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Abstract: We studied the volatility assumption of non-life premium risk under the Solvency II
Standard Formula and developed an empirical model on real data, the Danish fire insurance
data. Our empirical model accomplishes two things. Primarily, compared to the present literature,
this paper innovates the fitting of Danish fire insurance data using a composite model with a random
threshold. Secondly we prove, by fitting the Danish fire insurance data, that for large insurance
companies the volatility of the standard formula is higher than the volatility estimated with internal
models such as composite models, also taking into account the dependence between attritional and
large claims.

Keywords: composite models; copula functions; Fast Fourier Transform; dependent random
variables; volatility; Solvency II
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1. Introduction

A non-life insurance company faces premium risk, among others, which is the risk of financial
losses related to premiums earned. The risk in the losses relates to uncertainty in severity, frequency or
even timing of claims incurring during the period of exposure. For an operating non-life insurer,
premium risk is a key driver of uncertainty both from operational and solvency perspectives. In regards
to the solvency perspective, there are many different methods useful to give a correct view of the
capital needed to meet adverse outcomes related to premium risk. In particular, evaluation of the
distribution of aggregate loss plays a fundamental role in the analysis of risk and solvency levels.

As shown in Cerchiara and Demarco (2016), the standard formula under Solvency II for premium
and reserve risk defined by the Delegated Acts (DA, see European Commission 2015) proposes the
following formula for the solvency capital requirement (SCR):

SCR = 3σV (1)

where V denotes the net reinsurance volume measure for Non-Life premium and reserve risk
determined in accordance with Article 116 of DA, and σ is the volatility (coefficient of variation)
for Non-Life premium and reserve risk determined in accordance with Article 117 of DA, combining
the volatility σs according to the correlation matrix between each segment s. Then, σs is calculated
as follows:
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σs =

√
σ2
(prem,s)V

2
(prem,s) + σ(prem,s)V(prem,s)σ(res,s)V(res,s) + σ2

(res,s)V
2
(res,s)

V(prem,s) + V(res,s)
(2)

In this paper we focus our attention on σ(prem,s), i.e., the coefficient of variation of the Fire segment
Premium Risk. Under DA, the premium risk volatility of this segment is equal to 8%. As shown in
Clemente and Savelli (2017), Equation (1) “implicitily assumes to measure the difference between
the Value at Risk (VaR) at 99.5% confidence level and the mean of the probability distribution of
aggregate claims amount by using a fixed multiplier of the volatility equal to 3 for all insurers. From a
practical point of view, DA multiplier does not take into account the skewness of the distribution
with a potential underestimation of capital requirement for small insurers and an overestimation for
big insurers”.

For Insurance Undertakings who do not believe in the standard formula assumptions, they may
calculate the Solvency Capital Requirement using an Undertaking Specific Parameters approach
(USP, see Cerchiara and Demarco 2016) and a Full or Partial Internal Model (PIM) after approval by
Supervisory Authorities. Calculation of the volatility and VaR of independent or dependent risky
positions using PIM is very difficult for large portfolios. In the literature, many different studies
are based on definitions of composite models that aim to analyze loss distribution and dependence
between the main factors that characterize the risk profile of insurance companies, e.g., frequency and
severity, attritional and large claims and so forth. Considering more recent developments in the
literature, Galeotti (2015) proves the convergence of a geometric algorithm (alternative to Monte Carlo
and quasi-Monte Carlo methods) for computing the Value-at-Risk of a portfolio of any dimension,
i.e., the distribution of the sum of its components, which can exhibit any dependence structure.

