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Abstract: The joint modelling of mortality rates for multiple populations has gained increasing
popularity in areas such as government planning and insurance pricing. Sub-groups of a population
often preserve similar mortality features with short-term deviations from the common trend.
Recent studies indicate that the exponential smoothing state space (ETS) model can produce
outstanding prediction performance, while it fails to guarantee the consistency across neighbouring
ages. Apart from that, single-population models such as the famous Lee-Carter (LC) may produce
divergent forecasts between different populations in the long run and thus lack the property of the
so-called coherence. This study extends the original ETS model to a two-population version (2-ETS)
and imposes a smoothing penalisation scheme to reduce inconsistency of forecasts across adjacent
ages. The exponential smoothing parameters in the 2-ETS model are fitted by a Fourier functional
form to reduce dimensionality and thus improve estimation efficiency. We evaluate the performance
of the proposed model via an empirical study using Australian female and male population data.
Our results demonstrate the superiority of the 2-ETS model over the LC and ETS as well as two
multi-population methods - the augmented common factor model (LL) and coherent functional data
model (CFDM) regarding forecast accuracy and coherence.

Keywords: mortality forecasting; exponential smoothing; penalty scheme; coherent mortality models

1. Introduction

Continual improvements in human life expectancies over the past few decades have brought a
serious challenge to the prediction of future mortality scenarios. Mortality forecasts are crucial not
only in demography but also in many other relevant areas. Accurate forecasts are therefore essential
to government planning, designing of pension schemes and annuity products and the reserving for
insurance companies.

Actuaries and researchers have developed various models to describe and predict features of
mortality reductions. One of the most famous models is the Lee-Carter (LC) (Lee and Carter 1992)
model belonging to the extrapolative family whose members produce predictions by assuming
the continuity of past patterns. Many developments and extensions have been proposed to the
single-population LC model. For example, Renshaw and Haberman (2006) incorporate an additional
cohort factor to capture the pattern related to the year of birth. Li and Lee (2005) develop a
multi-population version of the LC which is referred to as the augmented common factor model (LL).

Although the LC model receives criticisms for its insufficient allowance for potential volatility
in mortality forecasts (see, for example, Wong et al. 2020), it has been regarded as a benchmark in
various studies. For instance, Feng and Shi (2018) adopt the exponential smoothing state space (ETS)
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model1 to predict mortality rates and compare its performance with those under the LC, functional
data model (FDM) as well as some univariate time series processes. Thereinto, the ETS model turns
out to be the best-performing choice based on Australian population data. According to Makridakis
and Hibon (2000), the ETS model also presents outstanding results in the M3-competition. However,
fitting a single-population ETS model without constraints/penalties may be incapable of ensuring the
coherence, which is important in long-run forecast of mortality rates (Li and Lu 2017; Li 2013; Li and
Lee 2005). As indicated by our empirical studies, the mortality forecasts of the single-population ETS
model suffer from the limitation that rates of adjacent ages may be inconsistent with one another in
the long run. In other words, it is possible to generate significant fluctuations for certain age groups,
which can cause problems when using such forecasts to price annuities and mortality-linked securities.
Furthermore, in the case of modelling multiple populations, single-population models such as the
LC and ETS cannot ensure consistency between populations, and hence lose the critical property of
coherence. It would be more desirable to perform a joint modelling of two or more related groups and
integrate their relationships into mortality forecasts. For example, it is biologically unreasonable to
predict that future mortality rates of males and females in the same country will diverge over time.

Our study overcomes the above issues of the original ETS model by imposing a smoothing
penalisation scheme as described in Li and Lu (2017) and extending it to a two-population ETS
model (2-ETS). Under the proposed model, the rates of mortality changes for sub-populations under
investigation are associated with each other, enabling coherent forecasts for the whole group. More
specifically, the smoothness across adjacent ages is guaranteed by setting parameters which minimise
the sum of squared differences of mortality changes between neighbouring ages. However, the 2-ETS
model involves hundreds of parameters and is difficult to estimate because no close-form solutions are
available from its iterative identification procedure. To improve the fitting efficiency, we employ the
Fourier dimensionality reduction technique. In particular, a Fourier functional form is fitted to each
of the exponential smoothing parameters in the 2-ETS model, so that the original group of unknown
parameters is reduced to a dozen of Fourier factors.

To examine the performance of the 2-ETS model, we compare its prediction results with those
under the benchmark LC model and the original ETS model. Besides these two single-population
candidates, the multi-population extensions of LC and FDM – the LL and coherent functional data
model (CFDM) developed by Hyndman et al. (2012) are added to the comparison list. Using Australian
female and male population data over 1950–2016 and ages 0–100, we demonstrate the superiority of
the proposed 2-ETS model over the other candidates under various scenarios. Based on simulated
replicates with multi-Gaussian distributed residuals, the prediction intervals (PIs) also accurately
capture the true data, when mortality rates averaged over all ages are used.

