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Abstract: We examine the lead-lag effect between the large and the small capitalization financial
institutions by constructing two global weekly rebalanced indices. We focus on the 10% of stocks
that “survived” all the rebalancings by remaining constituents of the indices. We sort them according
to their systemic importance using the marginal expected shortfall (MES), which measures the
individual institutions’ vulnerability over the market, the network based MES, which captures
the vulnerability of the risks generated by institutions’ interrelations, and the Bayesian network
based MES, which takes into account different network structures among institutions’ interrelations.
We also check if the lead-lag effect holds in terms of systemic risk implying systemic risk transmission
from the large to the small capitalization, concluding a mixed behavior compared to the index
returns. Additionally, we find that all the systemic risk indicators increase their magnitude during
the financial crisis.
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1. Introduction

Seeking for positive expected return and managing portfolio risk are two sides of the same coin,
accompanied by a risk-return trade-off that depends on the risk appetite of the market participants.
The early literature includes many studies that focus on the behavior of asset returns and the possibility
of significant profits due to information diffusion. One of the major financial economic concerns is to
understand how firms transmit information to markets and how markets impose this information on
stock prices. Traditional asset-pricing theories assume that information is disseminated instantaneously
in a complete and frictionless market. However, there is a considerable empirical reason to believe
that investors are facing significant frictions, and information can sometimes be slowly transmitted
to the market. Specifically, there is ample evidence pointing to a lead-lag effect on equity markets
where the stock prices of some firms show a delayed reaction to other firms’ price innovations.
Lo and MacKinlay (1990) mentioned that the forecasting ability of stock returns can be attributed to
what is known as the “stock market overreaction” hypothesis, based on the waves of optimism or
pessimism of investors creating a “momentum”. Hou (2007) primarily focused on explaining the
lead-lag effect as a sluggish reaction of certain firms to common information compared to others.
The author conditioned on the industry membership, because slow diffusion of common information
should be more prevalent among firms from the same industry, and he showed that within the same
industry, large firms lead small firms. DeMiguel et al. (2014) studied whether investors can exploit
serial dependence in stock returns to improve out-of-sample portfolio performance. Using raw returns
rather than returns in excess of the risk-free rate and a rolling-horizon procedure, they estimated a
VAR model of a small and large stock portfolio and verified a lead-lag relationship with large stock
returns leading small stock returns.
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In this study, we also restricted to a single industry, that is financial institutions. Why financial
institutions? The fact that a healthy financial system is the backbone of economic progress is addressed
by many papers1. Additionally, the waves of optimism or pessimism are not limited to one institution as
the financial system’s structure is comprised of many financial institutions with linkages between them
that may transfer and magnify financial stress during times of crisis (e.g., Billio et al. 2012). The financial
institutions’ connectivity is investigated in many works focusing on the systemic risk2, emphasizing
the importance of the financial system’s structure during systemic events and the homogeneity or
asset commonality between financial institutions3. The works in Wagner (2010) and Allen et al. (2012)
pointed out that an increasing homogeneity between financial institutions makes them vulnerable to
the same risks, as they become more similar to each other. The former Fed Chairman, Paul Volcker,
supported imposing restrictions on the risk level of large banks, on their size, their interconnections,
and activities (Volcker 2012).

The systemic risk as a function of the financial system’s architecture and the size of the financial
institutional participants is still under debate among regulators and researchers, especially that
large banks were found to have an integral role at the center of the recent financial crisis; see
Laeven et al. (2016). The authors studied the significant variation in the cross-section of systemic risk
measures of large banks during the recent financial crisis in a broad sample of countries, intending to
identify bank-specific factors, like banks size, capital, funding, and activities, that determine systemic risk
and shed light on the ongoing debate on the merits of restricting bank size, imposing capital surcharges
on large banks, and/or restricting their unstable funding and risky activities. Several theories support the
view that large and complex banks contribute to systemic risk. According to one view, which the authors
named “the unstable banking hypothesis”, large banks tend to engage in risky activities more (e.g.,
trading) and to be financed more by short-term debt, which makes them more vulnerable to generalized
liquidity shocks and market failures such as liquidity shortages and fire sales (Kashyap et al. 2002;
Shleifer and Vishny 2010; Gennaioli et al. 2013). In our view, the importance and the implications of
this “hypothesis” are not addressed much by the literature. We chose to expand the sample of financial
institutions to a broader one because the results of a shock and its dissemination have not been studied
or highlighted so far. For example, the removal of the floor of the Euro/Swiss franc exchange rate
from the Swiss National Bank was at a time when the markets were not turbulent. However, some
financial services companies have been insolvent due to poorly, for such an event, margined positions.
The questions that arise are: How much can the insolvency of small financial institutions become a
problem? Who are the “vulnerable” portfolio constituents? Can a financial institution be vulnerable, but
at the same time a leader in terms of returns?

The literature discussing measures of banks’ systemic risk is vast, and Benoit et al. (2017)
provided an excellent survey of systemic risk measures. The literature either uses only market
data, i.e, financial returns or credit default swaps (CDS) (e.g., Billio et al. 2012; Acharya et al. 2012;
Allen et al. 2012; Adrian and Brunnermeier 2016), or enriches the dataset with balance sheet data
(among others, Brownlees and Engle (2017)) to measure systemic risk. A combination of both
microeconomic and macroeconomic data was used by Calabrese and Giudici (2015), who built a
statistical model of bank distress, based on the balance sheet of a bank, and on macroeconomic
information on the country where the bank operated. Several authors discussed the systemic risk
vulnerability in the context of financial networks facing the challenge to provide not only a good fit,

1 The literature is vast. We refer to some papers that can navigate the reader who is interested in the literature of financial
intermediation and the related topics, e.g., Santomero (1984), Bhattacharya and Thakor (1993), Allen and Santomero (2001),
and Berger and Bouwman (2009).

