Emulators and programming

Linux emulators

Two complete emulators of a linux system, the second including internet
connectivity and a graphical interface: http://bellard.org/jslinux/,
http://s-macke.github.io/jor1k/
Could be used for learning linux in a safe and simple environment for
example at the beginning of a tutorial course that requires linux knowledge;
also for executing shell commands and scripts as well as programs written
for Perl, Python, or even compiling C code, etc. on non-linux computers
without the need for complex installations, as exemplified with the
NESmapper Perl script.

Online programming
environments

The two linux emulators listed above include C compilers and allow
running Perl, Python, etc. Moreover, there are JavaScript-based web
applications specifically tailored for writing, compiling, and running
programs. Some notable links: site for learning and running C at
http://cs-education.github.io/sys/#VM; a Perl interpreter at
https://gfx.github.io/perl.js/; see also Emscripten at
http://emscripten.org/

Vi emulator
A working online version of the linux vi editor, could be used to quickly
process text files in non-linux computers:
http://gpl.internetconnection.net/vi/

3D graphics, computer vision, and augmented and virtual reality

Three.js, A-Frame

Three.js is probably the most used library for animated 3D graphics, using
WebGL. Applications are in molecular visualization and in more generic
data visualization, but beyond these uses, it includes multiple numerical
algorithms that could be recycled for other purposes: https://threejs.org/
A-Frame is an entity component system framework for Three.js, that makes
it much easier to use in virtual and augmented reality applications, the
latter especially through AR.js: https://aframe.io/

Jsfeat, tracking.js, js-aruco,
AR.js, awe.js, and argon.js

Computer vision and image processing libraries which can identify and
track objects or markers. Just like Three.js, they include numerical
algorithms that could be used for other purposes. Put together with
graphical libraries like Three.js leads directly to augmented reality web
apps. https://inspirit.github.io/jsfeat/
https://trackingjs.com/
https://github.com/jcmellado/js-aruco/
https://github.com/jeromeetienne/AR.js/
https://github.com/buildar/awe.js/
https://www.argonjs.io/

Tesseract.js, Ocrad.js

Libraries for optical character recognition from images, useful for retrieving
information from article figures.
http://antimatter15.com/ocrad.js/demo.html
http://tesseract.projectnaptha.com/

Hardware feeds and communication

WebRTC

Not a library but a collection of standards, protocols, and APIs for real-time
server-less, plugin-free communication and data exchange directly between
web browsers: https://webrtc.org/
See also the example at https://apprtc.appspot.com/ which implements a
web app for server-less video conferencing.

HTML5 guitar tuner
A web app that guides guitar tuning; exemplifies how to read microphone
data and analyze the signal through Fourier transforms to decompose the
frequency spectrum: https://jbergknoff.github.io/guitar-tuner/

http://bellard.org/jslinux/
http://s-macke.github.io/jor1k/
http://cs-education.github.io/sys/#VM
https://gfx.github.io/perl.js/
http://emscripten.org/
http://gpl.internetconnection.net/vi/
https://threejs.org/
https://aframe.io/
https://inspirit.github.io/jsfeat/
https://trackingjs.com/
https://github.com/jcmellado/js-aruco/
https://github.com/jeromeetienne/AR.js/
https://github.com/buildar/awe.js/
https://www.argonjs.io/
http://antimatter15.com/ocrad.js/demo.html
http://tesseract.projectnaptha.com/
https://webrtc.org/
https://apprtc.appspot.com/
https://jbergknoff.github.io/guitar-tuner/
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Table 3. Cont.

Tool Brief Description, Possible Uses, and URL

Hardware feeds and communication

gyro.js

Simplified access to gyroscope and accelerometer information, expanding
the information provided by the built-in Geolocation API (which only
locates the user’s position based on network and/or GPS data but gives no
orientation information):
http://tomg.co/gyrojs/

GPS.js Access to primary GPS data: https://github.com/infusion/GPS.js

3. JavaScript Libraries for Online, Interactive Data Display

One powerful application of JavaScript in science is simply that of elegantly and effortlessly
presenting data in interactive formats online. There are many JavaScript libraries that facilitate
interactive display of numerical data online, either of general format by libraries for generic plotting
and 3D graphics, or of specific forms as, for example, libraries that display sequences and sequence
alignments, molecular structures in 2D or 3D, and much more as reviewed here. Thanks to these
tools, online data display with JavaScript is so simple that it gives strong technological backup to the
case for open data availability [25–27]. It is in fact very easy to build JavaScript-based web content
to display zoomable versions of data plots and interactive 3D molecular models from publications,
as in this author’s website (links in Table 2). In the extreme of simplicity, RStudio’s shinny app
(https://shiny.rstudio.com/) can be used to easily create online content from R analyses, without any
programming required as it automatically builds the required HTML, CSS, and JavaScript codes.

There are several good open JavaScript libraries for plotting numerical data (Table 3). Google
Charts is especially simple and allows many types of numerical plots such as scatter, lines, bar, and
pie charts (example in Figure 2A); moreover, its GeoCharts allow mapping of numerical data on
geographical representations, as offered also by only a few other libraries.

Some tools for numerical display actually focus on specific kinds of data. SpeckTackle implements
charts for 1D and 2D NMR, UV/visible and infrared spectroscopies, charts for mass spectrometry, and
other continuous variables like those recorded in a chromatographic run [28]. More documented and
with more examples available, JSpecView [29] displays and converts JCAMP-DX and XML spectra
formats, thus handling many kinds of spectral and chromatographic data. JSpecView was originally
written in Java and used JavaScript only for interfacing with HTML, but since 2012 there is a full
version running entirely on JavaScript, based on the Jmol JavaScript Object which was originally
developed to port the Java-based molecular viewer Jmol into JavaScript (JSmol, see next section).
Another tool, jsNMR, is dedicated exclusively to 1D and 2D NMR spectral data [30].

