
risks

Article

A Deep Neural Network Algorithm for Semilinear
Elliptic PDEs with Applications in
Insurance Mathematics

Stefan Kremsner 1,*, Alexander Steinicke 2 and Michaela Szölgyenyi 3

1 Department of Mathematics, University of Graz, Heinrichstraße 36, 8010 Graz, Austria
2 Department of Mathematics and Information Technology, Montanuniversitaet Leoben,

Peter Tunner-Straße 25/I, 8700 Leoben, Austria; alexander.steinicke@unileoben.ac.at
3 Department of Statistics, University of Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt, Austria;

michaela.szoelgyenyi@aau.at
* Correspondence: stefan.kremsner@uni-graz.at

Received: 29 October 2020; Accepted: 2 December 2020; Published: 9 December 2020
����������
�������

Abstract: In insurance mathematics, optimal control problems over an infinite time horizon arise
when computing risk measures. An example of such a risk measure is the expected discounted future
dividend payments. In models which take multiple economic factors into account, this problem is
high-dimensional. The solutions to such control problems correspond to solutions of deterministic
semilinear (degenerate) elliptic partial differential equations. In the present paper we propose
a novel deep neural network algorithm for solving such partial differential equations in high
dimensions in order to be able to compute the proposed risk measure in a complex high-dimensional
economic environment. The method is based on the correspondence of elliptic partial differential
equations to backward stochastic differential equations with unbounded random terminal time.
In particular, backward stochastic differential equations—which can be identified with solutions of
elliptic partial differential equations—are approximated by means of deep neural networks.

Keywords: backward stochastic differential equations; semilinear elliptic partial differential
equations; stochastic optimal control; unbounded random terminal time; machine learning;
deep neural networks

MSC: 60H35; 65N75; 68T07

1. Introduction

Classical optimal control problems in insurance mathematics include finding risk measures
like the probability of ruin or the expected discounted future dividend payments. Mathematically,
these are problems over a potentially infinite time horizon, ending at an unbounded random
terminal time—the time of ruin of the insurance company. In recent models which take multiple
economic factors into account, the problems are high dimensional. For computing these risk
measures, optimal control problems need to be solved numerically. A standard method for solving
control problems is to derive the associated Hamilton–Jacobi–Bellman (HJB) equation—a semilinear
(sometimes integro) partial differential equation (PDE)—and show that its (numerical) solution also
solves the original control problem. In the case of infinite time horizon problems, these HJB equations
are (degenerate) elliptic. In this paper we propose a novel deep neural network algorithm for semilinear
(degenerate) elliptic PDEs associated to infinite time horizon control problems in high dimensions.

We apply this method to solve the dividend maximization problem in insurance mathematics.
This problem originates in the seminal work by De Finetti (1957), who introduced expected

Risks 2020, 8, 136; doi:10.3390/risks8040136 www.mdpi.com/journal/risks

http://www.mdpi.com/journal/risks
http://www.mdpi.com
https://orcid.org/0000-0003-2987-2251
http://dx.doi.org/10.3390/risks8040136
http://www.mdpi.com/journal/risks
https://www.mdpi.com/2227-9091/8/4/136?type=check_update&version=2

Risks 2020, 8, 136 2 of 18

discounted future dividend payments as a valuation principle for a homogeneous insurance portfolio.
This constitutes an alternative risk measure to the (even more) classical probability of ruin.
Classical results on the dividend maximization problem are Asmussen and Taksar (1997);
Jeanblanc-Picqué and Shiryaev (1995); Radner and Shepp (1996); Shreve et al. (1984). Overviews can be
found in Albrecher and Thonhauser (2009); Avanzi (2009); for an introduction to optimization problems
in insurance we refer to Azcue and Muler (2014); Schmidli (2008). Recent models for the surplus of an
insurance company allow for changes in the underlying economy. Such models have been studied, e.g.,
in Jiang and Pistorius (2012); Leobacher et al. (2014); Sotomayor and Cadenillas (2011); Zhu and Chen
(2013); Szölgyenyi (2013, 2016); Reppen et al. (2020). In Leobacher et al. (2014); Szölgyenyi (2013, 2016)
hidden Markov models for the underlying economic environment were proposed that allow for
taking (multiple) exogenous, even not directly observable, economic factors into account. While these
authors study the dividend maximization problem from a theoretical perspective, we are interested in
computing the risk measure. However, classical numerical methods fail when the problem becomes
high-dimensional, that is for example when exogenous economic factors are taken into account. In this
paper we propose a novel deep neural network algorithm to solve high-dimensional problems. As an
application we use it to solve the dividend maximization problem in the model from Szölgyenyi (2016)
in high dimensions numerically.

Classical algorithms for solving semilinear (degenerate) elliptic PDEs like finite difference or finite
element methods suffer from the so-called curse of dimensionality—the computational complexity
for solving the discretized equation grows exponentially in the dimension. In high-dimensions
(say > 10) one has to resort to costly quadrature methods such as multilevel-Monte Carlo
or the quasi-Monte Carlo-based method presented in Kritzer et al. (2019). In recent years,
deep neural network (DNN) algorithms for high-dimensional PDEs have been studied extensively.
Prominent examples are Han et al. (2017, 2018), where semilinear parabolic PDEs are associated
with backward stochastic differential equations (BSDEs) through the (nonlinear) Feynman-Kac
formula and a DNN algorithm is proposed that solves these PDEs by solving the associated
BSDEs. In the literature there exists a variety of DNN approaches for solving PDEs, in particular
(degenerate) parabolic ones. Great literature overviews are given, e.g., in Beck et al. (2020);
Grohs et al. (2019a), out of which we list some contributions here: (Beck et al. 2018, 2019b, 2019c;
Becker et al. 2019a, 2019b; Berg and Nyström 2018; Chan-Wai-Nam et al. 2019; Chen and Wan 2020;
Dockhorn 2019; E and Yu 2018; Farahmand et al. 2017; Fujii et al. 2019; Goudenège et al. 2019;
Han and Long 2020; Han et al. 2020; Henry-Labordère 2017; Huré et al. 2019; Jacquier and Oumgari 2019;
Long et al. 2018; Lu et al. 2019; Lye et al. 2020; Magill et al. 2018; Pham et al. 2019; Raissi 2018;
Sirignano and Spiliopoulos 2018).

While mathematical finance control problems (e.g., investment problems) are studied over
relatively short time horizons, leading to (degenerate) parabolic PDEs, in insurance mathematics
they are often considered over the whole lifetime of the insurance company, leading to (degenerate)
elliptic PDEs. For elliptic PDEs, a multilevel Picard iteration algorithm is studied in Beck et al. (2020),
a derivative-free method using Brownian walkers without explicit calculation of the derivatives of the
neural network is studied in Han et al. (2020), and a walk-on-the-sphere algorithm is introduced in
Grohs and Herrmann (2020) for the Poisson equation, where the existence of DNNs that are able to
approximate the solution to certain elliptic PDEs is shown.