2 The literature is vast. Among others, see Eisenberg and Noe (2001), Lehar (2005), Bartram et al. (2007), and Gofman (2017).
3 The homogeneity could be empowered by the tendency of financial institutions to hold the market portfolio as inclined by the

modern portfolio theory Markowitz (1952) and by the deregulation following the Second Banking Directive of 1989 and the
Gramm-Leach-Bliley Act (1999) (https://www.govinfo.gov/content/pkg/PLAW-106publ102/pdf/PLAW-106publ102.pdf)
in Europe and the US.
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but also a good interpretation. This may result in choosing a model that has little support from the data,
leading to predictions worse than could be obtained with other models. Additionally, the graphical
models are essentially static, photographing a situation in a given period. This assumption seems to be
restrictive in economics, in the case of variables that change over time, for example during periods
of financial stress. Giudici and Green (1999) and recently in Ahelegbey et al. (2016) proposed more
advanced, Bayesian, graphical models to overcome this limitation. Battiston et al. (2012) contributed to
the debate on the resilience of financial networks by introducing a dynamic model for the evolution
of financial robustness, showing that, in the presence of financial acceleration and persistence, the
probability of default did not decrease monotonically with diversification. As a result, the financial
network was most resilient for an intermediate level of connectivity. Diebold and Yilmaz (2014)
proposed several connectedness measures built from pieces of variance decompositions, and they
argued that they provided natural and insightful measures of connectedness. They also showed that
variance decompositions define weighted, directed networks, so that our connectedness measures are
intimately related to key measures of connectedness used in the network literature. Building on these
insights, they tracked daily time-varying connectedness of major U.S. financial institutions’ stock return
volatilities in recent years, with emphasis on the financial crisis of 2007–2008. Abedifar et al. (2017)
compared the results of three different measures to gauge systemic risk, employing an application of the
graphical network model described by Giudici and Spelta (2016) to identify the most interconnected
banking sector. Avdjiev et al. (2019), based on a tensor decomposition method that extracted an
adjacency matrix from a multi-layer network, proposed a distress measure for national banking
systems that incorporated not only banks’ CDS spreads, but also how they interacted with the rest of
the global financial system via multiple linkage types, using banks’ foreign exposures. Despite the vast
amount of literature, there is no widely accepted methodology to determine the systemically important
nodes in a network. To answer this, Battiston et al. (2012) introduced the DebtRank metric to determine
the impact of the distress of one or several financial institutions through their counterparties’ network.
Soramaki and Cook (2013) introduced SinkRank to predict the influence of disturbance caused by the
collapse of a bank and identify most affected banks in the system, and Brunnermeier and Cheridito
(2019) developed SystRiskto capture the a priori cost to society for providing tail-risk insurance
to the financial system. In addition, Elliott et al. (2014) proposed a simple model of cross-holdings
to analyze cascades in financial networks; they concluded that diversification and integration of
financial institutions had non-monotonic effects on financial contagions, whereas Amini et al. (2016)
considered the magnitude of contagion in large counterparty network, giving analytical expression for
the asymptotic fraction of defaults, emphasizing in this way the key role of contagious links via the
institutions with large connectivity and a large fraction of contagious links.

To measure systemic risk, we used the marginal expected shortfall (MES) of Acharya et al. (2017)
and its alternatives proposed by Hashem and Giudici (2016). MES is simply calculated by each firm’s
average return during the C% worst days for the market. It measures how exposed a firm is to the
aggregate tail shocks, and together with leverage, it has a significant explanatory power for which
firms contribute to a potential crisis (see, Acharya et al. 2017). Additionally and for the portfolio
allocation, we used MES because, under the assumption that the individual financial institution and
the index returns are driven by a bivariate GARCH, the MES of the financial institution is proportional
to its systematic risk, as measured by its time-varying beta (see Benoit et al. 2017). On the other
hand, there is much criticism of the systemic risk measures, and various papers have presented their
shortcomings (among others, Danielsson et al. 2016; Benoit et al. 2019; Idier et al. 2014). The discussion
of the adequacy of the systemic risk measures is out of the scope of this paper, and we chose to use
MES and its two alternatives, for three main reasons: First, the stock returns used for its calculation
are easily obtained and updated, contrary to the balance sheet data used in other measures that are
updated at a quarterly frequency. Second, MES provides a clear measure of the expected loss of
financial institutions when an extreme event occurs. Third is its additive property. The sum of MES
from all banks is equal to a measure of the total systemic risk, allowing for macroprudential tools to be
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implemented at the bank level (see Tarashev et al. 2010; Qin and Zhou 2013). The disadvantage of this
method is that it does not reflect characteristics like the size and the leverage. However, we would like
to address that MES is based on historical data like measures of risks built on the covariance matrix.
Given the uniqueness of each crisis, the assumption that the risk measures or the parameters involved
in their calculation are sufficiently invariant makes these measures “forensic” tools, as Malevergne and
Sornette (2006) pointed out. Therefore, MES complements other forensic approaches without being a
forward-looking indicator for an upcoming crisis.

