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Abstract: Predicting the evolution of mortality rates plays a central role for life insurance and pension
funds. Standard single population models typically suffer from two major drawbacks: on the one
hand, they use a large number of parameters compared to the sample size and, on the other hand,
model choice is still often based on in-sample criterion, such as the Bayes information criterion
(BIC), and therefore not on the ability to predict. In this paper, we develop a model based on a
decomposition of the mortality surface into a polynomial basis. Then, we show how regularization
techniques and cross-validation can be used to obtain a parsimonious and coherent predictive
model for mortality forecasting. We analyze how COVID-19-type effects can affect predictions in our
approach and in the classical one. In particular, death rates forecasts tend to be more robust compared
to models with a cohort effect, and the regularized model outperforms the so-called P-spline model
in terms of prediction and stability.

Keywords: mortality; forecasting; regularization; elastic-net; smoothing; Poisson generalized lin-
ear model

1. Introduction

During recent decades, many developed countries have encountered a steady increase
in their life expectancy. In this context, the longevity risk, i.e., the risk that people live
longer than expected, poses a challenge, not only for public retirement systems planning,
but also for the private life annuities business. For Best Estimate of Liabilities and Solvency
Capital Requirement computations in Solvency II, the development of statistical tools for
the modelling and projection of mortality rates is essential, see Barrieu et al. (2012) for a
discussion. A large, international insurer may use different longevity models for different
countries and zones. The supervisor sometimes questions model selection. It is natural to
wonder whether a data-driven approach can outperform classical models in most countries,
or whether it is more reasonable to use distinct models for different zones, in general and
in the present COVID-19 context, which breeds unusual mortality rate patterns.

The most influential paper of stochastic modelling is certainly the mortality model
proposed by Lee and Carter (1992). This factor-based model decomposes the (logarithmic)
age-period surface of mortality patterns into a bilinear combination of age and period
parameters. The future period parameters are then forecast by using time series tech-
niques. Several extensions and alternatives were proposed in the literature. For instance,
Renshaw and Haberman (2006) extended the Lee–Carter model with the inclusion of a
cohort term. The inclusion of a cohort effect improved the fit to the data; however a
better fit to data does not necessarily lead to better forecasts of mortality. Indeed, the
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projection of the cohort effects can potentially lead to poorer forecasts, see Hunt and
Villegas (2015) for a discussion. Other alternatives include the two-factor Cairns–Blake–
Dowd (CBD) model introduced by Cairns et al. (2006) and its extensions considered
in Cairns et al. (2009), incorporating the quadratic age term and cohort effect. Regime-
switching models for mortality modelling were introduced by Milidonis et al. (2011) and
later applied in Hainaut (2012) and Gylys and Šiaulys (2020) to accomodate different
mortality regimes due to the effect of wars or pandemics. We can also refer to the recent
work of Doukhan et al. (2017); Doukhan et al. (2020) and Guibert et al. (2019) for more
flexible modeling approaches. In particular, regularization with an elastic-net penalty is
also considered in Guibert et al. (2019) to determine the dependence structure between
mortality rates within a high-dimensional vector autoregressive approach.

Some papers have considered a quantitative comparison of stochastic mortality mod-
els, for instance Cairns et al. (2009) and Haberman and Renshaw (2011). In these studies, the
focus is on the ability of the models to fit historical data and not on their ability to predict
future mortality. In this paper, we propose a mortality model based on regularization and
cross-validation. Regularization is performed by penalizing the Poisson log-linear model
based on the elastic-net (Zou and Hastie (2005)), which allows one to prevent overfitting
and obtain a sparse model. The elastic-net penalty is a combination of an L2-term (as in
a ridge regression) to avoid ill-conditioning matrices and an L1-term (as in the LASSO
regression) to produce a sparse model with a small number of non-zero parameters. More-
over, compared to standard maximum likelihood estimation, the use of cross-validation
will automatically select the model which has the best predictive performance. To the best
of our knowledge, this paper is the first to apply the elasticnet regularization for smooth-
ing and forecasting the mortality surface. Moreover, when compared to the standard
age-period-cohort approach, the advantages of our model are essentially two-fold:

• Standard mortality models have a large number of parameters (easily between 100
and 200 parameters) in comparison with the small number of observations (often
around 2000). Regularization techniques allow us to obtain a parsimonious model
with very few parameters.

• Model choice is often performed based on the Bayes information criterion (BIC),
which measures the ability of the model to fit the historical data (in-sample criterion).
Our method, based on cross-validation, will select the model which has the best
performance in terms of predictions (out-of-sample criterion).