With several handy functions, the first JavaScript tool for online visualization of multiple sequence
alignments was JSAV [3] (Figure 2C) followed by MSAViewer [4]. There are also tools for visualization
of protein features and annotations, such as pViz.js [31] and Protael [2]. A related tool, MultiProtScale
(Table 2), computes and displays physicochemical properties of amino acids over sequences and
alignments, acting as an interactive extension of Expasy’s ProtScale tool. Moving on to genomics,
SnipViz [32] and BioCircos.js [33] help visualize and disseminate gene and protein sequences and their
annotations, while GenomeD3Plot [34] and pileup.js [35] allow for interactive in-browser visualization
of genomic data.

Taking browser-based data visualization to its current state of the art in scientific applications,
there are a series of JavaScript tools for molecular visualization (next section). Another
noteworthy, recent work describes a JavaScript tool for efficient real-time collaborative neuroimage
visualization [36].

http://tomg.co/gyrojs/
https://github.com/infusion/GPS.js
https://shiny.rstudio.com/
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by each principal component; (B) Diagram depicting how to search, retrieve and analyze PubMed 
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A query through Eutils API retrieves articles in JSON format; then, further calls retrieve their texts. 
Abstract texts are processed with a function prototyped into the Script class, which removes stop 
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(PF00116) with JSAV [3], achieved through the demonstration webpage at 
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analysis (https://lucianoabriata.altervista.org/jsinscience/pca/pca3.html) run on a collection of
21 objects of three types, each described by 20 variables. Singular value decomposition of the
21 × 20 matrix is performed with LALOLib. Google Charts is used to display a scatter plot of
the 21 objects mapped on the two first principal components, line plots of the contribution of each
variable to each principal component, and bar plots of the eigenvalues to measure the fraction of
variability explained by each principal component; (B) Diagram depicting how to search, retrieve
and analyze PubMed abstracts with JavaScript (https://lucianoabriata.altervista.org/jsinscience/
texts/textworks.html). A query through Eutils API retrieves articles in JSON format; then, further
calls retrieve their texts. Abstract texts are processed with a function prototyped into the Script
class, which removes stop words (these are irrelevant words that would confound further analysis).
The cleaned text is then processed with nlp-compromise to calculate frequencies of words and
n-grams (word pairs, triplets, etc.); (C) Example interactive visualization of an alignment of PFAM
seed members for COX2 (PF00116) with JSAV [3], achieved through the demonstration webpage at
http://www.bioinf.org.uk/software/jsav/.

JavaScript Molecular Viewers, Editors, and Calculators, from Chemistry to Cheminformatics and
Structural Biology

Integration of 3D visualizations of biological macromolecules directly inside HTML without
plugins is now possible with little effort thanks to tools based on HTML5, CSS, WebGL, and canvases.
The full web apps and libraries JSmol [9], 3dmol.js [11], and NGLviewer [10] are among the most widely
used, and roughly balance technical features with graphic quality. Some other online visualizers explore
advanced features such as gesture interaction [37] and capabilities for very large macromolecules [38].
With such easy-to-use resources, researchers publishing biomolecular models shall, and should, make
their models available to the scientific community in 3D, as this author does (Figure 3A and links in
Table 2). Likewise, webservers using plugin-based molecular viewers should replace them with some
of the JavaScript alternatives, as plugins are becoming deprecated and unsupported by web browsers.
A recent article discusses online tools for molecular visualizations [39]; meanwhile, this section of
the present article focuses on capabilities other than visualization, for example for molecular editing,
calculations, and integration with other JavaScript libraries for molecules.

https://lucianoabriata.altervista.org/jsinscience/pca/pca3.html
https://lucianoabriata.altervista.org/jsinscience/texts/textworks.html
https://lucianoabriata.altervista.org/jsinscience/texts/textworks.html
http://www.bioinf.org.uk/software/jsav/
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Since computational models are not available in standard databases like the Protein Data Bank for 
experimental structures, they remain as no more than mere static pictures, hence the importance of 
resources for easily sharing 3D views, such as JavaScript molecular viewers; (B) Two JSmol applets 
embedded side to side in the same webpage and synchronized such that rotating any of them 
produces the same rotation on the other, thus facilitating comparison of two related structures, in this 
case two X-ray structures of a histidine kinase in different conformational states [41] 
(https://lucianoabriata.altervista.org/papersdata/accounts2017.html). See also the works by 
Mwalongo et al. about more complex setups for remote and concurrent visualizations [42,43]; (C) 
Example of JSmol being used to display results from online analyses, in this case data about amino 
acid variability in proteins by the PsychoProt server [16,44]; (D) JSME and JSmol coupled inside the 
Hack-a-mol web app together with JavaScript queries to external web services to achieve a complete 
molecular editor, molecular data search facility, and molecular format converter 
(https://chemapps.stolaf.edu/jmol/jsmol/hackamol.htm); (E) Proof-of-concept augmented reality web 
app that displays lysine and glutamate side chains which the user can move in space with two 
physical markers. The example uses atomic coordinates for real-time computations of the distance 
and electrostatic potential between lysine’s side chain N atom and glutamate’s side chain O atoms. 
This example is based on A-Frame which gives high-level access to Three.js, thus requiring very 
simple and short pieces of code (https://lucianoabriata.altervista.org/jsinscience/arjs/arjs.html). 

