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Abstract: A regularization approach to model selection, within a generalized HJM framework,
is introduced, which learns the closest arbitrage-free model to a prespecified factor model.
This optimization problem is represented as the limit of a one-parameter family of computationally
tractable penalized model selection tasks. General theoretical results are derived and then specialized
to affine term-structure models where new types of arbitrage-free machine learning models for the
forward-rate curve are estimated numerically and compared to classical short-rate and the dynamic
Nelson-Siegel factor models.
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1. Introduction

The compatibility of penalized regularization with machine learning approaches allows for the
successful treatment of various challenges in learning theory such as variable selection (see Tibshirani
(1996)) and dimension reduction (see Zou et al. (2006)). The objective of many machine learning
models used in mathematical finance is to predict asset prices by learning functions depending on
stochastic inputs. In general, there is no guarantee that these stochastic factor models are consistent
with no-arbitrage conditions. This paper introduces a novel penalized regularization approach to
address this modelling difficulty in a manner consistent with financial theory. The incorporation of
an arbitrage-penalty term allows various machine learning methods to be directly and coherently
integrated into mathematical finance applications. We focus on regression-type model selection tasks
in this article. However, the arbitrage-penalty can also be applied to other types of machine learning
algorithms with financial applications.

To motivate our approach we first consider informally, similar to (Björk 2009, Chapter 10),
the following simple situation that will later be made more precise. Let (Ω, F , (Ft)t≥0,P) be a
filtered probability space satisfying the usual conditions. Let (Xt)t≥0 be an Ft-adapted real-valued
stochastic process with continuous paths representing the price of a financial asset. Let r be the constant
risk-free interest rate and assume a fixed time interval [0, T]. Existence of a martingale measure Q
equivalent to the underlying real-world measure P implies absence of arbitrage. The price at time
t ∈ [0, T] of a derivative security with integrable payoff f (XT) at time T is given by the risk-neutral
pricing formula

EQ
[
e−r(T−t) f (XT)

∣∣∣Ft

]
. (1)

With Lt =
dQ
dP
∣∣
Ft

we may express Equation (1) under the real-world probability measure P as

EP

[
e−r(T−t) LT

Lt
f (XT)

∣∣∣∣Ft

]
. (2)
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Equivalently, the price given by Equation (2) can be expressed under P by defining the state-price
density process Zt = e−rtLt. If Q is the minimal martingale measure of Schweizer (1995) then the
transformation

f (Xt) 7→ Zt f (Xt) (3)

can be interpreted as finding the process closest to ( f (Xt))t≥0 which is a (local) martingale under P. The
purpose of this paper is to find an analogue of the transformation (3) in this setting when Xt is described
by a stochastic factor model, as is the case with most machine learning approaches to mathematical
finance. For example, Xt may be described by a deep neural network with stochastic inputs.

The above-ignored well-known results regarding the uniqueness of Q (see Schweizer (1995))
and other important generalizations of the martingale approach to arbitrage theory. In particular,
the more general setting for the fundamental theorem of asset pricing of Delbaen and Schachermayer
(1998) implies that if “arbitrage”, in the sense of no-free lunch with vanishing risk, exists then the
transformation (3) is undefined. However, many machine learning approaches to mathematical finance
may admit arbitrage so it is necessary to consider the general case. The arbitrage-regularization
framework introduced in this paper integrates machine learning methodologies with the general
martingale approach to arbitrage theory.

We consider a general framework for learning the arbitrage-free factor model that is most similar
to a factor model within a prespecified class of alternative factor models. This search is optimized by
minimizing a loss-function measuring the distance of the alternative model to the original factor model
with the additional constraint that the market described by the alternative model is a local martingale
under a reference probability measure.

The main theoretical results rely on asymptotics for the arbitrage-regularization penalty for
selecting the optimal arbitrage-free model from a class of stochastic factor models. Relaxation of
the asymptotic results necessary for practical implementation are presented. Throughout this paper,
the bond market will serve as the primary example of our methods since no-arbitrage conditions for
factor models are well understood, see Filipović (2001) and the references therein. Numerical results
applying the arbitrage-regularization methodology are implemented using real data.

The remainder of this paper is organized as follows. Section 2 states the arbitrage-regularization
problem and presents an overview of relevant background on bond markets. Section 3 develops the
arbitrage-penalty and establishes the main asymptotic optimality results. Non-asymptotic relaxations
of these results are also considered and linked with transaction costs. Section 4 specializes the
general results to bond markets and where a simplified expression for the arbitrage-penalty is obtained.
Numerical implementations of the results are considered and the arbitrage-regularization methodology
is used to generate new machine learning-based models consistent with no free lunch with vanishing
risk (NFLVR) and the results are compared with classical term-structure models as benchmarks.
Section 5 concludes and Appendix A contains supplementary material primarily required for the
proofs, such as functional Itô calculus and Γ-convergence results. Proofs of the main theorems of the
paper are included in Appendix B.

2. The Arbitrage-Regularization Problem

For the remainder of the paper all stochastic processes described in this paper are defined on a
common stochastic basis (Ω,F , (Ft)t≥0,P). Let P? be a probability measure equivalent to the reference
probability measure P and (rt)t≥0 denotes the risk-free rate in effect at time t ≥ 0. Assume that there
exists an asset whose price process, denoted by (Nt)t≥0, is a strictly positive P?-martingale which
serves as numéraire. Unless otherwise specified all the processes in this paper will be described under
the martingale-measure for (Nt)t≥0, denoted PN is defined by

dP?
N

dP?
= exp

(∫ T

0
−rsds

)
NT
N0

.
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The choice of the numéraire can be used to encode or remove any trend from the price processes
being modelled. Price processes which are local martingales under P?

N or P? are usually only
semi-martingales under the objective measure P. Further details on numéraires can be found in
Shreve (2004).

We consider a large financial market (Xt(u))t≥0,u∈U , indexed by a non-empty Borel subset U ⊆
RD, were D is a positive integer. For example, (Xt(u))t≥0,u∈U may be used to represent a bond
market where, using the parameterization of Musiela and Rutkowski (1997), U = [0, ∞) represents the
collection of all possible maturities and Xt(u) represents the time t price of a zero-coupon bond with
maturity u.

For each u ∈ U , the process (Xt(u))t≥0 will be driven by a latent, possibly infinite-dimensional,
factor process. In the case of the bond market, this latent process will be the forward-rate curve. Write

Xt(u) ,St (φ
u
t , [[φu]]t; u) (4)

where φu
t , φ(t, βt, u), {St(·, ·; u)}u∈U is a family of path-dependent functionals encoding the latent

process into the asset price Xt(u), φu
t is the factor model for the latent process, and βt are the Rd-valued

stochastic factors driving the latent process. Following Fournie (2010), St will be allowed to depend on
the local quadratic-variation of the factor process φ(t, βt, u), denoted by [[φu]]t and defined by

[φ(·, β·, u)]t =
∫ t

0
[[φu]]sds,

where [φ(·, β·, u)]t denotes the usual quadratic-variation of the factor process [φ(·, β·, u)]t. It is
instructive to note that the local quadratic-variation [[φu]]t is well-defined due to Assumption 1,
imposed later.

In the case of the bond market, St will be the map taking a forward-rate curve, such as
(φ(t, βt, u))u∈U , to the time t price of a zero-coupon bond with maturity u, as defined by

St (φ
u
t , [[φu]]t; u) , exp

(
−
∫ u

t
φ(t, βt, v)dv

)
. (5)

It will often be convenient to use the reparameterization of Musiela and Rutkowski (1997) and
rewrite (6) as

St (φ
u
t , [[φu]]t; u) , exp

(
−
∫ u−t

0
φ(t, βt, τ)dτ

)
. (6)

where τ , u− s, for 0 ≤ t ≤ s ≤ u, and represents the time to maturity of the bond.
In general, St will be allowed to depend on the path of φ(t, βt, u). Thus, St will be

a path-dependent functional of regularity C1,2
b in the sense of Fournie (2010) as discussed in

Appendix A.2. However, as in the bond market, if St depends only on the current value of φ(t, βt, u)
then the requirement that St be of class C1,2

b , in the sense of Fournie (2010), is equivalent to it being
of regularity C1,2(I ×Rd) in the classical sense; where I , [0, ∞). Therefore, the classical Itô-calculus
would apply to St.

Analogously to Björk and Christensen (1999), the factor model ϕ for the latent process will always
be assumed to be suitably integrable and suitably differentiable. Specifically, ϕ will belong to a Banach
subspace X of Lp

ν⊗µ

(
I ×Rd ×U

)
which can be continuously embedded within the Fréchet space

C1,2,2(I × Rd × U ); where ν is a Borel probability measure supported on I, µ is a Borel probability
measure supported on Rd × U , and both ν and µ are equivalent to the corresponding Lebesgue
measures restricted to their supports. Here, 1 ≤ p < ∞ is kept fixed.

An example from the bond modelling literature is the Nelson-Siegel model (see Nelson and Siegel
(1987) and Diebold and Rudebusch (2013)), which expresses the forward-rate curve as a function of its
level, slope, and curvature through the factor model. The Nelson-Siegel family is part of a larger class
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of affine term-structure models, in which, at any given time, the forward-rate curve is described in
terms of a set of market factors as

ϕ(t, β, u) , ϕ0(u− t) +
d

∑
i=1

βi ϕi(u− t), (7)

where d is a positive integer and ϕi ∈ C2(U ) and ϕ0 is a forward-rate curve typically calibrated to the
data available at time t = 0. Note that the forward-rate curves in (7) are parameterized according to the
change of variables in (6), however, since U represents all times to maturities these are indeed traded
assets. However, as shown in Filipović (2001), the Nelson-Siegel model is typically not arbitrage-free
therefore we would like to learn the closest arbitrage-free factor model, driven by the same stochastic
factors. Therefore, given a non-empty and unbounded hypothesis class H ⊆ X of plausible alternative
models, we optimize

argminφ∈H ` (ϕ− φ)

subject to: St(φ
u
t , [[φu]]t; u) is a P?

N-local martingale for all u ∈ U ;
(8)

where H is required to contain the (naive) factor model ϕ and ` : X → [0, ∞) is continuous and
coercive loss function. For example, ` may be taken to be the norm on X . Geometrically, (8)
describes a projection of ϕ onto the (possibly non-convex) subset of H of factor models making
each St(φu

t , [[φu]]t; u) into a P?
N-local martingale for every u ∈ U . The requirement that H contains

the (naive) factor model ϕ is for consistency, in order to ensure that for any arbitrage-free factor model
ϕ the solution to problem (8) is itself.

In general, the problem described by (8) may be challenging to implement as projections onto
non-convex sets are intractable. In analogy with regularization literature, such as Hastie et al. (2015),
instead we consider the following relaxation of problem (8) which is more amenable to numerical
implementation

argminφ∈H ` (ϕ− φ) + AFλ(φ); (9)

where {AFλ}2≤λ<∞ is a family of functions from H to [0, ∞] taking value 0 if each
St(φu

t , [[φu]]t; u) is a P?
N-local martingale simultaneously for every value of u and λ is a meta-parameter

determining the amount of emphasis placed on the penalizing factor models which fail to meet this
requirement. Problem (9) is called the arbitrage-regularization problem.

