
On the Identifiability of the Fuzzy-Clustering-
Based Multi-Population Mortality Model

The mortality model we investigate is given by the equation

logmi
x,t = αix +

(
k∑
l=1

ωi,lβlx

)
κit. (1)

Here, each cluster l ∈ {1, . . . , k} has a distinct age effect βlx, and the weight
parameter ωi,l indicates for every population i how similar its age effect is to
that of cluster l. This is a special case of a k-factor CAE model

logmi
x,t = αix +

k∑
l=1

βlxκ
i,l
t (2)

with κi,lt = ωi,lκit. For the model to be easily interpretable, it is desirable that

ωi,l ∈ [0, 1] and
∑k
l=1 ω

i,l = 1 for all i ∈ {1, . . . , P}. In this case, the age effect
of each population is a convex combination of the age effects of the clusters.

Let Θ be the parameter space and θ :=
((
αix
)i
x
,
(
βlx
)l
x
,
(
κit
)i
t
,
(
ωi,l
)i,l) ∈ Θ

a vector of model parameters. We also use the notations α :=
(
αix
)i
x
∈ RA×P ,

β :=
(
βlx
)l
x
∈ RA×k, κ :=

(
κit
)i
t
∈ RY×P and ω :=

(
ωi,l
)i,l ∈ RP×k. The

log-likelihood function is given by

L (θ) =

P∑
i=1

xA∑
x=x1

tY∑
t=t1

(
Di
x,t · log

(
mi
x,t

)
− Eix,t ·mi

x,t

)
+K, (3)

with some constant K ∈ R which only depends on the data.
It is in principle possible to numerically maximize L using a gradient-based

optimization algorithm such as L-BFGS-B and thereby obtain a maximum like-
lihood estimate for θ. However, if we do not impose any constraints on the
optimization, θ is obviously not unique. Thus, the model is not identifiable,
which is problematic both from a statistical and a practical point of view. We
will discuss this issue extensively in the following and start by giving a formal
definition of identifiability in this context.

Definition 1. Let f
(eq)
p , f

(ie)
q : Θ→ R for p = 1, . . . , neq, q = 1, . . . , nie be real-

valued functions. We say that the fuzzy maximum likelihood clustering model (1)
is identifiable under the constraints

f (eq)p (θ) = 0, p = 1, . . . , neq,

f (ie)q (θ) ≤ 0, q = 1, . . . , nie,
(4)

if for two parameter vectors θ, θ̃ ∈ Θ, which fulfill

αix +

(
k∑
l=1

ωi,lβlx

)
κit = α̃ix +

(
k∑
l=1

ω̃i,lβ̃lx

)
κ̃it (5)
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for all x ∈ {x1, . . . , xA}, t ∈ {t1, . . . , tY }, i ∈ {1, . . . , P} and satisfy the con-
straints (4), it follows that

αix = α̃ix, κ
i
t = κ̃it (6)

for all x ∈ {x1, . . . , xA}, t ∈ {t1, . . . , tY }, i ∈ {1, . . . , P} and

ω = ω̃S, β = β̃S, (7)

where S ∈ Rk×k is a permutation matrix.

Remark. (i) In words, if certain constraints make the fuzzy maximum like-
lihood clustering model identifiable, this means that two sets of parameters
θ and θ̃ which both maximize the log-likelihood and fulfill the constraints
must be identical (up to permutation of columns in the case of β and ω).
Put more simply, the corresponding constrained maximization problem has
then exactly one solution, implying that we can uniquely identify the model
parameters.

(ii) We do not require ω and β to be identifiable exactly but only up to per-
mutation of columns. We deem this to be sufficient as the order of the
columns of β and ω corresponds to the numbering of the clusters and is,
thus, not relevant for the interpretation of the model.

