
 informatics

Article

Visual Exploration of Large Multidimensional Data
Using Parallel Coordinates on Big Data Infrastructure

Joris Sansen *, Gaëlle Richer , Timothée Jourde , Frédéric Lalanne, David Auber and
Romain Bourqui

LaBRI, UMR 5800, Université de Bordeaux, 351, cours de la Libération F-33405 Talence Cedex, France;
gaelle.richer@u-bordeaux.fr (G.R.); itim.lcf@gmail.com (T.J.); frederic.lalanne@u-bordeaux.fr (F.L.);
david.auber@labri.fr (D.A.); romain.bourqui@labri.fr (R.B.)
* Correspondence: joris.sansen@u-bordeaux.fr

Academic Editors: Achim Ebert and Gunther H. Weber
Received: 31 May 2017; Accepted: 10 July 2017; Published: 12 July 2017

Abstract: The increase of data collection in various domains calls for an adaptation of methods
of visualization to tackle magnitudes exceeding the number of available pixels on screens and
challenging interactivity. This growth of datasets size has been supported by the advent of accessible
and scalable storage and computing infrastructure. Similarly, visualization systems need perceptual
and interactive scalability. We present a complete system, complying with the constraints of aforesaid
environment, for visual exploration of large multidimensional data with parallel coordinates.
Perceptual scalability is addressed with data abstraction while interactions rely on server-side
data-intensive computation and hardware-accelerated rendering on the client-side. The system
employs a hybrid computing method to accommodate pre-computing time or space constraints and
achieves responsiveness for main parallel coordinates plot interaction tools on billions of records.

Keywords: big data; multidimensional data; parallel coordinates; interactive data exploration and
discovery; distributed computing

1. Introduction

Recent years have seen a striking increase in the amount of collected and generated data. For instance,
in web analytics, visitors’ behavior is analyzed to the event-level to improve services and marketing
strategies. Naturally, such amounts bring about new challenges for storing, querying and analyzing
these ever-growing datasets. Among other approaches, information visualization enables the exploration
and understanding of complex data without prior knowledge of the patterns and trends to identify.
However, traditional information visualization systems are not fitted for large-scale data exploration
and have to be adapted to tackle the new challenges that arise from the surge of dataset sizes. The first
consequence of this growth is the increase of the time needed to process the data. Another consequence is
the separation of the data storage from the visualization client. Often, large data are stored on distant
repositories and cannot reasonably be moved since the time (and storage on the destination computer)
necessary for such operation is too important to be considered. Finally, the screen space is physically
limited by its number of available pixels and large amounts of visual elements either cannot fit or
become indistinguishable. Therefore, scalable visualization systems have to address three main challenges:
perceptual scalability, interactive scalability and remoteness. Perceptual scalability refers to screen space
and user capabilities limitations when depicting large data. Interactive scalability encompasses the latencies
incurred by processing and querying large data for interaction. Remoteness corresponds to data processing
and visualization being performed at separate locations which induces data transfer. To limit latencies
during interaction, the visualization system has to be designed with this major bottleneck in mind.

Informatics 2017, 7, 21; doi:10.3390/informatics4030021 www.mdpi.com/journal/informatics

http://www.mdpi.com/journal/informatics
http://www.mdpi.com
https://orcid.org/0000-0002-7556-1668
https://orcid.org/0000-0002-8780-0486
https://orcid.org/0000-0002-1847-2589
http://dx.doi.org/10.3390/informatics4030021
http://www.mdpi.com/journal/informatics

Informatics 2017, 7, 21 2 of 22

Various visualization techniques are dedicated to quantitative multivariate data: scatterplot
matrices [1], hyperboxes [2], star coordinates [3], Andrew curves [4] and parallel coordinates [5] are
well-known examples. In the parallel coordinates technique, all dimensions of the multidimensional
data are represented as parallel axes and each record as a polyline. A record’s polyline intersects each
axis at its corresponding dimensional value (see Figure 1a). The strength of this plot is that it offers an
overview of the multidimensional data since each dimension is displayed uniformly. However, the
patterns revealed by a plot strongly depend on the arbitrary placement of its axes [6]. For this
reason, interactive axis reordering and flipping are necessary to grasp all pairwise relations between
dimensions. Brushing is another fundamental interaction as it makes possible to select and enhance
a subset of multidimensional items on top of the original view, following a focus+context approach.
For hundred of thousands of items, traditional line-based parallel coordinate plot induces substantial
visual clutter [7] (see Figure 1b) and interaction latencies. Several approaches have been proposed to
deal with these challenges, ranging from using visual enhancement [8], via interactive tools [9], to joint
representations of data subsets [10]. These techniques, either data-driven or screen-based, successfully
handle up to millions of records. However, some may conceal patterns and most techniques are not
adapted for remote visualization constraints.

x1

d1 d2

x2

x3

x4

d3 d4

(a) Line-based encoding (b) 125 000 records from the SUSY dataset [11]

Figure 1. Traditional parallel coordinates. (a) Representation of a four-dimensional record X with a
polyline (b) Example of clutter produced by the crossing and overlapping of many lines.

Adapting parallel coordinates for the interactive visualization of large and remote data requires
schemes to bound the size of the transferred data from the storing location to the visualization point.
One solution lies in using a form of data reduction and representing an abstract version of the data,
of a bounded size, regardless of the original dataset size. A second requirement is having a similar
adaptability (or scalability) in the processing capabilities of the system, relative to the workload
induced by interactive manipulation like brushing. This can be achieved using horizontal scalable
systems which seamlessly parallelize processing over a network of computing and storage units where
data is replicated and partitioned. While vertical scalability denotes the addition of extra resources on
the same unit (e.g., expanding storage or adding a CPU), horizontal scalability is the concept of using
multiple units as a single one. Systems that scale horizontally can theoretically satisfy any increase in
processing demand with the expansion of their network of units.

The main contribution of this paper is a scalable system suited for interactive visual exploration
of large multidimensional data with an abstract parallel coordinates representation. The novelty
of this approach is the horizontal scalability of the system which relies on distributed processing
in the form of pre-computation and on-demand computation, and on data aggregation. The use of
distributed processing using scalable components for interaction allows performance to be tailored
seamlessly to achieve responsiveness. The use of data aggregation provides boundaries for: (1) storage
for pre-computed data, (2) data transfer between a distributed storage and computing infrastructure
and a rendering client and (3) displayed items.

In the following section, we present two topics of related work: perceptual scalability on parallel
coordinates and large-scale visualization systems. Next, in Section 3, we describe the work-flow as well
as the main components of our system. We then describe the abstract parallel coordinates representation
implemented (Section 4) and discuss interactive scalability for panning, zooming, axis rearrangement
and selection in Section 5. In Section 6 we demonstrate the effectiveness of the abstract visualization

Informatics 2017, 7, 21 3 of 22

and in Section 7, the system performances. Finally, we present the conclusions and discuss the possible
future works.

2. Related Work

On line-based parallel coordinate representations, each multidimensional data item is depicted with
a polyline and the multiplication of such polylines produces a rapid increase in the usage of pixels as the
dataset gets larger. Such consumption of pixels is not practical for large datasets: the plot rapidly becomes
overcrowded as polylines cross and overlap. Moreover, rendering and interaction complexity generally
depend on the dataset size which requires fast data querying techniques to ensure responsiveness
for large datasets. In this context, we discuss two topics of related work. First, existing methods for
effectively avoiding clutter and over-plot in parallel coordinates and secondly, previous works on scalable
visualization systems for parallel-coordinate representations and others.