This paper contributes to the size and interconnectedness debates in three ways:

First, we examine the lead-lag effect reported by Lo and MacKinlay (1990) between large and
small capitalization financial index returns. To obtain the two indexes, we divide the financial
institutions based on their market capitalization into top ones that are the largest until reaching
the top 50th percentile of market capitalization and the remaining bottom ones, repeating this
procedure on a weekly basis over the pre- and post-financial crisis period of 2007. We choose to
use market capitalization (market cap), as it is widely used to create a context for judging company
financial performance and business outlook. Larger cap tend to have more broadly diversified
business structures than smaller firms. This may give them more stable business performance
from year-to-year, with relatively less variable earnings and revenue streams. As a result, large
companies may have less volatile share prices than smaller firms in many circumstances. Large
companies generally have also tended to be the least sensitive to economic headwinds. Smaller
companies, on the other hand, tend to have a tighter business focus. They may have the potential
for more rapid revenue and profit growth, but this potential is often more variable. As a result,
small-company shares may be, on average, more volatile and more sensitive to macroeconomic
shifts than the shares of larger companies.
Second, we form a large and a small cap portfolio of the stocks that remained as index constituents
in every rebalance (named “survived” large and small cap stocks), and we test whether the
lead-lag effect is sustained within the systemic risk measures of those. For this purpose, we use a
non-directional systemic risk measure, which does not take size into account upon its construction.
This allows us to control for the contemporaneous size effect that results from the systemic risk
measure specification. Thus, we use the bivariate marginal expected shortfall (MES) systemic
risk measure of Acharya et al. (2017) to estimate the risk exposure of an individual institution to
the market.
Third, we test if the size impact holds upon taking into consideration the financial system
structure. The use of network analysis gives insightful information about important players
in terms of network connectivity. For this purpose, we use two alternatives of MES that take the
interconnectedness relations into account: the network based MES (NetMES), which extends MES
by taking multivariate dependencies into its estimation; and the Bayesian NetMES, which further
accounts for the network model uncertainty.

We further investigate the size impact at the individual institution level. Upon the estimation of
MES, NetMES, and Bayesian NetMES, we rank the institutions based on the systemic risk indicators
in descending order for the systemic risk level. We select the top six ranking institutions across the
different systemic risk measures, and we evaluate their network connectedness.

The paper is organized as follows: Section 2 describes in detail the dataset and the construction
of the large and the small capitalization indices. Section 3 states the VAR model, which explains the
lead-lag relation between the large and the small cap index returns and tests its statistical significance to
identify the origin of the predictability in index returns. Section 4 discusses the systemic risk indicators,
and Section 5 presents the results of the lead-lag relations between the systemic risk indicators. We also
give details about the systemically important financial institutions derived from the previous analysis.
Section 6 concludes.
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2. Data and Market Indices

We examined the interrelations between the large and small capitalization financial stocks by
constructing our own indices, instead of using an existing benchmark market index. An already
available index would be like a black box, as details like the constituents of the index, the weights in
each distinct point of time, and the re-balancing dates are unknown. Indeed, comparing the available
benchmark market indices, three separate causative influences can be uncovered. First, the behavior of
equity indices is partly attributable to the technical procedures of its construction. Some indices have a
small number of stocks, while others have a large number4. Some local benchmark market indices are
industrially concentrated, while others are very diversified. These diversification elements explain
part of the observed inter-market differences in price indices’ behavior, which do not correspond
to differences in the individual stocks behaviors. Second, local indices may vary in their industrial
composition and have industries that are inherently more or less volatile. We can think of a local
index as a country-specific managed portfolio with particular industry sector “bets”. In this context,
even a large portfolio can be influenced by disproportionate investments in certain industries. Third,
exchange rates play a significant role. With returns expressed in a local currency, part of a stock index’s
return volatility is induced by monetary phenomena such as changes in anticipated and actual local
inflation rates. Converting local currency returns into common currency returns (e.g., the U.S. dollar)
does not entirely eliminate the exchange rate’s influence.

The steps followed to construct our indices were: First, we collected stocks across the globe,
which according to the Global Industry Classification Standard (GICS) were classified as banks and
diversified financial institutions, excluding consumer finance, diversified financial services, insurance,
and real estate companies. The fact that our sample contained a wide range of financial institutions
and not only banks allowed us to take into account other sources of risks. In particular, our sample
contained financial institutions exposed to sovereign systemic risk (the case of Greece during the
debt crisis), to geographic risk (for example, periods of turmoil in Middle Eastern countries), and/or
to risks driven by different banking business models (e.g., banks, asset management and custody
banks, etc.). We remark that, as the GICS was applied to companies around the world and it was
annually revised, the universe was continuously up-to-date and, therefore, so were our results. Second,
we divided them into two tiers: the top 50 sequential percentile rank and the bottom 50 sequential
percentile rank, obtaining the large and the small capitalization groups, respectively. The sample was
free of survivorship, restatement, and lagging bias and contained the five largest world companies,
which accounted for 63.02% of the 2010 world banking sector and represented the fundamentals as
they were known in the market at each observation point. Then, all the stock prices were converted
into U.S. dollars, since according to Roll (1992), the best way to combine stocks in the same industry,
but traded in different currencies was to convert all first to a common currency and then construct the
industry index. Beginning from 31 December 2014, and going back to 1 January 2005, our portfolio
was weekly rebalanced, ending up with 522 different groups of large and small capitalization financial
stocks. During the coverage period, the indices covered 2590 stocks; 1361 appeared in the weekly large
cap portfolios and 2064 in the small cap portfolios, and 835 stocks moved between the two groups.
The set of large cap stocks spanned 98 countries, 3 industry groups (Banks, Capital Markets, Thrifts
& Mortgage), 6 sub-industries (Asset Management & Custody Banks, Diversified Banks, Diversified
Capital Markets, Investment Banking & Brokerage, Regional Banks, Thrifts & Mortgage Finance)5,
and 103 primary exchanges. For the small cap stocks group, there were 108 countries and 118 primary
exchanges. The number of industry and sub-industry groups was the same. Only 321 out of 1361 large

4 For example, the Deutsche Boerse AG German Stock Index, DAX, is composed of 30 selected German blue-chip stocks,
while the Russell 1000 Index is composed of the largest 1000 companies of Russell 3000, representing the universe of the
large capitalization stocks from which most active money managers typically select.