In the present article we propose a novel DNN algorithm for a large class of semilinear (degenerate)
elliptic PDEs. For this, we adopt the approach from Han et al. (2018) for (degenerate) parabolic PDEs.
The difference here is that we use the correspondence between the PDEs we seek to solve and BSDEs
with random terminal time. This correspondence was first presented in Pardoux (1998), and elaborated
afterwards, e.g., in Briand and Hu (1998); Briand and Confortola (2008); Darling and Pardoux (1997);
Pardoux (1999); Royer (2004).

As these results are not as standard as the BSDE correspondence to parabolic PDEs, we summarize
the theory in Section 2 for the convenience of the reader. In Section 3 we present the DNN algorithm,

Risks 2020, 8, 136 3 of 18

and test it in Sections 4.1 and 4.2. In Section 4.3 we present the model from Szölgyenyi (2016) in which
we seek to solve the dividend maximization problem and hence to compute the risk measure. That this
method works also in high dimensions is demonstrated at the end of Section 4.3, where numerical
results are presented.

The method presented here can be applied to many other high-dimensional semilinear
(degenerate) elliptic PDE problems in insurance mathematics, such as the calculation of ruin
probabilities, but we emphasize that its application possibilities are not limited to insurance problems.

2. BSDEs Associated with Elliptic PDEs

This section contains a short survey on scalar backward stochastic differential equations with
random terminal times and on how they are related to a certain type of semilinear elliptic partial
differential equations.

2.1. BSDEs with Random Terminal Times

Let (Ω,F ,P, (Ft)t∈[0,∞)) be a filtered probability space satisfying the usual conditions and let
W = (Wt)t∈[0,∞) be a d-dimensional standard Brownian motion on it. We assume that (Ft)t∈[0,∞) is
equal to the augmented natural filtration generated by W. For all real valued row or column vectors x,
let |x| denote their Euclidean norm. We need the following notations and definitions for BSDEs.

Definition 1. A BSDE with random terminal time is a triple (τ, ξ, f), where

• the terminal time τ : Ω→ [0, ∞] is an (Ft)t∈[0,∞)-stopping time,

• the generator f : Ω× [0, ∞)×R×R1×d → R is a process which satisfies that for all (y, z) ∈ R×R1×d,
the process t 7→ f(t, y, z) is progressively measurable,

• the terminal condition ξ : Ω→ R is an Fτ-measurable random variable with ξ = 0 on {τ = ∞}.

Definition 2. A solution to the BSDE (τ, ξ, f) is a pair of progressively measurable processes
(Y, Z) =

(
(Yt)t∈[0,∞), (Zt)t∈[0,∞)

)
with values in R×R1×d, where

• Y is continuous P-a.s. and for all T ∈ (0, ∞), the trajectories t 7→ Zt belong to L2([0, T],R1×d),
and t 7→ f(t, Yt, Zt) is in L1([0, T]),

• for all T ∈ (0, ∞) and all t ∈ [0, T] it holds a.s. that

Yt = YT +
∫ T∧τ

t∧τ
f(s, Ys, Zs)ds−

∫ T∧τ

t∧τ
ZsdWs, (1)

• Yt = ξ and Zt = 0 on {t ≥ τ}.

Results on existence of solutions of BSDEs with random terminal time can be found in Pardoux’
seminal article Pardoux (1998) (see (Pardoux 1998, Theorem 3.2)), in Briand and Confortola (2008)
for generators with quadratic growth (see (Briand and Confortola 2008, Theorem 3.3)), and, e.g.,
in Briand and Hu (1998); Briand et al. (2003); Darling and Pardoux (1997); Pardoux (1999); Royer (2004);
many of them cover multidimensional state spaces for the Y-process.

Optimal control problems which can be treated using a BSDE setting have for example been
studied in (Briand and Confortola 2008, Section 6). For this they consider generators of the
forward-backward form

f(t, y, z) = F(Xt, y, z) = inf{g(Xt, u) + zr(Xt, u) : u ∈ U} − λy, (2)

where X is a forward diffusion (see also the notation in the following subsection), U is a Banach space,
r is a Hilbert space-valued function (in their setting z takes values in the according dual space) with

Risks 2020, 8, 136 4 of 18

linear growth, g a real valued function with quadratic growth in u, and λ ∈ (0, ∞). In the sequel we
focus on generators of forward-backward form.

2.2. Semilinear Elliptic PDEs and BSDEs with Random Terminal Time

In this subsection we recall the connection between semilinear elliptic PDEs and BSDEs with
random (and possibly infinite) terminal time. The relationship between the theories is based on a
nonlinear extension of the Feynman-Kac formula, see (Pardoux 1998, Section 4).

We define the forward process X as the stochastic process satisfying a.s.,

Xt = x +
∫ t

0
µ(Xs)ds +

∫ t

0
σ(Xs)dWs, t ∈ [0, ∞), (3)

where x ∈ Rd and µ : Rd → Rd and σ : Rd → Rd×d are globally Lipschitz functions.
In this paper we consider the following class of PDEs.

Definition 3.

• A semilinear (degenerate) elliptic PDE on the whole Rd is of the form

Lu + F(·, u, (∇u)σ) = 0, (4)

where the differential operator L acting on C2(Rd) is given by

L :=
1
2

d

∑
i,j=1

(σσ>)i,j(x)
∂2

∂xi∂xj
+

d

∑
i=1

µi(x)
∂

∂xi
, (5)

and F : Rd ×R×R1×d → R is such that the process (t, y, z) 7→ F(Xt, y, z) is a generator of a BSDE in
the sense of Definition 1.

• We say that a function u satisfies Equation (4) with Dirichlet boundary conditions on the open,
bounded domain G ⊆ Rd, if

Lu + F(·, u, (∇u)σ) = 0, x ∈ G,

u(x) = g(x), x ∈ ∂G,
(6)

where g : Rd → R is a bounded, continuous function.

Definition 4.

1. A BSDE associated to the PDE (4) on the whole Rd is given by the triplet (τ, ξ, f), where τ ≡ ∞, ξ = 0,
f(t, y, z) = F(Xt, y, z), X is as in (3), and the solution satisfies a.s. for all T ∈ (0, ∞) that

Yt = YT +
∫ T

t
F(Xs, Ys, Zs)ds−

∫ T

t
ZsdWs, t ∈ [0, T]. (7)

2. A BSDE associated to the PDE (6) with Dirichlet boundary conditions is given by the triplet (τ, g(Xτ), f),
where τ = inf{t ∈ [0, ∞) : Xt /∈ G}, f(t, y, z) = F(Xt, y, z), X is as in (3), and the solution satisfies
a.s. for all T ∈ (0, ∞) that

Yt = YT +
∫ T∧τ

t∧τ
F(Xs, Ys, Zs)ds−

∫ T∧τ

t∧τ
ZsdWs, t ∈ [0, T],

Yt = g(Xτ), Zt = 0, t ≥ τ.
(8)

In order to keep the notation simple, we do not highlight the dependence of X, Y, Z on x.
For later use we also introduce the following notion of solutions of PDEs, which we will use later.