At the moment, there are only two available lines of research which are comparable to the
arbitrage-regularization problem. Results of the first kind, such as the arbitrage-free Nelson-Siegel
model of Christensen et al. (2011a), provide closed-form case-by-case arbitrage-free variants of specific
model only if they coincide with specific arbitrage-free HJM type factor models, such as those studied
by Björk and Christensen (1999). However, the reliance on analytic methods typically limit this type
of approach to simple or specific models and does not allow for a general or computationally viable
solution to the problem. Moreover, arbitrage-free corrections derived in this way are not guaranteed
to be optimal in the sense of (8), or approximately optimal in the sense of (9). This will be examined
further in the numerics section of this paper.

The use of a penalty to capture no-arbitrage conditions has, to the best of the authors’ knowledge,
thus far only been explored numerically by Chen et al. (2019) within the discrete-time portfolio
optimization setting. A similar problem has been treated in Chen et al. (2006) for learning the equivalent
martingale measure in the multinomial tree setting for stock prices. Our paper provides the first
instance of a theoretical result in this direction as well as such a framework that applies to large-financial
markets such as bond markets or which applies in the continuous-time setting.

Before presenting the main results we first state necessary assumptions.

Assumption 1. The following assumptions will be maintained throughout this paper.
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(i) βt is an Rd-valued diffusion process which is the unique strong solution to

βt = β0 +
∫ t

0
α(s, βs)ds +

∫ t

0
σ(s, βs)dWs, (10)

where β0 ∈ Rd, Wt is an Rd-valued Brownian motion, the components αi : R1+d → R are continuous,

the components
(

σi,j : R1+d → Rd×d
)d

i,j=1
are measurable and such that the diffusion matrix

σ(s, β)σ(s, β)>

is a continuous function of β for any fixed t ≥ 0.
(ii) The stochastic differential equation (10) has a unique Rd-valued solution for each β0 ∈ Rd.

(iii) For every u ∈ U , {St(·, ·; u)}t∈[0,∞) is a non-anticipative functional in C1,2
b verifying the following

"predictable-dependence" condition of Fournie (2010):

St(xt, xt; u) = St(xt, xt− ; u),

for all t ∈ [0, ∞) and all (x, v) ∈ D([0, t];Rd)× D([0, t]; Sd
+), where Sd

+ is the set of d× d-dimensional
positive semi-definite matrices with real-coefficients,

The central problem of the paper will be addressed in full generality before turning to applications
in term-structure models, in the next section.

3. Main Results

In this section, we show the asymptotic equivalence of problems (8) and (9) for general asset
classes. This requires the construction of the penalty term AFλ measuring how far a given factor
model is from being a P?

N-local martingale. The construction of AFλ is made in two steps. First, a drift
condition which guarantees that each {St(φu

t , [[φu]]t; u)}u∈U is simultaneously a P?
N-local martingale is

obtained. This condition generalizes the drift condition of Heath et al. (1992) and provides an analogue
to the consistency condition of Filipović and Teichmann (2004). Second, the drift condition is used
to produce the penalty term in (9). Subsequently, the optimizers of (9) will be used to asymptotically
solve problem (8).

Proposition 1 (Drift Condition). The processes St(φu
t , [[φu]]t; u) are P?

N-local-martingales, for each u ∈ U
simultaneously, if and only if

−DSs(φ
u
s , [[φu]]s; u) =∇Ss(φ

u
s , [[φu]]s; u)

[
∂φ

∂t
(s, βs, u) +

d

∑
i=1

∂φ

∂βi (s, βs, u)αi(s, βs)

+
1
2

d

∑
i,j=1

(
∂2φ

∂βi∂βj (s, βs, u)
)

σi(s, βs)σ
j(s, βs)

]

+
1
2
[∇2Ss(φ

u
s , [[φu]]s; u)]

(
d

∑
i=1

∂φ

∂βi (s, βs, u)σi(s, βs)

)2

.

(11)

is satisfied P?
N-a.s. for every t ∈ [0, ∞) and every u ∈ U , where D and ∇ respectively denote the horizontal and

vertical derivative of Fournie (2010) (see Appendix A.2 Equation (A3)).

The drift condition in Proposition 1 implies that if φ is such that the difference of the left and
right-hand sides of (11) is equal to 0, P?

N-a.s. for all u ∈ U then St(φu
t , [[φu]]t; u) is a P?

N-local martingale
simultaneously for all u ∈ U . Thus, St(φu

t , [[φu]]t; u) is simultaneously a P?
N-local martingale for all
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u ∈ U if for every u ∈ U the [0, ∞)-valued process Λu
t (φ) is equal to 0 P?

N-a.s, where Λu
t (φ) is defined

using (11) by

Λu
t (φ) ,

∣∣∣∣∣DSs(φ
u
s , [[φu]]s; u) +∇Ss(φ

u
s , [[φu]]s; u)

[
∂φ

∂t
(s, βs, u) +

d

∑
i=1

∂φ

∂βi (s, βs, u)αi(s, βs)

+
1
2

d

∑
i,j=1

(
∂2φ

∂βi∂βj (s, βs, u)
)

σi(s, βs)σ
j(s, βs)

]

+
1
2
[∇2Ss(φ

u
s , [[φu]]s; u)]

(
d

∑
i=1

∂φ

∂βi (s, βs, u)σi(s, βs)

)2
∣∣∣∣∣∣ ,

(12)

where φu
t = φ(t, βt, u). The arbitrage-penalty is defined as follows.

Definition 1 (Arbitrage-Penalty). Let {(Λu
t (φ))t≥0}φ∈H ;u∈U be a family of Ft-adapted [0, ∞)-valued

stochastic processes for which
Λu

t (φ)(ω) = 0⇔ Λu
t (φ)(ω) = 0, (13)

holds for all φ ∈H , t ∈ I, u ∈ U , and P?
N-almost every ω ∈ Ω. Then, for every λ ≥ 0, the family {AFλ}λ≥0

of functions
AFλ : X → [0, ∞]

φ 7→ λEP

[
λ

√∫
(t,u)∈I×U

|Λu
t (φ)|λdµ(t, u)

]
.

(14)

is said to define an arbitrage-penalty.

Remark 1. Whenever |Λu
t (φ)|λ fails to be integrable, we make the convention that

EP
[

λ

√∫
(t,u)∈I×U |Λ

u
t (φ)|λdµ(t, u)

]
= ∞.

The convergence of the optimizers of (9) to the optimizers of (8) is demonstrated in the next
theorem. The proof relies on the theory of Γ-convergence, which is useful for interchanging the limit
and an arginf operations.

Assumption 2. Assume that

(i) For every φ ∈H and P?
N-a.e. ω ∈ Ω, the function (t, u) 7→ Λu

t (φ)(ω) is continuous on H ,
(ii)

{
φ ∈H : (∀u ∈ U ) St(φu

t , [[φu]]t; u) is a P?
N-local-martingale

}
⊆H is closed and non-empty.

Please note that both statements (i) and (ii) are with respect to the relative topology on H .

Theorem 1. Under Assumption 2 the following hold:

(i) Equation (8) admits a minimizer on H ,
(ii) lim

λ↑∞; λ≥2
infφ∈H `(ϕ− φ) + AFλ(φ) = minφ∈H `(ϕ− φ) + ιH (φ),

(iii) If for every λ ≥ 2 AFλ is lower-semi-continuous on H then

lim
λ↑∞; λ≥2

argmin
φ∈H

`(ϕ− φ) + AFλ(φ) ∈ argmin
φ∈H

`(ϕ− φ) + ιH (φ), (15)

where ιH is defined on H as

ιH (φ) ,

{
0 if (∀u ∈ U ) St(φu

t , [[φu]]t; u) is a P?
N-local-martingale

∞ otherwise.
(16)
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Theorem 1 provides a theoretical means of asymptotically computing the optimizer φ̂ of
problem (8). In practice, this limit cannot always be computed and only very large values of λ

can be used. However, in reality trading does not occur in a friction-less market but every transaction
placed at time t incurs a cost 0 < kt. Moreover, only a finite number of assets are traded.

Consider a market with frictions where only finitely many assets are traded. In this setting,
an admissible strategy is an adapted, left-continuous of finite-variation process θt ∈ Rn whose
corresponding wealth process is P-a.s. bounded below. In the context of this paper, the sub-market{

St(φ
ui
t , [φui ]t; ui)

}n
i=1 with proportional transaction cost kt > 0 is precisely such a market. Any such

admissible strategy on this finite sub-market defines an admissible portfolio whose liquidation value,
as defined by (Guasoni 2006, Equation 2.2) and (Guasoni 2006, Remark 2.4), is defined by

V(θt) =
n

∑
i=1

∫ t

0
θi

sdSs(φ
ui
s , [[φui ]]s; ui)−

∫ t

0
ksSs(φ

ui
t , [[φui ]]s; ui)d|Dθi

s| − ktSs(φ
ui
t , [[φui ]]t; ui)|θi

t|, (17)

where φ denote the optimizer of 9 for a fixed value of 2 ≤ λ < ∞, Dθi denotes the weak derivative of
θi in the sense of measures, and |Dθi| denotes its variation. The first term on the right-hand side of (17)
is the capital gains from trading, second represents the cost incurred from various transaction costs,
and the last term represents the cost of instantaneous liquidation at time t. Although more general
transactions costs may be considered, the proportional transaction costs presented here are sufficient
for the formulation of the next result.

The next result guarantees that the market model φ is arbitrage-free, granted that kt is large
enough to cover the spread between St(φ

ui
t , [φui ]t; ui) and St(φ̂

ui
t , [[φ̂ui ]]t; ui). The following assumption

quantifies the requirement that λ be taken to be sufficiently large.

Assumption 3. There exists some 0 < m < M and some 2 < λ? such that for every 0 ≤ t, positive integer n,
and every u1, . . . , un ∈ U the following holds:

(i) sup0≤t maxi=1,...,n ess-sup
∣∣St(φ̂

ui
t , [[φ̂ui ]]t; ui)− St(φ

ui
t , [[φui ]]t; ui)

∣∣ < M,
(ii) m < inf0≤t infi=1,...,n ess-inf

∣∣St(φ
ui
t , [[φui ]]t; ui)

∣∣ .

Proposition 2. If mkt ≤ M for all times 0 ≤ t then for any admissible strategy θ trading
St(φ

u1
t , [φu1 ]t; u1), . . . , St(φ

un
t , [φun ]t; un), then P (0 ≤ VT(θ)) implies that P (VT(θ) = 0) .

In the next section, we apply Theorem 1 and the arbitrage-regularization (9) to the bond market.