2.1. Overcoming Clutter in Parallel Coordinates

A first approach to deal with clutter in parallel coordinates lies in visual enhancement for
clarifying dense areas and facilitating pattern recognition. This can be accomplished using density-based
methods [8,12,13] or curves instead of lines [14–16]. However, such methods do not scale as they are,
since they require to draw every item. According to Ellis and Dix [17], clutter reduction techniques
that directly meet the scalable criteria are sampling, filtering, and clustering. In Ellis and Dix [9],
sampling is applied locally, with an interactive lens, to unclutter the plot. Similarly, filtering is
used by numerous prior works [18–20] as an interactive and user-controlled tool. Johansson and
Cooper [21] introduced a screen-space measure to filter items while preserving significant features
with better results than data-space measures. Using sampling or filtering for data reduction has the
advantage of keeping a consistent visual representation of items, regardless of the chosen level of
detail. However, these approaches have limitations as a general methods to avoid clutter. For example,
filtering often requires prerequisite knowledge of the data, otherwise meaningful structures or outliers
may be unintentionally hidden.

Clustering the data is another possible approach adopted in many previous works. Cluster-based
enhancement on traditional representations facilitates identification of multidimensional groups of items
by using visual cues such as color, opacity or bundling. For example, in Johansson et al. [22] transfer
functions are applied independently to high-precision textures generated for each computed cluster.
Luo et al. [23] use curved bundles which both help to trace lines trough axes and facilitate the
identification of groups. Representing aggregates instead of their covered subset of items/polylines
further reduces visual clutter and may speed up the rendering. Aggregates have been represented
using statistical metrics [24], envelopes or bounding-boxes [5,10,18,25]. Fua et al. [18] render both
multidimensional clusters as polygons and mean values as dense lines and McDonnell and Mueller [10]
draw bundled envelopes. This approach has been generalized to hierarchical clustering [18,26] to support
multiscale exploration.

As stated by Palmas et al. [27], multidimensional data reduction (sampling or clustering)
enhances global trends to the cost of potentially concealing pairwise relationships between dimensions.
Novotny and Hauser [28] propose a hybrid solution which separates the rendering of outliers from the
rest. On the one hand, data are clustered using a binning clustering technique and two-dimensional bins
are represented using parallelograms. On the other hand, outliers are rendered using polylines. Doing so,
in-between axis information is not degraded and clusters are sharper due to outliers having been primarily
filtered out. The bundled parallel coordinates presented by Palmas et al. [27] uses one-dimensional
clustering which improves visual continuity on axes compared to [28]. One-dimensional clustering creates
meta-link between axis aggregates, similar to Kosara et al. [29]’s Parallel Sets which deals with nominal
data inducing natural groups on axes. Matchmaker [30] presents comparable weighted and curved
meta-links between axes, however, the clustering technique employed is applied on groups of dimensions
which relates to the specific case of inherent groupings between dimensions.

Informatics 2017, 7, 21 4 of 22

Most of these techniques efficiently handle up to dozens of thousands of items for rendering.
However, they do not scale to millions or billions of items. To the best of our knowledge, it is mainly
due to their computational and memory costs with standard computers. This challenge is precisely the
scope of this paper.

2.2. Scalable Visualization Systems

When data becomes too massive to fit inside a computer’s memory, input/output communication
with slower, external or remote, memory and data-processing time create a substantial bottleneck for
interactive visualization. Solutions arise from hardware upgrades (vertical scalability) with parallel
processing, distributed methods (horizontal scalability) and other strategies (e.g., out-of-core methods,
data abstraction, tailored indexing).

Hardware acceleration of modern GPU is now frequently used [18,22,25,31] to render
millions of items in real-time. Parallel processing can also serve data processing with dedicated
multi-core computing units [32], distributed systems of servers running on commodity
hardware [33,34] or multi-threading [35]. Other mechanisms to enable interactivity at large scale
include pre-computing [31,33] and pre-fetching, incremental approaches, and data abstraction with
multi-resolution representations [18,33,36]. For instance, Rübel et al. [32] and Perrot et al. [33] propose
systems associating several of these solutions to scale interactive representations (respectively parallel
coordinate and heatmaps) to extremely large datasets. Rübel et al. [32] present a system combining the
multi-resolution binning technique of Novotny and Hauser [28] and FastBit [37], an index/query tool,
on a supercomputer. Perrot et al. [33] use Canopy clustering for multilevel heatmaps computed over a
distributed infrastructure, most similar to our setting.

Ideally, a visual exploration system should support interaction following the user’s flow of
thoughts [38] i.e., should operate in less than one second. Generally, bringing interactivity on modest
systems operating on large data is a trade-off between pre-computation, approximate computation [39]
and the cost of the hardware used. For instance, Rübel et al. [32] use a supercomputer system to
achieve 0.15 s response time for tracing 500 items, over a dataset of almost 200 million items, with 100
computing units. In this paper, we target common-hardware and use an infrastructure where the
distributed storage is leveraged for computation. Compared to supercomputers, these infrastructures
do not offer as efficient communication between units and generally less computing power.
Nevertheless, they are much more accessible and affordable and quite common nowadays in various
domains (e.g., web analytics). To address data transfer, we use data reduction in the form of aggregation,
with per-dimension clustering, as described in the following section.

3. System Overview

Our system lies on two major parts, (1) an abstract representation which addresses the transfer
bottleneck and the perceptual scalability, (2) all interactions requiring the full data to be computed
occur in a distributed manner on a data-intensive back-end platform. This way, two levers are available
for supporting increasingly large data sets and/or improving interactivity: the level of detail which,
among other things, impacts the client-server transfer time, and the computing and storage resources
of the back-end by expanding the network of computing units. The main components of our system
are laid out on Figure 2: the back-end is composed of distributed components that store and process
the data, as well as a server acting as its interface. The client renders and animates the representations
and interacts with the server for completing interactions that involve the full data. First, we describe
the overall work-flow that takes place on the data-intensive platform. Then, we motivate and precise
the abstraction used.

Informatics 2017, 7, 21 5 of 22

Data Storage Remote VisualizationData Processing

Spark

D
at

a-
in

te
n

si
ve

 p
la

tf
o

rm

Elasticsearch

Real-time analytics system
dimension clusters for each record

Hadoop

raw data set

File system

read/write

Database

query/
response

per-dimension
clustering
(clusters &
meta-links)

preparation of all
single-aggregate
selections (cluters
& meta-links)

initial view data
(clusters & meta-links)

single-aggregate
 selections data

Web Browser

Client-only
interactions

Server-supported
interactions

axis inversion

axis reordering
selection

zoom & pan

D
is

tr
ib

u
te

d
 c

o
m

p
o

n
en

ts

Se
rv

e
r

In
te

rf
ac

e

query/
response

Pre-computing

Figure 2. System components. Data processing steps using Spark occur once and consist in the
clustering of dimension values, forming the abstraction (clusters and meta-links) for the initial view and
all axis ordering, as well as preparing all single-aggregate selections. The server interface communicates
with two types of storage system to answer queries received from the rendering client, one holding
prepared data, the other processing aggregation on-demand.

3.1. Distributed Processing Work-Flow

The platform is used for hosting the raw data and computing abstract representations for different
states of the visualization: corresponding to the initial view or resulting from user interactions.
The different types of queries performed by the client are: display of a dataset for a given axis
ordering and brushing data given a set of selected aggregates. The back-end computes a per-dimension
clustering of the raw dataset and the aggregates (clusters and meta-links) corresponding to those two
types of query. While the aggregates formed from the full data are always computed in a preparatory
step, the one formed from subsets (used in brushing), result from both beforehand and on-demand
computed data depending on the query type.

The pre-computing step (see Figure 2) encompasses computing an abstraction of the raw data
and the results of several queries which are inserted into the distributed database. The abstraction,
resulting from per-dimension clustering, is subsequently indexed into the real-time analytics system
in the form of n vectors (one for each record) where each components gives the cluster identifier of
the corresponding dimension. Queries are forwarded by the server, depending on their type, to the
prepared data storage or to the analytics system for on-demand filtering and aggregation. On the latter
system, cost is related to the number of records involved whereas in the former it is constant.