In order to implement PIM and investigate overestimation of the SCR (and the underlying
volatility) for large insurers, we used the Danish fire insurance dataset1 that has been often
analyzed according to the parametric approach and composite models. McNeil (1997), Resnick
(1997), Embrechts et al. (1997) and McNeil et al. (2005) proposed fitting this dataset using Extreme
Value Theory and Copula Functions (see Klugman et al. 2010 for more details on the latter),
with special reference to modeling the tail of the distribution. Cooray and Ananda (2005) and
Scollnik (2007) showed that the composite lognormal-Pareto model was a better fit than standard
univariate models. Following the previous two papers, Teodorescu and Vernic (2009, 2013) fit
the dataset firstly with a composite Exponential and Pareto distribution, and then with a more
general composite Pareto model obtained by replacing the Lognormal distribution by an arbitrary
continuous distribution, while Pigeon and Denuit (2011) considered a positive random variable as
the threshold value in the composite model. There have been several other approaches to model
this dataset, including Burr distribution for claim severity using XploRe computing environment
(Burnecki and Weron 2004), Bayesian estimation of finite time ruin probabilities (Ausin et al. 2009),
hybrid Pareto models (Carreau and Bengio 2009), beta kernel quantile estimation (Charpentier and
Oulidi 2010) and bivariate composite Poisson process (Esmaeili and Klüppelberg 2010). An example
of non-parametric modeling is shown in Guillotte et al. (2011) with a Bayesian inference on bivariate
extremes. Drees and Müller (2008) showed how to model dependence within joint tail regions.
Nadarajah and Bakar (2014) improved the fittings for the Danish fire insurance data using various new
composite models, including the composite Lognormal–Burr model.

Following this literature, this paper innovates fitting of the Danish fire insurance data by
using the Pigeon and Denuit (2011) composite model with a random threshold that has a higher
goodness-of-fit than the Nadarajah and Bakar (2014) model. Once the best model is defined, we show

1 Danish insurance market data have been included in the calibration of standard parameters by EIOPA (2011) Calibration
of the Premium and Reserve Risk Factors in the Standard Formula of Solvency II, Report of the Joint Working Group on
Non-Life and Health NSLT Calibration.
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that the Standard formula assumption is prudent, especially for large insurance companies, giving
an overestimated volatility of the premium risk (and of the SCR). For illustrative purposes, we also
investigate the use of other models, including the Copula function and Fast Fourier Transform (FFT;
Robe-Voinea and Vernic 2016), trying to take into account the dependence between attritional and
large claims and understand the effect on SCR.

The paper is organized as follows. In Section 2 we report some statistical characteristics of
Danish data. In Sections 3 and 4 we posit there is no dependence between attritional and large
claims. We investigate the use of composite models with fixed or random thresholds in order
to fit the Danish fire insurance data, and we compare our numerical results with the fitting of
Nadarajah and Bakar (2014) based on a composite Lognormal–Burr model. In Section 5 we try to
appraise risk dependence through the Copula function concept and FFT, for which Robe-Voinea and
Vernic (2016) provide an overview and perform a multidimensional application. Section 6 concludes
the work and presents estimation of the aggregate loss volatility distribution, and results are compared
under independence and dependence conditions.

2. Data

In the following, we show some statistics of the dataset used in this analysis. The losses of
individual fires covered in Denmark were registered by the reinsurance company Copenhagen Re
and, for our study, have been converted into euros. It is worth mentioning that the original dataset
(available also in R) covers the period 1980–1990. In 2003–2004, Mette Havning (Chief Actuary of
Danish Reinsurance) was on the Astin committee where she met Tine Aabye from Forsikring & Pension.
Aabye asked her colleague to send the Danish million re-losses from 1985–2002 to Mette Havning.
Based on the two versions from 1980–1990 and 1985–2002, Havning then made an extended version of
Danish Fire Insurance Data from 1980 through 2002 with only a few ambiguities in the overlapping
period. The data were communicated to us by Mette Havning and consisted of 6870 claims over a time
period of 23 years. We bring to the reader’s attention that, to avoid seasonal effects due to the use
of the entire historical series that starts from 1980, the costs have been inflated to 2002. In addition,
we referred to a wider dataset also including small losses, unlike that used by McNeil (1997), among
others. In fact, we want to study the entire distribution of this dataset, while in McNeil (1997) and in
other works the attention was focused especially on the right-tail distribution. We list some descriptive
statistics in Table 1:

Table 1. Descriptive statistics of Danish empirical losses.

Min Mean Median Q3 Max Kurtosis Skewness Std Dev

27,730 613,100 327,000 532,800 55,240,000 505.592 17.635 1,412,959

The maximum observed was around e55 million and the average cost was 613,100e.
The empirical distribution is definitely leptokurtic and asymmetric to the right.

To make applications of composite models and Copula functions easier, we will suppose that
claim frequency k is non-random, while for the Fast Fourier Transform algorithm we consider the
frequency as a random variable. The losses have been split by year, so we can report some descriptive
statistics for k in Table 2:

Table 2. Empirical distribution of frequency claim statistics.