The proposed approach uses regularization techniques for smoothing and forecasting
mortality rates. To do this, we use a parsimonious decomposition of the mortality surface on
a polynomial basis which meant to capture the main features driving the mortality pattern.
This can naturally invoke the celebrated spline decomposition that is well-documented in
the actuarial and demographic literature. For instance, we can refer to Currie et al. (2004)
that proposed a two-dimensional P-spline model for smoothing the mortality surface and
forecasting death rates, see also Camarda et al. (2012). While the P-spline and our model
both try to smooth and extrapolate the mortality surface, they significantly differ in the
choice of the basis and the penalty parameter. Hence, in Section 5.3, we identify robustness
issues in the P-spline model and show that our model provides more stable mortality
predictions and handles the temporary disruption that can affect the mortality dynamics,
e.g. in the context of COVID-19. Regarding the supervisor’s search of "one model fits all
countries", our results confirm that it is better to use different models for different zones,
even if our proposed approach performs reasonably well for all countries and zones.

The rest of the paper is organized as follows. In Section 2, we describe our notation
and data at our disposal. Then, in Section 3, we briefly consider the standard approach to
mortality modeling based on an age-period-cohort factor decomposition approach. Section
4 explains our approach based on the smoothing of the mortality surface by regularization.
Finally, in Section 5, we provide a detailed comparison of our approach to standard
mortality models in terms of prediction performance and robustness. Section 6 provides
concluding remarks.
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2. Notation and Data

We use data on male deaths and exposures from the Human Mortality Database (2019).
The data are available by country for (a) single ages from age 0 to 109, with deaths at higher
ages gathered into the category 110+. In our analysis, we consider the period 1970–2017
(last year currently available) and the age range 50–90, the range of interest for pension
and annuity providers. Moreover, in our comparison of mortality models, we consider the
data for USA, UK, France, Belgium, Japan and Hong Kong.

Let the random variable Dx,t denote the number of deaths in a population aged x last
birthday during calendar year t. Moreover, let D = (dx,t) be the matrix of the observed
number of deaths and Ec = (ex,t) be the matrix of observed central exposures, where ex,t
is the exposure-to-risk, which measures the average population during calendar year t
over the age band [x, x + 1]. The force of mortality and central death rates are denoted by
µx,t and mx,t, respectively. We make the standard assumption that the force of mortality is
constant over each year of age and calendar year, i.e. µx+s,t+u = µx,t for all 0 ≤ u, s < 1,
so that the force of mortality µx,t and death rate mx,t coincide. This assumption has the
following two consequences:

1. The mortality rate qx,t which represents the probability that an individual aged exactly
x at time t dies in the following year, i.e., between t and t + 1, is given by

qx,t = 1− e−µx,t = 1− e−mx,t .

2. If we treat the number of deaths dx,t as a random variable Dx,t and the central exposure
ex,t as fixed, then Dx,t follows a Poisson distribution

Dx,t ∼ Poisson(ex,tµx,t), (1)

where E
(

Dx,t
ex,t

)
= µx,t, see Pitacco et al. (2009).

It thus follows that the maximum likelihood estimate µ̂x,t of the force of mortality is
given by

µ̂x,t =
dx,t

ex,t
.

3. Standard Approach to Mortality Modeling

Following Hunt and Blake (2014) and Currie (2016), the majority of mortality models
can be expressed as generalized linear or non-linear models. In this section, for the sake of
comparison to our regularized model, we briefly discuss the general structure of standard
mortality models, their estimations and projections.

3.1. The General Structure of Mortality Models

Most of the existing mortality models fall into an age-period-cohort model. Mathe-
matically, they have the following form:

g
(
E
(

Dx,t

ex,t

))
= αx +

N

∑
i=1

β
(i)
x κ

(i)
t + γt−x. (2)

This equation has the following components:

• A link function g transforms the observed data into a suitable linear or non-linear
form for modeling. The standard choice under the Poisson assumption (1) is the log
link function (see e.g., Currie (2016) for a good justification in the context of mortality
modelling).

• The static age function term αx which captures the average shape of the mortality
curve.

• N period-age terms β
(i)
x κ

(i)
t (i = 1, . . . , N) which describe the mortality trends.

• The term γt−x represents the lifelong cohort effect of certain generations.
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In the remainder of this paper, we always assume a logarithmic link function and a
Poisson distribution of deaths. Therefore, Equation (2) reduces to

log µx,t = αx +
N

∑
i=1

β
(i)
x κ

(i)
t + γt−x, (3)

where we denote the set of parameters in the model by

φ := (αx, β
(1)
x , . . . , β

(N)
x , κ

(1)
t , . . . , κ

(N)
t , γt−x).

For instance, in the case of the simplified version of the Renshaw and Haberman (2006)
model (Lee–Carter model with a cohort effect), the equation is given by

log µx,t = αx + βxκt + γt−x.

This simplified structure has been suggested by Haberman and Renshaw (2011) to resolve
some stability issues of the original model.