5 Appendix A Table A1 contains the definitions of the groups according to GICS obtained from https://www.msci.com/gics
and some examples.

https://www.msci.com/gics


Risks 2020, 8, 26 6 of 32

cap stocks “survived” through the years in each rebalance, having a positive weight in the indices.
On the other hand, 193 out of the 2064 small cap stocks survived. In both cases, we called these
groups as “survived”. Following the sub-industry classifications, from the 321 large cap survived
financial institutions, 39 belonged to the Asset Management & Custody Banks (AMC), 131 to the
Diversified Banks (DB), 8 to the Diversified Capital Markets (DCM), 19 to the Investment Banking
& Brokerage (IBB), 98 to the Regional Banks (RB), and 11 to the Thrifts & Mortgage Finance (TMF)
sub-industry. Accordingly, from the 193 small cap survived financial institutions, 23 belonged to the
Asset Management & Custody Banks (AMC), 18 to the Diversified Banks (DB), 32 to the Investment
Banking & Brokerage (IBB), 87 to the Regional Banks (RB), and 14 to the Thrifts & Mortgage Finance
(TMF) sub-industry. Unlike the large cap survived group, the Diversified Capital Markets sub-industry
for the small cap survived financial institutions was omitted due to missing observations.

The descriptive statistics (Table A2) of the weekly returns of the indices showed a departure from
normality. Both the skewness and the excess kurtosis statistics were significantly higher than those of
the normal distribution at all meaningful significance levels, and these suggested that both series were
negatively skewed and leptokurtic. For the large cap index returns, the maximum positive change was
13.605% in November 2008 and the maximum drop −17.78% in October 2008. For the small cap index
returns, the maximum positive change was 8.25% in May 2009 and the maximum drop −13.67% in
October 2008. For both series, the worst weekly change took place at the end of the second week of
October 2008, when UniCredit, Italy’ s second biggest bank by market capitalization, was rumored to
be insolvent and a large International Monetary Fund (IMF)-EU rescue package was needed to stabilize
the situation in Hungary, where the short-term swap and bond markets were frozen. The period with
the highest increases was in April 2009, when the G20 and Japan announced a U.S.$1-trillion and
a U.S.$150-billion economic stimulus package, respectively, against the financial crisis. In terms of
Granger causality and assuming one period of lagged returns, it was found that the null hypothesis
that the returns of the large cap index did not Granger cause the returns of the small cap index was
rejected with a test F-statistic of 6.1035, which was significant at the 1.49% level. On the other hand,
the null hypothesis that the small cap index did not Granger cause the large cap index could not be
rejected at any conventional levels of significance (see Table A2).

3. Lead-Lag Effect

The integration of world financial markets has hastened due to the economic globalization
and Internet communication spreading effortless and immediately the price movements from one to
another market. Thus, financial markets are more dependent on each other than ever before; one market
may lead another one under some circumstances, yet the relationship may be reversed under other
circumstances. Consequently, knowing how the markets are interrelated is of great importance. In the
same way, for an investor or a financial institution holding multiple assets, the dynamic relationships
between asset returns play a vital role in decision making. Furthermore, stock trades do not occur in a
synchronous manner, since the trading intensity varies from hour-to-hour and from day-to-day. This
important phenomenon known as the lead-lag relationship was first documented by Lo and MacKinlay
(1990). Assume that LCRt and SCRt are the returns of the large and the small cap index, and let rt be
a 2× 1 vector of the index returns at time t. The dynamics of rt are presumed to be governed by a
first-order Gaussian vector autoregressive model:

rt = c + Φrt−1 + εt (1)

where εt ∼ NIID(0, Ω) is the error vector, c is a 2× 1 vector of intercepts, and Φ is a 2× 2 matrix of
slopes. The VAR specification assumes that the next period’s index return is linearly dependent on
today’s with the linear dependency captured by the slope matrix. The analytic representation of the
VAR(1) defined above suggests the following regression model:
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(
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)
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Following Hou (2007), who estimated the VAR equations assuming one lag and four lags using
weekly data, we considered monthly returns of the large cap and the small cap indices, and we
estimated a VAR(1) model. The results are as follows (p-values appear in brackets below estimates):

L̂CRt = 0.0038
(0.3953)

+ 0.7033
(0.004)

LCRt−1 − 0.3277
(0.245)

SCRt−1 R̄2 = 20.40%

ŜCRt = 0.0060
(0.1091)

+ 0.4922
(0.0149)

LCRt−1 − 0.0969
(0.6787)

SCRt−1 R̄2 = 23.88%.
(3)

The above-estimated coefficients derived a number of interesting conclusions. First, we confirmed
the lead-lag reported by DeMiguel et al. (2014) and Lo and MacKinlay (1990), that the large cap index
returns led the small cap index returns, since the large cap interaction coefficient φ21 was positive and
statistically significant. Second, the autoregressive coefficient of the large cap stocks was statistically
significant and positive, and finally, in line with the Granger causality results obtained previously,
large cap index returns did not depend on past small cap index returns (φ12 = 0).