3.2. Bounding Data Transfer

We use per-dimension clustering as an aggregation strategy. The number of produced clusters
for each dimension (called resolution parameter k) together with the number of dimensions (noted d),
determines the number of rendered elements. Consequently, controlling and tuning this resolution
parameter or degree of reduction conditions the transfer data size, the client memory footprint and
the amount of displayed items. Moreover, rendering and interactions that can be performed on the
abstract data have complexity independent of the underlying data set size, meeting the interactive
scalability criterion. Thus, the performances of the abstract visualization become solely dependent
on k and the number of displayed dimension rather than the actual number of records.

Informatics 2017, 7, 21 6 of 22

Clustering algorithms group items based on a measure of similarity which creates a simplified
version of the original data, ideally with meaningful groups (clusters). No omnipotent clustering
algorithm is suited for all type of data. Various algorithm have been used in state-of-the-art techniques
(Fua et al. [18] uses Birch algorithm, Van Long and Linsen [26] uses a grid-based algorithm,
Palmas et al. [27] uses kernel density estimation). In this article, any clustering algorithm can be chosen
as long as it produces a strict partitioning of the interval of dimension values, i.e., all resulting clusters
should form non-overlapping intervals. Among the various possibilities (k-means [40], DBSCAN [41],
binning or adaptive binning as used in [28]). In the performance evaluation of our system, we used
Perrot et al. [33]’s Canopy clustering since our prerequisites were similar: a small number of passes
over the data to limit processing time and an efficient distributed implementation.

For a fixed resolution parameter k, defined prior to pre-computation, we expect a maximum
of k clusters per-dimension. An abstraction is composed of those d · k clusters and the meta-links
induces between axes, amounting to at most k2 between each pair of axes. Clusters have, as properties,
their extrema values, their cardinality/weight and a distribution of their values, meta-links have their size.
As a result, the total number of items to be transferred between server and client is effectively bounded
by k · d + k2 · d, where d is the number of displayed dimensions. Additionally, exchanges between the
server and the two different storage components benefit from the same bound. Indeed, in both cases the
transferred data have been aggregated beforehand.

4. Abstract Parallel Coordinates Design

In this section, we focus on the abstract representation design. Similar to Palmas et al. [27],
we cluster values on each dimension and bundles lines between pairs of clusters into meta-links.
We explored visual metaphors for both types of aggregates (clusters and meta-links) inspired by
Palmas et al. [27] and Kosara et al. [29]’s Parallel Sets while striving to reduce occlusion and retain the
general overview. The overall design also resembles Sankey diagrams (e.g., [42]), which are specifically
designed to represent flow data.

Our abstract parallel coordinates design uses a distribution visual encoding of clusters. With such
encoding, the size of cluster representations depends on the number of elements in the corresponding
subset (see Figures 3 and 4b). This approach has been widely used in many visualization techniques
for rendering abstract elements (e.g., matrix based diagrams). Using this weight depiction, one can
easily find which clusters are the most important for a given dimension and if they are connected to
many small clusters or rather to a few large ones. Each cluster of a dimension covers both an interval
of values and a subset of records/items, with intervals being non-overlapping as stated in Section 3.
Using this visual encoding does not natively provide the information of the interval covered by the
subset. To solve this issue, we added an inter-clusters spacing to convey an approximation of their
covered interval (see Figure 4b). This way, the relative distance between clusters can be assessed and
compared. To provide a better insight of this information we also implement an interval visual encoding
similar to Palmas et al. [27]’s representation (see Figures 3 and 4c). These two different encoding
strategies reflect the dual interpretation of clusters: either as a sub-space of a dimension or as set of
close items. In both case, clusters surfaces are leveraged with the display of a smoothed mirrored
histogram providing an overview of the values distribution (see Figure 3). This histogram is computed
using 10 regular bins (equal-size intervals) for each cluster, with all bin sizes normalized per axis.
For each attribute, the larger the bin is, the closer the histogram is to the edges of the cluster.

Informatics 2017, 7, 21 7 of 22

Figure 3. Both implemented visual encodings for the same abstraction (k = 30). On top, the
distribution encoding; on the bottom, the interval encoding. Surrounded in red: the inner-cluster smoothed
histogram view.

inter-cluster
interval

clustered
elements

cluster
interval

aggregate
(cluster or meta-link)

weight unit
(on and)clusters meta-links

3

1

2

5

(a) Line-based encoding.

3

4

(b) Distribution visual encoding.

4

3 5

2

(c) Interval visual encoding.

Figure 4. Comparison of the two visual encodings proposed for abstract parallel coordinates compared
to the line-based version displayed on (a). On (a), 1 four elements forming the example cluster and
2 two sets of connections forming two example meta-links. On (b), cluster and meta-links size

encodes their weight. Meta-links anchor points on clusters are sorted relative to their destination
to limit crossings as shown on 3 . On (c), cluster sizes correspond to their interval size. Meta-link
colors and size respectively depends on their weight and ends. They are depth sorted by weight and
attached on each cluster ends to the highest density point as represented on 3 . On both (b) and
(c), the inner-cluster smoothed histogram is represented on 3 . Finally, 4 shows that inter-cluster
intervals can be compared, per-axis, on both encodings.

Meta-links are two-dimensional aggregates, and as such, bear an analogous encoding to clusters.
They are represented as ribbons with the size of the subset they cover mapped to their thickness or
ends sizes depending on the encoding. Several methods are used to reduce in-between axes clutter.
In the distribution visual encoding, meta-links that end on the same cluster are vertically spaced and

Informatics 2017, 7, 21 8 of 22

sorted to minimize crossings as in [29,30] which highly reduces clutter. In both encodings, meta-links
are rendered as Bézier curves thinned down in their middle part. Additionally, color intensity and
depth sorting are used to further enhance the largest meta-links.

All these features make possible, analyzing both aggregates (clusters and meta-links), to compare
at a dimension scale the sizes, densities, separations and distributions on axes. Additionally, using
the interval encoding, the slope of meta-links can be used to draw, to some extent, conclusion on the
relationship between neighbouring dimensions. The distribution encoding emphasizes larger groups,
and consequently major trends, while also tremendously reducing in-between axes clutter but does
not provide the ability to assess relationship between dimensions due to the cluster positioning and
meta-link positioning schemes. This illustrates the complementarity of both visual encodings.

5. Enabling Interactivity

With usual parallel coordinates tasks in mind, we first identify a set of interactions adapted
to abstract parallel coordinates and complying with data processing and transfer constraints.
We expose their pre-computation costs and the corresponding chosen strategy (pre-computing or
on-demand processing).

5.1. Tasks & Interactions

Common tasks for parallel coordinates include gaining an overview, evaluating correlation
between dimensions, identifying subsets of items presenting similar features, and searching for item
with a particular multidimensional profile. Gaining a complete overview of multidimensional data
implies being able to see every pairs of dimensions. However, without interaction, the ordering of
axes only represents a fraction of all the information the dataset contains (non-contiguous dimension
relationships are not represented). Bringing axes side-by-side allows an analysis of the meta-links and
eases clusters distribution comparison. Using the interval encoding, it also allows the identification of
correlation, recognizable by parallel meta-links between the two considered axes. Various tools exist to
perform this operation: axis replacement, swap or move.

In abstract parallel coordinates, the aggregation of close dimension values facilitates the distinction
of groups of items exhibiting similar features on a given dimension. Highlighting a subset of items
permits tracing them across all dimensions. To find items falling into a specific range of values on
different dimension, we implement a single-aggregate selection (see Figure 5a) triggered by click on
clusters and meta-links and a compound aggregate selection triggered by axis sliders in a filtering
fashion (see Figure 5b). Subset highlighting acts as a brushing interaction where selection only operates
on aggregates (both clusters and bi-dimensional aggregates, also called meta-links). A selected subset is
represented over meta-links and clusters with a gauge showing the proportion of the selected items they
contain (see Figure 5a,b) in the distribution encoding and with color intensity in the interval encoding.
Additionally, inner-cluster distributions are updated to reflect the distribution of the selected subset
only. Making possible to select a subset and emphasize its distribution on the overall representation to
compare and analyze the dataset is the core of the focus+context visualization step. The two following
sections will describe the interaction tools implemented to allow these tasks. Other solutions that this
work will not cover are the grand tour [43], optimum axis placement, and dimensionality reduction.