Possibly the most complete JavaScript-based molecular viewer and editor is JSmol (Figure 3A–D), 
born as the Java-free version of Jmol (currently actively developed by Prof. R. Hanson) and likely 
destined to replace it as Java becomes less compatible with modern browsers. JSmol includes all of 

Figure 3. Molecular viewers and editors online. (A) JSmol displaying a 3D model of a histidine
kinase [40] augmented with interactive decorations to highlight specific features of the protein, from
this author’s gallery of biomolecular models (http://lucianoabriata.altervista.org/modelshome.html).
Since computational models are not available in standard databases like the Protein Data Bank for
experimental structures, they remain as no more than mere static pictures, hence the importance of
resources for easily sharing 3D views, such as JavaScript molecular viewers; (B) Two JSmol applets
embedded side to side in the same webpage and synchronized such that rotating any of them produces
the same rotation on the other, thus facilitating comparison of two related structures, in this case two
X-ray structures of a histidine kinase in different conformational states [41] (https://lucianoabriata.
altervista.org/papersdata/accounts2017.html). See also the works by Mwalongo et al. about more
complex setups for remote and concurrent visualizations [42,43]; (C) Example of JSmol being used to
display results from online analyses, in this case data about amino acid variability in proteins by the
PsychoProt server [16,44]; (D) JSME and JSmol coupled inside the Hack-a-mol web app together with
JavaScript queries to external web services to achieve a complete molecular editor, molecular data search
facility, and molecular format converter (https://chemapps.stolaf.edu/jmol/jsmol/hackamol.htm);
(E) Proof-of-concept augmented reality web app that displays lysine and glutamate side chains which
the user can move in space with two physical markers. The example uses atomic coordinates for
real-time computations of the distance and electrostatic potential between lysine’s side chain N atom
and glutamate’s side chain O atoms. This example is based on A-Frame which gives high-level access
to Three.js, thus requiring very simple and short pieces of code (https://lucianoabriata.altervista.org/
jsinscience/arjs/arjs.html).

http://lucianoabriata.altervista.org/modelshome.html
https://lucianoabriata.altervista.org/papersdata/accounts2017.html
https://lucianoabriata.altervista.org/papersdata/accounts2017.html
https://chemapps.stolaf.edu/jmol/jsmol/hackamol.htm
https://lucianoabriata.altervista.org/jsinscience/arjs/arjs.html
https://lucianoabriata.altervista.org/jsinscience/arjs/arjs.html
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Possibly the most complete JavaScript-based molecular viewer and editor is JSmol (Figure 3A–D),
born as the Java-free version of Jmol (currently actively developed by Prof. R. Hanson) and likely
destined to replace it as Java becomes less compatible with modern browsers. JSmol includes all of
Jmol’s capabilities, which means not only potential to display molecules of different formats but also
molecular orbitals and any 3D object, useful to draw vectorial information in 3D such as distances
or electric field lines. JSmol recently incorporated the capability to display DSSR-derived structural
features from RNA structures [45]. Furthermore, it supports rendering of premade PyMOL [46]
sessions, synchronization of multiple applets inside a web page (as in Figure 3B, an example of
enhanced content [41]), and editing of the visualizations through selection and scripting codes
embedded in JavaScript. All these features are important for simplified dissemination and online
presentation of structural data and models, allowing online inspection without the need to download
files or install specialized programs (Figure 3A–C).

JSmol’s capabilities further include modification of atomic coordinates through rotations,
translations and even force field-based minimizations, recalculation of hydrogen bonds, aromaticity,
secondary structures in proteins, analysis of chiral centers, calculations about molecular electrostatics,
and much more. Using these and other JSmol capabilities in conjunction with JSME (see below) and
API calls (treated later on) to public chemical data services, Prof. O. Rothenberger built a fully working
web-based Virtual Molecular Model Kit [47] that provides easy access to the potential of all these tools
(Table 2).

JSmol’s selection and scripting languages make integration to other JavaScript tools relatively
simple. Thus, it is widely used for visualization in multiple websites for displaying structures retrieved
from databases [48], as well as for calculations and for extracting information from files with molecular
data in web applications such as protein sequences from PDB files (Figure 3C,D) [16]. Also, JSmol is
often used for building molecules and submitting them to servers for calculations through third-party
programs, as in the MolCalc [49] web app for fast quantum mechanics-based estimation of molecular
properties using GAMESS [50], whose results are displayed back through JSmol—a very interesting
tool for education, outreach, and simple research questions. Further interesting resources built from
JSmol are a Crystal Symmetry Explorer, including a tool to create files for 3D printing directly from
JSmol [51], web interfaces that connect structures to spectral data display with JSpecView described
above, and a powerful molecular editor dubbed “Hack-a-mol”, described next.

Some other JavaScript molecular viewers specialize in small molecules, allowing users to build
and edit molecules online [13,14,52,53]. Probably the most widely used, free tool for small molecules is
JSME [13], the JavaScript version of the Java-based molecular builder and editor JME. JSME works
on 2D, but a particularly interesting resource called Hack-a-mol (Figure 3D and Table 2) integrates
JSME with JSmol and calls to PubChem, NCI, InCHI, and ChEMBL, to interconvert 2D sketches, 3D
structures, SMILES, InChI, and InChIKey codes, and MOL/SDF, XYZ, PDB and CIF file formats of
any molecule. When any of Hack-a-mol’s containers are modified (for example, the file contents in
text format are manually changed, or a new atom is drawn in JSME, or the SMILES string is modified)
the other containers react to update their contents accordingly. Such a tool, originally devised by
Prof. R. Hanson for students of cheminformatics, is actually powerful for research in this field as well
as in molecular modeling, for example to produce inputs for parameterization of small molecules for
molecular dynamics simulations—for which there also exist web-based tools [54,55] that would be
handy to have streamlined. Other tools like Chemozart [15] and CH5M3D [14] are designed to build
molecules interactively and directly in 3D.

There are also JavaScript libraries designed for browser-based cheminformatics. Notable examples
are kekule.js [52] for tasks such as (sub)structure searching and comparison, functional group detection,
2D-to-3D conversion and format conversions; and ChemDoodle Web Components [53] for building
molecules and editing them both in 2D and 3D, computation and display of Lewis structures,
simulating and displaying NMR and MS spectra, getting IUPAC names from structures, counting
numbers of atoms or bonds, and more. Yet other libraries like MarvinJS facilitate 2D drawing of
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molecules, reactions, and reaction mechanisms, further usable for reshuffling substituents and querying
databases and web services; while JSdraw is a complete resource to design graphical web content for
chemistry and biology, including chemical structures, spectra, simulated electrophoretic runs, etc.