3.2. Estimation and Standard Model Choice Criterion

Given the matrix of observed deaths D = (dx,t) and the matrix of observed central
exposures Ec = (ex,t), the set of parameters in (3) are estimated by maximizing the log-
likelihood, which is given by

L
(
φ̂
)
= ∑

x
∑

t
dx,t log(ex,tµx,t)− ex,tµx,t − log(dx,t!), (4)

in the case of a Poisson distribution of deaths, see (1), and the intensity µx,t given in (3).
Since the underlying intensity is non-linear, this maximization is typically performed by
using an iterative Newton–Raphson procedure. We remark that several mortality models
are non-identifiable, namely several sets of parameters maximize the log-likelihood, and
therefore, it is common to introduce additional constraints to ensure the uniqueness of the
solution, see for instance Millossovich et al. (2018).

In order to compare the goodness-of-fit of different mortality models, a standard
choice consists of computing the Bayes information criterion (BIC) for each model and
selecting the model that provides the lowest value1. The BIC modifies the likelihood by
including a penalty on the number of parameters:

BIC = ν log K− 2L
(
φ̂
)
,

where L(φ̂) is the maximum likelihood estimate, K the number of observations and ν
the effective number of estimated parameters. The BIC tries to find a balance between
quality of fit (which can always be improved by increasing the number of parameters) and
parsimony. Based on the BIC, mortality models with the addition of cohort parameters
often lead to the best fitting models, but they however do not necessarily lead to the best
forecasts. The choice of identifiability constraints or fitting strategies keeps the quality of
fit constant, but may severely impact the projected mortality rates (see e.g., Section 8 in
Currie (2016)).

3.3. Forecasting

Projecting mortality rates follows from projecting the period indexes κ
(i)
t (i = 1, . . . , N)

and the cohort index γt−x in Equation (3), by using time series techniques. For the pe-

1 This type of analysis was for instance performed in Section 6.1.1. in Cairns et al. (2006) or Section 3.3 in Haberman and Renshaw (2011).
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riod indexes, it is often assumed that they follow a multivariate random walk with drift
(Haberman and Renshaw (2011)):

κt = δ + κt−1 + ξκ
t , κt =


κ
(1)
t
...

κ
(N)
t

, ξκ
t ∼ N (0, Σ),

where δ is a vector of drift parameters and Σ is the variance-covariance matrix of the
white noise ξκ

t . For the cohort index, previous studies assumed that the dynamics of the

cohort effect are independent of the dynamics of the period effects κ
(i)
t (Cairns et al. (2011)

and Lovász (2011)). The standard procedure is to consider a full range of ARIMA(p, d, q)
for different values of p, d, q and select the optimal values with the BIC. As pointed out
by Currie (2016), period and cohort effects are typically not independent; therefore, the
independence assumption should be treated with care.

4. Regularized Mortality Modeling

This section outlines how the elastic-net regularization and cross-validation can be
used to the smoothing and forecasting of two-dimensional mortality tables.

4.1. Polynomial Representation of Mortality Models

Similar to the previous section, we assume a Poisson model for death counts and a log
link function. However, instead of considering the specific structure (3) for the logarithm
of the death rates, we investigate the following structure:

log µx,t = f (x, t), (5)

where f (x, t) : R2 → R represents the mortality surface.
We point out that if the function f is continuous on [a, b]2, by the Stone–Weierstrass

theorem, for every ε > 0, there exists a polynomial p such that | f (x, t)− p(x, t)| < ε for
all x, t ∈ [a, b]2. This result would involve infinitely many parameters, which leaves a
direct estimate infeasible. Instead, we truncate the polynomial basis and only consider
polynomials up to order n:

log µx,t = ∑
i

∑
j

aijxitj, 0 ≤ i + j ≤ n, (6)

where we denote by a = (aij) the set of parameters to be estimated.2

Evidently, if one performs a standard maximum likelihood estimation by Equation
(4) for a high order n, the model will typically be overparameterized and provide poor
forecasts. For this reason, we combine techniques of regularization and cross-validation to
obtain a parsimonious model which is optimal in terms of predictions.

4.2. Estimation by Regularization and Cross-Validation

In order to reduce the model complexity in Equation (6), we use regularization tech-
niques which penalize the size of the coefficients. Ridge penalizes the L2-norm of the
coefficients and tends to shrink highly-correlated variables toward one another. Lasso
penalizes the L1-norm and tends to pick one of them and discard the others, producing a

2 Moreover, we consider the orthogonal polynomial basis through the polym R function to ensure numerical stability.
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sparse model. The elastic-net penalty mixes these two penalties and aims to optimize the
following penalized log-likelihood:

max
a

L(a)− λ

(1− α)∑
i,j
(aij)

2

︸ ︷︷ ︸
Ridge

+ α ∑
i,j
|aij|︸ ︷︷ ︸

Lasso


︸ ︷︷ ︸

Elastic-net

, (7)

where L(a) is the log-likelihood of the model, as given in Equation (4), α ∈ [0, 1] determines
the mix between Ridge and Lasso penalties and λ is a positive parameter which measures
the strength of the penalties. As λ increases, the number of parameters which are selected
decreases and the model becomes more parsimonious.

