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Abstract: This article proposes a new method for the estimation of the parameters of a simple linear
regression model which is based on the minimization of a quartic loss function. The aim is to
extend the traditional methodology, based on the normality assumption, to also take into account
higher moments and to provide a measure for situations where the phenomenon is characterized
by strong non-Gaussian distribution like outliers, multimodality, skewness and kurtosis. Although
the proposed method is very general, along with the description of the methodology, we examine
its application to finance. In fact, in this field, the contribution of the co-moments in explaining the
return-generating process is of paramount importance when evaluating the systematic risk of an asset
within the framework of the Capital Asset Pricing Model. We also illustrate a Monte Carlo test of
significance on the estimated slope parameter and an application of the method based on the top
300 market capitalization components of the STOXX® Europe 600. A comparison between the slope
coefficients evaluated using the ordinary Least Squares (LS) approach and the new Least Quartic
(LQ) technique shows that the perception of market risk exposure is best captured by the proposed
estimator during market turmoil, and it seems to anticipate the market risk increase typical of these
periods. Moreover, by analyzing the out-of-sample risk-adjusted returns we show that the proposed
method outperforms the ordinary LS estimator in terms of the most common performance indices.
Finally, a bootstrap analysis suggests that significantly different Sharpe ratios between LS and LQ
yields and Value at Risk estimates can be considered more accurate in the LQ framework. This study
adds insights into market analysis and helps in identifying more precisely potentially risky assets
whose extreme behavior is strongly dependent on market behavior.
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1. Introduction

Traditional linear regression models based on the normality assumption neglect any role in the
higher moments of the underlying distribution. This approach is not justified in many situations where
the phenomenon is characterized by strong non-normality like outliers, multimodality, skewness and
kurtosis. Although this situation may occur in many circumstances, quantitative finance is a field
where the consequences of non-normality are particularly relevant and may affect dramatically the
investors’ decisions. Consider, for instance, the Capital Asset Pricing Model (henceforth CAPM; see
(Sharpe 1964; Lintner 1965)), a well-known equilibrium model, which assumes that investors construct
their portfolio on the basis of a trade-off between the expected return and the variance of the returns of
the market portfolio. In the traditional CAPM framework, a regression slope reflects the exposure
of an asset to systematic risk, indicating how fluctuations in the returns are related to movements
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of the market as a whole. In its original formulation based on Least Squares estimation, CAPM is
restricted to the first two moments of the empirical distribution of historical returns; however, due to
the complexity of the corresponding generating process, this simple model often fails in detecting
risk premia. Many papers in the financial literature heavily criticize such an approach emphasizing
the role of co-moments to account for non-normal extreme events in investors’ decisions. Such an
approach leads to a series of modifications that incorporate the consideration of higher moments of the
distribution of returns (Barone-Adesi et al. 2004). A completely different approach to modeling extreme
financial events is based on the notion of the copula (Trivedi and Zimmer 2005). For an application to
financial data, see (Nikoloulopoulos et al. 2012).

Our findings contribute to the literature in the following way. We propose a new linear regression
estimation criterion, the Least Quartic criterion, which is based on a quartic loss function in place
of the usual quadratic specification considered in the ordinary LS. It represents an extension of the
ordinary LS criterion that, in non-Gaussian situations, provides slope coefficient estimations that
outperform the ordinary LS in terms of out-of-sample risk-adjusted performance. This allows us to
show how higher moments can be formally taken into account redefining the estimation criterion even
in the presence of co-skewness and co-kurtosis, as it occurs in many practical circumstances. Along
with the detailed description of the methodology, we examine in particular its application to finance.
In particular, within the CAPM framework, we show that using the LQ criterion, it is possible to
provide a measure of each asset’s systematic risk which accounts for non-normality by incorporating
higher-order moments. This finding adds insights into market analysis and helps in identifying more
precisely potentially risky assets whose extreme behavior is strongly dependent on market behavior.

The article is organized as follows. Section 2 is devoted to a literature review on the role of higher
moments in financial risk evaluation, useful to provide the reader with the framework within which
the results of the proposed methodology could be interpreted. The methodology of our proposal
is reported in Section 3. Specifically, in Section 3.1 we formally introduce various definitions of
co-skewness and co-kurtosis and we clarify their statistical nature with particular reference to the
analysis of systematic risk. Section 3.2 is devoted to our proposal: a regression estimator which
involves the minimization of the fourth power of the regression errors. In Section 4, we illustrate an
application of the proposed methodology using some real data referring to the returns of the top 300
market capitalization components of the STOXX® Europe 600. Specifically, an empirical comparison
between the linear and quartic estimators is pointed out. Finally, Section 5 concludes.