In summary, this paper develops a two-population ETS model with a smoothing penalisation
scheme and compares its performance with other popular alternatives. The proposed model ensures
the desirable coherence property and can improve the superior forecasting results of the original
single-population ETS model. The remaining of the article is structured as follows. Section 2 reviews
specifications of the LC, ETS, LL and CFDM models. Section 3 specifies the 2-ETS model and describes
the fitting procedure. An empirical study comparing the five mortality models is reported in Section 4.
Finally, Section 5 gives concluding remarks and possible directions for future research.

1 See Hyndman et al. (2002) for a thorough review of exponential smoothing methods.
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2. Model Description

2.1. The Lee-Carter Model

The Lee-Carter (LC) model is proposed by Lee and Carter (1992). It expresses the log central
mortality rate at age x in year t as

ln mx,t = ax + bxkt + εx,t, (1)

where ax is the average mortality level at each age, kt is the mortality index at time t, bx represents the
age-specific sensitivity of ln mx,t to changes in kt, and εx,t is the error term with null mean. Since the
right-hand side parameters are not observable, they are estimated by singular value decomposition
(SVD) instead of the usual ordinary least square approach in the original paper.2 To avoid the
identification problem, two constraints ∑t kt = 0 and ∑x bx = 1 are imposed. As implied by the
first constraint, the age effect ax is set to the mean of log central death rates across years. Given the
estimated ax and bx, kt is adjusted to match the fitted total number of deaths to the observed values in
each year t. The reconciliation rebalances the equal contribution by mortality at all ages by assigning
greater weights to ages at which death counts are larger.

Under the LC model, the two age-specific parameters are assumed to remain unchanged over
time, and the mortality index is often modelled by a random walk with drift as follows:

kt = kt−1 + d + et, (2)

where the drift term d measures the average annual change in kt, and et ∼ N(0, σ2
e ). As suggested by

Giacometti et al. (2012), the expected h-step-ahead forecast of the mortality index and the log central
death rate can be calculated as:

k̂T+h = kT+hd = kT + h
kT − k1

T − 1
ln m̂x,T+h = ax + bx k̂T+h

, (3)

where T is the end of the fitting period.

2.2. Exponential Smoothing State Space (ETS) Model

One popular category of forecasting models is called exponential smoothing model under
which forecasts are produced as a weighted sum of past values. Members of this family assign
exponentially decaying weights to observations further into the past rather than using a simple
average (Hyndman et al. 2008).

Pegels (1969) proposes a way to classify ETS models according to the combination of various
types of error, trend and seasonal components involved in the model. This list has been extended to
thirty distinct ETS models by employing additive/multiplicative error/trend/seasonality components.
Thereinto, a ’damped’ type can be added to characteristics of the trend component, implying a flattened
trend of predictions (Gardner and Mckenzie 1985). For instance, Gardner (1985) introduces an ETS
model with an additive damped trend, which is then modified by Taylor (2003) to a multiplicative one.
Besides, it has been shown that exponential smoothing models can be expressed as innovations state
space models (Hyndman et al. 2002, 2005). Detailed model specifications can be found in Section 2 of
Hyndman and Khandakar (2008).

Nevertheless, ETS models with seasonal components are not applicable to our study because
seasonality is not present in mortality forecasting. In addition, Feng and Shi (2018) suggest that only

2 A maximum likelihood method may also be employed to calibrate the parameters (Renshaw and Haberman 2003).
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two ETS models (with additive (damped) trend and additive error terms) are possibly suitable for
modelling mortality rates. We do not consider the ETS model with damped trend in this paper.3

Expression of the only appropriate ETS specification (also known as the Holt-Winters model) is
described as follows:

ln mx,t = lx,t−1 + bx,t−1 + εx,t

lx,t = lx,t−1 + bx,t−1 + αxεx,t

bx,t = (1− βx)bx,t−1 + βx(lx,t − lx,t−1)

, (4)

where lx,t and bx,t represent the level and growth of ln mx,t, respectively. Their corresponding
exponential smoothing parameters αx and βx can be computed by minimising ∑x,t ε2

x,t, but no
close-form solutions are available from the iterative estimation procedure. The h-step-ahead forecast
of the log mortality rate is

ln m̂x,T+h = lx,T + hbx,T , (5)

where T is the end of the fitting period.
When modelling mortality of multiple populations, the above two single-population models may

fail to ensure coherence. For example, separate forecasts for female and male mortality generated from
single-population models may diverge over time. A more formal discussion of the coherence can be found
in Section 3.1. To ensure this desirable feature, we also consider two popular multi-population models.

2.3. The Augmented Common Factor, or Lee-Li (LL) Model

Li and Lee (2005) extend the Lee-Carter model by introducing an additional common factor which
controls the relationships between populations. Specifically, the log central death rate is modelled as:

ln mx,t,i = ax,i + BxKt + bx,ikt,i + εx,t,i, (6)

where ax,i represents the average of the age-specific mortality level for the ith population, Bx and Kt

represent the age effect and period effect of the common factor, kt,i is the time component of the ith
population with age response bx,i, and εx,t,i is the population-specific error term.