Q1 Mean Q3 Max Variance Skewness

238 299 381 447 8482 −0.12
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We note 50% of frequencies were included between 238 and 381 claims, and there is slight negative
asymmetry. In addition, the variance is greater than mean value (299).

3. Composite Models

In the Danish fire insurance data we can find both frequent claims with low to medium severity
and sporadic claims with high severity. If we want to define a joint distribution for these two types of
claims we have to build a composite model.

A composite model is a combination of two different models: One having a light tail below a
threshold (attritional claims) and another with a heavy tail suitable to model the value that exceeds
this threshold (large claims). Composite distributions (also known as composite, spliced or piecewise
distributions) have been introduced in many applications. Klugman et al. (2010) expressed the
probability density function of a composite distributions as

f (x) =


r1 f ∗1 (x) k0 < x < k1
...

rn f ∗n (x) kn−1 < x < kn

(3)

where f ∗j is truncated probability density function of marginal distribution f j, j = 1, . . . , n; rj ≥ 0 are
mixing weights, ∑n

j=1 rj = 1; and k j defines the range limit of the domain.
Formally, the density distribution of a composite model can be written as a special case of (3) as follows:

f (x) =

{
r f ∗1 (x) −∞ < x ≤ u

(1− r) f ∗2 (x) u < x < ∞
(4)

where r ∈ [0, 1], and f ∗1 and f ∗2 are cut off density distributions of marginals f1 and f2, respectively.
In detail, if Fi is the distribution function of fi, i = 1, 2, then we have f ∗1 (x) = f1(x)

F1(u)
−∞ < x ≤ u

f ∗2 (x) = f2(x)
1−F2(u)

u < x < ∞
(5)

It is simple to note that (4) is a convex combination of f ∗1 and f ∗2 with weights r and 1 − r.
In addition, we want (4) to be continuous, derivable and with a continuously derivative density
function, and for this scope we fix the following limitation: lim

x→u
f (x) = f (u)

lim
x→u−

f
′
(x) = lim

x→u+
f
′
(x)

(6)

From the first we obtain

r =
f2(u)F1(u)

f2(u)F1(u) + f1(u)(1− F2(u))
(7)

while from the second

r =
f
′
2(u)F1(u)

f ′2(u)F1(u) + f ′1(u)(1− F2(u))
(8)

We can define distribution function F of (4)

F(x) =

r F1(x)
F1(u)

, −∞ < x ≤ u

r + (1− r) F2(x)−F2(u)
1−F2(u)

, u < x < ∞
(9)
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Suppose F1 and F2 admit inverse functions; we can define the quantile function via an inversion
method. Let p be a random number from a standard Uniform distribution, then the quantile function
results in

F−1(p) =

F−1
1

(
p
r F1(u)

)
, p ≤ r

F−1
2

(
p−r+(1−p)F2(u)

1−r

)
, p > r

(10)

To estimate the parameters of (9) we can proceed as follows: First, we estimate marginal density
function parameters separately (the underlying hypothesis is that there is no relation between attritional
and large claims); then, these estimates will be the start values of the density function in order to
maximize the following likelihood:

L(x1, . . . , xn; θ) = rm(1− r)n−m
m

∏
i=1

f ∗1 (xi)
n

∏
j=m+1

f ∗2 (xj) (11)

where n is the sample dimension, θ is a vector including composite model parameters, while m is
such that Xm ≤ u ≤ Xm+1, otherwise m is the level of order statistics Xm immediately previous (or
coincident) to u.

The methodology described in Teodorescu and Vernic (2009, 2013) has been used in order to
estimate threshold u, which permits us to discriminate between attritional and large claims.

3.1. Composite Model with Random Threshold

We can define a composite model also using a random threshold (see Pigeon and Denuit 2011).
In particular, given a random sample X = (X1, . . . , Xn), we can assume that every single component Xi
provides its own threshold. So, for the generic observation xi we will have the threshold ui, i = 1, . . . , n.
For this reason, u1, . . . , un are realizations of a random variable U with a distribution function G.
The random variable U is necessarily non-negative and with a heavy-tailed distribution.