2. The Role of Higher Moments in Financial Risk Measurement

The traditional theory of CAPM uses essentially a Least Square linear regression strategy to
measure the relationship between returns of an asset in relation to the market, thus providing a
measure of the so-called systematic risk. In this respect, only the first two moments of the joint
distribution between the asset and the market are relevant in the analysis (Sharpe 1964; Lintner 1965;
Mossin 1966). In the last decades, many papers have recognized the shortcomings associated with
such an approach (starting from the criticism contained, e.g., in (Fama and French 1992)), and extended
it so as to incorporate considerations linked to the higher-order moments of the generating probability
distributions. In particular, some authors (e.g., (Ranaldo and Favre 2005; Jondeau and Rockinger 2006))
agree on the fact that the use of a pricing model limited to the first two moments may be misleading
and may wrongly indicate insufficient compensation for the investment. They thus indicate that a
higher-moment approach is more appropriate to detect non-linear relationships between assets and
portfolio returns while accommodating for the specific risk–return payoffs. The financial literature
is very rich in contributions that include considerations related to the third moment. For instance,
papers like Kraus and Litzenberger (1976, 1983), Barone-Adesi and Talwar (1983), Barone-Adesi (1985),
Sears and Wei (1988), Rubinstein (1994) and Harvey and Siddique (2000) propose a three-moment
CAPM which includes the third-order moment. More recently papers like Barberis and Huang (2008),
Brunnermeier et al. (2007), Mitton and Vorkink (2007), Boyer et al. (2010), Green and Hwang (2012)
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and Byun and Kim (2016) empirically document that the skewness of individual assets may have an
influence on portfolio decisions. Moreover, the paper of Jondeau et al. (2019) investigates the ability of
the average asymmetry in individual stock returns prediction.

Rather surprisingly, comparatively less attention has been paid to the role of the fourth moment.
In this respect, Krämer and Runde (2000) show evidence of leptokurtic stock returns, while, more
recently, Conrad et al. (2013) discuss the role of (risk-neutral) skewness and kurtosis showing that they
are strongly related to future returns.

Co-moments of the asset’s distribution with the market portfolio have also been
recognized as influencing investors’ expected returns. In this respect, Hwang and Satchell (1999),
Harvey and Siddique (1999, 2000) and Bakshi et al. (2003) introduce the idea of co-moments analysis
in financial market risk evaluation, while Beaulieu et al. (2008) propose exact inference methods for
asset pricing models with unobservable risk-free rates and co-skewness, and Dittmar (2002) tests
explicitly the influence of co-skewness and co-kurtosis on investors’ decisions, showing that systematic
kurtosis is better than systematic skewness in explaining market returns.

Fang and Lai (1997) and Christie-David and Chaudhry (2001) describe a model where the excess
returns are expressed as a function of the covariance, of the co-skewness and of the co-kurtosis
between the returns of a risky asset and those of the investor’s portfolio. They show that
volatility is an insufficient measure of risk for risk-averse agents and that systematic skewness
and systematic kurtosis increase the explanatory power of the return generating process of future
markets. Their empirical results agree on the fact that investors are averse both to variance
and kurtosis in their portfolio requiring higher excess rates as compensation. The papers by
Fang and Lai (1997) and Christie-David and Chaudhry (2001) have the merit of introducing, in a
formal way, the consideration of co-skewness and co-kurtosis in a CAPM framework, showing their
empirical relevance in explaining risk premia. In this paper, we follow the same approach showing
how higher moments considerations can be formally taken into account, redefining the estimation
criterion of the fundamental systematic risk regression. Further references to the use of higher
moments in analyzing future markets may be found in Levy (1969), Badrinath and Chatterjee (1988),
Hwang and Satchell (1999), Fernandez-Perez et al. (2018) and Liu et al. (2020), among others. Other
approaches related to higher-order considerations in the evaluation of risk may be found in the extreme
value approach suggested by McNeil and Frey (2000), in the idea of bivariate Value at Risk (VaR) by
Arbia (2003) and in the tail VaR introduced by Bargès et al. (2009).