Risks 2020, 8, 136 5 of 18

Definition 5.

• A function u ∈ C(Rd) is called viscosity subsolution of (4), if for all ϕ ∈ C2(Rd) and all points x ∈ Rd

where u− ϕ has a local maximum,

Lϕ(x) + F(x, u(x), (∇ϕ(x))σ(x)) ≥ 0.

• A function u ∈ C(Rd) is called viscosity supersolution of (4), if for all ϕ ∈ C2(Rd) and all points x ∈ Rd

where u− ϕ has a local minimum,

Lϕ(x) + F(x, u(x), (∇ϕ(x))σ(x)) ≤ 0.

• A function u ∈ C(Rd) is called viscosity solution of (4), if it is a viscosity sub- and supersolution.

A similar definition of viscosity solutions can be given for the case of Dirichlet boundary
conditions (6), see Pardoux (1998).

For later use, note that (8) can be rewritten in forward form as

Yt = Y0 −
∫ t

0
F(Xs, Ys, Zs)ds +

∫ t

0
ZsdWs, t ∈ [0, τ),

Yt = g(Xτ), Zt = 0, t ≥ τ.
(9)

The following theorems link the semilinear elliptic PDEs (4) and (6) to the associated BSDEs.

Theorem 1 ((Pardoux 1998, Theorem 4.1)). Let (t, y, z) 7→ F(Xt, y, z) meet the assumptions of
(Pardoux 1998, Theorem 3.2) and let u ∈ C2(Rd) satisfy

E
[∫ ∞

0
eλt|((∇u)σ)(Xt)|2dt

]
< ∞

with λ as in (Pardoux 1998, Theorem 3.2). If u is a classical solution of the PDE (4), then

Yt = u(Xt), Zt = ((∇u)σ)(Xt)

solve the BSDE (7). An equivalent statement can be established for the system with boundary conditions (6) and
Equation (8), see Pardoux (1998).

Note that for all x ∈ Rd, Y and Z are stochastic processes adapted to (Ft)t∈[0,∞). Therefore, Y0, Z0

are F0-measurable and hence a.s. deterministic. For us, the connection between PDEs and BSDEs is of
relevance because of the converse result, where x 7→ Y0 delivers a solution to the respective PDE.

Theorem 2 ((Pardoux 1998, Theorem 4.3)). Assume that for some K, K′, p ∈ (0, ∞), γ ∈ (−∞, 0) the
function F satisfies for all x, y, y′, z, z′,

(i) |F(x, y, z)| ≤ K′(1 + |x|p + |y|+ |z|),
(ii) 〈y− y′, F(x, y, z)− F(x, y′, z)〉 ≤ γ|y− y′|2,

(iii) |F(x, y, z)− F(x, y, z′)| ≤ K|z− z′|.

Then (Pardoux 1998, Theorem 3.2) can be applied to the generator (t, y, z) 7→ F(Xt, y, z), showing that
the function u given by u(x) = Y0 is a viscosity solution to (4), where Y is the first component of the unique
solution to (7) in the class of solutions from (Pardoux 1998, Theorem 3.2).

The case of the Dirichlet problem requires additional assumptions on the domain G and the exit
time τ from (8). We refer to (Pardoux 1998, Theorem 4.3). A corresponding result for BSDEs with
quadratic generator is (Briand and Confortola 2008, Theorem 5.2).

Risks 2020, 8, 136 6 of 18

To conclude, the correspondence between PDE (6) and BSDE (8) is given by Yt = u(Xt),
Zt = ((∇u)σ)(Xt), ξ = g(Xτ). For tackling elliptic PDEs which are degenerate (as it is the case
for our insurance mathematics example) we need to take the relationship a little further in order to
escape the not so convenient structure of the Z-process. We factor Zσ(X) = Z for cases where this
equation is solvable forZ (σ needs not necessarily be invertible) and define f (x, y, ζ) := F(x, y, ζσ(x))1,
giving the correspondence Yt = u(Xt), Zt = ∇u(Xt), ξ = g(Xτ). This relationship motivates us to
solve semilinear degenerate elliptic PDEs by solving the corresponding BSDEs forward in time (cf. (9))

Yt = Y0 −
∫ t

0
f (Xs, Ys,Zs)ds +

∫ t

0
Zsσ(Xs)dWs, t ∈ [0, τ)

for Y0 by approximating the paths of Z = ∇u(X) by a DNN, see Section 3. Doing so, we obtain an
estimate of a solution value u(x) for a given x ∈ Rd.

3. Algorithm

The idea of the proposed algorithm is inspired by Han et al. (2018), where the authors use the
correspondence between BSDEs and semilinear parabolic PDEs to construct a DNN algorithm for
solving the latter. In the same spirit, we construct a DNN algorithm based on the correspondence to
BSDEs with random terminal time for solving semilinear elliptic PDEs.

The details of the algorithm are described in three steps of increasing specificity. First we explain
the DNN algorithm mathematically. This is done below. Second, Algorithm 1 at the end of this section
provides a pseudocode. Third, our program code is provided on Github2 under a creative commons
license. The algorithm is implemented in a generic manner so that it can be reused for other elliptic
PDE problems.

The goal of the algorithm is to calculate solution values u(x) of the semilinear (degenerate) elliptic
PDE of interest. For the construction of the algorithm we use the correspondence to a BSDE with
random terminal time. Recall from Section 2 that such a BSDE is given by a triplet (τ, g(Xτ), f) that
can be determined from the given PDE and by

Xt = x +
∫ t

0
µ(Xs)ds +

∫ t

0
σ(Xs)dWs (10)

and

Yt = Y0 −
∫ t

0
f (Xs, Ys,Zs)ds +

∫ t

0
Zsσ(Xs)dWs. (11)

Furthermore, recall that we have identified Yt = u(Xt), where u is the solution of the PDE we are
interested in.

The first step for calculating u is to approximate (10) up to the stopping time τ. To make this
computationally feasible, we choose T large and stop at τ ∧ T, hence at T at the latest. Now let
0 = t0 < t1 < · · · < tN = T, ∆tn = tn+1 − tn. We simulate M paths ω1, . . . , ωM of the Brownian
motion W. With this we approximate the forward process using the Euler–Maruyama scheme, that is
X0 = x and

Xtn+1 ≈ Xtn + µ(Xtn)∆tn + σ(Xtn)∆Wn. (12)

In the next step we compute Z . For all tn, Ztn = ∇u(Xtn) are approximated by DNNs,
each mapping G to Rd. As noted above, the implementation of this (and all other steps) is provided.