A composite model with a random threshold shows a completely new and original aspect:
Not only are we unable to choose a value for u, but its whole distribution and the parameters of the
latter are implicit in the definition of the composite model. In particular, we define the density function
of the Lognormal–Generalized Pareto Distribution model (GPD, see (Embrechts et al. 1997)) with a
random threshold in the following way:

f (x) = (1− r)
∫ x

0
f2(x)g(U)dU + r

∫ ∞

x

1
Φ(ξσ)

f1(x)g(U)dU (12)

where r ∈ [0, 1], U is the random threshold with density function g, f1 and f2 are Lognormal and
GPD density functions, respectively, Ψ is the Standard Normal distribution function, ξ is the shape
parameter of GPD and σ is the Lognormal scale parameter.

3.2. Kumaraswamy Distribution and some Generalization

In this section we describe the Kumaraswamy Distribution (see Kumaraswamy 1980) and a
generalization of the Gumbel distribution (see Cordeiro et al. 2012). In particular, let

K(x; α, β) = 1− (1− xα)β, x ∈ (0, 1) (13)

in the distribution proposed in Kumaraswamy (1980), where α and β are non-negative shape
parameters. If G is the distribution function of a random variable, then we can define a new
distribution by

F(x; a, b) = 1− (1− G(x)a)b (14)
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where a > 0 and b > 0 are shape parameters that influence kurtosis and skewness.
The Kumaraswamy–Gumbel (KumGum) distribution is defined throughout (14) with the following
distribution function (see Cordeiro et al. 2012):

FKG(x; a, b) = 1− (1−Λ(x)a)b (15)

where Λ(x) is the Gumbel distribution function with density defined by (20). The quantile function of
KumGum is obtained by inverting (15) and explicating Gumbel parameters (v and φ):

xp = F−1(p) = v− ϕ log
[
− log

(
1− (1− p)1/b

)1/a
]

(16)

with p ∈ (0, 1).
The following Table 3 and Figure 1 show the Kurtosis and Skewness of the KumGum density

function by varying the four parameters:

Table 3. Kurtosis and Skewness of the KumGum distribution.

v ϕ a b Kurtosis Skewness

0 5 1 1 5.4 1.1
0 1 0.5 0.5 7.1 1.6
5 3 2 3 3.6 0.5
1 10 5 0.66 6.4 1.4
0 15 1 0.4 7.6 1.7
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Figure 1. KumGum density functions.

Another generalization of the Kum distribution is the Kumaraswamy–Pareto one (KumPareto).
In particular, we can evaluate Equation (14) in the Pareto distribution function P which is

P(x; β, κ) = 1−
( β

x

)κ
, x ≥ β (17)
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where β > 0 is a scale parameter, and κ ≥ 0 is a shape parameter. Thus, from (13), (14) and (17) we
obtain the KumPareto distribution function:

FKP(x; β, κ, a, b) = 1−
{

1−
[
1−

( β

x

)κ]a}b
, x ≥ 0 (18)

The corresponding quantile function is

F−1(p) = β
{{

1−
[
1−

(
1− p

)1/b]1/a}1/κ}−1
(19)

where p ∈ (0, 1). In the following Figure 2 we report the KumPareto density function varying
the parameters:

Figure 2. KumPareto density functions.

4. Numerical Example of Composite Models

In this section we present numerical results on the fitting of Danish fire insurance data by
composite models with constant and random thresholds between attritional and large claims.
As already mentioned, for the composite models with a constant threshold, we used the methodology
described in Teodorescu and Vernic (2009, 2013), obtaining u = 1, 022, 125e.

We start with a composite Lognormal–KumPareto model, choosing f1 ∼ Lognormal and f2 ∼
KumPareto. From the following Table 4 we can compare some theoretical and empirical quantiles:

Table 4. Comparison between empirical and Lognormal–KumPareto quantiles.

Level 50% 75% 90% 95% 99% 99.5%

Empirical quantile 327,016 532,757 1,022,213 1,675,219 5,484,150 8,216,877
Theoretical quantile 333,477 462,852 642,196 840,161 2,616,338 4,453,476
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Only the fiftieth percentile of the theoretical distribution function was very close to the same
empirical quantile: From this percentile onwards the differences increased. In the following Figure 3
we show only right tails of the distribution functions (empirical and theoretical):

Figure 3. Right tails of Lognormal–KumPareto (red line) and empirical distribution (dark line) functions.

The red line is always above the dark line. This means Kumaraswamy-generalized families
of distributions are very versatile in analyzing different types of data, but in this case the
Lognormal–KumPareto model underestimated the right tail.