We will consider two sets of constraints, which differ in the requirements on
the weight matrix ω. With the first set of constraints we require that the first k
rows of ω, which we denote by ω1:k,1:k, equal the identity matrix Ik. This means
that the first k populations each get their own cluster, i.e., ωi,j = 1 if i = j and 0
otherwise for i, j ∈ {1, . . . , k}, and the remaining populations are subsequently
assigned cluster weights ”relative” to this initialization when the model is fit.
Of course, via a renumbering of the populations, any k populations can be the
ones which initially get their own cluster, which means that the choice is up
to the modeler. This choice should ensure that the chosen populations have
sufficiently different age effects. Therefore, it could be based on some a priori
knowledge or analysis on which populations might exhibit distinct, prototypic
age effects. For numerical studies, we have implemented the following simple
heuristic: We start with the 2 populations whose individual Lee-Carter (ILC)
age effects have the largest Euclidean distance. Then, we successively choose
populations whose ILC age effects maximize the sum of Euclidean distances
to the ILC age effects of all the populations we have already chosen, until we
reach k populations. We call our first set of constraints the identity matrix
initialization (IMI) constraints. Note that we do not demand ωi,l ≥ 0 for i > k
in this case.

With the second, alternative set of constraints we require that all entries of
ω are non-negative – which, by the additional constraint

∑k
l=1 ω

i,l = 1, implies
that they are at most 1 – and that among all matrices fulfilling the remaining
constraints ω maximizes the sum of within-cluster variances. Therefore, we call
these the non-negativity variance-maximizing (NNVM) constraints.
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Expressed in formulas, to fit the model, we solve

sup
θ∈Θ

L(θ) (8)

subject to

xA∑
x=x1

βlx = 1 for all l ∈ {1, . . . , k},

tY∑
t=t1

κit = 0 for all i ∈ {1, . . . , P},
(9)

and, furthermore, either to

k∑
l=1

ωi,l = 1 for all i ∈ {k + 1, . . . , P},

ω1:k,1:k = Ik,

(IMI)

or, alternatively, to

k∑
l=1

ωi,l = 1 for all i ∈ {1, . . . , P},

ωi,l ≥ 0 for all i ∈ {1, . . . , P}, l ∈ {1, . . . , k},
fω(R) ≤ fω(Ik) for all R ∈ Dω,

(NNVM)

where
Dω := {R ∈ GL(k) : ωR < 0P×k and R1k = 1k} (10)

and fω : Dω → R is the sum of within-cluster variances,

fω(R) :=

k∑
l=1

1

P − 1

P∑
i=1

(
(ωR)

i,l −
(
ωR
)•,l)2

. (11)

Here, we have used the notation

(
ωR
)•,l

:=
1

P

P∑
j=1

(ωR)
j,l

(12)

for the column means. It is obvious that the constraints (NNVM) do not de-
termine the order of the columns of β and ω but this is in accordance with
Definition 1.

We present some other ways to express the function fω and give an inter-
pretation of what it means to maximize this function.
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Remark (Other expressions for and interpretation of fω). (i) By the defini-
tion of matrix multiplication, we have

fω(R) =

k∑
l=1

1

P − 1

P∑
i=1

(
k∑
q=1

rq,l
(
ωi,q − ω •,q

))2

. (13)

(ii) Assuming that
∑k
q=1 ω

i,q = 1 for all i = 1, . . . , P , we calculate

fω(R) =

k∑
l=1

1

P − 1

P∑
i=1

(
k−1∑
q=1

(
rq,l − rk,l

)
·
(
ωi,q − ω •,q

))2

. (14)

(iii) Expanding the square in the definition of fω and using the definition of
the Frobenius norm ‖ · ‖, we get

fω(R) =
1

P − 1

(
‖ωR‖2 − 1

P
‖1>P ωR‖2

)
. (15)

(iv) As the rows of ωR sum up to 1 for any R ∈ Dω, we have

(
ωR
)•,•

:=
1

Pk

P∑
i=1

k∑
l=1

(ωR)
i,l

=
1

k
(16)

for its overall average. By partitioning the sum of squares as known from
analysis of variance, we get

fω(R) =
1

P − 1

k∑
l=1

(
P∑
i=1

(
(ωR)

i,l − 1

k

)2

− P
((
ωR
)•,l − 1

k

)2
)
. (17)

From (17), we immediately see that maximizing fω amounts to choosing R
such that the entries of ωR differ as much as possible from 1

k , which means
that populations have a clearer tendency to which cluster they belong, while the
column means of ωR are as close to 1

k as possible, which means that clusters
tend to have similar sizes.