For the selection of the optimal parameters α and λ, we use a K-fold cross-validation
(with K = 10): the data are split into K parts; K− 1 parts are used to fit the model (called
the training set) and we compute the prediction error of the fitted model on the last part
(called the validation set). Standard choices to measure the prediction error are the mean-
squared-error (MSE) or the deviance. Since we consider a penalized Poisson model, we
evaluate the prediction performance via the Poisson deviance (on the validation set), which
is given by

D(â) = 2(L(ā)−L(â)),

where L(ā) is the log-likelihood of the fitted saturated Poisson model (a model with a free
parameter per observation) and L(â) is the log-likelihood of the fitted Poisson model.

Once the parameters α and λ which minimize the Poisson deviance on the validation
set have been selected, the resulting set of parameters â leads to a smoothed mortality
surface and provides the best model in terms of out-of-sample prediction performance.

4.3. Forecasting

We treat the forecasting of future mortality rates by extrapolation of the fitted mortality
surface. After the estimation procedure described in Section 4.2 by regularization and
cross-validation, we obtain the following fitted model:

log µ̂x,t = ∑
i

∑
j

âijxitj, 0 ≤ i + j ≤ n,

where â = (âij) is the set of the fitted parameters.
We note that by the presence of the L1 penalty term, most of these coefficients will be

equal to zero, which leads to a parsimonious fitted mortality model.
If the model is fitted for the years t1, . . . , tn1 , and we wish to forecast for n2 years into

the future, we consider the following extrapolation of central projections:

log µ̂x,t = ∑
i

∑
j

âijxitj, 0 ≤ i + j ≤ n,

for t = tn1+1, . . . , tn1+n2 .

4.4. Effect of COVID-19

In the context of COVID-19, it is important to determine how mortality models and
forecasts react to a certain pandemic shock. In the following, we consider two scenarios: one
optimistic and one pessimistic, and analyze how our regularized model and the P-spline
model change their predictions due to these scenarios.

As a first scenario, we follow the ideas of Cairns et al. (2020). The authors proposed
an accelerated deaths model, following the assumption that “Many of those who die
from coronavirus would have died anyway in the relatively near future due to these co-
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morbidities”. Their model depends essentially on two parameters: α(x), which represents
the amplitude of COVID-19 deaths at age x and ρ(x), which represents the expected
remaining years of life lost by those who die from Covid-19. Hereafter, we propose to
perturb deaths in a way that reflects the accelerated deaths model:

• During the year of the pandemic, t = tp, we assume that there is a death increase of
β(x):

dnew
x,t = (1 + β(x))dx,t.

• The next K years of the pandemic, t = tp + 1, . . . , tp + K, deaths and exposures are
reduced to compensate the deaths of COVID-19:

dnew
x,t = dx,t −

dx−m,tp

K
,

enew
x,t = ex,t − dx−m,tp

K−m + 1
K

,
(8)

where m := t− tp = 1, . . . , K is the number of years after the pandemic. Equations (8)
reflect the idea that people who died from COVID-19 would have died in the next
K years anyway. We note that we spread the deaths equally over the K years. To
draw a parallel with the accelerated death models, β(x) measures the amplitude of
the pandemic at age x and K measures the reach of the pandemic.

As a second scenario, we consider a more pessimistic perspective and assume that
there is a persistent increase of death rates after the pandemic. This is modelled by

dnew
x,t = (1 + β(x))dx,t, for t = tp, tp + 1, . . . (9)

Hence, under this scenario, deaths during and after the pandemic are increased by β(x)
and do not revert to normal.

4.5. Model Uncertainty and Prediction Intervals

Statistical testing and the obtention of prediction intervals are not directly possible
using the elastic net regularization, as no standard errors for the estimated parameters
are computed directly. There is some discussion concerning hypothesis testing in the
Lasso model (see e.g. Lockhart et al. (2014) and Tibshirani et al. (2018)), but following
Kyung et al. (2010), it seems that there is currently no general agreement on a statistically
valid method of obtaining standard errors of lasso and elastic net estimates.

When analyzing uncertainty in mortality projections with age-period-cohort models,
there are essentially two random sources: on the one hand, the uncertainty in the projection
of period and cohort indexes, and on the other hand, the uncertainty from the estimation of
the parameters in the model. Typically, the first type of uncertainty is treated with standard
time series techniques, while the second type can be taken into account with bootstrap
techniques (Brouhns et al. (2005); Koissi et al. (2006); Renshaw and Haberman (2008)).