Therefore, we consider the composite model f1 ∼ Lognormal and f2 ∼ Burr as suggested in
Nadarajah and Bakar (2014). The parameters are estimated using the CompLognonormal R package as
shown in Nadarajah and Bakar (2014). From the following Table 5 we can compare some theoretical
quantiles with empirical ones:

Table 5. Comparison between empirical quantiles and Lognormal–Burr ones.

Level 50% 75% 90% 95% 99% 99.5%

Empirical quantile 327,016 532,757 1,022,213 1,675,219 5,484,150 8,216,877
Theoretical quantile 199,681 332,341 634,531 1,029,262 3,189,937 5,181,894

This model seemed to be more feasible in catching the right tail of the empirical distribution with
respect to the previous Lognormal–KumPareto, as we can see from the Figure 4 below:

Similar to the Lognormal–KumPareto model, the Lognormal–Burr distribution line is always
above the empirical distribution line but not always at the same distance.

We go forward modeling a Lognormal–Generalized Pareto Distribution (GPD), that is we choose
f1 ∼ Lognormal and f2 ∼ GPD and then we generate pseudo-random numbers from quantile
function (10). In Table 6 and Figure 5 we report the estimates of parameters, 99% confidence intervals
and the QQ plot (µ1 and σ are the Lognormal parameters, while σµ and ξ are GPD parameters):

We observe that this composite model adapted well to the empirical distribution; in fact, except for
a few points, theoretical quantiles are close to corresponding empirical quantiles. In the Figures 6 and
7 we compare the theoretical cut-off density function with the corresponding empirical one and the
theoretical right tail with the empirical one.

The model exhibited a non-negligible right tail (kurtosis index is 115,656.2), which can be
evaluated comparing the observed distribution function with the theoretical one.
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Figure 4. Lognormal–Burr and empirical distribution functions (red and dark lines).

Table 6. Estimated parameters and 99% confidence intervals of Lognormal–GPD.

Parameter Low Extreme Best Estimate High Extreme

µ1 12.82 12.84 12.86
σ 0.59 0.61 0.62
σµ 1,113,916 1,115,267 1,116,617
ξ 0.33 0.45 0.56

Figure 5. Observed–theoretical quantile plot for the Lognormal–GPD model.
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Figure 6. Left, comparison between cut-off density functions. Right, empirical and theoretical (red)
right tail.

Figure 7. Lognormal–GPD (red) and empirical (dark) distribution function.

The corresponding Kolmogorov–Smirnov test returned a p-value equal to 0.8590423, using 50,000
bootstrap samples.

Finally, in Table 7 we report the best estimate and 99% confidence intervals of the composite
model Lognormal–GPD with a Gamma random threshold u (see Pigeon and Denuit 2011).
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Table 7. Estimated parameters and 99% confidence intervals of Lognormal–GPD–Gamma distribution.

Parameter Low Extreme Best Estimate High Extreme

µ1 12.78 12.79 12.81
σ 0.52 0.54 0.55
u 629,416 630,768 632,121
σµ 1,113,915 1,115,266 1,116,616
ξ 0.22 0.29 0.37

The threshold u is a parameter whose value depends on Gamma parameters. In the following
Table 8 and Figure 8 we report the theoretical and empirical quantiles and the QQ plot.

Table 8. Comparison between empirical and Lognormal–GPD–Gamma quantiles.

Levels 50% 75% 90% 95% 99% 99.5%

Empirical percentile 327,016 532,757 1,022,213 1,675,219 5,484,150 8,216,877
Theoretical percentile 360,574 517,996 1,103,309 2,077,792 5,266,116 7,149,253

Figure 8. Observed-theoretical quantile plot for the Lognormal–GPD–Gamma model.

We can see from the Figure 9 that Lognormal–GPD–Gamma model can be considered a good
fitting model.

The Kolmogorov–Smirnov adaptive test returned p-value equal to 0.1971361; therefore, we cannot
reject the null hypothesis under which the investigated model is a feasible model for our data.

Finally, Lognormal–KumPareto, Lognormal–Burr, Lognormal–GPD with fixed threshold and
Lognormal–GPD with a Gamma random threshold can be compared using the AIC and BIC values,
Table 9.
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Figure 9. Lognormal–GPD–Gamma (red) versus empirical (dark) distribution functions.