A totally different approach to model tail financial events is based on the notion of the copula;
see papers like Nikoloulopoulos et al. (2012), Dissmann et al. (2013), So and So and Yeung (2014),
Kim et al. (2013) and Cortese (2019) for recent examples in the financial literature. For other
recent approaches to modeling anomalous tails of financial events see, Zhang and Huang (2006),
McElroy and Jach (2012) and So and Chan (2014) among others. Furthermore, it should be remarked that a
large part of the financial econometrics literature (e.g., (Brooks et al. 2005; Dubauskas and Teresienė 2005))
has considered models based on conditional higher moments which have essentially extended the ARCH
formulation of Engle (1982).

3. Methodology

In what follows, we present the methodology of our approach. First, we introduce some formal
definitions of co-skewness and co-kurtosis that will be used later while discussing an augmented
version of the CAPM which takes into account higher moments of the distribution of returns. Then we
describe our proposal, the Least Quartic criterion, a new regression interpolation criterion that takes
into account higher-order moments characteristics in non-normal situations.

3.1. Co-Moments

Let us consider two random variables X and Y. The generic bivariate moment of order r, s
centered around the mean is defined as µr,s = E(xrys), where x = [X − E(X)] and y = [Y − E(Y)].
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Similarly, the standardized bivariate moment of order r, s centered around the mean is defined as
λr,s =

µr,s
σr

xσ
s
y
, with σx =

√
µ2,0 and analogously for σy. Starting from these definitions, the co-skewness of

a bivariate distribution is defined formally as the mixed moments of orders r and s such that r + s = 3,
that is µ1,2 and µ2,1. In a bivariate normal distribution µ1,2 = µ2,1 = 0, see (Kendall et al. 1983;
Kotz et al. 2000); however, in general non-normal distributions, we have, conversely, µ1,2 ∈ < and µ2,1

∈ <. The corresponding standardized moment is defined as λ1,2 =
µ1,2

σxσ2
y

and similarly for λ2,1. Figure 1

illustrates graphically the behavior of positive and negative co-skewness showing the two density
functions and the associated scatter diagrams.
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In finance, for the systematic co-skewness of a joint distribution, a slightly different version of
the standardized moment is usually considered which is defined by the term µ2,1

µ3,0
(Christie-David and

Chaudhry 2001; Fang and Lai 1997; Harvey and Siddique 1999, 2000). Always referring to the financial
interpretation, from Figure 1 it can be argued that, in general, investors will tend to avoid positive
right-tail co-skewness (involving cases of big losses when the market also experiences big losses) and
to favor instead left-tail positive co-skewness (involving cases of big revenues when the market also
experiences big revenues). Prudential investors will prefer negative co-skewness to mitigate the risk of
losses when the markets perform badly.

In a similar way, the co-kurtosis of a bivariate distribution is defined by the mixed moments of
orders r and s such that r + s = 4. Co-kurtosis can, therefore, assume three different manifestations
defined respectively by the mixed moments µ1,3, µ3,1 and µ2,2 whose behavior is likely to be correlated
in empirical situations. In a bivariate normal distribution with the correlation coefficient ρx,y, we have
that µ1,3 = 3ρx,yσ2

xσ
2
y and analogously for µ3,1, see (Kendall et al. 1983; Kotz et al. 2000). In non-Gaussian

distributions, we have, instead, µ1,3 ∈ < and µ3,1 ∈ <. The corresponding standardized moment
is defined as λ1,3 =

µ1,3

σxσ3
y

and similarly for λ3,1. A measure of excess co-kurtosis (with respect to

the bivariate normal distribution) is intuitively provided by the expression κ1,3 = µ1,3 − 3ρx,yσ2
xσ

2
y

and similarly for κ3,1. Analogously, we can look at co-kurtosis through the mixed moment µ2,2.
In a bivariate normal distribution, we have that µ2,2 =

(
1 + 2ρ2

x,y

)
σ2

xσ
2
y, see (Kendall et al. 1983;

Kotz et al. 2000). Conversely, in non-Gaussian distributions, we have µ2,2 ∈ <
+. The corresponding

standardized moment is defined as λ2,2 =
µ2,2

σ2
xσ

3
y

and the relative measure with respect to the bivariate

normal distribution is provided by the quantity κ2,2 = µ2,2 −
(
1 + 2ρ2

x,y

)
σ2

xσ
2
y. In the financial literature,

the systematic co-kurtosis of a risky asset has been often defined as a modified version of the
standardized (3,1) moment given by µ3,1