Informatics 2017, 7, 21 9 of 22

(a) Example of cluster selection (on the DeviceType axis)

(b) Range selection on the highest values of the NbPages axis

Figure 5. Two selection views on a C2C dataset described in the next section. Here, items are visiting
session on a website. Selecting an aggregate (cluster or meta-link) triggers the highlight of the selected
subset through all the displayed axes. The inner-cluster histograms are also updated according to the
selection. (a) Selection of the smartphone category (on DeviceType); (b) Selection of the higher range of
values (between 37 and 300) on the NbPages axis which relates to the number of visited pages.

5.2. Client-Only Interaction & Parameters

Our system supports various interaction tools to help the user in its exploration. Several rendering
parameters can be tweaked to instantly obtain different views as they are handled on the client
side solely:

• Zoom and pan: the most classical interaction tool to explore and navigate within a representation.
• Axis height: used to tune the aspect ratio of the representation by increasing or reducing the

height of the axes.
• Cluster width: can help the user by emphasizing or reducing the focus on the clusters (and the

histogram within).
• Meta-link thickness: changing the thickness makes possible to emphasize the meta-links between

clusters rather than the clusters themselves.

Informatics 2017, 7, 21 10 of 22

• Meta-link curvature: curving and bundling the meta-link is often used to reduce the clutter, tuning
the degree of curvature makes possible to optimize the clutter reduction and Meta-link visibility.

• Inter-axis spacing: increasing (or reducing) the space between axes makes possible to increase the
focus either on clusters or on meta-links and changes the aspect ratio of the representation.

• Intra-axis spacing: the percentage of empty space allocated to represent the relative distance
between clusters (as presented in Section 4) can be reduced at no space (results in displaying a
stacked histogram, see Figure 6) or increased to focus on the relative distance between clusters.

• Axis inversion: inverting an axis may help reducing unnecessary clutter by decreasing the number
of crossings.

Figure 6. The modification of the two spacings, inter- and intra-axis, allows to tune the representation
to get the best ratio depending on the user interest. Thus, we can go from no spaces at all, providing a
stacked-histogram (bottom left), to a representation that rather focuses on relative distance between
clusters and elements distribution between axes (top right).

5.3. Server-Supported Interaction

As the visualization client only stores the necessary data to display the abstracted parallel
coordinate view, interactions that need to update the rendered data require for data to be transferred
from the server to the client.

• Axis reordering: the use of this interaction tool is to compensate the main drawback of parallel
coordinates: as axes are aligned, comparisons can only be made between pairs of attributes.
Furthermore, datasets with a lot of attributes are difficult to read because of the horizontal
resolution limit of screens. Moving an axis within the representation implies to update the
meta-links between the moved axis and its neighbors (before and after the displacement).

• Removing or adding axis: Removing an axis is used to reduce the width of the representation by
hiding unnecessary axis. As the need for an attribute can change over time and with user needs,
each hidden axis can be shown again.

• Aggregate selection: This interaction allows to bring the focus on aggregates and emphasizes the
distribution of the selected subset on the displayed attributes. The total number of meta-links
for a given abstracted dataset is always less than k2 · d2. Hence, the maximum number of
different single-aggregate selections is k · d + k2 · d2, considering that subset selection can be applied
to any cluster or meta-link in any axis ordering. The total number of aggregates to compute

Informatics 2017, 7, 21 11 of 22

for the operation is bounded by k4 · d4. This boundary remains reasonable for moderate k
(resolution parameter) and d (number of dimensions) values.

• Compound selection: This interaction has similar effect as the Aggregate selection (see Figure 5b)
but is triggered by axis sliders that define an interval of interest on each dimension and allows the
selection of several groups of consecutive clusters on different dimensions at once, corresponding
to set operations between aggregates’ subsets. Unlike aggregate selection, these selections cannot
be reasonably pre-computed: multiple dimension criteria create a combinatorial explosion of
different sub-selections. This is why we handle their computation in real-time.

Tracking individual items could easily be implemented using the on-demand computing scheme.
However, this would require an additional medium for choosing and picking the desired item since
the visualization technique does not discriminate individual items.

6. Perceptual Scalability

This section presents the effectiveness of the technique described in this article.
Our technique is based on abstract visualization and as such, functions identically regardless of the

dataset size, large or not. Indeed, only the chosen resolution parameter influences the representation
(see Section 5). On the contrary, traditional line-based technique do not scale visually to large data.
Thus, we perform two case-studies: a comparison with traditional parallel coordinate plot using a
state-of-the-art dataset (the cars dataset provided in [44] with 400 records) and an exploratory analysis
of large data (with 1.6 billions of records).

6.1. Comparison to Traditional Parallel Coordinates

The cars dataset represents the characteristics of 400 cars using 20 attributes: the nine first attributes
are either categorical (constructor) or boolean value (false is set to 0 and true to 1) while the remaining are
integers and reals. The numerical attributes are clustered using a resolution parameter k = 15 while the
categorical and boolean attributes are just aggregated by exact match (alphabetical or true/false values).

6.1.1. Gain Overview

At first sight, one can notice on Figure 7 that it is rather easy to figure out the distribution of
clusters per attributes with our technique since clusters and meta-links are depicted as thick as the
number of elements they represent. Thus, the distribution of elements over clusters for an attribute is
one of the first information we obtain when visualizing the clusters. For example if we consider the
boolean attributes in Figure 7b (the 8 attributes starting from the second one on the left), elements are
clustered in two aggregates (except for the Pickup category), and it is rather straight forward to identify
the distribution within each categories. Similarly, it is quite simple to find out the meta-links between
one cluster and its neighborhood and in which proportion since meta-link thickness represents the
number of elements. It is difficult to obtain the same information on Figure 7a as many lines overlap.
This is a well-known limit of classical parallel coordinates and modern state-of-the-art techniques
do present solutions to this issue (using density [12], curves[14] for example). If we consider the
two attributes of retail price and dealer cost (surrounded in red on Figure 7a,b), we observe with both
techniques, line-based and abstracted, that meta-links between the two axes are parallel. This indicates
that both attributes of retail price and dealer cost are, to some degree, correlated. On the contrary, the two
pairs of axes HorsePower (HP)-City MPG (surrounded in blue) and Hwy MPG-weight (surrounded
in yellow) present meta-links that cross in a dense area. That tends to indicate an anti-correlation:
high (resp. low) value for one attribute induces low (resp. high) value for the second attribute.

Informatics 2017, 7, 21 12 of 22

(a)

(b)

(c)

(d)

Figure 7. Cars dataset: (a,b) show an overview of the dataset; (c,d) are selections of the cars with less
than 4 cylinders; (a–c) use the traditional parallel coordinates implementation of the Tulip software [45]
and (b–d) use our technique.

Informatics 2017, 7, 21 13 of 22

6.1.2. Subset Highlighting

Both techniques make possible to highlight a subset corresponding to continuous values on a
dimension and trace the distribution of its elements over all others. While Figure 7c suffers from clutter
due to overlaps, our technique makes possible to highlight the selected subset for every attribute and
the proportion it represents for each cluster of the plot. For example, selecting cars with less than 4
cylinders (see Figure 7c,d) emphasizes cars with a low retail price, dealer cost, engine size, horsepower,
weight, wheel base, length and width. The analysis also indicates that the subset matching the selection
also tends to have a lower mileage consumption (city and highway) and matches with city cars which
are small and light-weight cars.

6.2. Large Dataset Visual Analysis

The C2C dataset contains 1.6 billions elements of web traffic data on a C2C (Consumer to
Consumer) website (see Figure 8). This dataset contains 9 dimensions where each item is a sequence
of pages visited by the same user in a given time. The three first axes represent the user’s browser,
OS and device type; the following three are its screen properties (resolution height, width and total
resolution). The last ones correspond to the number of visited pages during the session, the session
duration and the average time spent per page.