4. Arbitrage-Regularization for Bond Pricing

As discussed in Diebold and Rudebusch (2013), affine term-structure models are commonly used
in forward-rate curve modelling due to their tractability and the interpretability. In the formulation
of Björk and Christensen (1999), as further developed in Filipović (2000); Filipović et al. (2010), affine
term-structure models are characterized by (7) together with the additional requirement that its
stochastic factor process βt follows an affine diffusion. By Cuchiero (2011) this means that the dynamics
of βt are given by

α(t, β) , γ +
d

∑
k=1

βkγk

σj(t, β) [σ(t, β)]> , ζ +
d

∑
k=1

βkζk,

(18)
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for some d× d matrices ζ and {ζk}d
k=1, and some vectors γ and {γk}d

k=1 in Rd such that there exists a
solution (L, R) to the following Riccati system

2∂tL(t, x) =R(t, x)>γR(t, x) + ζ>R(t, x) L(0, x) = 0,

2∂tRk(t, x) =R(t, x)>γkR(t, x) + ζ>k R(t, x) R(0, x) = x, 1 ≤ k ≤ d

such that L(t, x) + R(t, x)>β has negative real part for all t ≥ 0, x ∈ Rd, β ∈ Rd, and R(x) =

(R1(x), . . . , Rd(x)).
Fix meta-parameters p, κ ≥ 1 and U = [0, ∞). For the next result, all the factor models will be

taken as belonging to the weighted Sobolev space Wp,k
w (I ×Rd ×U ) with weight function

w(t, β, u) , Ce−|t|−‖β‖
κ−|u|κ , (19)

where C is a unique constant ensuring that 1 ∈ Wp,k
w and its weighted integral is equal to 1. Fix

measures nu(dt) = e−tdt on [0, ∞) and µ(dβdu) = ce−|u|
κ−‖β‖κ

on Rd×U . The space Wp,k
w (I×Rd×U )

is defined of all ν⊗ µ-locally integrable, k-times weakly differentiable functions f : I ×Rd ×U → R
equipped with the norm:

‖ f ‖ ,
∫ ∞

0

∫ ∞

0

∫
β∈Rd

e−|t|−|u|
κ−‖β‖κ | f |p (t, u, β)dtdβdu+ ∑

1≤|a|≤k

∫ ∞

0

∫ ∞

0

∫
β∈Rd

e−|t|−|u|
κ−‖β‖κ |Dη f |p (t, u, β)dtdβdu,

where η , (η, . . . , ηd) is a multi-index, ηi = 0, 1, . . . , |η| = ∑d
i=1 ηi, and Dη f is the weak derivative of f

of order η defined by∫ ∞

0

∫ ∞

0

∫
β∈Rd

f (Dη g)dβdu = (−1)|η|
∫ ∞

0

∫ ∞

0

∫
β∈Rd

(Dη f )gdβdu
(
∀g ∈ C∞

0 (I ×Rd ×U)
)

.

Here, C∞
0 (I × Rd × U) is the space of all compactly supported functions with infinitely many

derivatives. Furthermore, k is required to satisfy

k ≥ 1 + d + D
p

+ 2. (20)

Remark 2. In the case where p = 2 and k ≥ 1, the Sobolev space Wp,k
w is a reproducing kernel Hilbert

space (see Nelson and Siegel (1987)) therefore point evaluation is a continuous linear functional and by
(weighted) Morrey-Sobolev Theorem of Brown and Opic (1992) it can be embedded within a space of
continuous functions. Therefore, given any φ ∈ Wp,k

w and any Rd-valued stochastic process βt, the process
(φ(t, βt, ·))t≥0 is a well-defined process in the following space of forward-rate curves of Filipović (2001) defined
by
{

h ∈ L1
loc([0, ∞)) : ∃h′ ∈ L1

loc([0, ∞)) and |h(0)|2 +
∫ ∞

0 |h
′(u)|2e−|u|

κ
du < ∞

}
.

Analytic tractability is ensured by requiring that the factor models considered for the
arbitrage-regularization (9) belong to the class H defined by

H ,

{
φ ∈Wp,k

w : (∃φ0, . . . , φd ∈Wp
w̃(U )) φ(t, β, u) = φ0(u− t) +

d

∑
i=1

βiφi(u− t)

}
, (21)

where w̃(u) = e−|u|
κ
. This class of functions generalizes the Nelson-Siegel family (7) discussed in

the introduction.
Under these conditions the following theorem characterizes the asymptotic behavior of (9) in λ

as solving problem (8), given fixed meta-parameters p, κ ≥ 1. Following Filipović (2001), it will be
convenient to denote

Φi(u) =
∫ u

0
φi(s)ds. (22)
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Theorem 2. Let ϕ be given by (7), βt be as in (18), and fix p, κ ≥ 1. Then

(i) For every λ ∈ [ 2
3 , 1) there exists an element φλ in H minimizing

∫ ∞

0

∫ u

0

∫
β∈Rd

e−|t|−|u|
κ−‖β‖κ |ϕ(u− t, β)− φ(u− t, β)|p dβdtdu +

λ

Γ(1 + 1
κ )

1
λ

λ

√∫ ∞

0
e−|u|κ |Λu(φ)|λ du, (23)

where Λu
t (φ) is defined by

Λu(φ) ,

∣∣∣∣∣ϕ0(0)−
∂Φ0

∂u
(u) +

d

∑
i=1

γiΦi(u)− 1
2

d

∑
i,j=1

ζi,jΦi(u)>Φj(u)

∣∣∣∣∣
p

+
d

∑
k=1

∣∣∣∣∣ϕk(0)−
∂Φk

∂u
(u) +

d

∑
i=1

γk;iΦ
i(u)− 1

2

d

∑
i,j=1

ζk;i,jΦ
i(u)Φj(u)

∣∣∣∣∣
p

,

(24)

where (ζi,j)
d
i,j=1 = ζ, (ζk;i,j)

d
i,j=1 = ζk, (γi)

d
i=1 = γ, and (γk;i)

d
i=1 = γk, for k = 1, . . . , d.

(ii) The following inclusion holds

lim
λ↑∞; λ≥2

φλ ∈ argmin
φ∈H

∫ ∞

0

∫ u

0

∫
β∈Rd

e−|t|−|u|
κ−‖β‖κ

(ϕ(u, β)− φ(u, β))p dβdtdu + ιH (φ), (25)

where ιH is as in (16).

It may convenient to understand the φλ as a function of λ when interpreting approximations of
the limit (26) as a function of λ. The following result removes the challenges posed by the unbounded
interval [2, ∞), in which λ lies, by reparameterizing problem (23) with a bounded meta-parameter λ̃.

Corollary 1. Let ϕ be given by (7), βt be as in (18), φ be in H , and fix p, κ ≥ 1. For every λ̃ ∈ [2, ∞), define
λ̃ = λ

1+λ ∈
[ 2

3 , 1
)
. Then φλ ∈H minimizes (23) if and only if it minimizes

(1− λ̃)
∫ ∞

0

∫ u

0

∫
β∈Rd

e−|u|
κ−‖β‖κ

(ϕ(u, β)− φ(u, β))p dβdtdu+
λ̃

Γ(1 + 1
κ )

1−λ
λ

λ
1−λ

√∫ ∞

0
e−|u|κ |Λu(φ)|

λ
1−λ du,

where Λu(φ) is as in (24). In particular, the following inclusion holds

lim
λ↑1; λ≥ 2

3

φ
λ

1−λ ∈ argmin
φ∈H

∫ ∞

0

∫ u

0

∫
β∈Rd

e−|u|
κ−‖β‖κ

(ϕ(u, β)− φ(u, β))p dβdtdu + ιH (φ), (26)

where ιH is as in (16).

Next, the arbitrage-regularization of forward-rate curves will be considered using deep learning
methods.

4.1. A Deep Learning Approach to Arbitrage-Regularization

The flexibility of feed-forward neural networks (ffNNs), as described in the universal
approximation theorems of Hornik (1991); Kratsios (2019b), makes the collection of ffNNs a well-suited
class of alternative models for the arbitrage-regularization problem. In the context of this paper an
ffNN is any function from Rd to Rd+1 of the form

WN+1 ◦ ρ •WN ◦ . . . ρ •W1, (27)

where each Wi(x) = Ai(x) + bi for some di+1 × di dimensional matrix Ai and some bi ∈ Rdi+1 ,
where d1 = d and dN+1 = d + 1, ρ is a smooth activation-function, and • denotes component-wise
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composition. Fix integers N > 1, h > 1, and d > 0. The set of all feed-forward neural networks with
di = h for 1 < i ≤ N, dN+1 = d + 1, and fixed activation function ρ will be denoted by NN ρ

N,h,d+1.
To maintain analytic tractability, it will be required that our hypothesis class H consists of all

φ ∈Wp,k
w (I ×Rd ×U ) of the form

φ(t, β, u) = β> (ρ •WN ◦ · · · ◦ ρ •W1(u− t)) , (28)

where β
1
= 1, β

i+1
= βi for all i > 1, and where β> denotes the transpose of β. The process βt will be

assumed to be a d dimensional Ornstein-Uhlenbeck process and in particular will be of the form(18).
Therefore, the special class of models we consider here are of the form (7).

It has been shown in Rahimi and Recht (2008), among others, that if a network is appropriately
designed, then training only the final layer and suitably initializing the matrices WN , . . . , W1 performs
comparably well to networks with all the layers trained. More recently, the approximation capabilities
of neural networks with randomized first few layers has is shown in Gonon (2020). This phenomenon
was observed in numerous numerical studies, such as Jaeger and Haas (2004), where the entries of
the matrices WN , . . . , W1 are chosen entirely randomly. This practice has also become fundamental
to feasible implementations of recurrent neural network (RNN) theory and reservoir computing, as
studied in Gelenbe (1989), where training speed becomes a key factor in determining the feasibility of
the RNN and reservoir computing paradigms.

The hypothesis class of alternative factor models to be considered in the arbitrage-regularization
problem effectively reduces from (28) to

φ(t, β, u) =β> f (u− t), (29)

where β ∈ Rd+1 and f ∈ NN ρ
N,h,d+1 is initialized through by

(β, f ) ∈ argmin
β∈Rn+1, f∈NN ρ

N,h,d+1

J

∑
j=1

∣∣∣β> f (uj)− φi(uj)
∣∣∣p e−|uj |κ , (30)

φ is a given factor model of the form (21), and {uj}J
j=1 is a uniform random sample on a non-empty

compact subset of U ; J > 0. Thus, the optimization problem (30) is random since it relies on randomly
generated data points {uj}J

j=1. However, instead of initializing f̂ in an ad-hoc random manner,
the initialization (30) guarantees that the shapes generated by (29) are close to those produced by the
naive factor model (7). In this case, a brief computation shows that Λu

t (φ) simplifies to

Λu(β) ,

∣∣∣∣∣ϕ0(0)− β0 f (u) +
d

∑
i=1

γiβ
iF(u)− 1

2

d

∑
i,j=1

ζi,jF(u)>(βi)>βjF(u)

∣∣∣∣∣
p

+
d

∑
k=1

∣∣∣∣∣ϕk(0)− βk f (u) +
d

∑
i=1

γk;iβ
iF(u)− 1

2

d

∑
i,j=1

ζk;i,jF(u)>(βi)>βjF(u)

∣∣∣∣∣
p

,

(31)

where F(u) ,
∫ u

0 f (s)ds with the integration is defined component-wise and βi denotes the ith entry of
the vector β.