By construction, our regularized mortality model described in Section 4 only includes
the second type of uncertainty, since there are no period and cohort indexes to be projected
for the extrapolated mortality rates. We did perform a bootstrap analysis of our model
but the obtained prediction intervals were too narrow compared to the ones of standard
mortality models. We suspect that the reason for this is that the main uncertainty in
standard mortality models comes from the projection of period and cohort indexes, which
is not present in our model. In order to obtain prediction intervals which are comparable
to standard age-period-cohort models, we introduce hereafter a simple procedure to obtain
prediction intervals by the inclusion of a period index.
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Let us assume that from a matrix of deaths D = (dx,t) and central exposures Ec = (ex,t),
for x = x1, . . . , xk and t = t1, . . . , tn1 , we have obtained with the regularized elastic net
model fitted and forecast central death rates:

µ̂x,t = exp

(
∑
i,j

âijxitj

)
, 0 ≤ i + j ≤ n, (10)

for t = t1, t2, . . . , tn1+n2 , where n1 is the number of years in the data and n2 the number
of forecast years. Our goal is to obtain prediction intervals for forecast death rates which
are centered around the extrapolated central death rates obtained in (10). The general
procedure is as follows:

1. In order to extract a period index, we assume that mortality rates improve at a general
improvement rate λt per year:

µx,t+1 = λt µx,t, for any x = x1, . . . , xk.

2. We estimate past improvement rates with the simple estimator:

λ̂t =
∑x µ̂x,t+1

∑x µ̂x,t

where µ̂x,t+1 and µ̂x,t are the smoothed death rates.3

3. We fit a random walk with drift (RWD) to past improvement rates: λ̂t for t =
t1, . . . , tn1 .

4. After the RWD fit, we can then obtain prediction intervals for future death rates:

IC1−α(µx,t+1) = [λt,α/2 µ̂x,t; λt,1−α/2 µ̂x,t]

where λt,α/2 and λt,1−α/2 are the standard quantiles for the improvement rate λt for
t = tn1+1, . . . , tn1+n2 .

5. Prediction intervals centered around the extrapolated central death rates can then be
obtained with a shift of the mean:

ICc
1−α(µx,t+1) =

[
λt,α/2µ̂x,t − λ̄t µ̂x,t + µ̂x,t+1; λt,1−α/2µ̂x,t − λ̄t µ̂x,t + µ̂x,t+1

]
.

where λ̄t is the mean of λt.

Following this procedure, we obtain prediction intervals that are centered around
the central death rates estimated from the regularized elastic net model. The uncertainty
around the central death rates follows from the uncertainty of the improvement rate λt,
which presents the same dynamics as the period index κt in the Lee–Carter model.

5. Numerical Analysis and Comparison of Models

This section is dedicated to the numerical analysis of our model and its comparison
with standard actuarial models. In Section 5.1, we show how the implementation can
be easily performed in the R language and applied to the French data. Section 5.2 com-
pares the prediction performance of our model with standard age-period-cohort models.
In Section 5.3, we make a detailed comparison with the P-spline model and particularly
show that the regularized model is more robust and outperforms the P-spline approach in
terms of prediction errors.

3 The estimated improvement rate on crude death rates is very noisy. The use of smoothed death rates allows one to have a more regular pattern for
the improvement rate.
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5.1. Smoothing and Forecasting Central Death Rates for France

The previous section set out the methodology to estimate and forecast mortality rates
by regularization and cross-validation. We now apply our method to the French data set
from HMD. Given the matrix of deaths D = (dx,t) and the matrix of exposures Ec = (ex,t),
Figure 1 represents historical death rates which are given by

µ̂x,t =
dx,t

ex,t
.

1990

Year 1980

1970 50

60

70

Age

80

90

2000

2010

-5

-4

-3

-2

Figure 1. Surface of the logarithm of the raw death rates for age from 50 to 90 and year from 1970 to
2017 for French males.

Our objective is twofold: first, we smooth the mortality surface by regularization and
cross-validation. In a second step, we forecast future death rates by extrapolation.

For the smoothing of the mortality surface, we consider the polynomial representation (6)
with n = 20. Our model is a Poisson generalized linear model with log link function which
can be expressed as

logE(Dx,t) = log ex,t + ∑
i,j

aijxitj,

where the elasticnet penalization applies on the set of parameters a = (aij). The estimation
by regularization and cross-validation is performed with the use of the R-package glmnet
(Friedman et al. (2010)).

We performed this cross-validation for a range of α values and kept the model which
has the lowest Poisson deviance on the validation set. Figure 2 represents the cross-
validation results for the optimal α. The algorithm starts with the constant model (no
parameter), and as λ decreases, the number of parameters increases. The algorithm stops
when the increase of parameters does not improve the Poisson deviance of the validation
set anymore. Figure 2 shows that the algorithm chose a model of 31 parameters (among
230 parameters).
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Figure 2. Cross-validation plot of the glmnet algorithm for α = 0.5.

Forecast of mortality can then be obtained by extrapolation of the fitted mortality
surface. Figure 3 represents the crude death rates (the data) and the forecast death rates
until 2050. At first glance, we observe that the fitted model with only 31 parameters
performs well at forecasting mortality rates. In particular, forecast death rates extend
properly the observed levels of mortality rates represented by the different color levels in
Figure 3.

Year
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Figure 3. Logarithm of crude death rates from year 1970 to 2017 and logarithm of extrapolated death
rates from 2018 to 2050.