µ4,0
(Christie-David and Chaudhry 2001; Fang and Lai 1997) while

the joint moment of order (2,2) has been completely neglected. The range of possible situations that
may arise here is more complex than those considered for co-skewness. Figure 2 illustrates graphically
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only some of the possible cases where positive and negative co-kurtosis may emerge in empirical
circumstances. Again, finance provides interesting substantive interpretations of the co-kurtosis
parameters. In fact, looking at Figure 2, one may argue that, generally speaking, investors prefer
negative co-kurtosis that reduces the chances of big losses when markets perform badly. This conclusion
is in accordance with the speculations of Fang and Lai (1997) and Christie-David and Chaudhry (2001)
on investors’ behavior in the presence of kurtosis.
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3.2. The Least Quartic Criterion

A new regression interpolation criterion that takes into account higher-order moments
characteristics in non-normal situations is now introduced. Alternative estimation approaches that
account for the presence of non-normality and outliers in regression may be found in the contributions
of Theil (1950) and Sen (1968) among others.

The LQ criterion consists of a simple optimization procedure that provides a closed form for the
slope regression coefficient estimator, like the ordinary LS. In particular, it represents an extension
of the ordinary LS criterion. Indeed, in the Gaussian distribution case, the estimators reduce to the
ordinary LS solution. In non-Gaussian situations, the proposed procedure provides estimators that
outperform the ordinary LS in terms of out-of-sample risk-adjusted performance.

According to CAPM, let us consider the simple linear regression model where the i-th asset return,
for i = 1, 2, . . . , N, is modeled by

ri,t = bi·rM,t + εi,t (1)

where bi is the CAPM slope coefficient, while ri,t and rM,t are the historical returns of the i-th asset and
the market, respectively, at a given point in time t ∈ T expressed in terms of deviations from their
respective expected values. Let us assume that rM is non-stochastic and that the error term εi obeys
some non-Gaussian distribution characterized by excess kurtosis.

To find the optimal interpolating line, in place of the familiar Least Squares criterion based on a
quadratic loss function, let us define a quartic loss function l(bi)

l(bi) =
∑

t

ε4
i,t =

∑
t

(ri,t − bi·rM,t)
4 (2)

An economic-theoretical motivation for the choice of a least quartic criterion may be found
in the financial literature discussed in Section 2 and in particular in the empirical findings
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of Fang and Lai (1997) and Christie-David and Chaudhry (2001) related to investors averseness to
portfolio kurtosis. The quartic loss function can be seen as a particular case of the general multivariate
loss function proposed by Alp and Demetrescu (2010) to model skewness, fat tails, non-ellipticity and
tail dependence of financial data. Higher-order loss functions (e.g., of order six) could be obviously
considered, but the results are more difficult to interpret.

By expanding Equation (2) we have

l(bi) = µ4,0b4
i − 4µ3,1b3

i + 6µ2,2b2
i − 4µ1,3bi + µ0,4 (3)

In the above expression, µ4,0 =
∑

t r4
M,t and µ0,4 =

∑
t r4

i,t represent the kurtosis of the market and
the i-th asset returns; whereas, µ3,1 =

∑
t r3

M,tri,t − µ1,3 =
∑

t rM,tr3
i,t and µ2,2 =

∑
t r2

M,tr
2
i,t represent the

measures of co-kurtosis described in Section 3.1. For the sake of simplifying the notation, henceforth,
the subscript i for the co-moments involving ri is omitted.