1 Since Zσ(X) = Z is solvable for Z , f is well-defined.
2 https://github.com/stefankremsner/elliptic-pdes.

https://github.com/stefankremsner/elliptic-pdes

Risks 2020, 8, 136 7 of 18

Now, we initialize u(x) and use the above approximations to compute the solution to the BSDE
forward in time by approximating (11):

u(Xtn+1) ≈ u(Xtn)− 1(0,τ)(tn) f (Xtn , u(Xtn),∇u(Xtn))∆tn

+ 1(0,τ)(tn)∇u(Xtn)σ(Xtn)∆Wn.
(13)

Note that due to this construction, indirectly u(Xtn+1) is also approximated by a DNN as a
combination of DNNs.

For the training of the involved DNNs, we compare u(Xτ∧T) with the terminal value ξ.
This defines the loss function for the training:

1
M

M

∑
k=1
|u(Xτ∧T(ωk))− ξ(ωk)|2.

After a certain number of training epochs the loss function is minimized and we obtain an
approximate solution value u(x) of the PDE.

Remark 1. Several approximation errors arise in the proposed algorithm:

1. the approximation error of the Euler–Maruyama method, which is used for sampling the forward equation,
2. the error of approximating the expected loss,
3. the error of cutting off the potentially unbounded random terminal time at time T,
4. the approximation error of the deep neural network model for approximating Ztn for each tn.

It is well known that for any continuous function we can find DNNs that approximate the function
arbitrarily well, see Hornik (1991); Hornik et al. (1989). This is, however, not sufficient to make any statement
about the approximation quality. Results on convergence rates are required. Though this question is already
studied in the literature (see, e.g., Beck et al. 2019a, 2020; Berner et al. 2020; Elbrächter et al. 2018;
Gonon et al. 2019; Grohs et al. 2018, 2019a, 2019b; Hutzenthaler et al. 2018, 2020a, 2020b; Jentzen et al. 2018;
Kutyniok et al. 2019; Reisinger and Zhang 2019), results on convergence rates for given constructions are yet
scarce and hence many questions remain open while the number of proposed DNN algorithms grows.

We close this section with some comments on the implementation.

Remark 2.

• All DNNs are initialized with random numbers.
• For each value of x we average u(x) over 5 independent runs. The estimator for u(x) is calculated as the

mean value of u(x) in the last 3 network training epochs of each run, sampled according to the validation
size (see below).

• We choose a nonequidistant time grid in order to get a higher resolution for earlier (and hence probably
closer to the stopping time) time points.

• We use tanh as activation function.
• We compute u(x) simultaneously for 8 values of x by using parallel computing.

Risks 2020, 8, 136 8 of 18

Algorithm 1 Elliptic PDE Solver for a BSDE (f , ξ) with stopping time τ

Require: number of training epochs E, maximal time T, step-size ∆t, number of timesteps N,
number of sample paths M, number of hidden layer neurons dim, initial (random) starting
values (θ(u)0 , θ

(ζ)
0)

1: function TRAINABLEVARIABLES(dim, θ) . see Pytorch or Tensorflow
return a trainable variable with dimension 1× dim initialized by θ.

2: end function
3: function SUBNETWORK(x) . allowing x to be a tensor containing M rows (samples)

return a trainable DNN, evaluated at x.
4: end function

5: for i = 0, . . . , N do
6: ti = timesteps(i) . Initialize nonequidistant timesteps

7: end for
8: for j = 1, . . . , M do

9: Sample Brownian motion trajectory
(

w(j)
ti

)
0≤i≤N

10: Sample path from forward process
(

x(j)
ti

)
0≤i≤N

11: calculate stopping time τ(j)

12: calculate terminal value ξ(j)

13: set x(j)
t = x(j)

τ(j) for all t > τ(j)

14: end for

15: u0 = TRAINABLEVARIABLES(1, θ
(u)
0) . Initialize u

16: ∇u0 = TRAINABLEVARIABLES(d, θ
(ζ)
0) . Initialize Z

17: for j = 1, . . . , M do

18: u(j) = u0

19: ∇u(j) = ∇u0

20: end for
21: for e = 1, . . . , E do
22: for i = 1, . . . , N − 1 do
23: for j = 1, . . . , M do

24: u(j) = u(j) − f (x(j)
ti

, u(j),∇u(j))(ti+1 − ti) +∇u(j)σ(x(j)
ti
)(w(j)

ti+1
− w(j)

ti
)

25: if ti+1 > τ(j) then break

26: end if
27: end for
28: ∇u = SUBNETWORK(xti+1)

29: end for
30: update all trainable variables and the subnetwork’s weights according to the loss function

1
M

M

∑
j=1

(u(j) − ξ(j))2

31: end for
return (u0,∇u0)

Risks 2020, 8, 136 9 of 18

4. Examples

In this section we apply the proposed algorithm to three examples. The first one serves as a
validity check, the second one as an academic example with a nonlinearity. Finally, we apply the
algorithm to solve the dividend maximization problem under incomplete information.

4.1. The Poisson Equation

The first example we study is the Poisson equation—a linear PDE.
Let r ∈ (0, ∞), G =

{
x ∈ Rd : |x| < r

}
, ∂G =

{
x ∈ Rd : |x| = r

}
, b ∈ R, and

∆u(x) = −b, x ∈ G,

u(x) = 0, x ∈ ∂G.
(14)

Solving (14) is equivalent to solving the BSDE with

dXt =
√

2dWt, X0 = x,

f (x, y, ζ) = b, ξ = 0,

up to the stopping time τ = inf{t ∈ [0, T] : |x| > r}.
To obtain a reference solution for this linear BSDE we use an analytic formula for the expectation

of τ, see (Øksendal 2003, Example 7.4.2, p. 121). This yields

u(x) =
b

2d

(
r2 − |x|2

)
.

4.1.1. Numerical Results

We compute u(x) on the R2 and the R100 for 15 different values of x. Figure 1
shows the approximate solution of u obtained by the DNN algorithm on the diagonal points
{(x, . . . , x) ∈ Rd : x ∈ [−r, r]} (in blue) and the analytical reference solution (in green). Table 1 contains
the parameters we use.

Figure 1. Approximate solution (blue) and reference solution (green) for the Poisson equation on the
R2 (left) and on the R100 (right).

Table 1. Parameters for the Poisson equation.

d r b N T E M Validation Size Time per Eight Points3

2 0.5 0.75 500 0.5 200 64 256 119.17 s

100 0.5 0.75 500 0.01 200 64 256 613.86 s

Risks 2020, 8, 136 10 of 18

Note that as the expected value of τ decreases linearly in d, we adapt the cut off time T for
d = 100 accordingly.

4.2. Quadratic Gradient

The second example is a semilinear PDE with a quadratic gradient term.
Let r ∈ (0, ∞), G =

{
x ∈ Rd : |x| < r

}
, and ∂G =

{
x ∈ Rd : |x| = r

}
. We consider the PDE

∆u(x) + |∇u(x)|2 = 2e−u(x), x ∈ G,

u(x) = log
(

r2 + 1
d

)
, x ∈ ∂G.

(15)

corresponding to the BSDE

dXt =
√

2dWt, X0 = x, (16)

f (x, y, ζ) = |ζ|2 − 2e−y, ξ = log
(
|r|2 + 1

d

)
. (17)

In addition, for this example we have an analytic reference solution given by

u(x) = log
(
|x|2 + 1

d

)
.