The common factor BxKt describes the mortality trend of all populations. In the original work
of Li and Lee (2005), it is estimated from applying the LC method to the total population, subject to
constraints ∑t Kt = 0 and ∑x Bx = 1. Then ax,i is obtained by minimising the modelling error of each
subpopulation ∑t (ln mx,t,i − ax,i − BxKt)2 at age x. Implied by the constraint on Kt, ax,i is taken as the
average of ln mx,t,i over t. The population-specific factor bx,ikt,i can be estimated by applying SVD to
the residual matrix (ln mx,t,i − ax,i − BxKt).

Similar to the case under LC, the common mortality index Kt can be modelled as a random walk
with drift process. On the other hand, the group-specific time component kt,i is fitted by a stationary
autoregressive process to ensure coherent forecasts in the long term. Specifically,

Kt = Kt−1 + d + et

kt,i = α0,i + α1,ikt−1,i + et,i
, (7)

where α0,i and α1,i are the autoregressive parameters and et,i is the Gaussian error term with null
mean. The stationarity guarantees that deviations of each population from the common trend will not

3 In our preliminary analysis, all damped parameters essentially approach 1 after a penalised structure is considered as in (14).
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continue in the long run. Given the data observed in the last year T, the h-step-ahead forecast of the
log central death rate is given as follows:

ln m̂x,T+h,i = ax,i + BxK̂T+h + bx,i k̂T+h,i. (8)

2.4. The Coherent Functional Data Model (CFDM)

Hyndman et al. (2012) propose a mortality model with coherent forecasting, which is developed
from the single-population functional data model (Hyndman and Shahid Ullah 2007). Instead of
working on mortality rates directly, the coherent functional data model (CFDM) predicts the product
and ratio functions of mortality rates for different groups. Considering the case with I populations,
the product and ratio functions are given as

px,t = (
I

∏
i=1

mx,t,i)
1/I

rx,t,i = mx,t,i/px,t

, (9)

where mx,t,i is the central death rate of population i (i = 1, 2, . . . , I). Therefore, the CFDM is also
referred to as the product-ratio model, which can be expressed as:

ln px,t = µx,p +
J

∑
j=1

φt,jβx,j + εx,t

ln rx,t,i = µx,r,i +
G

∑
g=1

ψt,g,iγx,g,i + εx,t,i

, (10)

where µx,p and µx,r,i are the average of ln px,t and ln rx,t,i across years, εx,t and εx,t,i are serially
uncorrelated error terms with zero mean, and the principal factors βx,j, γx,g,i and their corresponding
component scores φt,j, ψt,g,i are obtained using the weighted principal components analysis (Hyndman
and Shang 2009). This fitting technique assigns higher weights to more recent data, which avoids the
problem of potential time-varying age components (Lee and Miller 2001).

Both the number of principal factors for product and ratio functions are set to be 6
(J = G = 6) which is the optimal choice balancing forecast accuracy and parameter parsimony
(Hyndman et al. 2012). Those time-varying components of the product function govern the main trend
of future mortality rates and are forecasted by non-stationary processes. Nonetheless, stationarity
is required in modelling the period effects for the ratio function to ensure the non-divergence of
mortality projections. The h-step-ahead forecast of log central death rates for each subpopulation can
be calculated as

ln m̂x,T+h,i = ln( p̂x,T+h r̂x,T+h,i)

= µx,i +
J

∑
j=1

φ̂T+h,jβx,j +
G

∑
g=1

ψ̂T+h,g,iγx,g,i
, (11)

where T is the end of the fitting period, µx,i = µx,p + µx,r,i. While the prediction function is
similar to that under the LL model, the CFDM model adopts six components for the common and
population-specific factors rather than one.

3. The Two-Population ETS Model

Compared with a single-population model, the most outstanding merit of a multi-population
model is the characteristic of coherence, which is defined as follows (Li and Lee 2005).



Risks 2020, 8, 67 6 of 18

Definition 1. Coherence means that the forecasts of ln mx,t,i and ln mx,t,j will not diverge for the mortality rate
of the x-year-old of populations i and j, when t→ ∞.

Remark 1. As argued in Li and Lee (2005) and Hyndman et al. (2012), respectively, the forecasts produced by
LL and CFDM models are coherent.

Despite the outstanding forecasting performance of the ETS model presented in Feng and Shi (2018),
the original ETS model is not feasible for multi-population modelling. In this section, we propose a
two-population ETS model and demonstrate the existence of coherence in this framework.