4. JavaScript Tools for Numerical Calculations in Simulations, Data Processing, and Analysis

Serious libraries for mathematics and statistics in JavaScript have been around for some time.
Some are rather general while others focus on specific subjects such as matrix algebra, statistics,
machine learning, neural networks, Fourier transforms, signal processing, or image analysis (Table 3).
Different libraries implementing the same algorithms vary in performance, but all of them perform
reasonably for small to medium sized datasets. For intensive workloads, some of these libraries
support parallelization through multiple workers, a relatively new technology.

A few of the most complete math libraries, such as numeric.js and most notably LALOLib,
provide online interfaces that look much like standard desktop programs for mathematics (besides
being utilizable as libraries), allowing the user to work online directly on numerical problems without
any need to know HTML nor JavaScript, in a graphical environment. Currently, the most up-to-date
and comprehensive math library seems to be LALOLib, part of a project aimed at achieving efficient
machine learning on the web (MLweb). LALOLib and ML.js include functions for linear algebra,
statistics, optimization, and several machine-learning algorithms like principal components analysis,
support vector machines, and neural networks. LALOLib even includes tools for high-level graphics
within the same environment, and allows loading and saving data and sessions to local drives.

The example in Figure 2A is an entirely client-side web app that maps complex multidimensional
objects on two principal components and analyzes how these components reflect the variability in
the dataset. It uses LALOLib to run singular value decomposition, and Google Charts to display
the results. More advanced ways to carry out principal components analysis are available directly
from LALOLib.

As a last remark, it is important to bear in mind that many JavaScript libraries not specifically
thought for mathematics actually do include mathematical algorithms coded into them. This holds
especially for libraries for 3D graphics, virtual and augmented reality, object detection and tracking,
computer vision, and image and sound analysis. For example, Three.js (Table 3 and commented later
on when discussing augmented reality applications) includes functions for handling quaternions,
otherwise accessible through specialized libraries but which are probably not as thoroughly tested as
Three.js which is so widely used.

5. JavaScript Tools for Handling Strings, Text Mining, and Linguistics

Basic built-in JavaScript functions for strings include commands to search or extract characters,
search or replace substrings even using regular expressions, split strings to vectors, and do upper/lower
case conversions, among others. External libraries provide additional powerful functions for string
handling and also for text mining and linguistic analyses (Table 3). Applications of string-handling
tools beyond assisting data entry, parsing, and formatting for display include the growing field of
scientific text mining [56]. Probably the most remarkable example of the power of string handling
in science is the widely used (and cited) chilibot.net bot for mining PubMed abstracts [57]. This bot,
introduced in year 2004, recently went offline due to incompatibilities with the latest changes in the
Entrez Utils API; it is now back but would likely profit from a JavaScript rewrite.

The String.js library provides functions to capitalize first letters, extract left or right substrings,
convert between URL-compatible and human-readable strings, handle HTML tags and codes, spaces,
accents, and punctuation, detect different sets of characters, read and write tables in CSV format, and
more. Libraries like textmining and text-miner contain utilities for exploring texts, including functions
for cleanup and text-mining. Functions for cleanup include word removal from predefined but
customizable dictionaries, line removal, number cleanup and handling, case conversion, contraction
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expansion, etc. Text-mining functions include commands to compute the frequencies of terms and
ngrams, and filter out infrequent words and weighting.

At the most advanced end, libraries for linguistic analysis such as RiTa.js and nlp-compromise
allow for natural language processing. Together, they cover part-of-speech tagging (i.e., detection of
nouns, verbs, adverbs, etc.), recognition and processing of proper names including persons and places,
acronyms, numbers, etc., verb conjugation detection and change, negation, single/plural detection
and conversion, stemming and normalization procedures, etc. Both come with prebuilt lexicons,
i.e., collections of words “understood” by the mining algorithm, which are rather generic but can be
extended as required for specific applications by using lexicons built for specific disciplines [58–60]. For
applications in chemistry and biology, lexicons could in turn be extended by using tools for conversion
between molecular formulas, structures and names, annotations and ontologies from databases,
possibly even on-the-fly through JavaScript API calls to external web services or by mining knowledge
databases such as DBpedia (the structured form mirror of Wikipedia) or Wordnik (a meta-dictionary).

Besides the tools for text cleanup and analysis, and databases of lexicons and other information,
the other main ingredient for text mining is the text to be analyzed. Probably the most important
free, open resource of scientific text are PubMed abstracts, which can be easily searched and retrieved
directly from NCBI through JavaScript using Entrez Util’s API as covered in the next section and
in an online example (Figure 2B). Full texts of open access articles are also available from PubMed
Central’s OAI-PMH Service, but calls to this resource obviously yield much larger volumes of text
to be analyzed. Last, there are JavaScript libraries for optical character recognition, which could in
principle handle access to text-format data contained within article figures (Table 3).

6. On-the-Fly Data Retrieval and Utilization within JavaScript Web Apps

JavaScript provides very simple ways to retrieve data on the fly from various servers, using
asynchronous communication. Following from the previous section, by using Entrez Util’s API one
can easily search and retrieve abstracts in JSON format from PubMed, for example to keep up-to-date
with recent articles containing specific keywords or authors as exemplified in Figure 2B. JavaScript
can further ask PubMed for the full abstract, which could then be analyzed through one of the
text-mining libraries discussed in the previous section. As seen above too, one can obtain the full
article (if open-access) in XML format through PubMed’s OAI-PMH Service.