Figure 3 reports an example of a quartic polynomial which, in general, identifies a curve with two
relative minima and one maximum. However, in the specific case we are examining, the polynomial to
be minimized is subject to a series of constraints deriving from the intrinsic nature of the problem.
In particular, the polynomial parameters referring to the kurtosis and the co-kurtosis µ2,2 are bound to
be positive by definition.
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In order to evaluate the minimum of the loss function, let us now set to zero the first derivative of
Equation (3). We obtain:

∂
∂bi

l(bi) = −4
∑

t

(ri,t − bi·rM,t)
3rM,t = 0

∑
t

(ri,t − bi·rM,t)
3rM,t = 0

which leads to
µ4,0b3

i − 3µ3,1b2
i + 3µ2,2bi − µ1,3 = 0 (4)

This equation admits two imaginary roots and one root in the real field. The real solution is
expressed through the following equation (Jacobson 2009):

bi,LQ =
µ3,1

µ4,0
−


3√2c1

3µ4,0

(
c2 +

√
4c3

1 + c2
2

)1/3

+
(
c2 +

√
4c3

1 + c2
2

)1/3

3 3√2µ4,0
(5)

where
c1 = 9µ2

3,1 + 9µ2,2µ4,0c2 = 54µ2
3,1 − 81µ2,2µ3,1µ4,0 + 27µ1,3µ

2
4,0

We will refer to the value in (5) as to the Least Quartic estimator of the CAPM regression slope.
It can be proved that in the bivariate normal distribution case (Kendall et al. 1983) where the values of
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the co-moments are the ones reported in Section 3.1 the real solution of Equation (3), which is reported
in expression (5), reduces to the ordinary Least Squares solution.

From Equation (4) we can derive the second-order condition:

∂2

∂bi
l(bi) = 3µ4,0b2

i − 6µ3,1bi + 3µ2,2 (6)

and this quantity is negative, thus identifying a minimum of the loss function, only if

bi <

∣∣∣∣∣∣µ3,1

µ4,0

∣∣∣∣∣∣ √µ3,1 − µ4,0µ2,2 (7)

Intuitively, since the loss function is a way of finding the best fit of a linear function to a cloud
of points, it only admits a minimum in the real field in that we can always imagine a curve that is
infinitely far from the cloud of points. So, the real solution reported in Equation (5) is a minimum.

To test the significance of the Least Quartic slope estimator, lacking the exact sampling distribution
of bi,LQ, we can resort to a Monte Carlo approach. To achieve this aim, we need to specify a plausible
non-Gaussian form for the error term εi in Equation (1), which includes (positive or negative) extra
kurtosis. A general formulation for non-normal error terms would involve, for instance, assuming

εi
i.i.d.
≈

EPD(0, 1,$), with EPD representing an Exponential Power Distribution with zero location

parameter, unitary scale parameter and $ shape parameter (Subbotin 1923). For $ = 2, the EPD
corresponds to the standard Normal distribution (excess kurtosis = 0), for $ = 1 it leads to the Laplace
distribution (positive excess kurtosis), for $→∞ the distribution converges point-wise to the uniform
distribution U(−1;+1) characterized by negative excess kurtosis. Given the hypothesis that the
independent variable rM is non-stochastic, this will also be the distribution of ri. The Monte Carlo test
will then proceed as follows. We simulate independent draws from a EPD with zero location parameter,
unitary scale parameter and a value of the shape parameter which implies the empirically observed
excess kurtosis. We then calculate the joint moments µ4,0, µ3,1, µ2,2, µ1,3 and µ0,4 on the basis of the
simulated data under the null hypothesis that bi = 0, and we combine them using (5) to obtain the
estimate bi,LQ. Finally, we replicate m times the simulation thus deriving an empirical distribution for
bi,LQ to be used in hypothesis testing. An asymmetric version of EPD could alternatively be exploited
(for an application in finance, see (Zhu and Zinde-Walsh 2009)).

4. Least Quartic vs. Least Squares Estimators: An Empirical Comparison

In this section the Least Quartic criterion is illustrated with reference to the top 300 market
capitalization STOXX® Europe 600 index stocks, covering the period from January 2001 to December
2016. Based on daily quotes, log-returns are computed. The unconditional distribution of all
the considered daily returns series, and the benchmark itself, fall outside the normal distribution
schema, thus confirming the conclusions of most empirical studies. Both Kolmogorov–Smirnov and
Shapiro–Wilks tests reject the hypothesis of normality with more than 1% significance level for all
returns series. The observed deviations from the Gaussian provide the main justification for using
the proposed LQ method in beta estimation; this is reinforced by the marked prevalence of negative
skew (65% of the assets) and of positive excess kurtosis (95% of the assets). Almost all values of both
skewness and kurtosis are significantly different from the Gaussian distribution reference values at the
usual significance levels.