4.2. Numerical Implementations

The data-set for this implementation consists of German bond data for 31 maturities with
observations obtained on 1273 trading days from January 4th 2010 to December 30th 2014. As is
common practice in machine learning, further details of our code and implementation can be found on
Kratsios (2019a). The code is relatively flexible and could be adapted to other bond-data sets.
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The performance of the arbitrage-regularization methodology will now be applied to two factor
models of affine type and its performance will be evaluated numerically. The first factor model is the
commonly used dynamic Nelson-Siegel model of Diebold and Rudebusch (2013) and the second is a
machine learning extension of the classical PCA approach to term-structure modeling. The performance
of the arbitrage-regularization for each model will be benchmarked against both the original factor
models and against the HJM-extension of the Vasiček model. The Vasiček model is a natural benchmark
since, as shown in Björk and Christensen (1999), it is consistent with a low-dimensional factor model.
Therefore, each of the factor models contains roughly the same number of driving factors which ensures
that the comparisons are fair. Moreover, the numéraire process Nt will be taken to be the money-market
and we take P? = P. The meta-parameter λ is taken to be 1− 10−4 so that it is approximately 1.

As described in (29)–(31), the solution to the arbitrage-regularization (9), will be numerically
approximated using randomly initialized deep feed-forward neural networks. The initialization
network f of (29) is selected to have fixed depth N = 5, fixed height d = di = 102 and its weights are
learned using the ADAM algorithm. The meta-parameters p = 2 and κ = 1 are chosen empirically,
and the parameters of the Ornstein-Uhlenbeck process are estimated using the maximum-likelihood.
Once the model parameters have been learned, and the factor model optimizing (9) has been learned,
the day ahead predictions of the stochastic factors are obtained through Kalman filter estimates of the
hidden parameters βt for each of the factor models. In the case of the Vasiček model the unobservable
short-rate parameter is also estimated using the Kalman filter (see Bain and Crisan (2009)). These
day-ahead predictions are then fed into the factor model and used to compute the next-day bond
prices. These predictions are then compared to the realized next-day bond prices.

4.2.1. Model 1: The Dynamic Nelson-Siegel Model (Practitioner Model)

The Nelson-Siegel family is a low-dimensional family of forward-rate curve models used by
various central banks to produce forward-rate or yield curves. As discussed in Carmona (2014),
Finland, Italy, and Spain are such examples with other countries such as Canada, Belgium, and France
relying on a slight extension of this model. The Nelson-Siegel model’s popularity is largely due to its
interpretable factors and satisfactory empirical performance. It is defined by

ϕ(t, β, u) , β1 + β2e−(u−t)τ + β3(u− t)e−(u−t)τ , (32)

where, as discussed in Diebold and Rudebusch (2013), the first factor represents the long-term level of
the forward-rate curve, the second represents its shape, the third represents its curvature, and τ is a
shape parameter; typically kept fixed.

Since market conditions are continually changing, the Nelson-Siegel model is typically extended
from a static model to a dynamic model by replacing the static choice of β with a three-dimensional
Ornstein-Uhlenbeck process and fixing the shape parameter τ > 0 as in Diebold and Rudebusch (2013).
However, as demonstrated in Filipović (2001), the dynamic Nelson-Siegel model does not admit an
equivalent measure to P?

N that makes the entire bond market simultaneously into local martingales. It
was then shown in Christensen et al. (2011a) that a specific additive perturbation of the Nelson-Siegel
family circumvents this problem, but empirically this is observed to come at the cost of reduced
predictive accuracy. In our implementation, the parameters of the Ornstein-Uhlenbeck process driving
βi

t will be estimated using the maximum likelihood method described in Meucci (2005).

4.2.2. Model 2: dPCA (Machine-Learning Model)

The dynamic Nelson-Siegel model’s shape has been developed through practitioner experience.
The second factor model considered here will be of a different type, with its factors learned



Risks 2020, 8, 40 12 of 30

algorithmically. As with (32), consider a static three-factor model for the forward-rate curve of
the form

ϕ(t, β, u) ,
3

∑
i=1

βiφi(u− t) (33)

where φ1, . . . , φ3 are the first three principal components of the forward-rate curve calibrated on the
first 100 days of data.

Subsequently, a time-series for the βi parameters is generated, using the first 100 days of data,
where on each day the βi are optimizes according to the Elastic-Net (ENET) regression problem of
Hastie et al. (2015) defined by

βENET
t = argmin

β∈R3

tj

∑
t=tj−100

Kt

∑
k=0

(
3

∑
i=1

βiφi(uk,t)

)2

+ θ1

3

∑
i=1
|βi|+ θ2

3

∑
i=1
|βi|2, (34)

on rolling windows consisting of 100 data points and {uk,t}Kt
k=0 are the available data-points on the

forward-rate curve at time t. The meta-parameters θ1 and θ2 are chosen by cross-validation on the first
100 training days and then fixed.

The ENET regression is used due to its factor selection abilities and computational efficiency.
Next, analogously to the dynamic Nelson-Siegel model, an R3-valued Ornstein-Uhlenbeck process β̂t

is calibrated, using the maximum likelihood methodology outlined in Meucci (2005) to the time-series{
βENET

t
}

. These will provide the hidden stochastic factors in the dynamic PCA model (33). Thus,
the dPCA model is the factor model with stochastic inputs defined by

3

∑
i=1

β̂i
tφi(u− t). (35)

The resulting model differs from the dynamic Nelson-Siegel model in that its factors and dynamics
are not chosen by practitioner experience but learned through the data and implicitly encode some
path-dependence. However, as with the dynamic Nelson-Siegel model it falls within the scope of
Theorem 2.

5. Discussion

The predictive performance of the Vasiček (Vasiček), dPCA, A-Reg(dPCA), the dynamic
Nelson-Siegel Model (dNS), the arbitrage-free Nelson-Siegel model of Christensen et al. (2011a) (AFNS),
and the arbitrage-regularization of the dynamic Nelson-Siegel Model (A-Reg(dNS)) is reported in the
following tables. The predictive quality is quantified by the estimated mean-squared errors when
making day-ahead predictions of the bond price for each maturity, for all but the first days in our
data-set. The lowest estimated mean-squared errors recorded are highlighted using bold font and the
second lowest estimated mean-squared errors on each maturity are emphasized using italics.

Table 1 evaluates the performance of the considered models on the short-mid end of the curve.
Overall, the performance of all the models are generally comparable at the very short end but rapidly
after the dPCA model begins to outperform the rest. The accuracy of the Vasiček model on small
maturities is likely to it being a short-rate model.

In Table, 2 the dPCA model outperforms the rest by progressively larger margins. Most notably,
in Tables 3 and 4 which summarize the performance of the models for very long bong maturities the
A-Reg(dPCA) model shows very low predictive error for a low number of factors while simultaneously
being consistent with no-arbitrage conditions.
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Table 1. (Short): MSE Comparisons for 1-day ahead bond-price predictions.

Model \Maturity 0.5 1 2 3 4

Vasiček 3.155×10−1 4.323×10−1 3.622×10−1 1.950×10−1 5.730×10−2

dPCA 2.526×10−1 4.349×10−1 4.176×10−1 2.526×10−1 9.261×10−2

A-Reg(dPCA) 8.066×10−1 6.943×10−1 5.110×10−1 2.755×10−1 9.588×10−2

dNS 4.513×10−2 1.479×10−1 2.134×10−1 1.477×10−1 5.968×10−2

AFNS 3.729×10−1 5.315×10−1 4.414×10−1 2.436×10−1 8.301×10−2

A-Reg(dNS) 2.903×10−2 9.514×10−2 1.601×10−1 1.235×10−1 6.482×10−2

Model \Maturity 5 6 7 8 9

Vasiček 7.735×10−3 1.996×10−4 1.024×10−3 1.480×10−3 1.348×10−3

dPCA 2.193×10−2 3.326×10−3 3.119×10−4 1.897×10−5 8.097×10−7

A-Reg(dPCA) 2.221×10−2 3.340×10−3 3.123×10−4 1.898×10−5 8.099×10−7

dNS 1.972×10−2 8.313×10−3 5.323×10−3 3.925×10−3 2.998×10−3

AFNS 1.840×10−2 3.225×10−3 1.633×10−3 2.084×10−3 2.708×10−3

A-Reg(dNS) 3.579×10−2 2.236×10−2 1.523×10−2 1.050×10−2 7.308×10−3

Table 2. (Mid): MSE Comparisons for 1-day ahead bond-price predictions.

Model \Maturity 10 11 12 13 14

Vasiček 1.108×10−3 9.002×10−4 7.382×10−4 6.125×10−4 5.135×10−4

dPCA 2.578×10−8 6.328×10−10 1.433×10−11 2.607×10−13 4.179×10−15

A-Reg(dPCA) 2.579×10−8 6.328×10−10 1.433×10−11 2.607×10−13 4.179×10−15

dNS 2.381×10−3 1.969×10−3 1.686×10−3 1.484×10−3 1.337×10−3

AFNS 3.407×10−3 4.163×10−3 4.918×10−3 5.603×10−3 6.164×10−3

A-Reg(dNS) 5.215×10−3 3.827×10−3 2.885×10−3 2.229×10−3 1.761×10−3

Model \Maturity 15 16 17 18 19

Vasiček 4.342×10−4 3.698×10−4 3.169×10−4 2.729×10−4 2.360×10−4

dPCA 6.714×10−17 9.566×10−19 1.426×10−20 1.819×10−22 2.749×10−24

A-Reg(dPCA) 6.714×10−17 9.566×10−19 1.426×10−20 1.818×10−22 2.746×10−24

dNS 1.225×10−3 1.138×10−3 1.069×10−3 1.012×10−3 9.639×10−4

AFNS 6.577×10−3 6.867×10−3 7.115×10−3 7.453×10−3 8.052×10−3

A-Reg(dNS) 1.422×10−3 1.171×10−3 9.831×10−4 8.406×10−4 7.316×10−4

Table 3. (Long): MSE Comparisons for 1-day ahead bond-price predictions.

Model \Maturity 20 21 22 23 24

Vasiček 2.049×10−4 1.784×10−4 1.558×10−4 1.364×10−4 1.196×10−4

dPCA 3.816×10−26 5.254×10−28 8.047×10−30 9.958×10−32 1.336×10−33

A-Reg(dPCA) 3.781×10−26 4.847×10−28 3.015×10−30 2.684×10−30 1.452×10−29

dNS 9.228×10−4 8.866×10−4 8.542×10−4 8.247×10−4 7.976×10−4

AFNS 9.097×10−3 1.075×10−2 1.310×10−2 1.611×10−2 1.960×10−2

A-Reg(dNS) 6.480×10−4 5.838×10−4 5.349×10−4 4.984×10−4 4.814×10−4

Model \Maturity 25 26 27 28 29

Vasiček 1.051×10−4 9.254×10−5 8.160×10−5 7.205×10−5 6.371×10−5

dPCA 2.067×10−35 2.814×10−37 3.639×10−39 5.371×10−41 7.459×10−43

A-Reg(dPCA) 9.846×10−29 1.102×10−27 2.108×10−26 6.986×10−25 3.979×10−23

dNS 7.722×10−4 7.484×10−4 7.257×10−4 7.041×10−4 6.835×10−4

AFNS 2.323×10−2 2.660×10−2 2.929×10−2 3.097×10−2 3.147×10−2

A-Reg(dNS) 4.911×10−4 5.288×10−4 6.011×10−4 7.214×10−4 9.138×10−4
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Table 4. (30 Year): MSE Comparisons for 1-day ahead bond-price predictions.