4.2.1. Numerical Results

As in the previous example we compute u(x) for 15 different values of x on the R2 and the R100.
Figure 2 shows the approximate solution of u obtained by the DNN algorithm on the diagonal points
{(x, . . . , x) ∈ Rd : x ∈ [−r, r]} (in blue) and the analytical reference solution (in green). Table 2 contains
the parameters we use.

Figure 2. Approximate solution (blue) and reference solution (green) for the equation with quadratic
gradient on the R2 (left) and on the R100 (right).

3 The numerical examples were run on a Lenovo Thinkpad notebook with an Intel Core i7 processor (2.6 GHz) and 16 GB
memory, without CUDA.

Risks 2020, 8, 136 11 of 18

Table 2. Parameters for the equation with quadratic gradient.

d r N T E M Validation Size Time per Eight Points

2 1 100 5 500 64 256 204.58 s

100 1 100 0.1 500 64 256 321.13 s

While classical numerical methods for PDEs would be a much better choice in the case d = 2,
their application would not be feasible in the case d = 100.

4.3. Dividend Maximization

The goal of this paper is to show how to use the proposed DNN algorithm to solve
high-dimensional control problems that arise in insurance mathematics. We finally arrived at the point
where we are ready to do so.

Our example comes from Szölgyenyi (2016), where the author studies De Finetti’s dividend
maximization problem in a setup with incomplete information about the current state of the market.
The hidden market-state process determines the trend of the surplus process of the insurance company
and is modeled as a d-state Markov chain. Using stochastic filtering, in Szölgyenyi (2016) they achieve
to transform the one-dimensional problem under incomplete information to a d-dimensional problem
under complete information. The cost is (d− 1) additional dimensions in the state space. We state the
problem under complete information using different notation than in Szölgyenyi (2016) in order to
avoid ambiguities.

The probability that the Markov chain modeling the market-state is in state i ∈ {1, . . . , d− 1} is
given by

πi(t) = xi +
∫ t

0

(
qd,i +

d−1

∑
j=1

(qj,i − qd,i)πj(s)

)
ds +

∫ t

0
πi(s)

ai − νs

ρ
dBs, (18)

where

νt = ad +
d−1

∑
j=1

(aj − ad)πj(t), (19)

xi ∈ (0, 1), B is a one-dimensional Brownian motion, a1, . . . , ad ∈ R are the values of the surplus trend
in the respective market-states of the hidden Markov chain, and (qi,j)i,j∈{1,...,d} ∈ Rd×d denotes the
intensity matrix of the chain.

Let (`t)t∈[0,∞) be the dividend rate process. The surplus of the insurance company is given by

X̃d
t = xd +

∫ t

0
(νs − `s) ds + ρBt, t ∈ [0, ∞), (20)

where xd, ρ ∈ (0, ∞). For later use we define also the dividend free surplus

Xd
t = xd +

∫ t

0
νs ds + ρBt, t ∈ [0, ∞). (21)

The processes (18) and (20) form the d-dimensional state process underlying the optimal control
problem we aim to solve.

The goal of the insurance company is to determine its value by maximizing the discounted
dividends payments until the time of ruin η = inf{t ∈ (0, ∞] : X̃d

t < 0}, that is it seeks to find

u(x1, . . . , xd) = sup
(`t)t∈[0,∞)∈A

Ex1,...,xd

[∫ η

0
e−δt`t dt

]
, (22)

Risks 2020, 8, 136 12 of 18

where δ ∈ (0, ∞) is a discount rate, A is the set of admissible controls, and Ex1,...,xd [·] denotes
the expectation under the initial conditions πi(0) = xi for i ∈ {1, . . . , d − 1} and X̃d

0 = xd.
Admissible controls are (FXd

t)t≥0-progressively measurable, [0, K]-valued for K ∈ (0, ∞) and fulfill
`t ≡ 0 for t > η, cf. Szölgyenyi (2016).

In order to tackle the problem, we solve the corresponding Hamilton–Jacobi–Bellmann (HJB)
equation4 from Szölgyenyi (2016),

(L− δ)u + sup
`∈[0,K]

(`(1− uxd)) = 0, (23)

where L is the second order degenerate elliptic operator

Lu = aduxd +
d−1

∑
i=1

(
(ai − ad)xiuxd +

(
qdi +

d−1

∑
j=1

(qji − qdi)xi

)
uxi + xi (ai − ν) uxdxi

+
1
2

d−1

∑
j=1

((
xi

ai − ν

ρ

)(
xj

aj − ν

ρ

)
uxixj

))
+

1
2

ρ2uxdxd .

The supremum in (23) is attained at

` =

{
K, uxd ≤ 1

0, uxd > 1.

Plugging this into (23) we end up with a d-dimensional semilinear degenerate elliptic PDE:

(L− δ)u + K(1− uxd)1{uxd≤1} = 0. (24)

The boundary conditions in xd direction are given by

u(x1, . . . , xd) =

{
K/δ, xd → ∞

0, xd = 0.

No boundary conditions are required for the other variables, cf. Szölgyenyi (2016).
In (Szölgyenyi 2016, Corollary 3.6) it is proven that the unique viscosity solution to (24) solves

the optimal control problem (22). Hence, we can indeed solve the control problem by solving the
HJB equation.

For the numerical approximation we cut off xd at r ∈ (0, ∞). Hence, G =
{

x ∈ Rd : 0 < xd < r
}

and ∂G =
{

x ∈ Rd : xd ∈ {0, r}
}

.
For the convenience of the reader we derive the BSDE corresponding to (24). The forward equation

is given by
dXt = (dπ1(t), . . . , dπd−1(t), dXd

t)
>, X0 = x,

that is
dXt = µ(Xt)dt + σ(Xt)dWt, X0 = x,

4 For abbreviation we use uxd for ∂u
∂xd

etc.

Risks 2020, 8, 136 13 of 18

where W = (B, W2, . . . , Wd)>, x = (x1, . . . , xd)
>, and

µ(x) =

(
qd,1 +

d−1

∑
j=1

(qj,1 − qd,1)xj, . . . , qd,d−1 +
d−1

∑
j=1

(qj,d−1 − qd,d−1)xd−1, ad +
d−1

∑
j=1

(aj − ad)xj

)>
,

σ(x) =

x1

a1−ad+∑d−1
j=1 (aj−ad)xj

ρ 0 . . . 0
. . . 0 . . . 0

xd−1
ad−1−ad+∑d−1

j=1 (aj−ad)xj

ρ 0 . . . 0
ρ 0 . . . 0

 .

We claim that the BSDE associated to (24) is given in forward form by

u(Xt) = u(x)−
∫ t

0
[K(1− uxd(Xs))1{uxd (Xs)≤1} − δu(Xs)]dt

+
∫ t

0
∇u(Xs)σ(Xs)dWs.