In order to show that the NNVM constraints imply identifiability, we need
existence and uniqueness (up to permutations of columns) of the solution of the
optimization problem

sup
R∈Dω

fω(R), (18)

where ω has full rank and fulfills ω1k = 1P . The following proposition explicitly
gives the solution for the case k = 2.

Proposition 1. If k = 2, rank(ω) = 2 and ω12 = 1P , the optimization prob-
lem (18) is solved by

R∗ :=
1

ωmax−ωmin
·
(
ωmax−1 1− ωmin

ωmax −ωmin

)
, (19)
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where ωmax := max
i=1,...,P

ωi,1 and ωmin := min
i=1,...,P

ωi,1. The solution is unique up

to permutation of columns.

Proof. Note that the fact that ω has full rank and fulfills ω1k = 1P implies
that none of its columns can be constant. So we have ωmax > ωmin and the
definition of R∗ makes sense. Also, R∗ lies in Dω:

• By direct calculation, we see that R∗1k = 1k.

• The determinant of R∗ is easily checked to equal −1, which implies R∗ ∈
GL(k).

• It will become clear below that ωR∗ < 0P×k.

In the following, we consider only matrices R ∈ GL(k) which satisfy R1k =
1k. We write r1 := r1,1 and r2 := r2,1 for the entries of their first column; the
corresponding entries of the second column are then 1− r1 and 1− r2. As the
first step, we restrict ourselves to matrices R which additionally fulfill r1 < r2.

For k = 2, Equation (14) describing the objective function fω simplifies to

fω(R) =
(
r1 − r2

)2 2

P − 1

P∑
i=1

(
ωi,1 − ω •,1

)2
, (20)

which shows that solving the constrained optimization problem amounts to max-
imizing the distance between r1 and r2 in such a way that the corresponding
matrix R still lies in the feasible set.

For k = 2, the constraint ωR < 0P×k can equivalently be written as

ωi,1(r1 − r2) + r2 ≥ 0,

ωi,1(r2 − r1) + 1− r2 ≥ 0,
(21)

for i = 1, . . . , P , where we have used that ω1k = 1P . Due to r1 < r2, this
system of 2P inequalities is equivalent to the following system of 2 inequalities:

ωmax(r1 − r2) + r2 ≥ 0, (22)

ωmin(r2 − r1) + 1− r2 ≥ 0. (23)

We distinguish the following six cases:

(i) ωmin > 1: Applying first (22) and then (23), we get

r1 ≥ ωmax−1

ωmax
· r2 ≥ ωmax−1

ωmax
· ω

min r1 − 1

ωmin−1
, (24)

which is equivalent to

r1 ≤ ωmax−1

ωmax(ωmin−1)
· 1

ωmin

ωmin−1 ·
ωmax−1
ωmax − 1

=
ωmax−1

ωmax−ωmin
. (25)
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From this, it follows with (22) that

r2 − r1 ≤
(

ωmax

ωmax−1
− 1

)
r1 ≤

(
ωmax

ωmax−1
− 1

)
ωmax−1

ωmax−ωmin

=
1

ωmax−ωmin
.

(26)

(ii) ωmin = 1: From (23) we get

r1 ≤ 1 =
ωmax−1

ωmax−ωmin
, (27)

and, additionally using (22),

r2 − r1 ≤
(

ωmax

ωmax−1
− 1

)
r1 ≤ ωmax

ωmax−1
− 1 =

1

ωmax−ωmin
. (28)

(iii) 1 > ωmin ≥ 0: Applying first (23) and then (22), we get

r2 ≤ ωmin r1 − 1

ωmin−1
≤ ωmin

ωmin−1
· ω

max−1

ωmax
· r2 − 1

ωmin−1
, (29)

which is equivalent to

r2 ≤ ωmax

ωmax−ωmin
. (30)

From this, it follows with (22) that

r2 − r1 ≤
(

1− ωmax−1

ωmax

)
r2 ≤

(
1− ωmax−1

ωmax

)
ωmax

ωmax−ωmin

=
1

ωmax−ωmin
.