Essentially any API that provides information in JSON, XML, text formats, or even databases, can
be called from JavaScript. Examples of APIs to scientific servers of use in biomolecular sciences are
RCSB PDB’s RESTful Web Service interface, PDBe’s REST API, PUG REST for PubChem, the FlyBase
API for Drosophila genetics, the Biomolecular Interaction Network Database API, openFDA to query
data from the Federal Drug Administration agency of the USA [61], the BLAST API for achieving
sequence alignments, the Human Genome Variation Archive’s RESTful API to access genomic
variability in humans [62], and ChemCalc [20] for multiple mass spectrometry-related calculations.

Other remarkable APIs of potential use in science are those from major search servers (which give
access to search functions programmatically), APIs for geographical information like Google Maps’,
APIs from newspapers and news agencies notably the New York Times’ API (which gives access to all
articles published since 1851), and the DBpedia APIs (to get structured content from Wikipedia).

7. State-of-the-Art JavaScript Web Apps to Inspire Advanced Applications in
Molecular Biosciences

The JavaScript universe offers an astonishing range of web apps that proof its intrinsic power
and the power it harnesses from interaction with HTML objects, WebGL, access to hardware inputs
and to online resources, and from how easily different JavaScript libraries can be integrated within the
same webpage. A list of some interesting examples that illustrate the power of integrability is given
in Table 3, most not specifically originally devised for scientific applications but certainly applicable
to science.
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A first example of state-of-the-art JavaScript web apps are emulators for many hardware devices,
including emulators of personal computers loaded with standard operating systems. These operating
systems can, in turn, run code interpreters and compilers, such that one could practically run any
piece of code inside for example Linux, inside the web browser. One remarkable example is the
jor1k OpenRISC 1000 emulator by Sebastian Macke (http://jor1k.com) which includes network and
graphics support, easy file transfer to local drives, and a functional Linux distribution. Inside this
Linux environment, one can edit and run programs written in bash, awk, C, Lua, Python, and Perl
languages (and other languages if their interpreters or compilers are installed). Naturally, having the
interpreter run inside an emulated environment which is itself running inside the web browser makes
it slower than running the interpreter directly on a Linux terminal. Yet, for small programs that are
seldom used, for example to address a specific problem in the lab or for teaching, the potential and
simplicity offered by jor1k is remarkable.

Another series of state-of-the-art JavaScript web apps and libraries are those for handling images,
videos, and audio, either generated by the browser itself or from files or even obtained live from
hardware feed. Libraries such as tracking.js, js-aruco, AR.js, awe.js, and argon.js can perform computer
vision in the browser, i.e., detection and tracking of the position and orientation of objects, colors, and
markers. One step further from marker detection, WebGL JavaScript libraries like Three.js, GLGE or
SceneJS can be used to project 3D objects on the camera feed, allowing for virtual and augmented
reality applications in the browser. Applications of augmented reality are slowly being explored
in science [63–68]; however, most available tools run offline and use multiple pipelined programs
specific for each task (marker tracking, camera feed, video generation) thus being complex to set up.
Web-based technologies have therefore special potential in simplifying both development and usage.
One particular library, A-Frame, provides a framework that facilitates even further the integration
of marker detection by AR.js and 3D graphics superposition on a webcam feed with Three.js. Using
A-Frame, an example provided here (Figure 3E and link therein) allows the user to drive two virtual
molecules with a marker around the screen, reporting the distance and electrostatic potential between
their charged atoms with just a few lines of HTML and JavaScript code.

Further applications of object detection and tracking are those related to optical character
recognition, mentioned in the section about JavaScript libraries for strings, and those for facial
gesture recognition. Among tools for gesture recognition, WebGazer [24] identifies different parts
of the user’s face (eyes, pupils, eyebrows, etc.) from the webcam feed, and computes what he or
she is looking at in the screen. WebGazer could be used for hands-free browsing of complex data
on webpages. As a proof of concept (that would benefit from improvements on the resolution
of WebGazer-mapped coordinates, currently at ~100 pixels in the author’s tests) the example at
https://lucianoabriata.altervista.org/jsinscience/jsmolwebgazer/jsmolwebgazer.html shows how
WebGazer output can be used to drive JSmol rotations such that whatever region of the molecule the
user is looking at always comes to the front and its atoms get labeled.

8. Modularity, Integrability, and Open Nature of JavaScript Libraries

Many examples from this article show that JavaScript libraries behave much like modules which
can be put together to build complex applications. Many of the examples revisited throughout
this review evidence how easy it is to integrate different JavaScript libraries to create powerful
web content: JSmol with WebGazer for eye tracking-based control described earlier herein, or with
JSME for interactive editing of structures as in Hack-a-mol (Figure 3D and link therein), or with
JSpecView to relate molecular structure to spectral features [29], or even multiple synchronized JSmol
instances to facilitate structure comparison (Figure 3B and link therein); WebGL, WebSockets, and
Web Workers to achieve concurrent molecular visualizations over remote locations as achieved by
Mwalongo et al. [42,43]; AR.js with Three.js through A-Frame to achieve augmented reality extremely
easily (Figure 3E and link therein); and plotting and mathematics libraries to compute and display
data as in the online PCA tool (Figure 2A and link therein). Modularity and integrability are powerful

http://jor1k.com
https://lucianoabriata.altervista.org/jsinscience/jsmolwebgazer/jsmolwebgazer.html
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themselves and facilitated by the open source nature of most libraries, and by the existence of
established standards and of large communities devoted to development and support.

Last but not least, a highly positive aspect of JavaScript web apps is their reach. Being essentially
text files delivered together with HTML, and taking into account that they run in freely available web
browsers, they are easily accessible to anyone intending to learn or to improve or adapt libraries and
pieces of code to specific problems—especially highly motivated students with limited access to other
didactical resources. These and other advantages, as well as the corresponding disadvantages, are
discussed from a practical point of view in Table 4.