We now present some robustness checks of our lead-lag effect exercise. A rolling analysis was
used to evaluate the stability of the parameters identifying the periods where the interaction between
the two different segments of the market was more intense. Rolling analysis is also useful to study if
and how the direction of the interaction changes over time. Finally, with the rolling analysis, we could
examine the evolution of the autoregressive coefficients through time. The VAR model was estimated
using a 60 month window (close to the 2000 day estimation window of DeMiguel et al. (2014)) testing
along side the significance of the coefficients. In Figure 1, we present the time path of the estimated
autoregressive coefficients and interaction terms. The gaps indicate the periods where they were not
statistically significant. The large cap autoregressive coefficient φ11 was statistically significant for
almost the entire sample period until August 2014. The estimates of φ11 were quite variable, indicating
that the market trend in the large cap index was not constant over time. The joint conditions φ11,
φ22 > 0 were needed to test for momentum, which in our case were eliminated to test that φ11 > 0,
since φ22 was not significant in our benchmark model. It was apparent that the coefficient φ11 was
statistically positive for the entire sample period, highlighting the existence of momentum in the large
cap segment of the market. The small cap interaction term φ12 was statistically significant for the
sample periods ending in November 2013 to April 2014, implying that the large cap index returns
were affected by the lagged small cap index returns for a very short period. On the other hand,
the interaction term of the lagged large cap return index on the small cap index return was statistically
significant for almost the entire period ending in January 2010 to April 2014, with the exception of the
period March 2012–May 2012.
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Figure 1. Coefficient estimates of regression (1) plotted only when they are statistically significant.
The grey-square marked line shows the estimates of the autoregressive coefficient of the lagged large cap
index returns. The orange-cross marked line shows the estimates of the interaction term of the lagged
large cap index returns on the small cap index returns. The blue solid line presents the interaction of
the lagged small cap index returns on the large cap index returns.

4. Systemic Risk and Network Measures

The number of systemic risk definitions is vast, and the underlying idea is either based on the
market’s efficiency, and therefore the information dispersion, or on the information coming from
market data (e.g., accounting data). One prominent example of the market data based measure is the
marginal expected shortfall (MES) of Acharya et al. (2017). In our analysis, we used MES and some
variations of it.

4.1. Marginal Expected Shortfall

Consider the bivariate vector rt = (ri,t, rm,t)′ of the ith financial institution returns and of its
reference market, m, at time t. Based on the expected shortfall, which is, in other words, the tail
conditional expectation of Artzner et al. (1999), Acharya et al. (2017) introduced the marginal expected
shortfall (MES) to capture the marginal contribution of the ith institution to the risk of the financial
system, defined as:

MESi,t(C) =
∂ESm,t−1(C)

∂yi
= −E[ri|rm,t ≤ C] (4)

where yi is the weight of the ith financial institution in the total portfolio rm,t = ∑i yi,tri,t and C is
a threshold that defines the distress event examined. Institutions with higher MES are the ones
contributing the most to the market decline; hence, they are more likely to be systemically risky. Given
our global dataset, we would be able to identify global systemically important financial institutions by
estimating an institution’s capital shortfall in the case of a worldwide shock. In the aspect of the “cause
and effect”, MES is on the “cause” side, in the sense that it is calculated assuming that the market
index is already at the tail; therefore, MES captures the “effect” the later has, on the systemic risk of the
stock. The aggregate MES is interpreted as the marginal expected shortfall of the returns of a portfolio
consisting of individual banks’ equities when the market returns fall below a certain threshold level.
In our implementation of MES, we used the dynamic conditional correlation to take into account the
increase in volatility during crisis times. To this aim, we followed Brownlees and Engle (2012) and
Engle (2012), who employed a bivariate GARCH model for the demeaned returns process, based on a
capital asset pricing model (CAPM).
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Let H be the variance-covariance matrix of rt = (ri,t, rm,t)′, Brownlees and Engle (2012).
Engle (2012) proposed that:

rt = H1/2
t εt, (5)

where εt = (εm,t, ηi,t) represents a vector of zero mean innovations, and:

Ht =

(
σ2

m,t σm,t σi,t ρi,t
σm,t σi,t ρi,t σ2

i,t

)
(6)

where σm,t is the standard deviation of the reference market returns, σi,t is the standard deviation of the
financial institution’s returns, and ρi,t is its correlation with the reference market returns. To estimate
Ht, we used the dynamic conditional correlation model of Engle (2002) and Engle and Sheppard (2001).
Under the model structure described by (5) and (6)6 and the definition of MES, it is shown that:

MESi,t(C) = Et−1(ri,t|rm,t < C) = Et−1(σi,tρi,tεm,t + σi,t

√
1− ρ2

i,tηi,t|εm,t <
C

σm,t
)

MESi,t(C) = σm,tρi,tEt−1(εm,t|εm,t <
C

σm,t
) + σi,t

√
1− ρ2

i,tEt−1(ηi,t|εm,t <
C

σm,t
)7.