30

Vasiček 6.371×10−5

dPCA 7.459×10−43

A-Reg(dPCA) 3.979×10−23

dNS 6.835×10−4

AFNS 3.147×10−2

A-Reg(dNS) 9.138×10−4

Even though arbitrage-free regularization does slightly reduce its accuracy, which is natural since
it adds a constraint into an otherwise purely predictive process, the arbitrage-regularized dPCA model
is still much more accurate than the rest.

An advantage of the A-Reg(dPCA) model is that it can accurately model the long-end of the
forward-rate curve in an arbitrage-free manner. This fact is due to the dynamic factor selection
properties of the dPCA model which otherwise could not have been used in a consistent manner if it
were not for Theorem 2.

The numerical implementation highlights a few key facts about the arbitrage-regularization
methodology. First, for nearly every maturity, the empirical performance of the arbitrage-regularization
of a factor model is comparable to the original factor model. An analogous phenomenon was observed
in Devin et al. (2010) when projecting infinite-dimensional arbitrage-free HJM models onto the
finite-dimensional manifold of Nelson-Siegel curves. Therefore, correcting for arbitrage does not
come at a significant predictive cost. However, it does come with the benefit of making the model
theoretically sound and compatible with the techniques of arbitrage-pricing theory.

Second, since (9) incorporates an additional constraint into the modeling procedure the
arbitrage-regularization of a factor model has a reduction in performance as compared to the initial
factor model. This phenomenon has also been observed empirically in Christensen et al. (2011a) for
the arbitrage-free Nelson-Siegel correction of the dynamic Nelson-Siegel model. Therefore, one should
not expect to improve on the predictive performance of the initial factor model by correcting for the
existence of arbitrage.

Third, the empirical performance of A-Reg(dPCA) was significantly better than the empirical
performance of the other arbitrage-free models, namely AFNS, A-Reg(dNS), and the Vasiček model,
across nearly all maturities. This was especially true for mid and long maturity zero-coupon bonds.
Moreover, the performance of A-Reg(dPCA) and dPCA were comparable. Similarly, for most
maturities, the empirical performance of the AFNS, dNS, and A-Reg(dNS) models were all similar and
notably lower than the performance of the A-Reg(dPCA), dPCA, and Vasiček models. This emphasizes
the fact that arbitrage-regularization methodology produces performant models only if the original
model itself produces accurate predictions. Therefore, it is up to the practitioner to make an appropriate
choice of model. However, the methodology used to develop dPCA and A-Reg(dPCA) could be used
as a generic starting point.

Since the arbitrage-regularization methodology applies to nearly any factor model, one
may use any methodology to produce an accurate reference factor model and then apply
arbitrage-regularization to make it theoretically consistent at a small cost in performance. This opens
the possibility to applying machine learning models, such as dPCA, to finance without the worry that
they are not arbitrage-free since their asymptotic arbitrage-regularization is well-defined. Furthermore,
the flexibility of deep feed-forward neural networks allows for the efficient implementation of (9).

The AFNS model proposes an arbitrage-free correction for the dynamic Nelson-Siegel. However,
there is no guarantee that the AFNS corrects dNS optimally, and the predictive gap between these two
models is documented in Christensen et al. (2011a). This is both echoed in Tables 2 and 3. Furthermore,
this is also reflected by Theorem 2 which guarantees asymptotic optimally of the A-Reg(dNS) model.
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Unlike most regularization problems where there is a trade-off between the regularization term
and the (un-regularized) objective function, the arbitrage-regularization requires λ to be taken as
close to 1 as possible. Since the limit (26) can only be approximated numerically λ cannot be
evaluated, however λ can be taken to be arbitrarily close to, but less than, 1. This choice is justified
by Figures 1 and 2 which illustrates that for values of λ near 1 there is little change in the model’s
predictive performance.
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Figure 1. Day-ahead predictions as a function of λ̃ across given maturities for the A-Reg(dNS) model.
(a) Average day-ahead predicted yield curves. (b) Estimated MSE of day-ahead bond price predictions.
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Figure 2. Day-ahead predictions as a function of λ̃ across given maturities for the A-Reg(dPCA) model.
(a) Average day-ahead predicted yield curves. (b) Estimated MSE of day-ahead bond price predictions.

Figures 1 and 2 plot the change in the shape of the day-ahead predicted forward-rate curve and
the change in the MSE of the day-ahead predicted bond prices as function of λ. In those figures,
the curves with a pink color correspond to low values of λ and the curves progressing towards a blue
color correspond to high values of lambda. Please note that in these plots, the reparameterization of
Corollary 1 is used and an abuse of notation is made by using λ to denote λ̃.
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In the case of the dNS model, an interesting property is that long-maturity bond prices do not
change much, whereas short-maturity bond prices exhibit more dramatic changes. This property
suggests that the dNS model is closer to being arbitrage-free on the long end of the curve than it is on
the short end. This paper introduced a novel model-selection problem and provided an asymptotic
solution in the form of the penalized optimization given by problem (9). The problem was posed and
solved in a generalized HJM-type setting, within Theorem 1 and specialized to the term-structure of
interest setting in Theorem 2 where simple expressions for the penalty term were derived.

The key innovation of the paper was the construction of the penalty term AFλ defining the
arbitrage-regularization problem (9). The construction of this term in Proposition 1 relied on the
structure of the generalized HJM-type setting proposed in Heath et al. (1992) and generalized in (4)
which allowed one to encode the dynamics of a large class of factor models with stochastic inputs into
the specific structure of any asset class.

The numerical feasibility of the proposed method was made possible by the flexibility of
feed-forward neural networks, as demonstrated in Hornik (1991); Kratsios (2019b), which allowed
the optimizer of the arbitrage-regularization problem (9) to be approximated to arbitrary precision.
In the numerics section of this paper, it was found that the arbitrage-regularization of a factor model
does not heavily impact its predictive performance but does make it approximately consistent with
no-arbitrage requirements.

In particular, the compatibility of the proposed approach with generic factor models with
stochastic inputs allowed for the consistent use of factor models generated from machine learning
methods. The A-Reg(dPCA) model is a novel example of such an approximately arbitrage-free
model where the dynamics and factors were generated algorithmically instead of through
practitioner experience.

The precise quantification of the approximate arbitrage-free property was made in Proposition 2.
Thus, approximately arbitrage-free factor models under the stylized assumption of no transaction
costs were indeed arbitrage-free when proportional transaction costs are in place, which is a more
realistic assumption.

Finally, the arbitrage-regularization approach introduced in this paper opens the door to the
compatible use of predictive machine-learning factor models with the no-free lunch with vanishing
risk condition. The general treatment in Theorem 1 can be transferred to other asset classes and models
generated from other learning algorithms. This approach can be an important new avenue of research
lying at the junction of predictive machine learning and mathematical finance.
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Abbreviations Meaning Page
A-Reg Arbitrage-Regularization 4
AFNS Arbitrage-Free Nelson Siegel Model 12
A-Reg(dPCA) Arbitrage-Regularized Dynamic Principal Component Analysis Model 13
A-Reg(dNS) Arbitrage-Regularized Nelson-Siegel Model 12
dPCA Dynamic Principal Component Analysis Model 13
NFLVR No Free Lunch with Vanishing Risk 4
dNS dynamic Nelson Siegel Model 12

The following symbols are used in this manuscript:

Symbol Description Page
[Y]t quadratic-variation of the process Yt 4
[[Y]]t local quadratic-variation of the process Yt 4
AF Arbitrage-Penalty 7
βt Stochastic factor process 4
βENET Solution to Elastic-Net regularized regression problem of Hastie et al. (2015) 13
C1,2

b Twice-Continuously Differentiable Boundedness-preserving Path-Functionals 19
D Horizontal Derivative of Fournie (2010) 19
Dθi Weak-Derivative in the sense of measures of θ 8
|Dθi| Total variation of Dθi 8
EP [P] The expectation under the probability measure P 7
∇ Vertical Derivative of Fournie (2010) 19
φ Reference factor model for latent process 4
φu

t Abbreviation for φ(t, βt, u) 5
H Hypothesis class of functions for factor model 5
` Loss Function 5
Lp

ν⊗µ(I ×Rd ×U ) Space of (equivalence classes of) p-integrable functions with respect to ν⊗ µ 5
λ Meta-parameter for arbitrage-penalty problem 7
Λ Process given by (13) 7
µ Borel probability measure on RdU 5
NN ρ

N,h,n+1 Feed-forward neural networks with activation function ρ, depth N + 1, 11
and height h

ν Borel probability measure on I 5
ν⊗ µ Product (probability) measure of ν and µ 5
P Real-World Probability Measure 4
P? Equivalent Probability Measure to P? 4
PN Martingale measure for the numéraire 4
Q Equivalent Martingale Probability Measure to P 4
Rd d-dimensional Euclidean space 4
rt Short-rate 5
St Non-anticipative path-dependant functional in C1,2

b encoding latent factor process 4
into {Xt(u)}u∈U

Sd
+ d× d symmetric matrices 6
U Borel subset of RD which indexes the large financial market 4
Wi Affine function between Euclidean spaces 11
X Banach subspace of Lp

ν⊗µ(I ×Rd ×U ) admitting a continuous embedding into 5
C1,2,2(I ×Rd ×U )

{Xt(u)}u∈U large financial market 4

Appendix A. Background

Some relevant technical background is briefly discussed within this appendix. These topics
include related aspects of the functional Itô calculus introduced in Dupire (2009) and developed in
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Fournie (2010), as well as pertinent stochastic differential geometric considerations; as developed in
Elworthy (1982). Some elements from arbitrage-theory are also discussed concisely.

Next some background on arbitrage theory in large financial markets is discussed.

Appendix A.1. Arbitrage-Theory

The efficient market hypothesis, introduced in Bachelier (1900), states that the typical market
participant cannot earn a risk-less profit. The efficient market hypothesis has found several
mathematical formulations, as summarized in Fontana (2014). The most commonly used form is
No Free Lunch with Vanishing Risk (NFLVR) as formulated in the sequence of papers Delbaen and
Schachermayer (1998) which builds on the ideas of Harrison and Kreps (1979). Essentially, in the
case of locally bounded processes, NFLVR expresses the non-existence of arbitrage-strategies as the
existence of an equivalent local martingale measure (ELMM); that is, a probability measure which is
equivalent to the reference probability measure and which simultaneously makes the price process of
each market asset a local martingale.