5.2. Comparison with Standard Age-Period-Cohort Mortality Models

In this part, we compare our regularized mortality model with a family of popular mor-
tality models in terms of prediction performance. The models considered for comparison
are listed in Table 1 and are fitted with the R package StMoMo (Millossovich et al. (2018))
in the log-Poisson setting with appropriate identifiability constraints.
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Table 1. Model structures considered for comparison.

Mortality Model Dynamics

Lee–Carter (LC) log µx,t = αx + βxκ
(1)
t

Cairns–Blake–Dowd (CBD) log µx,t = κ
(1)
t + (x− x̄)κ(2)t

Age-Period-Cohort (APC) log µx,t = αx + κ
(1)
t + γt−x

Renshaw–Haberman (RH) log µx,t = αx + βxκ
(1)
t + γt−x

M7 log µx,t = κ
(1)
t + (x− x̄)κ(2)t + ((x− x̄)2 − σ̄2

x )κ
(3)
t + γt−x

To measure prediction accuracy, we fitted the models based on data from 1986 to 2007
and compared the difference between the realized death rates and the forecasted death
rates from 2008 to 2017 (10-year forecast). To measure this difference, we computed the
mean absolute error (MAE), which, in this case, is given by

MAE =
90

∑
x=50

2017

∑
t=2008

∣∣∣∣dx,t

ex,t
− µ̂x,t

∣∣∣∣.
where dx,t and ex,t are the realised death and exposures for age x and year t, and µ̂x,t is the
forecasted death rate from the model.

Table 2 reports the MAE for standard mortality models and our regularized model for
six countries: the USA, the UK, France, Belgium, Japan and Hong Kong. We highlight for
each country the models with the lowest prediction error and the lowest BIC. From Table 2,
we observe that the models which have the best fit to historical data (in terms of BIC) may
provide poor forecasts (Cairns et al. (2011)). In particular, for France, the inclusion of cohort
terms in the Lee–Carter model provided a better fit, but the Lee–Carter model without
cohort terms led to better forecasts. Moreover, the regularized model performs among
the top 3 in terms of MAE for most countries and prediction results through different
countries are more stable for the regularized model compared to mortality models with
cohort effects.

Table 2. Mean Absolute Error for USA, UK, France, Belgium (BEL), Japan (JAP) and Hong Kong
(HKG) for the different models of Table 1 and our regularized model (Reg). Fit based on historical
data from 1986 to 2007. In bolds: Lowest Mean Absolute Error per Country and in italics: lowest BIC
model (excluding Reg).

Mean Absolute Error (10-Year Forecast)

USA UK France BEL JAP HKG

LC 0.00369 0.00225 0.00120 0.00246 0.00213 0.00265
CBD 0.00279 0.00205 0.00505 0.00388 0.00313 0.00261
APC 0.00161 0.00251 0.00206 0.00338 0.00250 0.00168
RH 0.00368 0.00463 0.00233 0.00308 0.00194 0.00275
M7 0.00222 0.00152 0.00259 0.00200 0.00097 0.00143
Reg 0.00194 0.00212 0.00274 0.00244 0.00267 0.00214

We now assess the robustness of the different models relative to the sample period
used in estimating the model. For each country4 and each model, we consider historical
data from 1970 to 2007 in Table 3 instead of the period 1986 to 2007, as considered in Table 2.
Compared to Table 2, we can make the following observations:

• The RH model is very sensitive to the fitted period. The model can go from the
worst to the best model (cf. USA) and from the best to the worst model (cf. Bel-
gium). Cairns et al. (2011) already pointed out that lack of robustness in this model as
parameter estimates jump to a qualitatively different solution when we use more data.

4 Except Hong Kong, as data from Hong Kong are only available from 1986 onwards.
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• The regularized model and the Lee-Carter model appear to be reasonably robust
relative to changes in the period of data used either in terms of MAE values or ranking
positions. In particular, models without cohort effects tend to be more robust towards
the sample data used as they do not require the projections of cohort terms.

Table 3. Similar table as Table 2 but based on historical data from 1970 to 2007.

Mean Absolute Error (10-Year Forecast)

USA UK France BEL JAP

LC 0.00432 0.00318 0.00147 0.00345 0.00213
CBD 0.00262 0.00193 0.00490 0.00335 0.00355
APC 0.00201 0.00265 0.00261 0.00370 0.00328
RH 0.00197 0.00313 0.00293 0.00622 0.00167
M7 0.00407 0.00195 0.00227 0.00142 0.00298
Reg 0.00288 0.00307 0.00262 0.00287 0.00310

5.3. Comparison with the P-Spline Model

Our model relies on the smoothing of mortality over both age and time, where the
smoothing is performed by the penalty in the elastic-net regularization (7). In the actuarial
literature, Currie et al. (2004) proposed two-dimensional P-splines for smoothing and
forecasting mortality rates, and this approach is implemented in the R package Mortal-
itySmooth (Camarda et al. (2012)). Hereafter, we highlight similarities and differences
with our approach. Moreover, 10-year forecasts of both methods are also compared for
different countries and extrapolation issues in the P-spline approach are also discussed.
In particular, we found that the P-spline approach is sensitive to small perturbations and
provides unrealistic forecasts for the USA and in the context of COVID-19.