3.1. Model Specification

In the original ETS model, it is worth noting from (5) that when h is large (indicating long-term
forecasts), ln m̂x,T+h will be dominated by bx,T+h. It is because lx,T is not changing with h and is
therefore o(h). Furthermore, the growth equation of (4) indicates that

bx,t = (1− βx)bx,t−1 + βx(bx,t−1 + αxεx,t) = bx,t−1 + βxαxεx,t

which is a random walk without drift and thus an I(1) process. Therefore, within a multivariate
(vectorized) framework, we will adopt the idea of co-integration. A related structure can be found in
Li and Lu (2017), for which a two-population ETS (2-ETS) model can be specified as follows.

ln mx,t,i = lx,t−1,i + bx,t−1,i + εx,t,i

lx,t,i = lx,t−1,i + bx,t−1,i + αx,iεx,t,i

bx,t,i = (1− γx,i)bx,t−1,i + γx,ibx,t−1,−i + β∗x,iεx,t,i

(12)

where β∗x,i = βx,iαx,i, i = 1, 2, and −i =1 (2) when i =2 (1).
The forecasting equations under the 2-ETS model are more complex than those produced in (4),

which can be iteratively derived using

ln m̂x,T+h,1 =lx,T,1 +
h

∑
k=1

bx,T+k−1,1

ln m̂x,T+h,2 =lx,T,2 +
h

∑
k=1

bx,T+k−1,2

bx,T+k,1 =(1− γx,1)bx,T+k−1,1 + γx,1bx,T+k−1,2

bx,T+k,2 =(1− γx,2)bx,T+k−1,2 + γx,2bx,T+k−1,1

(13)

Theorem 1. Given that all αx,i, βx,i and γx,i fall in (0,1) for all ages x and i = 1, 2, and εx,t,i follows a
multi-Gaussian distribution with means 0 and covariance matrix Σi for each i = 1, 2, mortality rates forecasted
by the 2-ETS model described in (12) are coherent.

Proof. We focus on the growth equations of the two populations. From (12), it can be shown that

bx,t,1 − bx,t,2 =(1− γx,1)bx,t−1,1 + γx,1bx,t−1,2 + β∗x,1εx,t,1

− (1− γx,2)bx,t−1,2 − γx,2bx,t−1,1 − β∗x,2εx,t,2

=(1− γx,1 − γx,2)(bx,t−1,1 − bx,t−1,2) + β∗x,1εx,t,1 − β∗x,2εx,t,2

Thus, with the proposed constraints on αx,i, βx,i and γx,i, it can be seen that (1− γx,1 − γx,2) ∈
(−1, 1) and β∗x,1, β∗x,2 ∈ (0, 1). Thus, bx,t,1− bx,t,2 is I(0) and approaching 0 when t→ ∞. In other words,
bx,t,1 − bx,t,2 is a co-integration.
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Consequently, using (13) we have that

ln m̂x,T+h,1 − ln m̂x,T+h,2 =lx,T,1 − lx,T,2 + (bx,T,1 − bx,T,2)
h−1

∑
k=0

(1− γx,1 − γx,2)
k

→lx,T,1 − lx,T,2 + (bx,T,1 − bx,T,2)/(γx,1 + γx,2)

when t→ ∞. Thus, the ratio m̂x,T+h,1/m̂x,T+h,2 will converge to a constant at each age and the death
rates m̂x,T+h,1 and m̂x,T+h,2 will not diverge in the long run, which completes the proof.

Remark 2. The assumptions of the 2-ETS model are all standard and not strong. For example, αx,i, βx,i ∈
(0, 1) is directly adopted from the single-population ETS model. γx,i ∈ (0, 1) is an analogous extension.
The assumption of multi-Gaussian disturbances is popularly employed in the existing literature, such as Lee and
Carter (1992), Hyndman et al. (2012) and Li and Lu (2017).

In addition to the coherence among populations, smoothness across neighboring age groups is
also of interest in mortality forecasting. Thus, in terms of the estimation, we follow the smoothing
penalisation scheme of Li and Lu (2017) by minimising4

100

∑
x=0

T

∑
t=1

2

∑
i=1

ε2
x,t,i + λ1

99

∑
x=0

(bx+1,T,1 − bx,T,1)
2 + λ2

99

∑
x=0

(bx+1,T,2 − bx,T,2)
2 (14)

where age groups range from 0 to 100, and λ1 and λ2 are the known non-negative tuning parameters
for populations 1 and 2, respectively. If both λ’s are 0, the estimation reduces to an unpenalised
optimisation problem. The larger the λ’s are, the smoother the resulting forecasts will be.

3.2. Reduction of Dimensionality

Despite the desirable coherence and smoothness, the 2-ETS model described above is difficult to
calibrate. To see this, the equation of each age has six free parameters (αx,i, βx,i and γx,i, for i = 1, 2).
The total number of free parameters can be over six hundred, with age groups of 0–100. As no
close-form solution is available, the estimation efficiency may be questionable without using a
dimensionality reduction technique.

As argued in Li and Lu (2017), the fitted coefficients of all parameters should change smoothly
for adjacent ages. To see this, for the smoothed Australian females and males mortality rates, we
firstly fit an unpenalised 2-ETS model. The included ages are from 0 to 100, and the sample period is
1950–2006. The resulting α̂x,i, β̂x,i and γ̂x,i are plotted in Figure 1 (for females) and Figure 2 (for males)
as scatter dots.