However, mathematically bond markets are unlike traditional financial markets in that they are
comprised of an uncountable number of assets, one for each potential maturity; thus, the results of
Delbaen and Schachermayer (1998) no longer apply since their formulation requires that only a finite
number of assets be tradeable. Instead, in the setting of such a large financial market, a satisfactory and
economically meaningful no-arbitrage condition is obtained in Cuchiero et al. (2016) by considering
strategies which can be described by limits of classical strategies written on a finite number of market
assets. It is shown in Cuchiero et al. (2016), that when each asset in the market is locally bounded, as in
Delbaen and Schachermayer (1998), then the no-arbitrage condition derived in Cuchiero et al. (2016)
reduces to the existence of an equivalent local martingale measure. However, if the local-boundedness
assumption is dropped, then the existence of an equivalent local martingale measure remains sufficient
for precluding no-arbitrage but it no longer necessary.

Appendix A.2. Functional Itô Calculus

In what follows, the set of d × d symmetric positive definite matrices will be denoted by
S+

d . Moreover, the Skorohod space of cádlág paths in Rd and S+
t will be respectively denoted by

D([0, T];Rd) and D([0, T]; S+
d ). Moreover, for any Rd-valued semi-martingale Xt, one associates to it

an S+
d -valued process [[X]]t defined by

[X]t =
∫ t

0
[[X]]udu.

Here [[X]]t is interpreted as the local quadratic variation of Xt.
The functional Itô calculus of Dupire (2009) and Fournie (2010), has found many applications

in mathematical finance. Applications range from, but are not limited to, computational methods
for the Greeks of path-dependent options in Jazaerli and Saporito (2017) to portfolio theory in Pang
and Hussain (2015). For fixed T > 0, the basic concept of the Functional Itô Calculus, relies on
non-anticipative and path-dependent extensions of the time and spatial derivative operators. Both
these extensions defined on any cádlág path in

Λd ,
⋃

t∈[0,T]

D([0, t];Rd)× D([0, t]; S+
d ),

by artificially extending its endpoint either vertically or horizontally. For any fixed 0 ≤ t ≤ s ≤ T,
the horizontal extension of a path xt ∈ Λd is defined by

xt,s−t(u) ,

{
xu : 0 ≤ u ≤ t

xt : t ≤ u ≤ s
, (A1)
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and its height h > 0 vertical extension is defined by

xt,h(u) ,

{
xu : 0 ≤ u < t

xt + h : u = t
. (A2)

For a functional from Λd to R, its vertical and horizontal derivatives on the path xt ∈ Λd are defined
by infinitesimally extending the path S(xt, vt) either vertically or horizontally using (A1) and (A2).
However, since the calculus should not look into the future, instead only non-anticipative functionals
are to be considered.

Definition A1 (Non-Anticipative Functional; (Fournie 2010, Definition 2.1)). A non-anticipative
functional is a family of functionals S , {St}t∈[0,T] where

St : D([0, t];Rd)× D([0, t]; S+
d )→ R

(xt, vt) 7→ St(xt, vt)

is measurable to the Borel σ-algebra on D([0, t];Rd)× D([0, t]; S+
d ).

Analogously to classical calculus, the limiting ratio between the difference of S(xt, vt) and its
extensions define its horizontal and vertical at any given time 0 ≤ t, respectively, by

DS(xt, vt) = lim
∆↓0

S(xt,∆+t, vt,∆+t)− S(xt, vt)

∆
∇St(xt, vt) = lim

h↓0

S(xt,h, vt,h)− S(xt, vt)

h
; (A3)

where the limits defined in (A3) are taken in Λd with respect to metric

d(xt, ys) , sup
u∈[0,s]

‖xt,s−t(u)− yu‖+ |s− t|,

and for any x ∈ Rd, v ∈ S+
d one has ‖(x, v)‖ =

√
‖x‖2 + ‖v‖2

F where ‖x‖ is the usual Euclidean norm
and ‖v‖F is the Fröbenius norm. As it will be seen shortly, the horizontal and vertical derivatives
extend the time and spacial derivatives from ordinary calculus. However, some technical remarks
must first be addressed.

In general, these path derivatives are not defined on any non-anticipative functional S : Λd → R
moreover even if it is, analogously to the classical calculus, there is no guarantee that its vertical
(resp. horizontal) derivative is continuous with respect to d. Analogously with the traditional Itô
calculus, the collection of paths for which one can derive a useful Itô formula are those which admit
one continuous horizontal derivative and for which DS(xt, vt) and two vertical derivatives; i.e.,
∇2S(xt, vt) , ∇(∇S(xt, vt)) are both continuous.

However, for an tractable extension of the Itô formula with respect to S to be possible it is
additionally required that S be boundedness-preserving. Here, a functional S : Λd → R is said to be
boundedness-preserving if, for every non-empty compact subset K ⊆ R, there exists some CK > 0
such that | f (zt)| ≤ CK if zt ∈ Λd satisfies

{y ∈ R : zt(s) = y for some 0 ≤ s ≤ t} ⊆ K. (A4)

The collection subset of all functional S : Λd → R which are boundedness-preserving and have
continuous boundedness-preserving derivatives ∇S(xt, vt), DS(xt, vt), and D2S(xt, vt) at every path
xt ∈ Λd is denoted by C1,2.
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For any functional S ∈ C1,2 and any Rd-valued semi-martingale, if in addition it satisfies the
predictable-dependence condition

(∀t ∈ [0, T])(∀(x, v) ∈ D([0, t];Rd)× S+
d ) St(xt, vt) = St(xt, vt). (A5)

Theorem A1 (Functional Itô Formula (Fournie 2010, Theorem 4.1)). For any non-anticipative functional
S ∈ C1,2 satisfying (A5) and any Rd-valued semi-martingale the following holds

St(Xt, [[X]]t)− St(Xt, [[X]]t) =
∫ t

0
DS(Xu, [[X]]u)du +

∫ t

0
∇Su(Xu, [[X]]u)dXu

+
1
2

∫ t

0
tr
(
∇2Su(Xu, [[X]]u)d[X]u

)
.

(A6)

This section closes by noting that Theorem A1 is a strict generalization of the classical Itô
formula. This is because, the vertical and horizontal derivatives reduce to the familiar spacial and time
derivatives when St does not depend on any path-data as formalized by the following result.

Proposition A1 ((Fournie 2010, Example 1)). If S(xt, vt) = f (t, xt(t)) for some f ∈ C1,2([0, t]×Rd;R)
then

DS(xt, vt) = ∂t f (t, xt) and ∇iS(xt, vt) = ∂i
x f (t, xt),

for i = 1, 2.

Appendix A.3. Background on Γ-Convergence

Pioneered in De Giorgi (1975), the theory of Γ-convergence describes the precise conditions
required for the optimizers of a sequence of loss-functions {`n}n∈N to converge to the optimizer of a
limiting loss-function `. The entire theory of Γ-convergence can be seen as a sequential generalization
of the Weierstrass’s theorem, a fundamental existence result from non-convex optimization theory.
Geometrically, Weierstrass’s theorem states that it possible to continuously descent along the epigraph
of ` (lower semi-continuity), if the set all small values of ` is compact (coercivity) then ` can be
minimized; granted that ` does not only take infinite-values (proper).

Theorem A2 (Weierstrass’ Theorem; (Focardi 2012, Theorem 2.2)). Let (X, d) be a metric space and
` : X → R be a lower semi-continuous function which is mildly coercive, that is there exists a sequentially
compact subset K of X such that

inf
x∈K

`(x) = inf
x∈X

`(x). (A7)

Then ` admits a minimizer on X if in addition infx∈X `(x) is finite.

Γ-limits provide precise conditions ensuring that any sequence of optimizers of {`n}n∈N converges
to an optimizer of ` if ` is the Γ-limit of {`n}n∈N, written Γ -lim

n→∞
`n = `. Before providing a precise

definition of Γ-limits, a few of its properties are discussed.

Theorem A3 (Properties of Γ-convergence; (Focardi 2012, Theorem 2.8)). Let (X, d) be a metric space
and {`n}n∈N be a sequence of functions from (X, d) to R∪ {∞}. If Γ -lim

n→∞
`n exists, then

(i) (Lower Semicontinuity): Γ -lim
n→∞

`n is lower semicontinuous on X,
(ii) (Stability Under Continuous Perturbation): If g : X → R is continuous, then

Γ -lim
n→∞

(`n + g) =
(

Γ -lim
n→∞

`n

)
+ g,



Risks 2020, 8, 40 21 of 30

(iii) (Stability Under Relaxation): For every n ∈ N let { ˜̀n}n∈N be a sequence of functions from X to R∪ {∞}
satisfying `lsc

n ≤ ˜̀n ≤ `n. Then
Γ -lim

n→∞
˜̀n = Γ -lim

n→∞
`n,

where `lsc is the largest lower semi-continuous function dominated by `, point-wise.

The first of the two critical ingredients in Theorem A2 was the lower semi-continuity of ` and
the second was its coerciveness. Analogously to the definition of equi-continuity, in general, when
working with a sequence of functions, to be able to apply the analogous machinery to Theorem A2 we
require that there exists a non-empty compact subset of K satisfying

inf
x∈X

`n(x) = inf
x∈X

`(x); (∀n ∈ N). (A8)

The property described by (A8) is called mild equi-coerciveness. A stronger condition, that we will make
use of is equi-coerciveness, which states that for every t > 0, there exists a compact subset Kt of (X, d)
satisfying ⋃

n∈N
{x ∈ X : `n(x) ≤ t} ⊆ Kt.

The central result in the Theory of Γ-converges is the following extension of Theorem A2.

Theorem A4 (The Fundamental Theorem of Γ-Convergence; (Braides 2002, Theorem 2.10), (Focardi
2012, Theorem 2.1)). If {`n}n∈N is a mildly equi-coercive sequence of functions from X to R∪ {∞} for which
the Γ-limit exists in X, then

lim
k↑∞

inf
x∈X

`kn(x) = inf
x∈X

Γ -lim
n→∞

`n(x).

If moreover, {`n}n∈N is equicoercive, then lim
n↑∞

arginf
x∈X

`n(x) exists in X and

lim
k↑∞

arginf
x∈X

`kn(x) ∈ arginf
x∈X

Γ -lim
n→∞

`n(x).

This section closes with the precise definition of convergence in the Γ-sense.

Definition A2 ((Dal Maso 1993, Chapter 4)). Let {`n}n∈N be a sequence of R∪ {∞}-valued functions on a
metric space (X, d). A function ` is the Γ-limit of {`n}n∈N if and only if both

(i) `lsc(x) ≤ lim-infn∈N `n(xn) for every net {xn}n∈N converging to x in (X, d),
(ii) `lsc(x) ≥ lim-infn∈N `n(yn) for some net {yn}n∈N converging to x in (X, d)

where `lsc is the largest lower semi-continuous function dominated by ` point-wise.

Appendix B. Proofs

Proof of Proposition 1. For legibility, for each u ∈ U , we represent the process φ(t, βt, u) by

φu
t = φu

0 +
∫ t

0
αu(s, φu

s )ds +
∫ t

0
γu(s, φu

s )dWs.
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By the Functional Itô Formula, (Cont and Fournié 2013, Theorem 4.1), if follows that, for every u ∈ U

St(φ
u
t , [[φu]]t; u) =S0(0, φu

0 , [[φu]]0; u)

+
∫ t

0
[DSs(φ

u
s , [[φu]]s; u) +∇Ss(φ

u
s , [[φu]]s; u)αu(s, φu

s )

+
1
2
[∇2Ss(φ

u
s , [[φu]]s; u)](γu(s, φu

s ))

]
ds

+
∫ t

0
∇Ss(φ

u
s , [[φu]]s; u)γu(s, φu

s )dWs.