Table 9. AIC and BIC indices for a comparison between different models.

Index KumPareto Burr GPD GPD–Gamma

AIC 193,374 191,459 191,172 190,834
BIC 193,409 191,494 191,207 190,882

The previous analysis suggests that the Lognormal–GPD–Gamma gives the best fit.

5. Introducing Dependence Structure: Copula Functions and Fast Fourier Transform

In the previous section we restricted our analysis to the case of independence between attritional
and large claims. We now try to extend this work to a dependence structure. Firstly, we defined
a composite model using a copula function to evaluate the possible dependence. As marginal
distributions, we referenced to a Lognormal distribution for attritional claims and a GPD for large
ones. The empirical correlation matrix R

R =

(
1 0.01259155

0.01259155 1

)
and Kendall’s Tau and Spearman’s Rho measures of association

K =

(
1 0.00252667

0.00252667 1

)

S =

(
1 0.00373077

0.00373077 1

)
suggest a weak but positive correlation between normal and large claims.

For this reason, the individuation of an appropriate copula function will not be easy, but we
present an illustrative example based on a Gumbel Copula. We underline that an empirical dependence



Risks 2020, 8, 74 13 of 19

structure is inducted by distinction between attritional and large losses. In fact, there is no unique event
that causes small and large losses simultaneously, but when an insured event occurs, only an attritional
or large loss is produced. For this reason, the results showed in the following should be considered as
an exercise that highlights the important effects of dependence on the aggregate loss distribution.

Cθ(u, v) = exp−[ln(u)−θ + ln(v)−θ ]1/θ , 1 ≤ θ < ∞ (20)

Table 10 reports the different methods to estimate the parameter θ:

Table 10. Different methods for estimating the dependence parameter θ of a Gumbel Copula.

Method θ Standard Error

Maximum pseudo-likelihood 1.11 0.008
Canonical maximum pseudo-likelihood 1.11 0.008
Simulated maximum likelihood 1.11 -
Minimum distance 1.09 -
Moments based on Kendall’s tau 1.13 -
Bootstrap 1.11 0.008

We remind that Gumbel’s parameter θ assumes values in [1, ∞), and for θ → 1 we have
independence between marginal distributions. We observe that estimates were significantly different
from 1, and so our Gumbel Copula did not correspond to the Independent Copula. We can say that
because we verified using bootstrap procedures, the θ parameter has a Normal distribution. In fact,
the Shapiro–Wilk test gave a p-value equal to 0.08551; thus, with a fixed significance level of 5%, it is not
possible reject the null hypothesis. In addition, the 99% confidence interval obtained with Maximum
pseudo-likelihood method was (1.090662; 1.131003), which does not include the value 1; the same
confidence interval obtained with the Bootstrap procedure was (1.090662; 1.131003). In the following
Figure 10 we report the distribution of the Gumbel parameter obtained by the bootstrap procedure.

Figure 10. Normal distribution of the Bootstrap Gumbel parameter.

We report two useful graphics (Figures 11 and 12), obtained by simulation of the
estimated Gumbel.
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Figure 11. Lognormal (top) and GPD (right) marginal histograms and Gumbel Copula simulated
values plot.
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Figure 12. Density function of the estimated Gumbel Copula. Attritional claim losses on the X-axis,
large claim losses on the Y-axis.

The density function (Figure 12) assumed greater values in correspondence of great values both
for Lognormal and GPD marginal; in other words, using the Gumbel Copula, the probability that
attritional claims produced losses near to the threshold u, and that large claims produced extreme
losses, was greater than the probability of any other joined event.

We report also the result of the parametric bootstrap goodness-of-fit test performed on the
estimated Gumbel Copula.
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Statistic θ p-Value
2.9381 1.1108 0.00495

We can consider the estimated Gumbel a good approximation of dependence between data.
In our numerical examples, we referred to the Gumbel Copula function despite having estimated
and analyzed other copulas for which there was no significant difference for the aims of this paper.
While the empirical dependence is not excessive, we will see how the introduction in the estimation
model of a factor that takes it into account, such as a Copula function, will produce a non-negligible
impact on the estimate of the VaR.