Table 4. Advantages and disadvantages of JavaScript for use in scientific research, from a
practical viewpoint.

Hardware Capabilities Programming for Non-Experts Accessibility

• High speeds when optimized, but
still behind the fastest compiled
languages. Although speed is highly
discussed and varies among
interpreters and even according to
coding practices, JavaScript is
certainly not as fast as optimized
C/C++ or fortran for
numerical calculations.

• Speed is anyway a concern being
addressed by major efforts (see
asm.js, WebAssembly, and
emscripten projects). Also
background calculations and
parallelization through web workers
are under development [69].

• Easy to implement rich
graphical user interfaces
(through HTML).

• Simplified access to
peripheral hardware such as
built-in accelerometers
and gyroscopes.

• Simple connection to
databases and servers
providing data and text,
through
asynchronous requests.

• Data does not leave the user's
computer, thus inherently
protecting privacy (except for
server requests).

• Fully cross-platform, can run in
any device with a web browser.

• Free, and only a web browser is
needed to execute it. (Applications
on servers available through
Node.js as well).

• If not obfuscated, code is
human-readable directly from
HTML or JS file.

• Currently one of the most widely
used languages according to
several unofficial surveys, with a
growing community of developers
that contribute packages, libraries,
and knowledge.

9. Conclusions

Beyond the increasing use of JavaScript libraries to provide interactive data visualization and
small client-side calculations, full JavaScript-based web apps are now showing up, and as intended to
forecast and stimulate throughout this review, will become increasingly more common. Specific to
biomolecular sciences, examples of full web apps include the very complete molecular visualization
libraries and web apps discussed above, the very successful Sequence Manipulation Suite for analyzing
and editing nucleic acid and protein sequences [17] and an upcoming PDB manipulation suite to
analyze and edit PDB files (available from the author’s website), the PsychoProt server for analysis
of amino acid variability and tolerance to substitutions in proteins [16,44], the Wikipedia Chemical
Structure Explorer [19], and PDB-Explorer [18], among others.

Notably, also classical stand-alone programs and scripts can profit from the power of JavaScript
to become available online. This can happen either directly by running them online inside
JavaScript-based Linux emulators like jor1k mentioned above, or by converting code into JavaScript
with tools like Emscripten, or simply by rewriting from scratch (possibly profiting from existing
libraries for efficiency and speed) as in an online web app for analysis and simulation of protein
circular dichroism spectra (link in Table 2) rewritten from a macro-containing spreadsheet [70] to
HTML5/JavaScript.

Computers and the internet are established, essential instruments at the core of most disciplines,
from economics to marketing to social studies to engineering and scientific research. The global trend
is that online content and calculations tend to become increasingly more important than offline work,
and science is no exception. Whereas, on one side, the cyberinfrastructures for data storage and heavy
computations are essential [71], web apps are also essential to display this content in informative,
complete, versatile, and interactive ways, and to allow more specific calculations to be carried out by
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the end user. JavaScript and web components have matured enough for this, and it is now the time
when the most exciting developments are starting and will continue to fructify.
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Large Complexes. In Proceedings of the 21st International Conference on Web3D Technology, Anaheim, CA,
USA, 22–24 July 2016; pp. 185–186.

39. Yuan, S.; Chan, H.C.S.; Hu, Z. Implementing WebGL and HTML5 in Macromolecular Visualization and
Modern Computer-Aided Drug Design. Trends Biotechnol. 2017. [CrossRef] [PubMed]

40. Saita, E.; Abriata, L.A.; Tsai, Y.T.; Trajtenberg, F.; Lemmin, T.; Buschiazzo, A.; Dal Peraro, M.; de Mendoza, D.;
Albanesi, D. A coiled coil switch mediates cold sensing by the thermosensory protein DesK. Mol. Microbiol.
2015, 98, 258–271. [CrossRef] [PubMed]

http://dx.doi.org/10.1186/s13321-015-0061-y
http://www.ncbi.nlm.nih.gov/pubmed/25815062
http://dx.doi.org/10.1021/ci300563h
http://www.ncbi.nlm.nih.gov/pubmed/23480664
http://dx.doi.org/10.1126/science.aah4043
http://www.ncbi.nlm.nih.gov/pubmed/28104891
http://dx.doi.org/10.1038/nbt.2419
http://www.ncbi.nlm.nih.gov/pubmed/23138306
http://dx.doi.org/10.1371/journal.pcbi.1005324
http://www.ncbi.nlm.nih.gov/pubmed/28056090
http://dx.doi.org/10.1038/nature10836
http://www.ncbi.nlm.nih.gov/pubmed/22358837
http://dx.doi.org/10.1126/science.1154562
http://www.ncbi.nlm.nih.gov/pubmed/19229029
http://dx.doi.org/10.1126/science.1203354
http://www.ncbi.nlm.nih.gov/pubmed/21310971
http://dx.doi.org/10.1186/s13321-015-0065-7
http://www.ncbi.nlm.nih.gov/pubmed/25984241
http://dx.doi.org/10.1186/1752-153X-1-31
http://www.ncbi.nlm.nih.gov/pubmed/18067663
http://dx.doi.org/10.1002/mrc.4195
http://www.ncbi.nlm.nih.gov/pubmed/25641013
http://dx.doi.org/10.1093/bioinformatics/btu567
http://www.ncbi.nlm.nih.gov/pubmed/25147360
http://dx.doi.org/10.1186/1756-0500-7-468
http://www.ncbi.nlm.nih.gov/pubmed/25056180
http://dx.doi.org/10.1093/bioinformatics/btw041
http://www.ncbi.nlm.nih.gov/pubmed/26819473
http://dx.doi.org/10.1093/bioinformatics/btv376
http://www.ncbi.nlm.nih.gov/pubmed/26093150
http://dx.doi.org/10.1093/bioinformatics/btw167
http://www.ncbi.nlm.nih.gov/pubmed/27153605
http://dx.doi.org/10.3389/fninf.2017.00032
http://www.ncbi.nlm.nih.gov/pubmed/28507515
http://www.ncbi.nlm.nih.gov/pubmed/27350455
http://dx.doi.org/10.1016/j.tibtech.2017.03.009
http://www.ncbi.nlm.nih.gov/pubmed/28413096
http://dx.doi.org/10.1111/mmi.13118
http://www.ncbi.nlm.nih.gov/pubmed/26172072