C

S

Ap

An

M

T

S

D

IE

F

E

Figure 8. C2C website dataset overview with k = 30 (max. number of clusters per attributes). For this
dataset, each item is a sequence of pages visited by the same user in a given time. The dataset represents
various information collected during visitors navigation : system and device information (OS, browser,
device, screen resolution) and navigation information (number of page visited, visit duration and
average time spend per pages). The labeled clusters correspond to clusters described in the use case for
the browser axis (Edge—E, Firefox—F, Chrome—C, Internet Explorer—E and Safari—S), for the OS axis
(Apple—Ap, Android—An and Microsoft—M), and for the Device type (Desktop—D, Smartphone—S
and Tablet—T).

One can easily identify on Figure 9 two major devices corresponding to Desktops and Smartphones
and a smaller one, the Tablets (respectively labeled D, S and T). We can notice that users can be
distinguished in two equal size categories according to the device they use: either a mobile device
(Smartphones or tablets) or desktop device. If we consider the Desktop devices (see Figure 10a),
they relate to various resolution sizes and are mainly used with a Microsoft Operating System (labeled
M). We can also identify the four major browsers, in growing order of size Chrome, Safari, Firefox and
Internet Explorer (respectively labeled C, S , F and IE). If we consider the Smartphones (see Figure 10b),
the resolutions are smaller and two main OS are highlighted, the one with the smaller gauge relates to
Apple operating systems (labeled Ap) while the bigger one is Android (labeled An). The used browser is
largely Safari (labeled S) for Apple and Chrome for Android.

Informatics 2017, 7, 21 14 of 22

If we analyze this information, we can draw a few conclusions. First, it seems that Microsoft
operating systems are mostly used on desktops while their browsers (Internet Explorer and Edge) are
not in the mostly used. Second, Apple’s products are mainly used with mobile devices (smart-phones
and tablets) and almost solely with the dedicated browser (as highlighted on Figure 9a). Third, Chrome
Browser is as much used with desktops than with smart-phones and mainly with Microsoft and
Android operating system as emphasized on Figure 9b.

(a)

(b)

Figure 9. Subset highlighting on the C2C website dataset with k = 30: Selecting an aggregate highlights
the subset over all the plot. (a) Selection of Apple Operating System (iOS or macOS) shows that
users only use Safari browser (S) and mainly for mobile devices : tablets (T) and smartphones (S);
(b) Selection of Chrome browser (C) highlights users using either desktop devices (D) and smartphone
devices (S) and using the corresponding operating systems: Microsoft (M) and android (An).

We can also identify a low correlation between resolution width, height and total. The low strength
of this correlation is understandable as only higher (resp. lower) total resolution result from high
(resp. low) width and height. Medium total resolution can result from high width and low height
(or the opposite) which decreases the correlation strength.

These two case studies demonstrate that analyses usually done with traditional parallel
coordinates plot can also be performed using our novel abstract-parallel-coordinates technique.
While analyses with classical parallel coordinates are element-oriented, using abstracted parallel
coordinates, they are aggregate-oriented. This makes sense as abstracted parallel coordinates are
dedicated to big data analysis and rather focus on major trends rather than single element analysis.
As for any abstract method, the aggregation used, in our case the clustering algorithm and resolution
parameters chosen, strongly affect the representation and thus, the possible analyses. Pre-computing
the same dataset at various resolution parameter or/and using various algorithms makes possible to

Informatics 2017, 7, 21 15 of 22

refine the analysis but at the expense of storage. Furthermore, using a higher resolution parameter has
direct impact on the data transfer size and thus, can affect responsiveness negatively.

(a)

(b)

Figure 10. Subset selection: selecting an aggregate highlights the subset over all the plot. (a) Selection
of desktop devices (D) highlights users using mainly Microsoft (M) operating system and Chrome (C),
Internet Explorer (IE) and Firefox (F) browsers; (b) Selection of smartphone devices (S) highlights users
using almost equally Android and Apple operating systems and the dedicated browsers (resp. Chrome
(C) and Safari (S).

7. System Scalability

In our solution, two types of computation occur: pre-computing and on-demand query
computation. Pre-computing and on-demand computation are what makes the system interactive,
therefore we evaluated response time for pre-computed queries as well as on-demand queries. We also
examined the scalability of the pre-processing step and on-demand queries execution times relative to
the allocated resources.

Our benchmarks were made using a self-hosted platform composed of 16 computing units,
each having 64 GB RAM and 2 × 6 hyper-threaded cores (2.1 GHz). Network capacity within the
platform is 1 Gbit/s. Data are transferred on a local network between the server and the platform,
as well as between the client and the server. Consequently, all response times were measured from the
client perspective, i.e., they include the local network transfer cost from the platform to the server and
from the server to the client.

7.1. Implementation Details

On the client side we use WebGL, a web variation of OpenGL, to perform GPU-based computation
(using GLSL vertex and fragment shaders) and render visualizations in browsers. More precisely,

Informatics 2017, 7, 21 16 of 22

the client is compiled from C++ to Javascript using emscripten which also binds OpenGL calls to
WebGL instructions.

We implemented our back-end system in an Hadoop environment, a data-intensive infrastructure
providing distributed storage (HDFS), computing (Spark-MapReduce) and database system (HBase)
with horizontal scalability. For on-demand computing, we use Elasticsearch [46], a search system
which runs along with the Hadoop components (see Figure 2).

Pre-computation operations (abstraction and prepared selections) are implemented with Spark.
The basic of the method is to produce RDDs (for Resilient Distributed Dataset, the main data structure
in Spark), where rows represent records with appropriate (key, values) and to retrieve the desired
metrics (minimum, count, etc) by reducing values by keys.

In the following, d designates the number of dimensions and n the number of records.
Computing the abstraction consists in computing the clusters and meta-links properties from the
per-dimension aggregations. These aggregations provide, for each individual record an associated
cluster identifier. From there, cluster extrema are obtained by reducing the n · d raw values indexed by
a pair (dimension, cluster).

Using these extrema, we built an RDD (called clusterRDD) by mapping each of the n rows of raw
values to a d-tuple of (cluster, bin), where the tuple order indicates the dimension. We then transform
each row of the clusterRDD into d rows with key (dimension, cluster, bin). The distribution and weight
of each cluster are then computed by reducing the n · d rows by key. The number of values to process is
therefore O(n · d). To count meta-link weights, we map each clusterRDD row to d·(d−1)

2 rows, one for
each unique pair of dimensions (i, j). These rows have keys (i, j, ci, cj), where ci and cj are cluster
identifiers of dimensions i and j, and with value 1. Reducing by key the resulting RDD gives us the
weights of all meta-links. The number of values to process is therefore O(n · d2).

Clusters properties and meta-link weights for all the cluster selections are obtained with the
same principle as for the abstraction. Since each record contributes to d different cluster selections,
each clusterRDD will be transformed into d times more rows than for the abstraction computation.
Therefore, cluster properties and meta-link weights computation processes O(n · d2) and O(n · d3)

values respectively. Similarly, one record will contribute to d·(d−1)
2 meta-links selections. Therefore,

the cost to compute cluster properties and meta-link weights for those selections is O(d2) times larger,
i.e., respectively O(n · d3) and O(n · d4).

These different steps use the reduceByKey Spark operation which consists in applying a
reducing function onto values grouped by keys. This operation requires a shuffle step to redistribute
values based on their keys between partitions before applying the reduce function. This step being
memory-consuming, we segmented the cluster and meta-link selections computation in sequential
steps so that each step has a computational cost comparable to the abstraction computation one.

7.2. Performance Evaluation Scope

First, we measured pre-computing time which include the clustering, the initial view computation
with the preparation of axis rearrangements and single-aggregate selections. Second, we measured
the performance of single and compound selection queries (respectively corresponding to prepared
queries and on-demand queries). We also examined the scalability of the system by measuring the
speedup obtained by allocating more resources for two operations: pre-computing step and on-demand
brushing queries. The speedup for p corresponds to the ratio of the execution time using a reference
number of computing units (usually one) over those using p computing units. Axis reordering queries
were not evaluated as they work similarly to single-aggregate selection queries and have equivalent or
better performance.