An Alternative to the Copula Function: The Fast Fourier Transform

Considering the fact that it is not easy to define an appropriate copula for this dataset, we next
modeled the aggregate loss distribution directly with the Fast Fourier Transform (FFT) using empirical
data. That approach allowed us to avoid the dependence assumption between attritional and large
claims (necessary instead with the copula approach).

To build an aggregate loss distribution by FFT, it is first necessary to discretize the severity
distribution Z (see Klugman et al. 2010) and obtain the vector z = (z0, . . . , zn−1), of which element zi
is the probability that a single claim produces a loss equal to ic, where c is a fixed constant such that,
given n length of vector z, the loss cn has a negligible probability. We considered also frequency claim
distribution k̃ through Probability-Generating function (PGF) defined as

PGFk̃(t) =
∞

∑
j=0

tjPr(k̃ = j) = E[tk] (21)

In particular, let FFT(z) and IFFT(z) be the FFT and its inverse, respectively. We obtain the
discretized probability distribution for the aggregate loss X as

(x0, x1, . . . , xn−1) = IFFT(PGF(FFT(z))) (22)

Both FFT(z) and IFFT(z) are n-dimensional vectors whose generic elements are, respectively,

ẑk =
n−1

∑
j=0

zj exp(
2πi
n

jk) (23)

zk =
1
n

n−1

∑
j=0

ẑj exp(−2πi
n

jk) (24)

where i =
√
−1.

From a theoretical point of view, this is a discretized version of Fourier Transform (DFT):

φ(z) =
∫ +∞

−∞
f (x) exp(izx)dx (25)

The characteristic function created an association between a probability density function and
continuous complex one, while the DFT made an association between an n-dimensional vector
and an n-dimensional complex vector. The former one-to-one association can be done through
the FFT algorithm.

For a two-dimensional case, matrix MZ is a necessary input; this matrix contains joined
probabilities of attritional and large claims such that it is possible to obtain corresponding marginal
distributions by adding long rows and columns respectively. For example, let

Mz =

 0.5 0 0
0.2 0.25 0
0 0.05 0


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be that matrix. The vector (0.5, 0.45, 0.05), obtained by adding long three rows, contains the marginal
distribution of attritional claims, while the vector (0.7, 0.3, 0), obtained by adding long three columns,
contains the marginal distribution of large claims. The single element of the matrix, instead, is the
joined probability. The aggregate loss distribution will be a matrix MX given by

Mx = IFFT(PGF(FFT(Mz))) (26)

For more mathematical details, we point to Robe-Voinea and Vernic (2016) and Robe-Voinea and
Vernic (2017), in which FFT is extended to a multivariate setting, and several numerical examples are
illustrated.

We decided to discretize the observed distribution function, without reference to a
specific theoretical distribution, using the discretize R function available in the actuar package
(see Klugman et al. 2010). This discretization allows us to build the matrix MZ to which we applied
the two-dimensional FFT version. In this way, we obtained a new matrix FFT(MZ) that acted as input
for the random k̃ probability generating function.

As reported in Section 2, in our dataset, 50% of frequencies were included between 238 and
381 claims, and there was a slightly negative asymmetry. In addition, the variance was greater than
the mean value (299). Thus, it is possible to suppose a Negative Binomial distribution for frequency
claims. The corresponding probability generating function is defined by

PGF(t) =
( 1− p

1− pt

)m
(27)

We estimated its parameters that resulted m = 5 and p = 0.82. Then, we obtained the matrix
PGFk̃(FFT(Mz)). As the last stage we applied the IFFT whose output is matrix MX. Adding long
counter-diagonals of MX we can individuate the discretized probability distribution of aggregate
loss claims, having maintained the distinction between normal and large claims and, above all,
preserving the dependence structure.

6. Final Results and Discussion

As shown previously, from the perspective of strict adaptation to empirical data, we can say that
the best model to fit the Danish fire data is the Lognormal–GPD–Gamma one, which presented a
coefficient of variation equal to 10, 2%, lesser than Standard Formula volatility. In fact, considering the
premium risk and Fire segment only, the volatility of the Standard Formula was equal to 24% (3 times
σ(prem, f ire), where σ(prem, f ire) = 8%; see Tripodi 2018). As written in the introduction of the present work,
this result mainly was due to the fact that the DA multiplier did not take into account the skewness of
the aggregate claim distribution, and it potentially overestimated the SCR for large insurers.