Informatics 2017, 4, 28 17 of 18

41. Abriata, L.A.; Albanesi, D.; Dal Peraro, M.; de Mendoza, D. Signal Sensing and Transduction by Histidine
Kinases as Unveiled through Studies on a Temperature Sensor. Acc. Chem. Res. 2017. [CrossRef] [PubMed]

42. Mwalongo, F.; Krone, M.; Becher, M.; Reina, G.; Ertl, T. GPU-based remote visualization of dynamic molecular
data on the web. Graph. Model. 2016, 88, 57–65. [CrossRef]

43. Mwalongo, F.; Krone, M.; Becher, M.; Reina, G.; Ertl, T. Remote Visualization of Dynamic Molecular Data
Using WebGL. In Proceedings of the 20th International Conference on 3D Web Technology, Heraklion,
Greece, 18–21 June 2015; pp. 115–122.

44. Abriata, L.A.; Palzkill, T.; Dal Peraro, M. How structural and physicochemical determinants shape sequence
constraints in a functional enzyme. PLoS ONE 2015, 10, e0118684. [CrossRef] [PubMed]

45. Hanson, R.M.; Lu, X.-J. DSSR-enhanced visualization of nucleic acid structures in Jmol. Nucleic Acids Res.
2017. [CrossRef] [PubMed]

46. DeLano, W.L. The PyMOL Molecular Graphics System; DeLano Scientific: San Carlos, CA, USA, 2002.
47. Rothenbreger, O.; Newton, T.; Hanson, R.; Sitzmann, M. The Jmol Virtual Molecular Model Kit: A Resource

for Teaching and Learning Chemistry. In CHED Committee on Computers in Chemical Education; American
Chemical Society: Washington, DC, USA, 2011.

48. Abriata, L.A. Structural database resources for biological macromolecules. Brief. Bioinform. 2016. [CrossRef]
[PubMed]

49. Jensen, J.H.; Kromann, J.C. The Molecule Calculator: A Web Application for Fast Quantum Mechanics-Based
Estimation of Molecular Properties. J. Chem. Educ. 2013, 90, 1093–1095. [CrossRef]

50. Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.;
Nguyen, K.A.; Su, S.; et al. General Atomic and Molecular Electronic Structure System. J. Comput. Chem.
1993, 14, 1347–1363. [CrossRef]

51. Scalfani, V.F.; Williams, A.J.; Tkachenko, V.; Karapetyan, K.; Pshenichnov, A.; Hanson, R.M.; Liddie, J.M.;
Bara, J.E. Programmatic conversion of crystal structures into 3D printable files using Jmol. J. Cheminform.
2016, 8, 66. [CrossRef] [PubMed]

52. Jiang, C.; Jin, X.; Dong, Y.; Chen, M. Kekule.js: An Open Source JavaScript Chemoinformatics Toolkit. J. Chem.
Inf. Model. 2016, 56, 1132–1138. [CrossRef] [PubMed]

53. Burger, M.C. ChemDoodle Web Components: HTML5 toolkit for chemical graphics, interfaces, and
informatics. J. Cheminform. 2015, 7, 35. [CrossRef] [PubMed]

54. Sousa da Silva, A.W.; Vranken, W.F. ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012,
5, 367. [CrossRef] [PubMed]

55. Zoete, V.; Cuendet, M.A.; Grosdidier, A.; Michielin, O. SwissParam: A fast force field generation tool for
small organic molecules. J. Comput. Chem. 2011, 32, 2359–2368. [CrossRef] [PubMed]

56. Przybyła, P.; Shardlow, M.; Aubin, S.; Bossy, R.; Eckart de Castilho, R.; Piperidis, S.; McNaught, J.;
Ananiadou, S. Text mining resources for the life sciences. Database 2016, 2016. [CrossRef]

57. Chen, H.; Sharp, B.M. Content-rich biological network constructed by mining PubMed abstracts.
BMC Bioinform. 2004, 5, 147. [CrossRef] [PubMed]

58. Krallinger, M.; Rabal, O.; Leitner, F.; Vazquez, M.; Salgado, D.; Lu, Z.; Leaman, R.; Lu, Y.; Ji, D.; Lowe, D.M.;
et al. The CHEMDNER corpus of chemicals and drugs and its annotation principles. J. Cheminform. 2015, 7,
S2. [CrossRef] [PubMed]

59. Choi, W.; Kim, B.; Cho, H.; Lee, D.; Lee, H. A corpus for plant-chemical relationships in the biomedical
domain. BMC Bioinform. 2016, 17, 386. [CrossRef] [PubMed]

60. Kim, J.; Ohta, T.; Tateisi, Y.; Tsujii, J. GENIA corpus—Semantically annotated corpus for bio-textmining.
Bioinformatics 2003, 19, i180–i182. [CrossRef] [PubMed]

61. Kass-Hout, T.A.; Xu, Z.; Mohebbi, M.; Nelsen, H.; Baker, A.; Levine, J.; Johanson, E.; Bright, R.A. OpenFDA:
An innovative platform providing access to a wealth of FDA’s publicly available data. J. Am. Med.
Inform. Assoc. 2016, 23, 596–600. [CrossRef] [PubMed]

62. Lopez, J.; Coll, J.; Haimel, M.; Kandasamy, S.; Tarraga, J.; Furio-Tari, P.; Bari, W.; Bleda, M.; Rueda, A.; Gräf, S.;
et al. HGVA: The Human Genome Variation Archive. Nucleic Acids Res. 2017. [CrossRef] [PubMed]