(25)

Applying Itô’s formula to u(X) yields

u(Xt) = u(x) +
∫ t

0
Lu(Xs)dt +

∫ t

0
∇u(Xs)σ(Xs)dWs. (26)

Combining (25) and (26) gives

u(x)−
∫ t

0
[K(1− uxd(Xs))1{uxd (Xs)≤1} − δu(Xs)]dt +

∫ t

0
∇u(Xs)σ(Xs)dWs

= u(x) +
∫ t

0
Lu(Xs)dt +

∫ t

0
∇u(Xs)σ(Xs)dWs.

Canceling terms verifies (in a heuristic manner) (24).
Hence, the corresponding BSDE has the parameters

f (x, y, ζ) = K(1− ζd)1{ζd≤1} − δy (27)

and

ξ =

{
K/δ, Xd

τ = r,

0, Xd
τ = 0,

if τ < ∞.

4.3.1. Numerical Results

As for this example we have no analytic reference solution at hand, we use the solution from
Szölgyenyi (2016) for the case d = 2, which was obtained by a finite difference method and
policy iteration. Then we show that the DNN algorithm also provides an approximation in high
dimensions in reasonable computation time.

As in the previous examples we compute u(x) on the R2 and on the R100 for 15 different values
of x. Figure 3 shows the approximate solution of the HJB equation and hence the value of the insurance
company obtained by the DNN algorithm (in blue) and the reference solution from Szölgyenyi (2016)
(in green) for the case d = 2. For d = 100 we have no reference solution at hand. Figure 4 shows the
loss for a fixed value of x in the case d = 100. Tables 3 and 4 contain the parameters we use.

Risks 2020, 8, 136 14 of 18

Table 3. Parameters for the dividend problem.

d r K δ ρ ai N T E M Validation Size Time per Eight Points

2 5 1.8 0.5 1
(

2− i
d

)
100 5 500 64 256 317.42 s

100 5 1.8 0.5 1
(

2− i
d

)
100 5 500 64 256 613.15 s

Table 4. Intensity matrix values for the dividend problem.

Case i = j Even i = j Odd i = j + 1 Even i = j + 1 ≥ 3 Odd i = 1, j = d Otherwise

qi,j −0.5 −0.25 0.5 0.25 0.25 0

Figure 3. Approximate solution (blue) and reference solution (green) for the dividend problem on the
R2 for fixed π1 = π2 = 0.5 (left) and on the R100 for fixed π1 = · · · = π100 = 0.01 (right, without
reference solution).

Figure 4. Interpolated loss for the case d = 100.

5. Conclusions

The goal of this paper was to compute the risk measure given by the expected discounted
future dividend payments in a complex high-dimensional economic environment. This demonstrates
the effectiveness of using DNN algorithms for solving some high-dimensional PDE problems in
insurance mathematics that cannot be solved by classical methods. In the literature the focus so far
was on parabolic PDE problems; however, in insurance mathematics we often face problems up to
an unbounded random terminal time, e.g., the time of ruin of the insurance company, leading to
(degenerate) elliptic problems.

Risks 2020, 8, 136 15 of 18

Hence, we have proposed a novel deep neural network algorithm for a large class of semilinear
(degenerate) elliptic PDEs associated to infinite time horizon control problems in high dimensions.
The method extends the DNN algorithm proposed by Han, Jetzen, and E Han et al. (2018), which was
developed for parabolic PDEs, to the case of (degenerate) elliptic semilinear PDEs. We have attacked
the problem inspired by a series of results by Pardoux Pardoux (1998).

Of course, in low dimensions one would not use the proposed DNN algorithm—classical methods
are more efficient. However, recent models are frequently high dimensional, in which case classical
methods fail due to the curse of dimensionality. Then the DNN algorithm presented here can be
applied to compute the desired quantity.

We emphasize that the method presented here can also be applied to many other high-dimensional
semilinear (degenerate) elliptic PDE problems in insurance mathematics and beyond.

An implementation of the algorithm is provided on Github5 under a creative commons license.

Author Contributions: Writing–original draft, S.K., A.S. and M.S. All authors have read and agreed to the
published version of the manuscript.

Funding: Stefan Kremsner was supported by the Austrian Science Fund (FWF): Project F5508-N26, which is part
of the Special Research Program “Quasi-Monte Carlo Methods: Theory and Applications”.

Acknowledgments: The authors thank Gunther Leobacher for discussions and suggestions that improved
the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References

Albrecher, Hansjörg, and Stefan Thonhauser. 2009. Optimality results for dividend problems in insurance.
RACSAM Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 103: 295–320.
[CrossRef]

Asmussen, Søren, and Michael Taksar. 1997. Controlled diffusion models for optimal dividend pay-out. Insurance:
Mathematics and Economics 20: 1–15. [CrossRef]

Avanzi, Benjamin. 2009. Strategies for dividend distribution: A review. North American Actuarial Journal 13: 217–51.
[CrossRef]

Azcue, Pablo, and Nora Muler. 2014. Stochastic Optimization in Insurance—A Dynamic Programming Approach.
Springer Briefs in Quantitative Finance. New York, Heidelberg, Dordrecht and London: Springer.

Beck, Christian, Sebastian Becker, Philipp Grohs, Nor Jaafari, and Arnulf Jentzen. 2018. Solving stochastic
differential equations and Kolmogorov equations by means of deep learning. arXiv arXiv:1806.00421.

Beck, Christian, Fabian Hornung, Martin Hutzenthaler, Arnulf Jentzen, and Thomas Kruse. 2019a. Overcoming the
curse of dimensionality in the numerical approximation of Allen-Cahn partial differential equations via
truncated full-history recursive multilevel Picard approximations. arXiv arXiv:1907.06729.

Beck, Christian, Sebastian Becker, Patrick Cheridito, Arnulf Jentzen, and Ariel Neufeld. 2019b. Deep splitting
method for parabolic PDEs. arXiv arXiv:1907.03452.

Beck, Christian, Weinan E, and Arnulf Jentzen. 2019c. Machine learning approximation algorithms for
high-dimensional fully nonlinear partial differential equations and second-order backward stochastic
differential equations. Journal of Nonlinear Science 29: 1563–619. [CrossRef]

Beck, Christian, Lukas Gonon, and Arnulf Jentzen. 2020. Overcoming the curse of dimensionality in the numerical
approximation of high-dimensional semilinear elliptic partial differential equations. arXiv arXiv:2003.00596.

Becker, Sebastian, Patrick Cheridito, and Arnulf Jentzen. 2019a. Deep optimal stopping. Journal of Machine
Learning Research 20: 74.

Becker, Sebastian, Patrick Cheridito, Arnulf Jentzen, and Timo Welti. 2019b. Solving high-dimensional optimal
stopping problems using deep learning. arXiv arXiv:1908.01602.