(31)

(iv) ωmin < 0, ωmax > 1: From (22) and (23) we get

r2 − r1 ≤ r1

ωmax−1
, (32)

r2 − r1 ≤ r1 − 1

ωmin−1
. (33)

If

r1 ≤ ωmax−1

ωmax−ωmin
, (34)

(32) yields

r2 − r1 ≤ 1

ωmax−ωmin
. (35)

Otherwise, if

r1 ≥ ωmax−1

ωmax−ωmin
, (36)

(33) yields the same.
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(v) ωmin < 0, ωmax = 1: From (22), we get r1 ≥ 0, and, additionally us-
ing (23),

r2 − r1 ≤
(

ωmin

ωmin−1
− 1

)
r1 − 1

ωmin−1

≤ 1

1− ωmin
=

1

ωmax−ωmin
.

(37)

(vi) ωmin < 0, ωmax < 1: Applying first (23) and then (22), we get

r1 ≥
(
ωmin−1

)
r2 + 1

ωmin
≥ ωmin−1

ωmin
· ωmax

ωmax−1
· r1 +

1

ωmin
, (38)

which is equivalent to

r1 ≥ ωmax−1

ωmax−ωmin
, (39)

where we have used that the function x 7→ x−1
x is strictly monotonically

increasing for x < 0. From this, it follows with (23) that

r2 − r1 ≤
(

ωmin

ωmin−1
− 1

)
r1 − 1

ωmin−1

≤
(

ωmin

ωmin−1
− 1

)
ωmax−1

ωmax−ωmin
− 1

ωmin−1

=
1

ωmax−ωmin
.

(40)

In each of these cases, the constant upper bound for r2 − r1 is attained if and
only if r1 = r∗,1 and r2 = r∗,2. This shows that ωR∗ < 0P×k and, among all
matrices R ∈ Dω with r1 < r2, R∗ uniquely maximizes fω.

It can be shown analogously that, among all matrices R ∈ Dω with r1 >
r2, the matrix which is obtained by exchanging the columns of R∗ uniquely
maximizes fω. As the maximal values in both cases coincide, this completes the
proof.

In fact, existence can be shown for any value of k ∈ N:

Proposition 2. The optimization problem (18) has a solution.1

Proof. Define the function g : RP×k → R by

g(T ) :=

k∑
l=1

1

P − 1

P∑
i=1

(
T i,l − T

•,l
)2

. (41)

1We thank an anonymous contributor to Mathematics Stackexchange for proposing the
idea for the proof of this result.
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Now, the maximization problem (18) is obviously equivalent to

sup
T∈{ωR :R∈GL(k)}

g(T ) (42)

subject to

T1k = 1P ,

T < 0P×k.
(43)

The feasible set of this optimization problem is bounded because the entries
of every matrix T in the feasible set must fulfill 0 ≤ ti,l ≤ 1 for all i ∈
{1, . . . , P}, l ∈ {1, . . . , k}. It is also closed as the intersection of three closed
sets (a finite-dimensional linear subspace, a set defined by equations and a set
defined by non-strict inequalities). By the Heine-Borel theorem, the feasible set
is compact, which implies that the continuous function g attains a maximum
on this set.

Remark (NNVM constraints for k > 2). Proposition 2 only shows existence,
not uniqueness of the maximum. Unfortunately, we have not found a proof (or
counterexample) for uniqueness in the case k > 2. Therefore, in the following,
when we employ the constraints (NNVM) we restrict ourselves to k = 2, which
we consider to be an important special case of our model. All other ingredients
apart from the uniqueness of the solution of (18) are granted in the case k > 2
as well. However, the reader should be aware that we have no guarantee that β
and ω are identifiable if we employ NNVM constraints in this case.