(A9)

From (A9) it follows that, for each u ∈ U , the price processes Xt(u) are P?
N-local-martingales if and

only if

−DSs(φ
u
s , [[φu]]s; u) = ∇Ss(φ

u
s , [[φu]]s; u)αu

s +
1
2
[∇2Ss(φ

u
s , [[φu]]s; u)](γu

s ) (A10)

Next, the quantities au and γu are described. By the usual Itô formula, it follows that for each
u ∈ U

φ(t, βt, u) =
∫ t

0

∂φ

∂t
(s, βs, u)ds +

∫ t

0

d

∑
i=1

∂φ

∂βi (s, βs, u)dβi
s +

∫ t

0

1
2

d

∑
i,j=1

(
∂2φ

∂βi∂βj (s, βs, u)
)

d[b]i,js ds

=
∫ t

0

[
∂φ

∂t
(s, βs, u) +

d

∑
i=1

∂φ

∂βi (s, βs, u)αi(s, βs)ds

+
1
2

d

∑
i,j=1

(
∂2φ

∂βi∂βj (s, βs, u)
)

σi(s, βs)σ
j(s, βs)

]
ds

+
∫ t

0

d

∑
i=1

∂φ

∂βi (s, βs, u)σi(s, βs)dWi
s.

(A11)

Therefore, (A11) implies that

αu
s =

∂φ

∂t
(s, βs, u) +

d

∑
i=1

∂φ

∂βi (s, βs, u)αi(s, βs) +
1
2

d

∑
i,j=1

(
∂2φ

∂βi∂βj (s, βs, u)
)

σi(s, βs)σ
j(s, βs)

γu
s =

d

∑
i=1

∂φ

∂βi (s, βs, u)σi(s, βs).

(A12)

Incorporating (A12) into (A10) yields (11). Therefore, for St(φu
t , [[φu]]t, u) is a P?

N-local-martingale,
simultaneously for every u ∈ U , if and only if P?

N-a.s. (11) holds simultaneously for every u ∈ U .

Proof of Theorem 1. We begin by showing (ii) and (iii), simultaneously. Since (I ×U ,B (I ×U ) , µ) is
a finite measure space then

lim
λ↑∞; λ≥2

(∫
(t,u)∈I×U

|Λu
t (φ)|λdµ(t, u)

) 1
λ

= esssup
(t,u)∈I×U

|Λu
t (φ)| ; (A13)

By Assumption (2) (i), the map (t, u) 7→ Λu
t (φ) is continuous, for each φ ∈H , therefore

esssup
(t,u)∈I×U

|Λu
t (φ)| = sup

(t,u)∈I×U
|Λu

t (φ)| . (A14)
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Since the product of limits is the limit of the product, then (A13) yields

lim
λ↑∞; λ≥2

λ

(∫
(t,u)∈I×U

|Λu
t (φ)|λdµ(t, u)

) 1
λ

= lim
λ↑∞; λ≥2

λ esssup
(t,u)∈I×U

|Λu
t (φ)|

= lim
λ↑∞; λ≥2

λ sup
(t,u)∈I×U

|Λu
t (φ)|

=


0 : sup

(t,u)∈I×U
|Λu

t (φ)| = 0

∞ : else.

(A15)

Since µ is a probability measure in I × U then for every 1 ≤ λ1 ≤ λ2 < ∞, it follows that for every
φ ∈H

(∫
(t,u)∈I×U

|Λu
t (φ)|λ1 dµ(t, u)

) 1
λ1 ≤

(∫
(t,u)∈I×U

|Λu
t (φ)|λ2 dµ(t, u)

) 1
λ2 ≤ esssup

(t,u)∈I×U
|Λu

t (φ)| . (A16)

Thus, for every φ ∈H , the convergence described by (A13) is monotone (increasing) and non-negative;
therefore by the monotone convergence theorem, it follows that

lim
λ↑∞; λ≥2

λEP

[(∫
(t,u)∈I×U

|Λu
t (φ)|λdµ(t, u)

) 1
λ

]
=


0 : sup

(t,u)∈I×U
Λu

t (φ) = 0, P?
N − a.s.

∞ : else.
(A17)

Applying Proposition 1 to the right-hand side of (A17), it follows that

ιH (φ) =


0 : sup

(t,u)∈I×U
Λu

t (φ), P?
N − a.s. = 0

∞ : else
(A18)

where ιH is defined as in (16). Therefore, the following limit holds

lim
λ↑∞; λ≥2

λEP

[(∫
(t,u)∈I×U

|Λu
t (φ)|λdµ(t, u)

) 1
λ

]
= ιH (φ) (∀φ ∈H ) . (A19)

Thus (A19) establishes the convergence of the penalty functions AFλ to ιH , in H . Next, their
Γ-convergence is established and their Γ-convergence is used to deduce the Γ-convergence of the
objective functions in (9) to the objective function of problem (8).

Applying (A16) and the monotonicity of integration, it follows that for every φ ∈H

λ1EP

[(∫
(t,u)∈I×U

|Λu
t (φ)|λ1 dµ(t, u)

) 1
λ1

]
≤ λ2EP

[(∫
(t,u)∈I×U

|Λu
t (φ)|λ2 dµ(t, u)

) 1
λ2

]
≤ ιH (φ). (A20)

Thus, (A20) together with (Dal Maso 1993, Proposition 5.4) and (Braides 2002, Remark 1.40 (ii)) imply
that (on H )

Γ -lim
λ↑∞; λ≥2

λEP

[(∫
(t,u)∈I×U

|Λu
t (φ)|λdµ(t, u)

) 1
λ

]
= ιlsc

H (φ), (A21)

where ιlsc
H is the lower-semi-continuous relaxation of ιH on H ; that is, the smallest

lower-semi-continuous function dominating ιH on H ; a precise description can be found on (Focardi
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2012, page 11). However, Assumption (2) (ii) implies that ιH is indeed lower-semi-continuous; thus
ιlsc
H = ιH , on H . Therefore (A21) simplifies (on H ) to

Γ -lim
λ↑∞; λ≥2

λEP

[(∫
(t,u)∈I×U

|Λu
t (φ)|λdµ(t, u)

) 1
λ

]
= ιH (φ). (A22)

Since Γ-limits are invariant under continuous perturbation, see (Focardi 2012, Theorem 2.8.), then (A22)
and the continuity of `(ϕ− ·) on H implies that (on H )

Γ -lim
λ↑∞; λ≥2

` (ϕ− ·) + λEP

[(∫
(t,u)∈I×U

|Λu
t (·)|λdµ(t, u)

) 1
λ

]
= `(ϕ− φ) + ιH (·). (A23)

To apply the Fundamental Theorem of Γ-convergence, the family of functions on the left-hand

side of (A23) must be equicoercive. Since λEP

[(∫
(t,u)∈I×U |Λ

u
t (·)|λdµ(t, u)

) 1
λ

]
is non-negative and

since H is unbounded then `(ϕ− φ) is coercive on H , ie:

lim
λ↑∞; λ≥2

`(ϕ− φ) = ∞, (A24)

thus, it follows that

`(ϕ− φ) ≤ `(ϕ− φ) + λEP

[(∫
(t,u)∈I×U

|Λu
t (·)|λdµ(t, u)

) 1
λ

]
(∀λ ≥ 2) ; (A25)

whence, by (Dal Maso 1993, Proposition 7.7) together with (A24){
`(ϕ− φ) + λEP

[(∫
(t,u)∈I×U |Λ

u
t (·)|λdµ(t, u)

) 1
λ

]}
λ≥2

forms an equicoercive family, on H .

Thus,
{
`(ϕ− φ) + λEP

[(∫
(t,u)∈I×U |Λ

u
t (·)|λdµ(t, u)

) 1
λ

]}
λ≥2

defines an equicoercive family

which Γ-converges to ιH , on H . Therefore, together (A23) and (A25) imply that the Fundamental
Theorem of Γ-convergence, (Dal Maso 1993, Theorem 7.8), applies. Hence,

lim
λ↑∞; λ≥2

inf
φ∈H

`(ϕ− φ) + λEP

[(∫
(t,u)∈I×U

|Λu
t (φ)|λdµ(t, u)

) 1
λ

]
= min

φ∈H
`(ϕ− φ) + ιH (φ). (A26)

This shows both (ii) and (iii).
Lastly, for (i), (Dal Maso 1993, Theorem 7.8) also implies that `(ϕ− φ) + ιH (·) is coercive on H .

Hence, `(ϕ− φ) + ιH (·) is coercive, lower-semi-continuous, and bounded-below by 0. Therefore,
by Weirestrass’s Theorem, (Focardi 2012, Theorem 2.2), it follows that `(ϕ − φ) + ιH (·) admits a
minimizer on H .

Proof of Proposition 2. For every 0 ≤ t Assumption 3 implies that

∣∣St(φ̂
ui
t , [[φ̂ui ]]t; ui)− St(φ

ui
t , [[φui ]]t; ui)

∣∣M =
M
m

m

<
M
m
∣∣St(φ

ui
t , [[φui ]]t; ui)

∣∣
<kt

∣∣St(φ
ui
t , [[φui ]]t; ui)

∣∣ .

(A27)

Therefore, (Guasoni 2006, Lemma 2.1) and (Guasoni 2006, Remark 2.5) implies that for any admissible
strategy θ

Vt(θ) ≤
∫ t

0
Ss(φ̂

ui
s , [[φ̂ui ]]s; ui)ds. (A28)
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By Theorem 2, since Ss(φ̂
ui
s , [[φ̂ui ]]s; ui) is a PN-local martingale and by construction PN ∼ P then the

(Delbaen and Schachermayer 1994, Fundamental Theorem of Asset Pricing) implies that if

P
(

0 ≤
∫ T

0
Ss(φ̂

ui
s , [[φ̂ui ]]s; ui)

)
⇒ P

(
0 =

∫ T

0
Ss(φ̂

ui
s , [[φ̂ui ]]s; ui)

)
. (A29)

Combining (A28) and (A29) yields

P (0 ≤ VT(θ))⇒ P (0 = VT(θ)) ,

for every 0 ≤ T and every finite number of u1, . . . , un ∈ U.

Proof of Theorem 2. By definition of (Rd, gt), βt, and H Assumptions 1 (i) and (iv) hold; thus only
Assumptions 1 (ii) and (iii) must be verified, in order to ensure that the stated problem falls within

the scope of this paper. Let µ = µ̃ ⊗ υ where dµ̃
dm (u) = e−|u|

κ

Γ(1+ 1
κ )

I[0,∞), υ is the unique probability

measure with Lebesgue density proportional to e−‖β‖
κ

on Rd, and where dν
dm (t) = e−|t|1[0,∞), 1[0,∞) is

the (probabilistic not convex analytic) indicator function on the interval [0, ∞), here m is the Lebesgue
measure on R. Therefore, the elements of Wp,k

w (I ×Rd ×U ) are elements of Lp
ν⊗µ(I ×Rd ×U ). Since

[0, ∞)× [0, ∞)×Rd has a smooth boundary and since k was assumed to satisfy (20), then the (weighted)
Morrey-Sobolev Theorem of Brown and Opic (1992) applies. Therefore, Wp,k

w (I × Rd × U ) can be
continuously embedded within C2,2,2(I ×Rd ×U ) and therefore Assumption 1 (ii) holds. Furthermore,
by (6) and together with (Cont and Fournié 2013, Example 1) each St(·, ·; u) satisfies Assumption 1 (iii);
thus Assumption 1 is satisfied.