The outcomes of these experiments depend on different factors. In addition to the number of
computing units and the communication overheads, they depend on the chosen dataset and abstraction
properties (itself dependent on the clustering and the resolution parameter k).

Informatics 2017, 7, 21 17 of 22

We considered three types of generated datasets presenting different inter-dimension correlation
factors [47], and with size ranging from 106 to 109 records for 15 dimensions and 15 clusters per
dimension. The first type is independent: every pair of dimensions has a close to null correlation
factor and close to the maximum number of meta-links between each couple of dimensions (about k2).
This type represents the worst case for our system. The second type is correlated, generated to obtain a
correlation factor of at least 0.6 between each pair of dimensions. This dataset aims at mimicking the
correlation that may be observed in real datasets. The last type has the minimum number of meta-links:
k per couple of dimensions, and as such, is the best case. For each test, we average the measured time
over three runs.

7.3. Pre-Computing Performance

Preparing a dataset consists of computing an abstraction and all single-aggregate (clusters and
meta-links) selections. The result of this one-time operation populates HBase with abstract data and
prepared queries. When using on-demand computation, an Elasticsearch index is also populated with
cluster identifiers for each dimensional components of each record. Pre-computing time measurements
(excluding Elasticsearch indexing) are shown in Figure 11a for different data sizes (in number of records)
of the three types of dataset. The pre-computation processing is dominated by the computation of all
single-aggregate selections. Although we consider the clustering method as parameter that should
be chosen in regard of the studied data, we included this step in the measurement. However, it only
accounts for about 0.10% of the total processing time on average.

106 107 108 109

102

103

Number of records

Ti
m

e
(m

in
)

correlated independent best case

(a)

2 4 6 8 10 12 14
0

5

10

15

Number of executors

Sp
ee

d-
up

0

500

1,000

Ti
m

e
(m

in
)

optimum speed-up speed-up execution time

(b)

Figure 11. Performance evaluations for the pre-computation step (clustering, clusters and meta-links,
single-aggregate selections and insertion into HBase). (a) Execution time for the three datasets and
varying number of records; (b) Scalability evaluation for the correlated dataset with 107 records.
The speedup is relative to a sequential execution.

This processing effectively occurs over pre-aggregated data composed of identical records which
are records falling into the exact same cluster for each dimensions (as well as the same cluster histogram
bin). These records are considered identical because they are not distinguishable given the interaction
tools provided by our system. Due to its properties, the best case dataset is reduced to about 10 · k such
identical records (where 10 is the number of inner-cluster histogram bins). Additionally, the best case
dataset presents only about k meta-links between each dimensions while correlated and independent
have about k2, that is k times more. Therefore, about k times more single-aggregate selections are
pre-computed for those two later datasets. The difference in number of pre-computation and the
size of their input data explains the diverging trend observed on Figure 11a between, on the one
side the correlated and independent datasets and on the other side the best case dataset. Indeed, this
optimization is not efficient for the correlated and independent datasets (almost no records are identical).
On our platform, the pre-computation step takes up to 32 h for datasets of a billion of records. For the
largest independent and correlated datasets, the execution time raises up to 24 h.

This computation step runs distributively, hence can be accelerated by increasing the number
of computing units participating the task. Figure 11b presents the mean execution time and the

Informatics 2017, 7, 21 18 of 22

corresponding speedup of this step run on the correlated dataset with 107 records. The speedup here
measures the gain of allocating more executors relative to using a single one. At worst, it appears to be
just over 60% of the optimum, which indicates that the communication overhead is reasonable and that
the computation demonstrates good scalability. Thus, while the pre-computation appears to be costly,
it is possible to allocate more resources to the platform to efficiently accelerate the processing time.

7.4. Prepared Selections Query Performance

To evaluate the performance of single-aggregate selection retrieval, we perform a comparative
benchmark between fetching prepared results from HBase and on-demand computation with
Elasticsearch (both using 16 computing units). For different dataset types and sizes, we measure
response time for selection queries corresponding to each visible elements on an initial display, that is
each of its clusters and meta-links. We average the results of the meta-links and clusters independently
and examine results for the same operations using Elasticsearch. This way, we can characterize the
gain of pre-computing compared to (distributed) on-demand computation. Figure 12 compiles these
results for correlated datasets (independent datasets shows similar results). Overall, prepared queries
can be retrieved in less than 0.1 s from HBase and the response time does not seem to increase with
the dataset size while for Elasticsearch, the response time increases until exceeding the second for
the largest datasets. This shows that past a certain size of dataset, there is a significant gain in using
pre-computation.

106 107 108 109

10−2

10−1

100

Number of records

Ti
m

e
(s

ec
on

ds
)

ES meta-link ES cluster HBase meta-link HBase cluster

Figure 12. Prepared data fetching and on-demand computing execution times for identical queries.
Here response time was measured for all possible single-aggregate selection o(clusters and meta-links)
on an initial view of correlated datasets with varying number of records.

7.5. On-Demand Query Performance

Compound selection queries rely on on-demand processing and operate as a conditional filter
followed by an aggregation. As such, they are dependent on the size of the targeted subset of records.
Therefore, we are particularly interested in evaluating a cost bound for this operation to ensure good
performance. To limit the cost of the aggregation, we query Elasticsearch for at most a subset of half
the size of all the dataset by choosing to filter the dataset complement of the original query when it is
preferable. In these cases, the server uses the pre-computed full abstraction to compose the original
query’s result. We choose to evaluate a higher upper bound for this type of query: the selection of
all aggregates at once which means aggregating all clusters and meta-links. This case is presented
on Figure 13a. The response times increase with the dataset size, which is expected. For datasets of
up to 108 items, the response time is lower than one second, however, for upper sizes, the responses
times are getting very important. It indicates that the number of computing units is not sufficient
to keep up with the aggregating costs for correlated and independent datasets. To ensure sub-second
compound selections for this type of datasets and configuration, more resources have to be allocated.
The surprisingly low latencies observed for the best case dataset result from the same pre-aggregation
treatment of identical records mention above: when populating Elasticsearch indices, only distinct
records are inserted. Consequently, all aggregation are applied on smaller data.

Informatics 2017, 7, 21 19 of 22

As shown, the testing platform shows its limits for the largest datasets used. We measure the
speedup gained by using different number of instances in Elasticsearch cluster relative to using only
two. Figure 13b, presents the result of the execution time of all possible cluster selection queries on
the 2 × 108 version of the independent dataset. Here, the speedup appears better than the optimum as
it is relative to non-sequential execution. The results indicates that the computing capabilities of the
platform are linked to the number of executor with no major loss of performances.

106 107 108 109

10−2

100

Number of records

Ti
m

e
(s

ec
on

ds
)

correlated independent best case

(a)

2 4 6 8 10 12 14 16
0
2
4

6
8

Number of instances

Sp
ee

d-
up

1

2

Ti
m

e
(m

in
)

speed-up optimum speed-up execution time

(b)

Figure 13. Performance evaluations for the on-demand computation model using Elasticsearch.
(a) Upper bound for all on-demand queries, corresponding to computing the total initial view
for varying dataset types and number of records; (b) Scalability of on-demand queries, tested on
cluster-selection queries for an independent dataset with 2 × 108 records. The speedup is relative to
using two instances.

7.6. Discussion

For these experiments, all components (client, platform and server) use local area networks and
thus the system is not subjected to world network contingency that could add rather high latencies
to transfers. While it is reasonable to consider the server-to-platform connection to be of controlled
quality, the main limitation of our experiments is that we cannot not realistically assume a similar
connection quality between clients and the server. Nevertheless, bounding data transfer addresses,
at least partially, this concern.