(7)

The last relationship states that MES is a weighted function of the tail expectation of the
standardized market residual and the tail expectation of the standardized idiosyncratic financial
institution’s residual, measuring the vulnerability of the financial institution i to the systemic risk
originated from the financial market m, given that the market returns are less than an assumed
threshold C. The intuition behind higher values of MES is that the more vulnerable the institution is
to systemic risk, the higher is its contribution to the risk of the financial system. Benoit et al. (2017)
showed that MES and the systematic risk of the financial institution are proportional, that is:

MESi,t(C) = βi,tEt−1(rm,t|rm,t < VaRm,t(C)) = βi,tESm,t(C), (8)

where βi,t = ρi,t
σi,t
σm,t

is the time-varying beta and ESm,t(C) is the expected shortfall of the market.
The functional form of MES implies that it can be aggregated, resulting in an aggregate measure,

which is interpretable as the marginal expected shortfall of the return of the portfolio of stocks
conditional on the market returns being below a certain threshold level.

4.2. Network Marginal Expected Shortfall

In highly correlated markets, such as financial systems, it could be very well the case that
the correlation between the market and the institution returns contains other effects, for example,
the correlation of the institution with other institutions or the correlation of the market with other
institution returns. To remove “spurious” effects, which may bias the relationship between the
institution and the market returns, we replaced marginal correlations with partial correlations: the
correlations between the residuals from the regression of the institution returns on all other institution
returns and the residuals from the regression of the market returns on all other institutions. In this
way, we obtained a “netted” estimate of H, not biased by spurious effects, and consequently, a “netted”
estimate of MES. We followed the definition of NetMES as introduced by Hashem and Giudici (2016)
to take interconnectedness into account in the estimation of MES, and the partial correlations, ρij.V , are
calculated by:

ρij.V = corr( εXi |XV\{j}
, εXj |XV\{i}

).

6 Furthermore, considering that the Cholesky decomposition of the variance-covariance matrix Ht is H1/2
t =(

σm,t 0

σi,tρi,t σi,t

√
1− ρ2

i,t

)
. See, Benoit et al. (2013).
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where εXi |XV\{j}
are residuals of the regression of Xi on all other variables excluding Xj and εXj |XV\{i}

are the residuals of the regression of Xj on all other variables excluding Xi. The partial correlation
coefficient allows measuring the additional contribution of variable Xj to the variability of Xi that is
not already explained by the other variables, and vice versa. In our setting, we regressed the market
index and institution i1 to the rest of institutions returns to extract the residuals εi1t and εmt, that is:{

rm,t = a1 + β2ri2,t + . . . + βnrin ,t + εi1,t

ri1,t = a1 + β2ri2,t + ldots + βnrin ,t + εm,t
(9)

and then, we obtained the partial correlation, that is ρm,i1 = corr(εm,t, εi1,t). We repeated this extraction
process for each pair of market and institution returns (rmt , rit), which are inserted in (8), to obtain the
variance-covariance matrix, H, and consequently the NetMES.

4.3. Bayesian Network Marginal Expected Shortfall

A network is comprised of a set of financial institutions, in which each institution represents
a node. Assuming a multivariate Gaussian model for the time series observations of N financial
agents, the linkages between the nodes can be described by an adjacency matrix A that has an N × N
dimension with elements ai,j, in which ai,j = 1 when two nodes are correlated and ai,j = 0 when they
are not correlated. Partial correlations can be estimated assuming that the same observations follow a
graphical Gaussian model, in which the variance-covariance matrix Σ is constrained by the conditional
independence described by a graph (see e.g., Lauritzen (1996)).

More formally, let x = (x1, ldots, xN) ∈ RN be an N-dimensional random vector distributed
according to a multivariate normal distribution NN (µ, Σ). We assume throughout that the covariance
matrix Σ is not singular. For an undirected graph, let G = (V, E), with vertex set V = {1, ldots, N}
and edge set E = V ×V, a binary matrix, with elements eij, which describe whether pairs of vertices
are (symmetrically) linked between each other (eij = 1) or not (eij = 0). If the vertices V of a graph
are put in correspondence with the random variables X1, ldots, XN , the edge set E induces conditional
independence on X via the so-called Markov properties (see, e.g., Lauritzen (1996)). More precisely,
the pairwise Markov property determined by G states that for all 1 ≤ i < j ≤ N:

eij = 0⇐⇒ Xi ⊥ Xj|XV\{i,j};

The absence of an edge between vertices i and j is equivalent to independence between the
random variables Xi and Xj, conditionally on all other variables xV\{i,j}.

In our context, all random variables are continuous, and it is assumed that X ∼ NN (0, Σ). Let the
elements of Σ−1, the inverse of the variance-covariance matrix, whose elements are indicated by {σij}.
Whittaker (2009) proved that the following equivalence also holds:

Xi ⊥ Xj|XV\{i,j} ⇐⇒ ρij.V = 0

where:

ρij.V =
−σij
√

σiiσjj

denotes the ijth partial correlation. It can also be shown that the partial correlation coefficient ρij.V is
equal to the correlation of the residuals from the regression of Xi on all other variables (excluding Xj)
with the residuals from the regression of Xj on all other variables (excluding Xi), as in the following:

ρij.V = ( εXi |XV\{j}
, εXj |XV\{i}

).

In other words, the partial correlation coefficient measures the additional contribution of variable
Xj to the variability of Xi not already explained by the others, and vice versa.
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A graphical Gaussian model is a Gaussian distribution constrained by a set of partial correlations
equal to zero, which corresponds to variables whose additional contribution is not statistically
significant. Mathematically, by means of the pairwise Markov property, given an undirected graph
G = (V, E), a graphical Gaussian model can be defined as the family of all N-variate normal
distributions NN (0, Σ) that satisfy the constraints induced by the graph on the partial correlations for
all 1 ≤ i < j ≤ N, as follows:

eij = 0⇐⇒ ρij.V = 0.