Berg, Jens, and Kaj Nyström. 2018. A unified deep artificial neural network approach to partial differential
equations in complex geometries. Neurocomputing 317: 28–41. [CrossRef]

5 https://github.com/stefankremsner/elliptic-pdes.

http://dx.doi.org/10.1007/BF03191909
http://dx.doi.org/10.1016/S0167-6687(96)00017-0
http://dx.doi.org/10.1080/10920277.2009.10597549
http://dx.doi.org/10.1007/s00332-018-9525-3
http://dx.doi.org/10.1016/j.neucom.2018.06.056
https://github.com/stefankremsner/elliptic-pdes

Risks 2020, 8, 136 16 of 18

Berner, Julius, Philipp Grohs, and Arnulf Jentzen. 2020. Analysis of the generalization error: Empirical risk
minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical
approximation of Black–Scholes partial differential equations. SIAM Journal on Mathematics of Data Science
3: 631–57. [CrossRef]

Briand, Philippe, and Ying Hu. 1998. Stability of BSDEs with random terminal time and homogenization of
semi-linear elliptic PDEs. Journal of Functional Analysis 155: 455–94. [CrossRef]

Briand, Philippe, Bernard Delyon, Ying Hu, Étienne Pardoux, and Lucretiu Stoica. 2003. Lp solutions of backward
stochastic differential equations. Stochastic Processes and their Applications 108: 109–29. [CrossRef]

Briand, Philippe, and Fulvia Confortola. 2008. Quadratic BSDEs with random terminal time and elliptic PDEs in
infinite dimension. Electronic Journal of Probability 13: 1529–61.

Chan-Wai-Nam, Quentin, Joseph Mikael, and Xavier Warin. 2019. Machine learning for semi linear PDEs.
Journal of Scientific Computing 79: 1667–712. [CrossRef]

Chen, Yangang, and Justin W. L. Wan. 2020. Deep neural network framework based on backward stochastic
differential equations for pricing and hedging american options in high dimensions. Quantitative Finance 1–23.
[CrossRef]

Darling, Richard W. R., and Étienne Pardoux. 1997. Backwards SDE with random terminal time and applications
to semilinear elliptic PDE. The Annals of Probability 25: 1135–59. [CrossRef]

De Finetti, Bruno. 1957. Su un’impostazione alternativa della teoria collettiva del rischio. Transactions of the XVth
International Congress of Actuaries 2: 433–43.

Dockhorn, Tim. 2019. A discussion on solving partial differential equations using neural networks.
arXiv arXiv:1904.07200.

E, Weinan, and Bing Yu. 2018. The deep Ritz method: A deep learning-based numerical algorithm for solving
variational problems. Communications in Mathematics and Statistics 6: 1–12. [CrossRef]

Elbrächter, Dennis, Philipp Grohs, Arnulf Jentzen, and Christoph Schwab. 2018. DNN expression rate analysis of
high-dimensional PDEs: Application to option pricing. arXiv arXiv:1809.07669.

Farahmand, Amir-Massoud, Saleh Nabi, and Daniel Nikovski. 2017. Deep reinforcement learning for partial
differential equation control. Paper presented at 2017 American Control Conference (ACC), Seattle, WA,
USA, May 24–26. pp. 3120–27.

Fujii, Masaaki, Akihiko Takahashi, and Masayuki Takahashi. 2019. Asymptotic expansion as prior knowledge in
deep learning method for high dimensional BSDEs. Asia-Pacific Financial Markets 26: 391–408. [CrossRef]

Gonon, Lukas, Philipp Grohs, Arnulf Jentzen, David Kofler, and David Šiška. 2019. Uniform error estimates for
artificial neural network approximations. arXiv arXiv:1911.09647.

Goudenège, Ludovic, Andrea Molent, and Antonino Zanette. 2019. Machine learning for pricing American
options in high dimension. arXiv arXiv:1903.11275.

Grohs, Philipp, Fabian Hornung, Arnulf Jentzen, and Philippe Von Wurstemberger. 2018. A proof that artificial
neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes
partial differential equations. arXiv arXiv:1809.02362.

Grohs, Philipp, Arnulf Jentzen, and Diyora Salimova. 2019a. Deep neural network approximations for Monte
Carlo algorithms. arXiv arXiv:1908.10828.

Grohs, Philipp, Fabian Hornung, Arnulf Jentzen, and Philipp Zimmermann. 2019b. Space-time error estimates for
deep neural network approximations for differential equations. arXiv arXiv:1908.03833.

Grohs, Philipp, and Lukas Herrmann. 2020. Deep neural network approximation for high-dimensional elliptic
PDEs with boundary conditions. arXiv arXiv:2007.05384.

Han, Jiequn, Arnulf Jentzen, and Weinan E. 2017. Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. Communications in
Mathematics and Statistics 5: 349–80.

Han, Jiequn, Arnulf Jentzen, and Weinan E. 2018. Solving high-dimensional partial differential equations using
deep learning. Proceedings of the National Academy of Sciences 115: 8505–10. [CrossRef]

Han, Jiequn, and Jihao Long. 2020. Convergence of the deep BSDE method for coupled FBSDEs. Probability,
Uncertainty and Quantitative Risk 5: 1–33. [CrossRef]

Han, Jihun, Mihai Nica, and Adam Stinchcombe. 2020. A derivative-free method for solving elliptic partial
differential equations with deep neural networks. Journal of Computational Physics 419: 109672. [CrossRef]

http://dx.doi.org/10.1137/19M125649X
http://dx.doi.org/10.1006/jfan.1997.3229
http://dx.doi.org/10.1016/S0304-4149(03)00089-9
http://dx.doi.org/10.1007/s10915-019-00908-3
http://dx.doi.org/10.1080/14697688
http://dx.doi.org/10.1214/aop/1024404508
http://dx.doi.org/10.1007/s40304-018-0127-z
http://dx.doi.org/10.1007/s10690-019-09271-7
http://dx.doi.org/10.1073/pnas.1718942115
http://dx.doi.org/10.1186/s41546-020-00047-w
http://dx.doi.org/10.1016/j.jcp.2020.109672

Risks 2020, 8, 136 17 of 18

Henry-Labordère, Pierre. 2017. Deep primal-dual algorithm for BSDEs: Applications of machine learning to CVA
and IM. SSRN Electronic Journal. [CrossRef]

Hornik, Kurt. 1991. Approximation capabilities of multilayer feedforward networks. Neural Networks 4: 251–57.
[CrossRef]

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedforward networks are
universal approximators. Neural Networks 2: 359–66. [CrossRef]

Huré, Côme, Huyên Pham, and Xavier Warin. 2019. Some machine learning schemes for high-dimensional
nonlinear PDEs. arXiv arXiv:1902.01599.

Hutzenthaler, Martin, Arnulf Jentzen, Thomas Kruse, Tuan Anh Nguyen, and Philippe von Wurstemberger. 2018.
Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial
differential equations. arXiv arXiv:1807.01212.