4 In contrast to Li and Lu (2017), we do not penalise αx,i , βx,i and γx,i . One reason is that those parameters will be smoothed
after applying the procedure described in Section 3.2. The other reason is that out-of-sample forecasts of ln mx,t,i do not
directly depend on them. In other words, smoothed parameters will not necessarily enforce the smoothness of bx,T,i across x.
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Figure 1. Estimated αx, βx and γx for Australian female mortality data.
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Figure 2. Estimated αx, βx and γx for Australian male mortality data.

For both females and males, consistent with Li and Lu (2017), all the fitted parameters demonstrate
certain smoothed patterns between neighbouring age groups. Thus, the dimensionality can be largely
reduced, if we assume that α̂x,i, β̂x,i and γ̂x,i follow some simple parametric smoothed functions of the
age x. A possibility is to adopt an Fourier flexible functional form as follows:

α̂x,i = ωαi +

nαi

∑
j=1

[ηαi
j sin(

2π j(x + 1)
101

) + δ
αi
j cos(

2π j(x + 1)
101

)]

β̂x,i = ωβi +

nβi

∑
j=1

[η
βi
j sin(

2π j(x + 1)
101

) + δ
βi
j cos(

2π j(x + 1)
101

)]

γ̂x,i = ωγi +

nγi

∑
j=1

[ηγi
j sin(

2π j(x + 1)
101

) + δ
γi
j cos(

2π j(x + 1)
101

)]

(15)

where the subscript refers to the parameter concerned and nαi , nβi and nγi determine the smoothness of
each parameter. The smaller they are, the smoother the variations of those parameters across adjacent
age groups will be. To select an optimal number, one needs to balance the parsimony and accuracy.
However, it is worth noting that a high-level accuracy (precisely match the structures of the raw
estimates) is not desirable. For one thing, the raw estimates are obtained before applying the penalty
scheme. Hence, according to Li and Lu (2017), given the limited data availability, estimates of an
unpenalized model is of a more random nature. Upon the implementation of a penalty scheme, those
patterns as shown by the scatter dots in Figures 1 and 2 are expected to change and to be smoother
(simpler). For another, as shown in (15), for larger nαi , nβi and nγi , the corresponding models nest those
of smaller numbers of trigonometric pairs. Consequently, if a 2-ETS model with simpler parametric
structures can produce satisfactory forecasting results, those with larger nαi , nβi and nγi are at least not
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expected to underperform the nested model. Based on the above rationales, we select nαi , nβi and nγi

as the smallest integers, such that the R2 of the corresponding linear regression is over 50%.
The fitted results are also demonstrated in Figures 1 and 2 as solid lines, which overall well

represent the general structures of αx,i, βx,i and γx,i. The optimal nα1 , nβ1 , nγ1 , nα2 , nβ2 and nγ2 are 2, 3,
6, 3, 4 and 5, respectively. Thus, the total number of free parameters can be reduced from 606 to 52,
which is over 90% smaller. More specifically, instead of estimating αx,i, βx,i and γx,i directly, given
predetermined nαi , nβi and nγi , we can estimate the intercepts and slopes included in (15) to obtain α̂x,i,
β̂x,i and γ̂x,i which then minimise Equation (14). The reduction of dimensionality is critical to tunning
parameter selection, for which the procedure is computational intensive with the optimisation being
performed repeatedly.

3.3. Selection of the Tuning Parameter

To select the tuning parameters λ1 and λ2, we employ the procedure discussed in Hyndman
and Athanasopoulos (2018) to perform the cross-validation for time series, which is also known as
‘evaluation on a rolling forecasting origin.’ The basic algorithm is explained below:

1. Identify the first training set (e.g., ln mx,1,i,ln mx,2,i,. . . ,ln mx,0.75T,i) out of the the entire sample;
2. Given λ1 and λ2, use the training set to fit the 2-ETS model and obtain the 1-step-ahead forecast

ln m̂x,0.75T+1,i;
3. Extend the training set to include ln mx,0.75T+1,i and refit the 2-ETS model to obtain the

1-step-ahead forecast ln m̂x,0.75T+2,i;
4. Repeat steps 2–3 until ln m̂x,T,i is generated; and
5. Calculate the root of mean squared error (RMSE) as√√√√ 1

0.25T × 101

100

∑
x=0

0.25T

∑
h=1

2

∑
i=1

(ln mx,0.75T+h,i − ln m̂x,0.75T+h,i)2.

λ1 and λ2 are then chosen as those resulting in the smallest RMSE.

3.4. Overall Fitting Procedure

Now we consider the entire fitting process, by combining the procedures of dimensionality
reduction and tuning parameter selection. The overall fitting procedure of the 2-ETS model is
explained below:

1. Fit an unpenalised 2-ETS model to obtain α̂x,i, β̂x,i and γ̂x,i;
2. Select nαi , nβi and nγi as described in Section 3.2;
3. Given the chosen nαi , nβi and nγi , select the tuning parameters λ1 and λ2 as described in

Section 3.3; and
4. Use the selected n’s and λ’s with (15) to minimise (14).