In practice, the available data are used to test which partial correlations are different from zero at
the chosen significance level threshold α. A drawback of this approach is that results are conditional
on a fixed graphical structure. To overcome this problem, we employed a Bayesian model averaging
approach, where the estimates were the averages of those coming from the different graphical structure,
each with a weight that corresponded to the Bayesian posterior probability of the corresponding graph.

For the purpose of a Bayesian application, the first task was to derive the likelihood of a graphical
network and specify an appropriate probability distribution over all graphical networks. For a given a
graph G, we considered a sample X of size n from a Gaussian probability distribution P = NN(0, Σ),
and let S be the observed variance-covariance matrix that estimates Σ. The graph G has a defined
subset of vertices A ⊂ N, in which ΣA denotes the variance-covariance matrix of the variables in
XA and has SA as the corresponding observed variance-covariance submatrix. When the graph G is
decomposable, the likelihood of the data, under the graphical Gaussian model specified by P, nicely
decomposes as follows (see, e.g., Giudici and Spelta (2016)):

p(x|Σ, G) =
∏c∈C p(xC|ΣC)

∏s∈S p(xS|ΣS)

where C and S respectively denote the set of cliques and separators of the graph G, and:

P(xC|ΣC) = (2π)−
n∗|C|

2 |ΣC|−n/2exp[−1/2tr
(

SC (ΣC)
−1
)
]

and similarly for P(xS|ΣS). A convenient prior for the parameters of the above likelihood is the hyper
inverse Wishart distribution. It can be obtained from a collection of clique specific marginal inverse
Wishart distributions as follows:

l(Σ) = ∏c∈C l(ΣC)

∏s∈S l(ΣS)

where l(ΣC) is the density of an inverse Wishart distribution, with hyper-parameters TC
and α, and similarly for l(ΣS). For the definition of the hyper-parameters, here we follow
Giudici and Spelta (2016), and let TC and TS be the sub-matrices of a larger matrix T0 of dimension
N × N, obtained in correspondence with the two complete sets of vertices C and S, assuming that
α > N. To complete the prior specification, for P(G), we consider a uniform prior over all possible
graphical structures. Dawid and Lauritzen (1993) showed that, under the previous assumptions, the
posterior distribution of the variance-covariance matrix Σ is a hyper Wishart distribution with α + N
degrees of freedom and a scale matrix given by:

Tn = T0 + Sn

where Sn is the sample variance-covariance matrix. This result can be used for quantitative learning
on the unknown parameters, for a given graphical structure. In addition, Dawid and Lauritzen (1993)
showed that the proposed prior distribution can be used to integrate the likelihood with respect to the
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unknown random parameters, obtaining the so-called marginal likelihood of a graph, which is the
main metric for structural learning. Such a marginal likelihood is equal to:

P (x|G) =
∏c∈C p(xC)

∏s∈S p(xS)

in which:

p (xC) = (2π)−
n∗|C|

2
k (|C|, α + n)

k (|C|, α)

det (T0)
α/2

det (Tn)
(α+n)/2

where k(·) is the multivariate gamma function, given by:

kp (a) = π
p(p−1)

4 ∏
p
j=1Γ

(
a +

1− j
2

)
Assume that we have several possible graphs, say n(G), and that they are equally likely a prior,

so that the probability of P(G) is:

P(G) =
1
|G|

By Bayes rule, the posterior probability of a graph is given by:

P (G|x) ∝ P (x|G) P (G)

and therefore, since we assume a uniform prior over the graph structures, maximizing the posterior
probability is equivalent to maximizing the marginal likelihood. For graphical model selection
purposes, we searched in the space of all possible graphs for the structure such that:

G∗ = arg max
G

P (G|x) ∝ arg max
G

P (x|G) .

A Bayesian model averaging approach does not force conditioning inferences on the (best) model
chosen. If we assume that the network structure G is random and we assign a prior distribution on it,
we derive inference on unknown parameters as model averages to all possible graphical structures,
with weights that correspond to the posterior probabilities of each network. This derives from the
application of Bayes’ theorem, as follows:

P(Σ|X) = P(Σ|x, G)P(G|x).

Note that, in many real problems, the number of possible graphical structures could be very large,
and we may need to restrict the number of models to be averaged. This can be done efficiently, for
example, following a simulation based procedure for model search, such as Markov chain Monte Carlo
(MCMC) sampling. In our context, given an initial graph, the algorithm samples a new graph using
a proposal distribution. To guarantee irreducibility of the Markov chain, we followed Giudici and
Spelta (2016) to test whether the proposed graph was decomposable. The newly sampled graph was
then compared with the old graph, calculating the ratio between the two marginal likelihoods; if the
ratio was greater than a predetermined threshold (acceptance probability), the proposal was accepted,
otherwise, it was rejected. The algorithm continued until practical convergence was reached.