We will need the following two lemmas, which are shown using basic linear
algebra.

Lemma 1. Let β ∈ RA×k and ω ∈ RP×k, and denote r1 := rank(β), r2 :=
rank(ω). If min(r1, r2) < k, there exist k̃ ≤ min(r1, r2) and full-rank matrices

β̃ ∈ RA×k̃, ω̃ ∈ RP×k̃ such that

βω> = β̃ω̃>. (44)

Proof. We set k̃ := rank
(
βω>

)
. Then, we choose a basis of the column space of

βω> and build up a matrix β̃ ∈ RA×k̃ column-wise out of the basis vectors. As
the columns of βω> lie in the span of the columns of β̃, we can find a matrix

ω̃ ∈ RP×k̃ such that the desired equality holds. Both β̃ and ω̃ must have full
rank due to

k̃ = rank
(
βω>

)
= rank

(
β̃ω̃>

)
≤ min

{
rank

(
β̃
)
, rank

(
ω̃>
)}
≤ k̃. (45)

Lemma 2. Let β, β̃ ∈ RA×k and ω, ω̃ ∈ RP×k be full-rank matrices fulfilling

βω> = β̃ω̃>. (46)

There is a matrix R ∈ GL(k) such that

ω̃ = ωR and β̃ = βR−>. (47)
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Proof. Note that all the inverse matrices appearing in this proof exist because
β, β̃, ω, ω̃ have full rank and k ≤ min{A,P}.

Multiplying (46) by
(
β>β

)−1
β> from the left, we get

ω> =
(
β>β

)−1
β>β̃ω̃>, (48)

which is equivalent to

ω̃ = ω
((
β>β

)−1
β>β̃

)−>
=: ωR. (49)

Transposing (46) and multiplying by
(
ω>ω

)−1
ω> from the left, we get

β> =
(
ω>ω

)−1
ω>ω̃β̃>, (50)

which is equivalent to

β̃ = β
((
ω>ω

)−1
ω>ω̃

)−>
=: βS. (51)

The observation that

R>S =
(
β>β̃

)−1

β>βω>ω
(
ω̃>ω

)−1 (46)
= Ik (52)

and, thus, S = R−>, completes the proof.

Theorem 1. Assume that the number of clusters k, is chosen based on the
principle of parsimony. If the constraints (9) hold and

(i) the constraints (IMI) are fulfilled, or

(ii) k = 2 and the constraints (NNVM) are fulfilled,

model (1) is identifiable in the sense of Definition 1.

Proof. First, note that if β or ω does not have rank k, we can by Lemma 1 reduce
β and ω to full-rank matrices with column number smaller than k without
changing the fitted death rates. In other words, we can achieve the same fit
using a lower number of parameters. According to the principle of parsimony
(which we implement by using the BIC as the model selection criterion), we
would reduce k accordingly. So we can w.l.o.g. assume that ω and β have full
rank k.

Now, assume that there are parameter vectors θ, θ̃ ∈ Θ which fulfill (5),
(9) and (i) (IMI) or (ii) (NNVM), where additionally k = 2. First, summation

of (5) over t shows identifiability of α due to
tY∑
t=t1

κit =
tY∑
t=t1

κ̃it = 0. Then,
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summation over x shows identifiability of κ due to
xA∑
x=x1

βlx =
xA∑
x=x1

β̃lx = 1 and

k∑
l=1

ωi,l =
k∑
l=1

ω̃i,l = 1. We now get that

k∑
l=1

ωi,lβlx =

k∑
l=1

ω̃i,lβ̃lx for all i ∈ {1, . . . , P}, x ∈ {x1, . . . , xA} (53)

or, in matrix notation,
βω> = β̃ω̃>. (54)

By Lemma 2, we have
ω̃ = ωR and β̃ = βR−> (55)

for some R ∈ GL(k). Case distinction:

(IMI) The constraint on the first k rows of ω and ω̃ implies

Ik = ω̃1:k,1:k = (ωR)
1:k,1:k

= IkR = R, (56)

which shows ω = ω̃, β = β̃.