Since the LQ model evaluates higher-order moments of returns, the analysis moves to investigate
the joint third-moment characteristics (the standardized co-skewness, expressed by the parameters
λ1,2 and λ2,1) and the joint fourth-moment characteristics (the standardized co-kurtosis expressed by
the parameters κ1,3, κ2,2 and κ3,1). As expected, there is a high and significant correlation between the
two co-skewness measures and between the three co-kurtosis parameters. Figure 4 depicts the pattern
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of the co-skewness and co-kurtosis parameters over the whole historical period for a selected sample
asset. Generally speaking, observing Figure 4 the departure from bivariate normality and the related
linearity paradigm is evident.
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As a consequence, a simple ordinary LS estimator can be highly unsatisfactory if one wants to explain
the complex links of dependence between each asset returns and the market. In Figure 5, the slope
coefficients calculated using the traditional CAPM expression based on the Least Squares method (bLS)
and the alternative Least Quartic technique illustrated in Section 3 (bLQ) are compared for the same sample
asset. We obtain that all LS estimates are significant at the 5% significance level. Moreover, to test the
significance of the bLQ estimator, we employ the Monte Carlo procedure setting the shape parameter to
$ = 2.9331 corresponding to an excess kurtosis = 2.0702, which is the value observed for the STOXX®

Europe 600 index over the whole sample period. All estimates are significantly different from zero
with less than 5% significance level. Looking at the two patterns showed in Figure 5, it is clear that the
perception of market risk exposure is best captured by the LQ estimator during market turmoil, like the
recent financial crisis in 2007 and the sovereign debt crisis in 2011.

Risks 2020, 8, x FOR PEER REVIEW 8 of 14 

 

 

Figure 4. Co-skewness and co-kurtosis pattern for a sample-asset: (a) 𝜆ଵ,ଶ; (b) 𝜆ଶ,ଵ; (c) 𝜅ଵ,ଷ; (d) 𝜅ଶ,ଶ; 
(e) 𝜅ଷ,ଵ. 

As a consequence, a simple ordinary LS estimator can be highly unsatisfactory if one wants to 
explain the complex links of dependence between each asset returns and the market. In Figure 5, the 
slope coefficients calculated using the traditional CAPM expression based on the Least Squares 
method (𝑏௅ௌ) and the alternative Least Quartic technique illustrated in Section 3 (𝑏௅ொ) are compared 
for the same sample asset. We obtain that all LS estimates are significant at the 5% significance level. 
Moreover, to test the significance of the 𝑏௅ொ estimator, we employ the Monte Carlo procedure setting 
the shape parameter to 𝜛 = 2.9331 corresponding to an excess kurtosis = 2.0702, which is the value 
observed for the STOXX® Europe 600 index over the whole sample period. All estimates are 
significantly different from zero with less than 5% significance level. Looking at the two patterns 
showed in Figure 5, it is clear that the perception of market risk exposure is best captured by the LQ 
estimator during market turmoil, like the recent financial crisis in 2007 and the sovereign debt crisis 
in 2011.  

 
Figure 5. LS and LQ beta estimates for a sample asset. 

Moreover, the LQ estimator seems to anticipate the market risk increase typical during periods 
of crisis, since LQ estimates are consistently higher than the corresponding LS ones one year before 
the crisis starts. This behavior is typical of many of the 300 assets examined. 

Figure 5. LS and LQ beta estimates for a sample asset.



Risks 2020, 8, 95 9 of 14

Moreover, the LQ estimator seems to anticipate the market risk increase typical during periods of
crisis, since LQ estimates are consistently higher than the corresponding LS ones one year before the
crisis starts. This behavior is typical of many of the 300 assets examined.

Since betas provide a quick framework for portfolio systematic risk analysis, in making the
comparison, we first focus on how individual stocks are ranked according to the two types of
estimators. Spearman’s rank-order correlation between LS and LQ classifications is used for this task.
Figure 6 reports the pattern of the coefficient showing that, in general, the ordinal two rankings remain
largely unchanged in many historical periods: specifically, the resulting statistics are significant at the
1% level in 97% of the data points tested. Nevertheless, if we consider only the top 10% of the LS
ranking, for example, the stocks with the highest market risk when the linear estimator is considered, a
significant change is reported in all the considered historical periods, since—on average—only 38% of
the stocks are present at the same time in both rankings.
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The main question that can be addressed is whether the least quartic approach is able to outperform
traditional Least Squares techniques in terms of out-of-sample risk-adjusted performance. In the
context of traditional asset allocation, investors can set up different strategies in terms of the desired
beta exposure, since all the information they need is the betas of the underlying assets. To compare
empirically the two estimators, we assume an investment strategy that passively follows the market
(i.e., a beta equal to one). In this context, we consider two different strategies on a set of 1000 simulated
portfolios each containing a random sub-set of N = 30 stocks. In the first one, the investor considers
the whole historical period, with a length of T −M, where M is the data point where the out-of-sample
analysis starts at the end of 2015. In the second one, a “rolling sample” methodology is used. In each
rebalancing period l j ( j = 1, 2, . . . , nl + 1) the rolling sample approach follows, for each portfolio k,
two steps:

• estimate the optimal vector of weights w′k,l j
using the estimation window composed of the

previous M daily returns of each component, where M is the rolling window length (three different
equal-sized sections of 100–200 and 500 data points are tested);

• compute the returns for the following out-of-sample window, which ends at l j+1, keeping fixed
the optimal set of weights.

Portfolio optimization is assumed to start at t = M = l1, which represents the first rolling window,
whereas nl is the total number of rebalancing periods. lnl+1 = T is necessary to arrange the last
out-of-sample frame. The length of the rebalancing period was set at one month (20 business days).

In order to evaluate which asset allocation works the best, five statistical indicators—taken from a
large set of traditional investment tools that are globally considered useful to evaluate portfolio risk
and returns—are considered: the out-of-sample mean return (for a better reading average, returns are
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rebased on an annualized basis in the following part of the paper), standard deviation, negative semi
deviation Sharpe ratio and correlation with the benchmark STOXX® Europe 600 Index:

r̂k =
1

T −M

nl∑
j=1

l j+1∑
t=l j+1

w′k,l j
rt (8)

σ̂r,k =

√√√√√√
1

T −M

nl∑
j=1

l j+1∑
t=l j+1

(
w′k,l j

rt − r̂k

)2
(9)

σ̂−r,k =

√√√√√√
1

T −M

nl∑
j=1

l j+1∑
t=l j+1

Min
(
w′k,l j

rt, 0
)2

(10)

ŜRk =
r̂k
σ̂r,k

(11)

Since we are assuming passive equivalent portfolios, the resulting out-of-sample returns should
result in a high correlation with the Market Index.

In addition, in order to give insight on the transaction costs associated with each strategy, we
compute a measure of portfolio turnover based on the variability of the optimal weights evaluated at
each rebalancing period, which is defined by:

Trk =
1
nl

nl∑
j=2

(∣∣∣∣w′k,l j
−w′k,l j−1

∣∣∣∣·1) (12)

In Table 1, some basic statistics (averaged over the 1000 runs) for the simulated portfolios are
reported. The main result is that, on average, the LQ optimization strategies outperform the LS
alternative with consistently higher mean returns, lower variability and higher values both of the
Sharpe ratio and of the correlation with the STOXX® Europe 600 index. The outcomes from the rolling
strategies are coherent with those of the whole period, experiencing better indicators when the window
length M increases and significantly improving the strategies’ overall out-of-sample annualized return
and risk-adjusted performance measured by the Sharpe ratio. In terms of turnover, not surprisingly,
we find that the value of TR decreases with M for all the employed strategies; however, in this case,
the LQ approach does not differ significantly from the LS solution.

Results in Table 1 are confirmed by the raw frequency counts having values for each indicator
that are better in the LQ framework (see Table 2): a heuristic indication of LQ relative advantage is
provided since benefits from lower risk (e.g., lower σ̂r and σ̂−r ) are achieved while not reducing returns.

Table 1. Average statistics for the 1000 simulated portfolios.

Global
Rolling

M = 100 M = 200 M = 500

LS LQ LS LQ LS LQ LS LQ

r̂ 4.963 5.884 1.946 1.995 2.283 2.333 6.748 7.219
σ̂r 23.821 22.955 29.013 28.993 27.075 26.622 24.943 24.469
σ̂−r 0.969 0.933 1.073 1.065 1.056 1.036 0.974 0.953
ŜR 0.242 0.284 0.066 0.069 0.089 0.093 0.974 0.953
ρr̂,M 0.899 0.908 0.797 0.810 0.823 0.826 0.859 0.861
Tr - - 0.144 0.143 0.115 0.115 0.058 0.058
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Table 2. Percentages of cases where the LQ estimates are better than the corresponding LS alternatives.