The common point between both modeling approaches is the use of a penalized gen-
eralized linear model with Poisson errors. However, they have two important differences:

• The basis: In the P-spline model, the basis consists of cubic B-splines, which are
bell-shaped curves composed of smoothly joined polynomial pieces of degree 3. By
construction, B-splines are defined in a local manner, i.e. each B-spline is non-zero
only in a certain neighborhood of the mortality surface. On the other hand, our
regularized mortality model uses a global two-dimensional polynomial basis, see (6).
More flexibility can be included either by increasing the number of knots in the
B-spline approach or by increasing the degree order in the global polynomial basis.

• The penalty: To smooth the mortality surface and avoid overfitting, a penalty term on
the regression coefficients is introduced. In the P-spline model, the following penalty
matrix is defined:

P = P(λa, λy) = λa Icy ⊗ Dᵀ
a Da + λy Ica ⊗ Dᵀ

y Dy,

where λa and λy are the smoothing parameters in age and year, respectively, and Da
and Dy are second order difference matrices acting on the columns and rows of A,
respectively. Here, A is the matrix of coefficients arranged in a matrix ca× cy, where ca
and cy are the dimensions of the bases spanning age and year, respectively. Smoothing
parameters (λa, λy) are chosen by minimizing the BIC. More details can be found in
Currie et al. (2004).
On the other hand, in our regularized model, the penalty term is given by the elastic-
net regularization:

P = P(λ, α) = λ

(
(1− α)∑

i,j
(aij)

2 + α ∑
i,j
|aij|

)
,

where λ is the smoothing parameter and α is the mixing parameter between the two
types of penalization. An important difference is that both parameters (λ, α) are
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chosen in terms of prediction performance by cross-validation on out-of-sample data
instead of in-sample criterion such as the BIC.

In Table 4, we compare 10-year forecasts based on historical data from 1986 to 2007 for
USA, UK, France, Belgium, Japan and Hong Kong. Results show that for France, prediction
performance is similar, and for other countries, the regularized model outperforms the
P-spline approach. Prediction errors are in the range of standard age-period-cohort models,
except for the USA, where the P-spline model fails at predicting death rates. We investigate
this point more in detail.

Table 4. Mean Absolute Error for USA, UK, France, Belgium (BEL), Japan (JAP) and Hong Kong
(HKG) for the P-spline model in Currie et al. (2004) and our regularized model, based on historical
data from 1986 to 2007. In bold: Lowest MAE per Country.

Mean Absolute Error (10-Year Forecast)

USA UK France BEL JAP HKG

P-splines 0.01405 0.00486 0.00232 0.00695 0.00384 0.00271
Regularized 0.00194 0.00212 0.00274 0.00244 0.00267 0.00214

5.3.1. The Case of the Usa

Figure 4 represents the logarithm of the crude death rates with the fitted and forecast
death rates for USA both by the P-spline model and our regularized model from age 50 to
90. One striking observation is the erratic and unrealistic behaviour of the forecast death
rates of the P-spline model: death rates around the age of 50 explode while death rates
between 60 and 90 tend to converge to a single point. On the other hand, the elastic-net
regularized model is able to capture properly the general trend of the mortality surface.
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Figure 4. Logarithm of the fitted death rates and forecast death rates for USA by ages (50–90)
over years (1986–2017). On the left: forecast by the P-spline model. On the right: forecast by our
regularized elastic-net model.

The failure of the P-spline model to extrapolate death rates is due to the selection
procedure of the smoothing parameters. We can observe on Figure 4 that the death rates
at age 50 (bottom line on the figure) between 1995 and 2000 deviate from the general
trend. Since smoothing parameters (λa, λy) aim at minimizing the BIC, and therefore the
deviance, the P-spline model will select a low value of λy for the year dimension in order to
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better fit these death rates. Indeed, the algorithm of the package MortalitySmooth chose
(λa, λy) = (0.01, 0.003) for a BIC = 5270. As a consequence, the regression coefficients at
the age of 50 are not smoothed and present a lot of variability as shown on the right panel
of Figure 5. The erratic behaviour of the coefficients at age 50 is then spread to adjacent
coefficients and to the entire extrapolated mortality surface. One way to circumvent this
issue is to increase the smoothing parameter on the year dimension λy, which will slightly
decrease the goodness-of-fit but improve the extrapolation and the corresponding forecasts.
The left panel of Figure 5 depicts the forecast of death rates in the USA with λy = 20
instead of λy = 0.003. For λy = 20, BIC slightly increases to 5335 but offers much more
realistic forecasts.
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Figure 5. On the left: forecast by the P-spline model with λy = 20. On the right: regression
coefficients in the P-spline model at age 50 with λy = 0.003 and λy = 20 and at age 90.