Forecasts of mortality rates can then be produced using the model as fitted above. The associated
prediction intervals (PIs), can be produced via simulations based on the multi-Gaussian errors. The Σi

can be computed as the sample covariances of ε̂x,t,i given the obtained estimates of parameters.

4. Empirical Analysis

We have collected mortality data of Australian female and male populations aged 0–100 between
1950 and 2016 from the Human Mortality Database (2020). The starting year is chosen as that
investigated in Booth et al. (2006) and Hyndman et al. (2012) to obtain a complete and relevant
dataset. Figure 3 displays the age-specific log death rates over the sample period. It can be seen that
Australian Females and males both exhibit continual mortality improvements, while some distinctions
exist. For example, the decrease of male death rates at around age 20 (accident hump) has been more
rapid than that for females in recent years. Multi-population models may be able to capture those
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similarities and differences between the two populations. We compare the forecasting performance
between the LC, ETS, 2-ETS, LL, and CFDM models using the 10-step-ahead projection, with a
training set of 1950–2006. Then, the predictions are compared against observed (true) values to assess
forecast accuracy. Female and male data are modelled separately (jointly) under the single-population
(multi-population) models.

Female Male

0 25 50 75 100 0 25 50 75 100

−10.0

−7.5

−5.0

−2.5

0.0

Age

1960

1980

2000

Year

Figure 3. Log mortality rates for Australian population 1950–2016.

4.1. Forecast Accuracy Comparison

The forecast accuracy of the mortality models is examined by the RMSE at age x, forecasting step
h and as a total measure across age groups and time horizons as follows.

RMSEx,i =

√√√√ 1
10

10

∑
h=1

(ln mx,T+h,i − ln m̂x,T+h,i)2

RMSEh,i =

√√√√ 1
101

100

∑
x=0

(ln mx,T+h,i − ln m̂x,T+h,i)2

RMSEall,h,i =

√√√√ 1
101× h

h

∑
j=1

100

∑
x=0

(ln mx,T+j,i − ln m̂x,T+j,i)2

, (16)

where RMSEx,i (RMSEh,i) is the root mean squared error at age x (forecasting step h) across 10
prediction steps (101 ages) for population i, RMSEall,h,i is a two-dimensional criterion measuring
forecast error over all age groups and time horizons up to h.

Figure 4 plots the RMSEx,i against age. A summary of RMSE values computed across ages is
presented in Table 1. As indicated, the LC model tends to produce the least accuracy at most ages
for both genders, whereas no single model uniformly beats the rest. More specifically, all the models
except 2-ETS show some peaks (abnormally large RMSE values) at age groups of around 20 for female
population, and the forecast error at around age 12 under all the five candidates present a significant
peak. For males, besides the unusually large RMSE at age 20, LC and CFDM exhibit a peak at age 60.
In general, the two single-population models and CFDM tend to produce large RMSEs at certain ages.
The curves of LL and 2-ETS show similar shapes, whereas our 2-ETS model clearly outperforms all the
other competing models over ages 15–30.

One advantage of 2-ETS is that it does not produce abnormally large RMSE, which is shown by
its standard deviation in Table 1, being the smallest among all the models. The first column in Table 1
gives the overall measure of the forecast accuracy. It is interesting to see that the three multi-population
models outperform the two single-population models for both genders (except under CFDM for males).
More specifically, the best-performing model is 2-ETS, followed by LL, and LC tends to produce the
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least accurate predictions. The results of ETS and CFDM are fairly close to each other, though CFDM
(ETS) tends to predict female (male) population more accurately. The above relationships also hold for
RMSEs averaged over age groups. In general, all the statistics except the first quartile Q1 advocate
the newly proposed 2-ETS model for both genders. The superiority of the 2-ETS over the rest is more
obvious for males.

Female Male

0 25 50 75 100 0 25 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

Age

Method

LC

ETS

2−ETS

LL

CFDM

Figure 4. RMSEx,i plotted against age groups for Australian mortality data.

Table 1. Summary of RMSEs over age groups for the forecast of Australian female (Panel A) and male
(Panel B) mortality.

Model RMSEall,10,i Mean Std. Dev. Q1 Q3

Panel A: Female
LC 0.1383 0.1144 0.0781 0.0369 0.1846
ETS 0.1173 0.0952 0.0688 0.0448 0.1183
2-ETS 0.0994 0.0802 0.0590 0.0386 0.0980
LL 0.1059 0.0828 0.0663 0.0288 0.1015
CFDM 0.1097 0.0925 0.0592 0.0456 0.1395

Panel B: Male
LC 0.1884 0.1625 0.0957 0.0794 0.2524
ETS 0.1217 0.1031 0.0649 0.0569 0.1243
2-ETS 0.0789 0.0705 0.0356 0.0379 0.0987
LL 0.0965 0.0844 0.0472 0.0392 0.1168
CFDM 0.1291 0.1129 0.0628 0.0669 0.1658

Note: RMSEall,10,i is the overall measure across all ages and forecasting steps for population i. The columns
Mean, Std. Dev., Q1 and Q3 display the sample mean, standard deviation, first and third quartiles of RMSEx,i
calculated over age groups, respectively. The minimum value of each statistic among the five models is
presented in bold.