However, the results obtained provide some good hints about the capabilities of the system and the
pros and cons of beforehand and on-demand computing. Indeed, there is a trade-off between the time
consumed by pre-computation and the gain in execution time of using prepared or partially prepared
results. In our case, as the data abstraction requires pre-processing, we leveraged that first necessary
step by also preparing query results for several interactions. As demonstrated, using pre-processing,
we ensure lower response time compared to on-demand computation for single-aggregate selection
queries on the largest datasets of our experimentation set. Choosing one strategy or the other for
a given query type generally depends on three factors: the available storage, the time allowed for
pre-processing and the needs of interactivity i.e., how fast the response-time should be. For the
particular case of compound aggregate selections, there is a combinatorial explosion in the number of
possible queries which motivates the choice of on-demand computation.

Overall, the experiments shows that on our testing platform, we achieve the targeted sub-second
performance for all pre-computed queries: single-aggregate selections and axis reordering queries.
Despite pre-computation taking up to 32 h for the largest dataset, the performances depends on several
factors: they are closely related to the platform resources, the properties and number of dimensions of
the tested data, and the resolution parameter. Since our experimentation demonstrated the horizontal
scalability of the system, providing more resources would induce better performances seamlessly.

8. Conclusions & Future Work

In this paper, we present a system for interactive visual exploration of multidimensional data
with a parallel coordinates representation. In order to support the visual exploration of large data

Informatics 2017, 7, 21 20 of 22

sets, our system addresses three aspects of scalable visualization systems: perceptual scalability,
interactive scalability and remoteness. We employ pre-processing and on-demand computation to
bring interactivity to an abstract parallel coordinates representation, integrated in a client-server
visualization system. A distant infrastructure handle distributed computing and data pre-aggregation
and on-demand aggregation while a web-based remote visualization client for parallel rendering
provides an interactive visualization that respect the perceptual scalability. The client is provided
with various interaction tools to handle equivalent data exploration and data analyzes capabilities
as state-of-the-art techniques. Among theses interactions, two of them (axis reordering and subset
highlighting) imply data transfers between the infrastructure and the rendering client. Our system
guarantees upper bounds for these transfers, ensuring interactivity and responsiveness of the rendering
client. We present and evaluate an implementation of the back-end using using the Hadoop ecosystem
(HDFS and HBase), Spark and Elasticsearch. The results indicate a good scalability and reasonable
responsiveness of our system on up to a billion of items.

A first interesting work to pursue is thoroughly studying real-time distributed computing
scalability of different technologies to ameliorate the pre-computing step in our solution.
Lower preparation times would let users change dataset and tune clustering parameters in a more
responsive way. Secondly, to bypass interaction latencies, prediction and pre-fetching [48] could be
investigated. Other selection interactions could be implemented to further refine the highlighted
subset: for instance selecting multiple ranges along one dimension or make logic operations between
those selections. We also intend to examine how abstract parallel coordinates could be extended to a
multi-scale visualization. Namely, how to create different levels of details and enable their exploration
while guaranteeing a bounded number of displayed and transferred items.

Acknowledgments: This work has been carried out as part of SpeedData project supported by the French
Investissement d’Avenir Program (Big Data—Cloud Computing topic) managed by Direction Générale des
Entreprises (DGE) and BPIFrance.

Author Contributions: G.R., T.J., J.S. and R.B. performed the pipeline design, implementation and client-side data
processing. F.L. performed the server-side data processing, system interface and management, and benchmark
experiments. The overall work have been done under the supervision of R.B.. G.R. and J.S. wrote the paper and
R.B. and D.A. performed the internal reviewing process.

Conflicts of Interest: The authors declare no conflict of interest.

References and Note

1. Elmqvist, N.; Dragicevic, P.; Fekete, J. Rolling the Dice: Multidimensional Visual Exploration using
Scatterplot Matrix Navigation. IEEE Trans. Vis. Comput. Gr. 2008, 14, 1148–1539.

2. Alpern, B.; Carter, L. The Hyperbox. In Proceedings of the 2nd IEEE Computer Society Press: Los Alamitos
Conference on Visualization ’91; San Diego, CA, USA, 22–25 October 1991; pp. 133–139.

3. Kandogan, E. Star coordinates: A multi-dimensional visualization technique with uniform treatment of
dimensions. In Proceedings of the IEEE Information Visualization Symposium, Salt Lake City, UT, USA,
8–13 October 2000; Volume 650, p. 22.

4. Andrews, D.F. Plots of high-dimensional data. Biometrics 1972, 28, 125–136.
5. Inselberg, A. The plane with parallel coordinates. Vis. Comput. 1985, 1, 69–91.
6. Wegman, E.J. Hyperdimensional Data Analysis Using Parallel Coordinates. J. Am. Stat. Assoc.

1990, 85, 664–675, doi:10.1080/01621459.1990.10474926.
7. Heinrich, J.; Weiskopf, D. State of the art of parallel coordinates. STAR Proc. Eurogrph. 2013, 2013, 95–116.
8. Raidou, R.G.; Eisemann, M.; Breeuwer, M.; Eisemann, E.; Vilanova, A. Orientation-Enhanced Parallel

Coordinate Plots. IEEE Trans. Vis. Comput. Graph. 2016, 22, 589–598.
9. Ellis, G.; Dix, A. Enabling Automatic Clutter Reduction in Parallel Coordinate Plots. IEEE Trans. Vis.

Comput. Graph. 2006, 12, 717–724.
10. McDonnell, K.T.; Mueller, K. Illustrative Parallel Coordinates. Comput. Graph. Forum 2008, 27, 1031–1038.
11. Baldi, P.; Sadowski, P.; Whiteson, D. Searching for exotic particles in high-energy physics with deep learning.

Nat. Commun. 2014, 5, 4308, doi:10.1038/ncomms5308.

Informatics 2017, 7, 21 21 of 22

12. Zhou, H.; Cui, W.; Qu, H.; Wu, Y.; Yuan, X.; Zhuo, W. Splatting the Lines in Parallel Coordinates;
Blackwell Publishing Ltd.: Oxford, UK, 2009; Volume 28, pp. 759–766.

13. Nhon, D.T.; Wilkinson, L.; Anand, A. Stacking Graphic Elements to Avoid Over-Plotting. IEEE Trans. Vis.
Comput. Graph. 2010, 16, 1044–1052.

14. Zhou, H.; Yuan, X.; Qu, H.; Cui, W.; Chen, B. Visual Clustering in Parallel Coordinates. Blackwell Publishing Ltd.:
Oxford, UK, 2008; Volume 27, pp. 1047–1054.

15. Theisel, H. Higher Order Parallel Coordinates. In Proceedings of the 5th International Fall Workshop Vision,
Modeling and Visualization, Saarbrücken, Germany, 22–24 November 2000; pp. 415–420.

16. Graham, M.; Kennedy, J. Using curves to enhance parallel coordinate visualisations. In Proceedings of the
7th International Conference on Information Visualization, London, UK, 18 July 2003; pp. 10–16.

17. Ellis, G.P.; Dix, A.J. A Taxonomy of Clutter Reduction for Information Visualisation. IEEE Trans. Vis.
Comput. Graph. 2007, 13, 1216–1223.

18. Fua, Y.; Ward, M.O.; Rundensteiner, E.A. Hierarchical Parallel Coordinates for Exploration of Large Datasets.
In Proceedings of the IEEE Visualization ’99, San Francisco, CA, USA, 24–29 October 1999; pp. 43–50.

19. Andrienko, G.; Andrienko, N. Parallel Coordinates for Exploring Properties of Subsets. In Proceedings of the
Second IEEE Computer Society International Conference on Coordinated & Multiple Views in Exploratory
Visualization, Washington, DC, USA, 13 July 2004; pp. 93–104.

20. Artero, A.O.; de Oliveira, M.C.F.; Levkowitz, H. Uncovering Clusters in Crowded Parallel Coordinates
Visualizations. In Proceedings of the 10th IEEE Symposium on Information Visualization (InfoVis 2004),
Austin, TX, USA, 10–12 October 2004; pp. 81–88.