Our regularized model does not present this unrealistic behaviour because the set of
parameters (λ, α) are selected by cross-validation with the presence of a lasso regularization
term. Therefore, the fitted parameters will not be severely impacted if few points deviate
from the general trend. The example of the USA highlights the importance of using
out-of-sample techniques rather than an in-sample criterion such as the BIC.

5.3.2. The Case of COVID-19

In this section, we analyze how our regularized model and the P-spline model change
their predictions by considering two scenarios: one optimistic and one pessimistic, as
described in Section 4.4.

Since we have mortality data from HMD until 2017, we perturb the data as if there
were a pandemic in 2013. As a first scenario, we assume that there is a death increase of
10% in 2013 for all ages, i.e. β(x) = 0.1, followed by a death decrease over the next two
years (2014–2015), i.e., K = 2. The last two years (2016–2017) are not disturbed, assuming
mortality reverts to normal. Figure 6 represents the logarithm of the crude death rates
with the fitted and forecast death rates for France, both by the P-spline model and our
regularized model after including the pandemic shock. As was the case for forecasting
USA death rates, the P-spline provides unrealistic forecasts. Indeed, since death rates
are perturbed for three years and then back to normal, we should expect a continuous
decreasing trend. On the contrary, the P-spline predicts an increase of death rates at levels
which are higher than the ones in 1986. On the other hand, the regularized model is robust
towards the pandemic shock and predicts a decreasing trend as expected.
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Figure 6. Logarithm of the fitted death rates and forecast death rates for France by ages (50–90)
over years (1986–2030), after a pandemic shock in 2013 compensated by two years with lower
mortality. On the left: forecast by the P-spline model. On the right: forecast by our regularized
elastic-net model.

As a second scenario, we perturb mortality data for France as if there were a pandemic
in 2013. In this case, we assume that there is a death increase of β(x) = 10% for all ages
in 2013 and in the following years according to (9). Figure 7 represents the logarithm of
the crude death rates with the fitted and forecast death rates, both by the P-spline model
and our regularized model after including this second pandemic shock. Again, we observe
that the P-spline model is unable to provide realistic forecasts. While we were expecting
a mortality increase, the P-spline model predicts a mortality decrease and improbable
mortality levels. By contrast, our regularized model is able to capture the pandemic shock
and predicts a reduction in longevity improvement as expected. Overall, both pandemic
scenarios considered here show that the regularized model provides adequate forecasts,
which is not the case for the P-spline model.
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Figure 7. Logarithm of the fitted death rates and forecast death rates for France by ages (50–90) over
years (1986–2030) after a pandemic shock in 2013, followed by a continuous mortality increase. On the
left: forecast by the P-spline model. On the right: forecast by our regularized elastic-net model.

5.4. Model Uncertainty and Prediction Intervals

The extrapolation of the regularized mortality surface does not directly provide
prediction intervals. In Section 4.5, we have introduced a simple procedure to obtain
prediction intervals by the inclusion of a period index. These prediction intervals are
centered around the central death rates estimated from the regularized elastic net model
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and include the uncertainty from the period effect. To illustrate this procedure, Figure 8
depicts prediction intervals from the Lee–Carter model and from our regularized model for
the French population. We observe that the general procedure produces central trend and
uncertainty levels which are consistent with the ones produced by the Lee–Carter model.
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Figure 8. Fan charts for death rates µx,t at ages x = 65, x = 75, x = 85 from the Lee–Carter model on
the left and from the regularized elastic net model on the right to the French population. The dots
show historical death rates from 1970–2007 and shades in the fan represent prediction intervals at the
50%, 80% and 95% level.

6. Concluding Remarks

In this paper, we have proposed a new method to smooth mortality data in two
dimensions, based on the elasticnet regularization and cross-validation. Comparisons
with standard age-period-cohort models show that it provides robust estimates relative
to the data used to fit the model and relative to the different countries considered and
that the best model is far from being the same in different countries and zones (see, for
instance, Tables 2 and 3). A detailed comparison with the P-spline model shows that
the elasticnet regularized model is more robust to outliers, while the P-spline model can
present erratic behaviour in presence of some data points that deviate from the general
trend, like in the COVID-19 era. Indeed, in Section 5.3, we found that the P-spline approach
leads to implausible forecasts for the American data and different data sets disturbed by
pandemic shocks (see also Figures 6 and 7).

We believe that regularization techniques may help in the context of mortality model-
ing. Smoothness of the parameters in a stochastic mortality model is a key feature to obtain
robust forecasts. As shown in this paper, parsimonious penalized models are less sensitive
to the period of fit and their forecasts present less variability compared to models with
cohort effects. Further research is needed concerning the application of regularization for
the fitting and forecasting of mortality models. Moreover, recent work on regime-switching
models (Gylys and Šiaulys (2020)) shows promising results in modelling the effect of
pandemic in the Swedish data. It would be interesting to consider a comparison between
regime-switching models and smoothing models based on out-of-sample performance;
this point is left for further research.
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