Next, (26) is reformulated in terms of Theorem 1 and Assumptions 2 are verified. Subsequently,
the optimizers of the objective-function under the limit on the left-hand side of (26) are shown to exist
for λ ≥ 2.

It will be convenient to work under the parameterization of Musiela and Rutkowski (1997), where

Xt(u) = exp−
∫ u

t
φ(t, βt, s)ds = exp−

∫ τ

0
φ(t, βt, v)dv,

where τ = u− t and u = u− s for t ≤ s ≤ u. Under this reparameterization, in the case where each
St(·, ·; u) is as in (6), it is shown in (Filipović 2009, Proposition 9.3) that for each u ∈ U and 0 ≤ t,
the bond prices St (φu

t , [[φu]]t; u) are each PN-local martingales if and only if for every u ∈ U , 0 ≤ t ≤ u,
and PN-a.e ω ∈ Ω, the following holds

0 =

(
c0 − φ0(u) +

d

∑
i=1

γiΦi(u)− 1
2

d

∑
i,j=1

ζi,jΦi(u)Φj(u)

)

+
d

∑
k=1

βk
t

(
ck − φk(u) +

d

∑
i=1

γk;iΦ
i(u)− 1

2

d

∑
i,j=1

ζk;i,jΦ
i(u)Φj(u)

)
,

(A30)

where the constants ci are defined by ci , φi(0) for i = 0, . . . , d. Equation (A30) is satisfied for P?
N-a.s

every ω ∈ Ω, for every 0 ≤ t ≤ u, and for every u ∈ U each Λu
t (φ) = 0 are P?

N-a.s; where Λu
t (φ) is

defined by

Λu
t (φ) ,

∣∣∣∣∣c0 −
∂Φ0

∂u
(u) +

d

∑
i=1

γiΦi(u)− 1
2

d

∑
i,j=1

ζi,jΦi(u)Φj(u)

∣∣∣∣∣
p

+
d

∑
k=1

∣∣∣∣∣ck −
∂Φk

∂u
(u) +

d

∑
i=1

γk;iΦ
i(u)− 1

2

d

∑
i,j=1

ζk;i,jΦ
i(u)Φj(u)

∣∣∣∣∣
p

.

(A31)
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Therefore, since Λu
t (φ) satisfies (13) then the family {AFλ}λ>0 of functions defined by

AFλ(φ) , λEP

[
λ

√∫ ∞

0

∫
β∈Rd

∫ u

0

1
Γ(1 + 1

κ )
e−|u|κ |Λu

s (φ)|
λ dsdβdu

]
, (A32)

define an arbitrage-penalty in the sense of (14). Moreover, by (A31) Equation (A32) further simplifies to

AFλ(φ) =
λ

Γ(1 + 1
κ )

1
λ

λ

√∫ ∞

0
e−|u|κ |Λu

t (φ)|
λ du (A33)

Since Wk,p
w (I × Rd × U ) is continuously embedded in C2(I × Rd × U ), then each equivalence class

φ ∈Wk,p
w (I ×Rd ×U ) can be identified with a continuous function from I ×Rd ×U ; therefore each of

the functions

u 7→
∣∣∣∣∣c0 −

∂Φ0

∂u
(u) +

d

∑
i=1

γiΦi(u)− 1
2

d

∑
i,j=1

ζi,jΦi(u)Φj(u)

∣∣∣∣∣
p

u 7→
∣∣∣∣∣ck −

∂Φk

∂u
(u) +

d

∑
i=1

γk;iΦ
i(u)− 1

2

d

∑
i,j=1

ζk;i,jΦ
i(u)Φj(u)

∣∣∣∣∣
p

,

(A34)

are continuous in u; moreover, they are continuous in t since they are constant in t. Therefore,
(t, u) 7→ Λu

t (φ) is continuous for every φ ∈H ; whence Assumption 2 (i) holds.
Next, Assumption 2 (ii) will be verified. Given the dynamics of (18), (Filipović 2009,

Proposition 9.3) characterizes all φ0, . . . , φd for which the forward-rate curve (21) corresponds to
a bond market, through (6), in which each bond price is a P?

N-local-martingale; all such φ0, . . . , φd are
solutions to the differential Riccati system

∂Φ0

∂u
(u) = c0 +

d

∑
i=1

γiΦi(u)− 1
2

d

∑
i,j=1

ζi,jΦi(u)Φj(u) Φ0(0) = 0

∂Φk

∂u
(u) = ck +

d

∑
i=1

γk;iΦ
i(u)− 1

2

d

∑
i,j=1

ζk;i,jΦ
i(u)Φj(u) Φk(0) = 0;

(A35)

where c0, . . . , ck are any elements of R. Thus,{
φ ∈H : (∀u ∈ U ) St(φ

u
t , [[φu]]t; u) is a P?

N-local-martingale
}

=
{

φ ∈H : (∃c0, . . . , cd ∈ R) {Φi}d
i=0 solves (A35)

}
,

(A36)

where as before, {Φi}d
i=0 and φ are related through (21) and (22). Differentiating across the Riccatti

system (A35) with respect to u yields an equivalent differential system of the form

∂2Φ0

∂u2 (u) = c0 +
d

∑
i=1

γi
∂Φi

∂u
− 1

2

d

∑
i,j=1

ζi,j

[
∂Φi

∂u
Φj(u) + Φi(u)

∂Φj

∂u

]
,

∂2Φk

∂u2 (u) = ck +
d

∑
i=1

γk;i
∂Φi

∂u
− 1

2

d

∑
i,j=1

ζk;i,j

[
∂Φi

∂u
Φj(u) + Φi(u)

∂Φj

∂u

]
,

Φ0(0) = 0, Φk(0) = 0,

∂Φ0

∂u
(0) = c0

∂Φk

∂u
(0) = ck;

(A37)
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Therefore, (A36) can be rewritten as{
φ ∈H : (∀u ∈ U ) St(φ

u
t , [[φu]]t; u) is a P?

N-local-martingale
}

=
{

φ ∈H : {Φi}d
i=0 solves (A37) for some c0, . . . , cd ∈ R

}
.

(A38)

Since the Ck(R;Rd+1) is equipped with its the topology of uniform convergence on compacts of
functions and their first two derivatives, then it follows that the right-hand side of (A38) is closed in
C2(R;Rd+1); whence it is closed in the relative topology on H ⊆ C2(R;Rd+1). Thus, Assumption (ii)
holds.

Lastly, since the loss function `, defined by

`(ϕ− φ) ,
∫ ∞

0

∫ u

0

∫
β∈Rd

e−|t|−|u|
κ−‖β‖κ

(ϕ(u− t, β)− φ(u− t, β))p dtdβdu; (A39)

is continuous on H ; then the conditions for Theorem 1 are all met. Therefore, (26) holds.
Since second-order differential operators are continuous from C2(I ×Rd ×U ) to C0(I ×Rd ×U ),

where the latter is equipped with the convergence on compact topology, then functions

Φ 7→
∣∣∣∣∣c0 −

∂Φ0

∂u
(u) +

d

∑
i=1

γiΦi(u)− 1
2

d

∑
i,j=1

ζi,jΦi(u)Φj(u)

∣∣∣∣∣
p

Φ 7→
∣∣∣∣∣ck −

∂Φk

∂u
(u) +

d

∑
i=1

γk;iΦ
i(u)− 1

2

d

∑
i,j=1

ζk;i,jΦ
i(u)Φj(u)

∣∣∣∣∣
p

,

(A40)

are continuous from C2(I ×Rd × U ) to [0, ∞). Furthermore, since Wp,k
w (I ×Rd × U ) is continuously

embedded within C2(I ×Rd ×U ) then the functions of (A40) are continuous from Wp,k
w (I ×Rd ×U )

to [0, ∞). The definition of the weight function in (19) implies that, for every φ ∈ H and every
λ ≥ 2, the integral (A39) is finite. Thus, for every λ ≥ 2, the map Φ 7→ AFλ(φ) is continuous from
Wp,k

w (I ×Rd ×U ) to [0, ∞). Furthermore, since the loss-function ` is continuous, then, for every λ ≥ 2
the function Φ 7→ `(ϕ− φ) + AFλ(φ) is continuous. Furthermore, since both ` and AFλ are bounded
below by 0 and finite-valued then so is `(ϕ− ·) + AFλ(·). Lastly, since ` is coercive then by definition,
for every r ≥ 0, there exists a compact subset Kr ⊆H satisfying

{φ ∈H : `(ϕ− φ) ≤ k} ⊆ Kr. (A41)

Therefore, the non-negativity of each AFλ implies that for every λ ≥ 2 and every r ≥ 0,{
φ ∈H : `(ϕ− φ) + AFλ(φ) ≤ k

}
⊆ {φ ∈H : `(ϕ− φ) ≤ k} ⊆ Kr; (A42)

thus (A42) implies that φ 7→ `(ϕ − ·) + AFλ(·) is coercive. Thus, for every λ ≥ 2, the function
φ 7→ `(ϕ− ·) + AFλ(·) is lower semi-continuous, bounded-below, proper, and coercive on H ; thus by
Weirestrass’s Theorem, (Focardi 2012, Theorem 2.2), it admits a minimizer on H .

Proof of Corollary 1. since argmin is invariant with respect to multiplication by a constant then for
every λ ≥ 2

argminφ∈H

∫ ∞

0

∫ u

0

∫
β∈Rd

e−|u|
κ−‖β‖κ

(ϕ(u− t, β)− φ(u− t, β))p dβdtdu +
λ

Γ(1 + 1
κ )

1
λ

λ

√∫ ∞

0
e−|u|κ |Λu(φ)|λ du

=argminφ∈H

1
1 + λ

∫ ∞

0

∫ u

0

∫
β∈Rd

e−|u|
κ−‖β‖κ

(ϕ(u− t, β)− φ(u− t, β))p dβdtdu +
λ

1+λ

Γ(1 + 1
κ )

1
λ

λ

√∫ ∞

0
e−|u|κ |Λu(φ)|λ du

=argminφ∈H (1− λ̃)
∫ ∞

0

∫ u

0

∫
β∈Rd

e−|u|
κ−‖β‖κ

(ϕ(u− t, β)− φ(u− t, β))p dβdtdu +
λ̃

Γ(1 + 1
κ )

1
λ

λ

√∫ ∞

0
e−|u|κ |Λu(φ)|λ du,
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where λ̃ , λ
1+λ . Please note that λ ∈ [2, ∞) if and only if λ̃ ∈ [ 2

3 , 1). This reparameterization yields
the conclusions.
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