21. Johansson, J.; Cooper, M.D. A Screen Space Quality Method for Data Abstraction. Comput. Graph. Forum
2008, 27, 1039–1046.

22. Johansson, J.; Ljung, P.; Jern, M.; Cooper, M.D. Revealing Structure within Clustered Parallel Coordinates
Displays. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis 2005), Minneapolis,
MN, USA, 23–25 October 2005; Stasko, J.T., Ward, M.O., Eds.; IEEE Computer Society: Washington, DC, USA,
2005; p. 17.

23. Luo, Y.; Weiskopf, D.; Zhang, H.; Kirkpatrick, A.E. Cluster Visualization in Parallel Coordinates Using Curve
Bundles. IEEE Trans. Vis. Comput. Graph. 2008, 18, 1–12.

24. Siirtola, H. Direct manipulation of parallel coordinates. In Proceedings of the IEEE International Conference
on Visualization, London, UK, 19–21 July 2000; pp. 373–378.

25. Beham, M.; Herzner, W.; Gröller, M.E.; Kehrer, J. Cupid: Cluster-Based Exploration of Geometry Generators
with Parallel Coordinates and Radial Trees. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1693–1702.

26. Van Long, T.; Linsen, L. MultiClusterTree: Interactive Visual Exploration of Hierarchical Clusters in
Multidimensional Multivariate Data; Blackwell Publishing Ltd.: Oxford, UK, 2009; Volume 28, pp. 823–830.

27. Palmas, G.; Bachynskyi, M.; Oulasvirta, A.; Seidel, H.P.; Weinkauf, T. An edge-bundling layout for interactive
parallel coordinates. In Proceedings of the IEEE Pacific Visualization Symposium, Yokohama, Japan, 4–7
March 2014; pp. 57–64.

28. Novotny, M.; Hauser, H. Outlier-Preserving Focus + Context Visualization in Parallel Coordinates.
IEEE Trans. Vis. Comput. Graph. 2006, 12, 893–900.

29. Kosara, R.; Bendix, F.; Hauser, H. Parallel sets: Interactive exploration and visual analysis of categorical data.
IEEE Trans. Vis. Comput. Graph. 2006, 12, 558–568.

30. Lex, A.; Streit, M.; Partl, C.; Kashofer, K.; Schmalstieg, D. Comparative analysis of multidimensional,
quantitative data. IEEE Trans. Vis. Comput. Graph. 2010, 16, 1027–1035.

31. Liu, Z.; Jiang, B.; Heer, J. imMens: Real-time Visual Querying of Big Data. Comput. Graph. Forum
2013, 32, 421–430.

32. Rübel, O.; Prabhat.; Wu, K.; Childs, H.; Meredith, J.S.; Geddes, C.G.R.; Cormier-Michel, E.; Ahern, S.;
Weber, G.H.; Messmer, P.; et al. High performance multivariate visual data exploration for extremely large
data. In Proceedings of the ACM/IEEE Conference on High Performance Computing, Austin, TX, USA,
15–21 November 2008; p. 51.

33. Perrot, A.; Bourqui, R.; Hanusse, N.; Lalanne, F.; Auber, D. Large interactive visualization of density
functions on big data infrastructure. In Proceedings of the 5th IEEE Symposium on Large Data Analysis and
Visualization (LDAV), Chicago, IL, USA, 25–26 October 2015; pp. 99–106.

Informatics 2017, 7, 21 22 of 22

34. Chan, S.M.; Xiao, L.; Gerth, J.; Hanrahan, P. Maintaining interactivity while exploring massive time series.
In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology, Columbus, OH, USA,
19–24 October 2008; pp. 59–66.

35. Piringer, H.; Tominski, C.; Muigg, P.; Berger, W. A Multi-Threading Architecture to Support Interactive
Visual Exploration. IEEE Trans. Vis. Comput. Graph. 2009, 15, 1113–1120.

36. Elmqvist, N.; Fekete, J.D. Hierarchical Aggregation for Information Visualization: Overview, Techniques,
and Design Guidelines. IEEE Trans. Vis. Comput. Graph. 2010, 16, 439–454.

37. Wu, K.; Ahern, S.; Bethel, E.W.; Chen, J.; Childs, H.; Cormier-Michel, E.; Geddes, C.; Gu, J.; Hagen, H.;
Hamann, B.; et al. FastBit: Interactively searching massive data. J. Phys. 2009, 180, 012053.

38. Card, S.K.; Robertson, G.G.; Mackinlay, J.D. The information visualizer, an information workspace.
In Proceeding of the CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA,
27 April–2 May 1991; Robertson, S.P., Olson, G.M., Olson, J.S., Eds.; ACM: New York, NY, USA, 1991;
pp. 181–186.

39. Godfrey, P.; Gryz, J.; Lasek, P. Interactive Visualization of Large Data Sets. IEEE Trans. Knowl. Data Eng.
2016, 28, 2142–2157.

40. Steinley, D. K-means clustering: A half-century synthesis. Br. J. Math. Stat. Psychol. 2006, 59, 1–34.
41. Ester, M.; Kriegel, H.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial

Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, OR, USA, 1996; pp. 226–231.

42. Riehmann, P.; Hanfler, M.; Froehlich, B. Interactive Sankey Diagrams. In Proceedings of the IEEE Symposium
on Information Visualization (InfoVis 2005), Minneapolis, MN, USA, 23–25 October 2005; Stasko, J.T.; Ward,
M.O., Eds.; IEEE Computer Society: Washington, DC, USA, 2005; p. 31.

43. Wegman, E.J.; Luo, Q.; High Dimensional Clustering Using Parallel Coordinates and the Grand Tour.
In Classification and Knowledge Organization: Proceedings of the 20th Annual Conference of the Gesellschaft für
Klassifikation e.V., University of Freiburg, Baden-Württemberg, Germany, 6–8 March 1996; Klar, R., Opitz, O., Eds.;
Springer: Berlin/Heidelberg, Germany, 1997; pp. 93–101.

44. Ward, M.O.; Grinstein, G.G.; Keim, D.A. Interactive Data Visualization—Foundations, Techniques, and
Applications; A K Peters: Natick, MA, USA, 2010.

45. Auber, D.; Chiricota, Y.; Delest, M.; Domenger, J.; Mary, P.; Melançon, G. Visualisation de graphes avec
Tulip: Exploration interactive de grandes masses de données en appui à la fouille de données et à l’extraction
de connaissances. In Proceedings of the Extraction et Gestion des Connaissances (EGC’2007), Actes des
Cinquièmes Journées Extraction et Gestion des Connaissances, Namur, Belgique, 23–26 January 2007;
pp. 147–156.

46. Elasticsearch, 1999.
47. Börzsönyi, S.; Kossmann, D.; Stocker, K. The Skyline Operator. In Proceedings of the 17th International

Conference on Data Engineering; IEEE Computer Society: Washington, DC, USA, 2001; pp. 421–430.
48. Doshi, P.R.; Rundensteiner, E.A.; Ward, M.O. Prefetching for Visual Data Exploratio. In Proceedings

of the Eighth International Conference on Database Systems for Advanced Applications (DASFAA ’03),
Kyoto, Japan, 26–28 March 2003; pp. 195–202.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Overcoming Clutter in Parallel Coordinates
	Scalable Visualization Systems
	System Overview
	Distributed Processing Work-Flow
	Bounding Data Transfer

	Abstract Parallel Coordinates Design

	Enabling Interactivity
	Tasks & Interactions
	Client-Only Interaction & Parameters
	Server-Supported Interaction
	Perceptual Scalability
	Comparison to Traditional Parallel Coordinates
	Gain Overview
	Subset Highlighting
	Large Dataset Visual Analysis

	System Scalability
	Implementation Details
	Performance Evaluation Scope
	Pre-Computing Performance
	Prepared Selections Query Performance
	On-Demand Query Performance
	Discussion

	Conclusions & Future Work