For illustrative purposes only, we estimated the VaRp and the volatility of aggregate loss using
the previous models, taking into account a dependence structure as well. According to the collective
approach of risk theory, aggregate loss is the sum of a random number of random variables, and so it
requires convolution or simulation methods. We remember that among the considered methodologies,
only FFT directly returned the aggregate loss. Relating to FFT, as we mentioned above, an empirical
dependence structure was inducted by discriminating between attritional and large losses, so we
referred to empirical discretized severities in a bivariate mode. This is a limitation of our work that
could be exceeded considering a bivariate frequency and two univariate severities, inducting such
dependence by the frequency component, as it happens in practice (i.e., dependency between severities
is not typical for this line of business); however, this approach would not have allowed us to apply the
FFT methodology.

Considering the statistics of frequency in the Danish fire insurance data, we can assume claim
frequency k distributed as a Negative Binomial, as done previously with the FFT procedure. A single
simulation of aggregate loss can be achieved by adding the losses of k single claims, and by repeating
the procedure n times, we obtained the aggregate loss distribution.
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Contrary to the copula approach, we point out that it would be possible to obviate the need to
simulate by applying FFT to generate aggregates from the fit severities.

In Table 11, we report the VaRs obtained using composite models Lognormal–GPD–Gamma,
Gumbel Copula and FFT, and the corresponding coefficients of variation that give us indications of the
applied models’ volatilities:

Table 11. Estimates of VaR at the 99.5% level with different models and their volatilities.

Model VaR (e) CV

Lognormal–GPD–Gamma 216,913,143 0.102
Gumbel Copula 664,494,868 0.110
FFT 703,601,564 0.193

If we consider the independence assumption, the aggregate loss distribution will return a
VaR significantly smaller (over −200%) than that calculated using the dependence hypothesis.
The assumption of independence, or not, would therefore produce obvious repercussions on the
definition of the risk profile and, consequently, on the calculation of the capital requirement. As seen
above, for the case analyzed, the Gumbel Copula took into account the positive dependence, even if
of discrete magnitude, between the tails of the marginal distributions of the severities. That is,
an attritional loss close to the discriminatory threshold is, with good probability, accompanied by an
extreme loss. This can only induce a decisive increase in the VaR of the aggregate distribution, as can
be seen from Table 11. In the same way as Fast Fourier Transform, taking into account not only the
(empirical) dependence between claims but also the randomness of frequency claims also induces a
further increase in the risk estimate.

Therefore, it is fundamental to take into account the possible dependence between claims,
regarding its shape and intensity, because the VaR could increase drastically with respect to the
independence case, leading to an insolvent position of the insurer.This analysis highlights the
inadequacy of using CV when the actual objective is to estimate VaR.

However, all previous approaches have advantages and disadvantages. With the composite
models we can robustly fit each of the two underlying distributions of attritional and large claims,
without a clear identification of the dependency structure. With the Copula we can model dependency,
but it is not easy to determine what is the right copula to use, and this is the typical issue companies
have to face for capital modeling purposes using a copula approach. FFT allows one to not simulate
the claim process and to not estimate a threshold, working directly on empirical data, but includes
some implicit bias due to the discretization methods; for example, since the FFT works with truncated
distributions, it can generate aliasing errors. We point again to Robe-Voinea and Vernic (2016) and
Robe-Voinea and Vernic (2017) for a detailed discussion and the possible solutions insurers have to
consider when implementing PIM.

Finally, compared to the present literature, we remark that this paper innovates the fitting of the
Danish fire insurance data, using a composite model with a random threshold. Secondly, our empirical
model could have managerial implications, supporting insurance companies in understanding that
the Standard Formula could lead to a volatility (and the SCR) of the premium risk that is very different
from the real risk profile. It is worth mentioning CEIOPS (2009), in that “Premium risk also arises
because of uncertainties prior to issue of policies during the time horizon. These uncertainties include
the premium rates that will be charged, the precise terms and conditions of the policies and the precise
mix and volume of business to be written. Various studies (e.g., Mildenhall (2017) Figure 10) have
shown that pricing risk results in a substantial increase in loss-volatility, especially for commercial
lines”. Therefore, one would expect that the SCR premium charge would look high compared to a test
that only considers loss (frequency and severity) uncertainty. In next developments of this research we
will try to take into account these features in order to have a full picture of this comparison.
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