Hutzenthaler, Martin, Arnulf Jentzen, and Philippe von Wurstemberger. 2020a. Overcoming the curse of
dimensionality in the approximative pricing of financial derivatives with default risks. Electronic Journal
of Probability 25: 73. [CrossRef]

Hutzenthaler, Martin, Arnulf Jentzen, Thomas Kruse, and Tuan Anh Nguyen. 2020b. A proof that rectified deep
neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat
equations. SN Partial Differential Equations and Applications 1: 1–34. [CrossRef]

Jacquier, Antoine Jack, and Mugad Oumgari. 2019. Deep PPDEs for rough local stochastic volatility.
arXiv arXiv:1906.02551.

Jeanblanc-Picqué, Monique, and Albert Nikolaevich Shiryaev. 1995. Optimization of the flow of dividends.
Russian Mathematical Surveys 50: 257–77. [CrossRef]

Jentzen, Arnulf, Diyora Salimova, and Timo Welti. 2018. A proof that deep artificial neural networks overcome
the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations
with constant diffusion and nonlinear drift coefficients. arXiv arXiv:1809.07321.

Jiang, Zhengjun, and Martijn Pistorius. 2012. Optimal dividend distribution under markov regime switching.
Finance and Stochastics 16: 449–76. [CrossRef]

Kritzer, Peter, Gunther Leobacher, Michaela Szölgyenyi, and Stefan Thonhauser. 2019. Approximation methods
for piecewise deterministic markov processes and their costs. Scandinavian Actuarial Journal 2019: 308–35.
[CrossRef] [PubMed]

Kutyniok, Gitta, Philipp Petersen, Mones Raslan, and Reinhold Schneider. 2019. A theoretical analysis of deep
neural networks and parametric PDEs. arXiv arXiv:1904.00377.

Leobacher, Gunther, Michaela Szölgyenyi, and Stefan Thonhauser. 2014. Bayesian dividend optimization and
finite time ruin probabilities. Stochastic Models 30: 216–49. [CrossRef]

Long, Zichao, Yiping Lu, Xianzhong Ma, and Bin Dong. 2018. PDE-Net: Learning PDEs from Data.
Paper presented at 35th International Conference on Machine Learning, Stockholm, Sweden, July 10–15.
pp. 3208–16.

Lu, Lu, Xuhui Meng, Zhiping Mao, and George Karniadakis. 2019. DeepXDE: A deep learning library for solving
differential equations. arXiv arXiv:1907.04502.

Lye, Kjetil O, Siddhartha Mishra, and Deep Ray. 2020. Deep learning observables in computational fluid dynamics.
Journal of Computational Physics 410: 109339. [CrossRef]

Magill, Martin, Faisal Qureshi, and Hendrick de Haan. 2018. Neural networks trained to solve differential
equations learn general representations. Advances in Neural Information Processing Systems 31: 4071–81.

Øksendal, Bernt. 2003. Stochastic Differential Equations. Berlin: Springer.
Pardoux, Étienne. 1998. Backward stochastic differential equations and viscosity solutions of systems of semilinear

parabolic and elliptic PDEs of second order. In Stochastic Analysis and Related Topics VI. Berlin: Springer,
pp. 79–127.

Pardoux, Étienne. 1999. BSDEs, weak convergence and homogenization of semilinear PDEs. In Nonlinear Analysis,
Differential Equations and Control. Berlin: Springer, pp. 503–49.

Pham, Huyen, Xavier Warin, and Maximilien Germain. 2019. Neural networks-based backward scheme for fully
nonlinear PDEs. arXiv arXiv:1908.00412.

Radner, Roy, and Larry Shepp. 1996. Risk vs. profit potential: A model for corporate strategy. Journal of Economic
Dynamics and Control 20: 1373–93. [CrossRef]

http://dx.doi.org/10.2139/ssrn.3071506
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1214/20-EJP423
http://dx.doi.org/10.1007/s42985-019-0006-9
http://dx.doi.org/10.1070/RM1995v050n02ABEH002054
http://dx.doi.org/10.1007/s00780-012-0174-3
http://dx.doi.org/10.1080/03461238.2018.1560357
http://www.ncbi.nlm.nih.gov/pubmed/31058276
http://dx.doi.org/10.1080/15326349.2014.900390
http://dx.doi.org/10.1016/j.jcp.2020.109339
http://dx.doi.org/10.1016/0165-1889(95)00904-3

Risks 2020, 8, 136 18 of 18

Raissi, Maziar. 2018. Deep hidden physics models: Deep learning of nonlinear partial differential equations.
The Journal of Machine Learning Research 19: 932–55.

Reisinger, Christoph, and Yufei Zhang. 2019. Rectified deep neural networks overcome the curse of dimensionality
for nonsmooth value functions in zero-sum games of nonlinear stiff systems. arXiv arXiv:1903.06652.

Reppen, A Max, Jean-Charles Rochet, and H Mete Soner. 2020. Optimal dividend policies with random profitability.
Mathematical Finance 30: 228–59. [CrossRef]

Royer, Manuela. 2004. BSDEs with a random terminal time driven by a monotone generator and their links
with PDEs. Stochastics and Stochastic Reports 76: 281–307. [CrossRef]

Schmidli, Hanspeter. 2008. Stochastic Control in Insurance. Probability and its Applications. London: Springer.
Shreve, Steven E., John P. Lehoczky, and Donald P. Gaver. 1984. Optimal consumption for general diffusions with

absorbing and reflecting barriers. SIAM Journal on Control and Optimization 22: 55–75. [CrossRef]
Sirignano, Justin, and Konstantinos Spiliopoulos. 2018. DGM: A deep learning algorithm for solving partial

differential equations. Journal of Computational Physics 375: 1339–64. [CrossRef]
Sotomayor, Luz R., and Abel Cadenillas. 2011. Classical and singular stochastic control for the optimal dividend

policy when there is regime switching. Insurance: Mathematics and Economics 48: 344–54. [CrossRef]
Szölgyenyi, Michaela. 2013. Bayesian dividend maximization: A jump diffusion model. In Handelingen

Contactforum Actuarial and Financial Mathematics Conference, Interplay between Finance and Insurance,
February 7–8. Brussel: Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten, pp. 77–82.

Szölgyenyi, Michaela. 2016. Dividend maximization in a hidden Markov switching model. Statistics & Risk Modeling
32: 143–58.

Zhu, Jinxia, and Feng Chen. 2013. Dividend optimization for regime-switching general diffusions. Insurance:
Mathematics and Economics 53: 439–56. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/mafi.12223
http://dx.doi.org/10.1080/10451120410001696270
http://dx.doi.org/10.1137/0322005
http://dx.doi.org/10.1016/j.jcp.2018.08.029
http://dx.doi.org/10.1016/j.insmatheco.2011.01.002
http://dx.doi.org/10.1016/j.insmatheco.2013.07.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	BSDEs Associated with Elliptic PDEs
	BSDEs with Random Terminal Times
	Semilinear Elliptic PDEs and BSDEs with Random Terminal Time

	Algorithm
	Examples
	The Poisson Equation
	Numerical Results

	Quadratic Gradient
	Numerical Results

	Dividend Maximization
	Numerical Results

	Conclusions
	References