We now consider the prediction results over time horizons. The two-dimensional measure
RMSEall,h,i against forecasting horizon h is plotted in Figure 5. Among the five candidates, LC is the
worst-performing model with notably the highest forecast errors, and the differences become even
more evident for Australian males. Unlike the earlier observations, the multi-population models do not
consistently beat the single-population ETS. For instance, the LL curve lies above the ETS curve before
a crossover at around step 5 for the two populations. Nevertheless, our 2-ETS almost consistently
outperforms the other competing models, especially for males. The individual RMSEh,i values at each
forecasting step are summarised in Table 2. Consistent with our observations in Figure 5, the 2-ETS
model produces the smallest RMSE consistently for males and leads to the 6 out of 10 minimum
RMSEh,i for females.
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Figure 5. RMSEall,h,i plotted against forecasting horizon h for Australian mortality data.

Table 2. Summary of RMSEh,i under different forecasting horizons for Australian mortality data.

Steps
Female Male

LC ETS 2-ETS LL CFDM LC ETS 2-ETS LL CFDM

1 0.0965 0.0647 0.0648 0.0708 0.0522 0.1368 0.0518 0.0506 0.0606 0.0622
2 0.0964 0.0662 0.0592 0.0683 0.0562 0.1546 0.0595 0.0507 0.0565 0.0588
3 0.1374 0.1038 0.0932 0.1052 0.0984 0.1632 0.0718 0.0589 0.0742 0.0774
4 0.1089 0.0790 0.0600 0.0748 0.0741 0.1981 0.1065 0.0801 0.1054 0.1026
5 0.1403 0.1097 0.1028 0.1095 0.1098 0.1642 0.0998 0.0580 0.0735 0.0743
6 0.1061 0.0817 0.0761 0.0757 0.0852 0.1653 0.1048 0.0532 0.0722 0.0681
7 0.1465 0.1343 0.1076 0.1225 0.1290 0.2139 0.1477 0.0807 0.1137 0.1047
8 0.1692 0.1580 0.1332 0.1375 0.1425 0.2178 0.1664 0.1045 0.1315 0.1321
9 0.1780 0.1693 0.1422 0.1493 0.1577 0.2241 0.1592 0.1099 0.1213 0.1189

10 0.1713 0.1468 0.1137 0.1086 0.1345 0.2205 0.1722 0.1077 0.1189 0.1170

Note: The bold numbers in each row refer to the minimum RMSE value among the five models.

It is worth investigating the desirable smoothness of the 2-ETS model with the empirical data.
Figure 6 plots the projected and observed mortality rates for Australian females and males in 2016.
The results of the single-population models are given in the top panel. The ETS curve shows more
irregularities over neighbouring ages for both genders. In comparison, the predicted values under
the 2-ETS model are not only much more smoothed out over neighbouring ages but also closer to the
observed values. Furthermore, the LC model tends to over-estimate (under-estimate) the mortality
rates for females aged 20–30 (30–60) and for males aged 20–40 (5–15 and 40–60). The multi-population
models (bottom panel) seem to produce similar levels of forecasts and tend to outperform the two
single-population candidates. Among the three multi-population models, 2-ETS clearly beats LL and
CFDM over age range 15–30, whereas performances of the three are similar for the older populations.
Overall, it can be concluded that the proposed 2-ETS model predicts the Australian mortality rates in
2016 reasonably well. The smoothness over adjacent ages is also observed.
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(b) Multi-population models
Figure 6. Predicted vs actual log mortality rates for Australia in 2016.

4.2. Prediction Intervals via Simulation

We now evaluate the interval forecasts of the 2-ETS model via simulation, as briefly discussed in
the end of Section 3.4. The simulation procedure is summarised as follows.

1. Given the in-sample period 1950–2006, we estimate the model parameters and calculate the fitted
(log) central death rates ln m̃x,t,i;

2. The 57× 101 residuals are then collected as ε̃x,t,i = ln mx,t,i− ln m̃x,t,i, which are assumed to follow
a multi-Gaussian distribution with means 0 and covariance computed as sample values from
using ε̃x,t,i;

3. Given the assumed distribution, simulate a 10× 101 matrix of error terms, which is applied to the
2-ETS projections from 2007 to 2016, according to (12); and

4. The process is repeated until 5000 replicates are produced.

Figure 7 plots the observed and predicted values of log mortality rates averaged over different
age groups. The green solid line refers to the point forecasts under the 2-ETS model. The associated
95% PIs obtained via simulations are presented as dashed lines. It can been seen that over 2007–2016,
the observed values consistently fall within those PIs for both females and males. Nevertheless, the
projections under the five models are not far away from one another, except for the middle age group
under the LC model.
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(a) Ages 0–29
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(b) Ages 30–59
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Figure 7. Predicted vs actual log mortality rates (averaged over different age groups) for Australia:
1990–2016. Note: Solid lines display forecast and actual mortality rates averaged over all ages, and
dashed lines are the PIs produced under the 2-ETS model.
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To sum up, with a 10-year out-of-sample period, we demonstrated the outperformance of the
proposed 2-ETS model over the existing models. Its smoothness is also present in the scenario of
h = 10 (2016). In the next section, we further explore the coherence and smoothness of the 2-ETS from a
long-term forecasting perspective, and compare its performance with the other four competing models.