(NNVM) The constraints on ω and ω̃ imply R ∈ Dω and R−1 ∈ Dω̃, so we have

fω̃(Ik) = fω(R) ≤ fω(Ik) = fω̃
(
R−1

)
≤ fω̃(Ik). (57)

This implies fω(R) = fω(Ik), and it follows from Proposition 1 that R is
a permutation matrix. Therefore, ω and ω̃ as well as β and β̃ coincide up
to the same (note that R−> = R) permutation of columns.

The following theorem shows that the constraints we have considered do not
only uniquely determine the model parameters but also do not decrease the log-
likelihood, which means they are in fact identifiability constraints. The proof
of the theorem also shows a way to practically implement these identifiability
constraints.

Theorem 2. Assume that the number of clusters k, is chosen based on the
principle of parsimony. The constraints (9) together with either (IMI) or, if we
additionally have k ≤ 2, (NNVM) do not change the fitted death rates, so in
particular they do not decrease the log-likelihood, of the model (1).

Proof. We first choose a particular solution, which we denote by (α, β, κ, ω) for
simplicity, of the unconstrained problem

sup
θ
L(θ). (58)

As in the proof of Theorem 1, we can w.l.o.g. assume that β and ω have full
rank k due to the principle of parsimony and Lemma 1.
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The transformation

βlx →
1

clβ,ω
· βlx,

ωi,l → clβ,ω · ωi,l
(59)

with clβ,ω 6= 0, l = 1, . . . , k does not change the fit (or the rank of β, ω). With

clβ,ω :=
xA∑
x=x1

βlx, we implement
xA∑
x=x1

βlx = 1 for all l ∈ {1, . . . , k}.

The transformation

ωi,l → 1

ciω,κ
· ωi,l

κit → ciω,κ · κit
(60)

with ciω,κ 6= 0, i = 1, . . . , P does not change the fit (or the rank of ω). With

ciω,κ :=
k∑
l=1

ωi,l, we implement
k∑
l=1

ωi,l = 1 for all i ∈ {1, . . . , P}.

The transformation

ω → ωR,

β → βR−>
(61)

with R ∈ GL(k) does not change the fit. Case distinction:

(IMI) As ω has full rank, we assume w.l.o.g. that ω1:k,1:k is invertible (if there
is no particular solution to (58) fulfilling this, the populations have to

be renumbered accordingly). We now choose R =
(
ω1:k,1:k

)−1
. This

preserves the constraints that have already been implemented at previous
steps and implements ω1:k,1:k = Ik.

(NNVM) Choose R such that it solves the optimization problem (18). As we require
k ≤ 2 in this case, R is uniquely determined according to Proposition 1
(if k = 2; for k = 1, it must obviously hold that R = 1). This preserves
the constraints that have already been implemented at previous steps and
implements ω < 0P×k and fω(R) ≤ fω(Ik) for all R ∈ Dω.

The transformation

κit → κit − ciα,κ,

αix → αix + ciα,κ ·
k∑
l=1

ωi,lβlx
(62)

with ciα,κ ∈ R, i = 1, . . . , P does not change the fit. With ciα,κ := 1
Y

tY∑
t=t1

κit, we

implement
tY∑
t=t1

κit = 0 for all i ∈ {1, . . . , P}.
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The following corollary shows that the identifiability constraints (IMI)
and (NNVM) are in some sense equivalent for k = 2.

Corollary 1. For k = 2, the identifiability constraints (IMI) and (NNVM)
induce identical parameters, provided that

ω1:2,1:2 =

(
ωmin 1− ωmin

ωmax 1− ωmax

)
(63)

holds for the particular solution of (58) in the proof of Theorem 2.

Proof. It is easily checked that, in this case, the inverse of ω1:2,1:2 equals R∗

from Proposition 1. The proof of Theorem 2 shows that, consequently, both
types of identifiability constraints induce the same values of ω and β.

Further work on the model we have introduced should focus on the question
whether the (NNVM) constraints also ensure identifiability for k > 2.
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