63. Chastine, J.W.; Brooks, J.C.; Zhu, Y.; Owen, G.S.; Harrison, R.W.; Weber, I.T. AMMP-Vis: A Collaborative
Virtual Environment for Molecular Modeling. In Proceedings of the ACM Symposium on Virtual Reality
Software and Technology, Monterey, CA, USA, 7–9 November 2005; pp. 8–15.

http://dx.doi.org/10.1021/acs.accounts.6b00593
http://www.ncbi.nlm.nih.gov/pubmed/28475313
http://dx.doi.org/10.1016/j.gmod.2016.05.001
http://dx.doi.org/10.1371/journal.pone.0118684
http://www.ncbi.nlm.nih.gov/pubmed/25706742
http://dx.doi.org/10.1093/nar/gkx365
http://www.ncbi.nlm.nih.gov/pubmed/28472503
http://dx.doi.org/10.1093/bib/bbw049
http://www.ncbi.nlm.nih.gov/pubmed/27273290
http://dx.doi.org/10.1021/ed400164n
http://dx.doi.org/10.1002/jcc.540141112
http://dx.doi.org/10.1186/s13321-016-0181-z
http://www.ncbi.nlm.nih.gov/pubmed/27933103
http://dx.doi.org/10.1021/acs.jcim.6b00167
http://www.ncbi.nlm.nih.gov/pubmed/27243272
http://dx.doi.org/10.1186/s13321-015-0085-3
http://www.ncbi.nlm.nih.gov/pubmed/26185528
http://dx.doi.org/10.1186/1756-0500-5-367
http://www.ncbi.nlm.nih.gov/pubmed/22824207
http://dx.doi.org/10.1002/jcc.21816
http://www.ncbi.nlm.nih.gov/pubmed/21541964
http://dx.doi.org/10.1093/database/baw145
http://dx.doi.org/10.1186/1471-2105-5-147
http://www.ncbi.nlm.nih.gov/pubmed/15473905
http://dx.doi.org/10.1186/1758-2946-7-S1-S2
http://www.ncbi.nlm.nih.gov/pubmed/25810773
http://dx.doi.org/10.1186/s12859-016-1249-5
http://www.ncbi.nlm.nih.gov/pubmed/27650402
http://dx.doi.org/10.1093/bioinformatics/btg1023
http://www.ncbi.nlm.nih.gov/pubmed/12855455
http://dx.doi.org/10.1093/jamia/ocv153
http://www.ncbi.nlm.nih.gov/pubmed/26644398
http://dx.doi.org/10.1093/nar/gkx445
http://www.ncbi.nlm.nih.gov/pubmed/28535294


Informatics 2017, 4, 28 18 of 18

64. Pence, H.E.; Williams, A.J.; Belford, R.E. New Tools and Challenges for Chemical Education: Mobile
Learning, Augmented Reality, and Distributed Cognition in the Dawn of the Social and Semantic Web.
In Chemistry Education; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 693–734.
ISBN 978-3-527-67930-0.

65. Gillet, A.; Sanner, M.; Stoffler, D.; Goodsell, D.; Olson, A. Augmented reality with tangible auto-fabricated
models for molecular biology applications. IEEE Vis. 2004. [CrossRef]

66. Gillet, A.; Sanner, M.; Stoffler, D.; Olson, A. Tangible interfaces for structural molecular biology. Structure
2005, 13, 483–491. [CrossRef] [PubMed]

67. Vega Garzón, J.C.; Magrini, M.L.; Galembeck, E. Using augmented reality to teach and learn biochemistry.
Biochem. Mol. Biol. Educ. 2017. [CrossRef] [PubMed]

68. Berry, C.; Board, J. A Protein in the palm of your hand through augmented reality. Biochem. Mol. Biol. Educ.
2014, 42, 446–449. [CrossRef] [PubMed]

69. Wilkinson, S.R.; Almeida, J.S. QMachine: Commodity supercomputing in web browsers. BMC Bioinform.
2014, 15, 176. [CrossRef] [PubMed]

70. Abriata, L.A. A Simple Spreadsheet Program To Simulate and Analyze the Far-UV Circular Dichroism
Spectra of Proteins. J. Chem. Educ. 2011, 88, 1268–1273. [CrossRef]

71. Stein, L.D. Towards a cyberinfrastructure for the biological sciences: Progress, visions and challenges.
Nat. Rev. Genet. 2008, 9, 678–688. [CrossRef] [PubMed]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/VISUAL.2004.7
http://dx.doi.org/10.1016/j.str.2005.01.009
http://www.ncbi.nlm.nih.gov/pubmed/15766549
http://dx.doi.org/10.1002/bmb.21063
http://www.ncbi.nlm.nih.gov/pubmed/28436090
http://dx.doi.org/10.1002/bmb.20805
http://www.ncbi.nlm.nih.gov/pubmed/24979189
http://dx.doi.org/10.1186/1471-2105-15-176
http://www.ncbi.nlm.nih.gov/pubmed/24913605
http://dx.doi.org/10.1021/ed200060t
http://dx.doi.org/10.1038/nrg2414
http://www.ncbi.nlm.nih.gov/pubmed/18714290
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Timeline of JavaScript in Science 
	JavaScript Libraries for Online, Interactive Data Display 
	JavaScript Tools for Numerical Calculations in Simulations, Data Processing, and Analysis 
	JavaScript Tools for Handling Strings, Text Mining, and Linguistics 
	On-the-Fly Data Retrieval and Utilization within JavaScript Web Apps 
	State-of-the-Art JavaScript Web Apps to Inspire Advanced Applications in Molecular Biosciences 
	Modularity, Integrability, and Open Nature of JavaScript Libraries 
	Conclusions 