4.3. Long-Term Forecasting Performance

To investigate the long-term performance of the five candidates, we obtained projections up to
2050 based on the full sample (1950–2016). The results are plotted in Figure 8. The curves of the two
single-population models exhibit some deviations from those of the multi-population counterparts.
Firstly, under the LC model, there is a significant accident hump in 2050 for female population only.
Forecast curves of the other models do not have such a deep hump. Furthermore, female mortality
improvements forecasted by the LC tend to be smaller than those produced by the multi-population
models over ages 30–60. This is less evident when males data are analysed. When the ETS model is
adopted, as expected and being consistent with Figure 6, significant irregularities over neighbouring
ages are evident for both genders. Such irregularities are not observed in the case of 2-ETS model,
indicating its improved smoothness across ages. Among the three multi-population candidates, CFDM
tends to produce the lowest (highest) rates for the youngest (oldest) 15-year age group for both genders.
The 2-ETS curve lies above the other two over age range 40–80. Apart from that, some sex-specific
differences are also present. For example, the predicted mortality rates under LL for Australian females
aged 5–15 are much lower than those of 2-ETS and CFDM.

Following Li (2013), we examine the coherence of mortality forecasts between sexes by plotting
the male-to-female ratios from 1990 to 2050. The observed (predicted) mortality rates are averaged over
each of the three age groups: 0–29, 30–59, and 60–100, then the mean values of the male population are
divided by those of the female population to obtain the corresponding ratios. As indicated in Figure 9,
the three multi-population models produce convergent ratios in the long run for all age intervals, which
is not the case when single-population models are applied. For instance, the male-to-female ratios of the
youngest group under the LC model and the middle age group under the ETS model show a decreasing
trend, which potentially causes the crossover problem of mortality forecasts between genders.

In conclusion, without considering coherence between populations and smoothness across ages,
single-population models would perform differently from multi-population models in the long-run.
In particular, the single-population ETS model produces undesirable divergent mortality forecasts,
which can be largely avoided when the 2-ETS model is employed. Considering the results discussed in
Sections 4.1 and 4.2, we can conclude that the 2-ETS model is the best performing model which also
effectively achieves coherence and smoothness, when the Australian female and male mortality data
are examined.
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Figure 8. Predicted log mortality rates for Australia in 2050.
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Figure 9. Observed and projected male-to-female ratios of mortality rates for Australia.

5. Conclusions

This research proposes a 2-ETS model with smoothing penalisation scheme and demonstrates its
coherence property in mortality forecasting. Using an effective dimensionality reduction technique,
we evaluate the out-of-sample forecasting accuracy of 2-ETS based on the Australian female and male
mortality data. Two single-population models LC and ETS, and two multi-population models LL
and CFDM are also tested and compared with the proposed candidate. Our analysis demonstrates
that the 2-ETS model tends to produce less large forecast errors at different age groups (measured
by RMSEs) when compared to the other candidates. For different forecasting horizons, the 2-ETS
model almost consistently leads to smaller forecast errors than the others, especially for Australian
males. The superiority of our proposed model is further demonstrated by the overall accuracy measure
considering both age and time dimensions. We then construct the associated PIs via a simulation
study based on the multivariate Gaussian assumption of error terms. In general, the multi-population
models tend to outperform the single-population candidates regarding prediction accuracy. Although
the original ETS model produces satisfactory RMSEs, it suffers from a shortcoming of fluctuating
forecasts across adjacent ages and divergent forecasts between genders. From the 10-step-ahead and
long-term projections, we can observe that the proposed 2-ETS model overcomes the above problems.
Mortality forecasts under the new model are coherent between males and females in the long run and
are smoothed over neighbouring ages.

There are several directions for future study. Firstly, the 2-ETS model may be extended to cater
for co-modelling of three or more sub-populations of a group in practice. For example, the joint
projection of state-level data would be useful for government planning such as social benefits and
superannuations. Secondly, the model may be applied or modified to investigate the evolution of
age patterns in mortality data by fixing the time effect and forecast in the age dimension. Moreover,
the ETS specification does not consider mortality improvements linked to the year of birth. Either a
common or population-specific cohort factor may be added to the model structure, but further research
is needed. Other approaches to identify parameter estimates and to reduce the dimensionality may
also be performed in future research.
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