Global
Rolling

M = 100 M = 200 M = 500

r̂ 58 53 55 52
σ̂r 74 62 61 69
σ̂−r 70 60 63 68
ŜR 57 53 57 61
ρr̂,M 56 55 57 61

To assess the statistical significance of the difference in Sharpe ratios among the linear and
quartic estimators, we finally provide a two-sided p-value which is evaluated using the bootstrapping
methodology suggested by Ledoit and Wolf (2008). We firstly re-sample the data (with an average
block size of five) by selecting 500 bootstrap samples containing observations that were randomly
chosen from the original sample of log-returns of the top 300 market capitalization STOXX® Europe
600 index stocks. Secondly, we fit an LQ regression model and calculate a regression coefficient from
each bootstrap sample (in other words we obtain 500 bootstrap replicates of the regression coefficients
obtained with the proposed procedure). Thirdly, we obtain the bootstrap estimates of standard errors
of the regression parameters and compute the empirical p-values. If we consider statistical significance
at the 5% level, in around 93% of the cases LQ regression coefficient estimates are significant. Finally,
the null hypothesis H0 : ŜRLQ = ŜRLS is tested. Around 80% of the simulations yielded significantly
different Sharpe ratios at the 5% significance level. Specifically, since the Sharpe ratio is simply the
return per unit of risk (represented by the standard deviation), the higher it is, the better the combined
performance of risk and return. Therefore, this ratio minimizes the probability that a future portfolio
return falls below the risk-free rate. Moreover, since leptokurtic and asymmetric distributions often
occur in financial time series, we can assume that if, in the regression coefficient estimates, we also take
into account third and fourth moments of returns, we may obtain a better measurement of risk. The fact
that the bootstrap hypothesis testing leads to the rejection of the null hypothesis that ŜRLQ = ŜRLS in
most of the cases examined, suggests that the risk assessment obtained using our proposed method
outperforms the classic one. In particular, the risk estimation made using the Sharpe ratio based on
the quartic estimator is better than the one obtained using the ordinary LS procedure in 85% of the
analyzed time series. Moreover, if we consider a 95% VaR over a one-day holding horizon and we
backtest the loss forecasted by Value-at-Risk compared to the actual ones, we observe that in 93% of the
time series considered the frequency of exceedances is consistent with the specified confidence level
when the LQ estimator is used. The accuracy reduces to 72% when the LS one is taken into account.
Consequently, VaR estimates are more accurate in the LQ framework.

5. Conclusions

Considerations related to the third and fourth moments characteristics within a regression
framework are extremely relevant in many applied fields and particularly in market risk analysis.
In this paper, we present a discussion on the statistical nature of co-skewness and co-kurtosis and
we introduce a new criterion to estimate a linear regression model parameter, based on a quartic
loss function. Along with a detailed description of the methodology, which is very general, we
examine its application to quantitative finance. Specifically, since the unknown form of the asset
returns distribution is unlikely to be described by the first two moments only, the advantage of
the proposed procedure is to provide an evaluation of market risk within the CAPM framework
by taking into account third and fourth moments. The potential of the method is illustrated with
reference to a case study focused on the top 300 market capitalization components of the STOXX®

Europe 600. The empirical analysis, based on the least quartic estimation of the slope coefficient, adds
insights into market analysis and helps in identifying more precisely potentially risky assets whose
extreme behavior is strongly dependent on the market behavior. By comparing the slope coefficients
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calculated using the traditional CAPM expression based on the ordinary LS method and the alternative
LQ technique, it emerges that the perception of market risk exposure is best captured by the LQ
estimator during market turmoil (e.g., the financial crisis in 2007 and the sovereign debt crisis in 2011).
The out-of-sample analysis, based on 1000 simulated portfolios, also shows how the LQ criterion in
most cases outperforms the traditional LS optimization strategy with consistently higher mean returns,
lower variability and higher values both of the Sharpe ratio and of the correlation with the STOXX®

Europe 600 index. Finally, through the bootstrapping methodology, we show that the VaR and risk
estimation obtained using the Sharpe ratio based on the quartic estimator are better than those obtained
using the ordinary LS procedure in most of the time series analyzed at the 5% significance level.
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