Following Hashem and Giudici (2016), we average NetMES as follows:

E(MES|x) = ∑
g

E(MES|x, g)P(g|x), (10)

where x represents the observed data evidence and g a specific network model. The estimated
E(MES|X) is referred to as a Bayesian Network based marginal expected shortfall measure
(Bayesian NetMES).
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4.4. Centrality Measures

Centrality measures address the question of who is the most important in the network. There
are many answers to this question, depending on what we mean by importance. There are a vast
number of different centrality measures. We used the most popular ones, like closeness, node degree,
eigenvector, and betweenness. Closeness calculates the inverse of the fairness, or the inverse of the sum
of shortest paths between a node and all other nodes, and thus, it allows detecting nodes that are best
placed to influence the entire network quickly and that represent influence or information broadcasters.
Node degree centrality assigns the node importance score based on the summation of the number of
links a node has with others. Eigenvector centrality can identify nodes that possess influence over
the whole network, not just those directly connected to it; in other words, eigenvector centrality is a
measure of the overall influence extent of a specific node on others in a network, this measure assigns
scores to nodes based on the concept that connections to high-score nodes contribute more to the score
of the specified node than equal connections to low-score nodes. Betweenness centrality measures
the number of times a node lies on the shortest path between other nodes, or the number of times
a node acts as a bridge along the shortest path between others. It was introduced as a measure for
quantifying the control of a human of the communication between other humans in a social network
by Linton Freeman. Intuitively, betweenness measures a node’s influence on the information flow
circulating through the social network, under the assumption that the flow follows shortest paths.

5. Findings and Discussion

We examined the lead-lag relationship of the survived financial institutions systemic risk measures
by estimating the regression (1) using a two year rolling window. Figure 2 shows the evolution of the
interaction terms φ12 and φ21 identifying the periods where the large cap survived financial institutions
led the small cap8 in terms of systemic risk, and vice versa. It is notable that the interaction terms did
not show a pattern like that of the lead-lag behavior of the financial returns in Figure 1. The MES of
the small cap led the MES of the large cap from 24 August 2007 until 12 September 2009. Moreover, the
negative sign of the φ21 implied a decrease of the MES of the large cap when an increase of the MES of
small cap occurred. It is also worth noticing that the magnitude of φ12 was 100 times larger than φ21.
The MES behavior was interpreted with the crisis effect on the stock market returns behavior. Sandoval
and Franca (2012) showed that an increase in market volatility led to an increase in the correlation
between market assets, indicating the increase in the level of uniform behavior of market participants
during crisis times. This being said, and knowing that MES estimation was not size dependent,
nevertheless, it captured the increase in the small cap volatility during crisis times, which may be
interpreted in terms of both capitalization and liquidity availability. Terraza (2015) showed that the
capital adequacy degree declined during 2008, but there was an increase in capitalization and liquidity
after that except for small banks in 2011 and 2012. In addition, Ding and Sickles (2018) pointed out
a positive relation between capital and risk adjustments of large banks that held low capital buffers;
however, they pointed out a negative relation between capital and risk adjustments for small banks
with low capital buffers. The decrease of the large cap MES upon the increase in MES of the small cap
along with the larger magnitude of the small cap MES could be foreseen as a positive improvement in
large cap returns compared to small ones, which may be viewed as a change in the market expectations
for large cap risks in relation to governmental bailout plans. Brewer and Klingenhagen (2010) showed
that large banks’ stock prices that were classified as too big to fail (TBTF) performed better in the short
run than smaller banks in the USA as a reaction to the U.S. government bailout programs.

The evolution of NetMES showed that the small-large lead-lag relationship was present from
19 September 2008, until 11 November 2008. The coefficient φ21 was mostly negative as in the case

8 For brevity, we use the terms “large cap” and “small cap” instead of the terms “large cap survived financial institutions”
and “small cap survived financial institutions”.
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of MES. Again, the magnitude of the interaction term φ12 was quite larger than the φ21. The results
of NetMES were inline with MES, but were limited to a shorter time span that was located within
the heart of the global financial crisis of 2008. Originally, MES was estimated using correlations that
captured both direct and indirect relationships; mainly as it provided the degree of association between
the financial institution and the specified index without controlling for the effects from other financial
institutions, while NetMES was estimated using partial correlations that considered only the direct
relationships; as the effect of the set of other financial institutions was removed. Therefore, NetMES
excluded the impact from other institutions upon the computation of the co-movements between the
selected institution and the market index. This estimation method of NetMES imposed sparsity on the
financial network structure whenever the partial correlation coefficient was insignificant, indicating that
the corresponding financial institution did not directly contaminate others. The lead-lag relationship
was also confirmed by the Bayesian NetMES between the large and the small cap financial institutions
from 10 October 2008, until 6 March 2009. From 3 December 2010–25 January 2013, the lead-lag
relationship was supported again. The difference in Bayesian NetMES in terms of the longer periods
of the lead-lag results referred to the model specification, which represented an averaging mechanism
over the systemic risk measure. The Bayesian model allowed us to examine the network structure
while tacking into account the model uncertainty.

Figure 2. Interaction terms φ12 (orange-cross marked line) and φ21 (blue solid line) (plotted only
when they are statistically significant) estimates of regression (1) assuming as the dependent variable
a systemic risk indicator. Beginning from the top-left and moving to the right, the figures present
interaction terms between the marginal expected shortfall (MES), the network based MES (NetMES),
and the Bayesian NetMES of the large and small cap survived financial institutions. In each graph,
the left axis is φ12 (orange-cross marked), and in the right is φ21 (blue solid).

To reveal additional features of the evolution of the systemic risk level of financial institutions,
we continued by examining the sub-industries. A careful examination of Figure 3 reveals that all the
systemic risk indicators sharply increased their magnitude in 2009. In particular, for the large cap
survived financial institutions, the MES showed that DB and TMF experienced the highest increase.
The NetMES and Bayesian NetMES showed that except the aforementioned sub-industries, also DCM
and IBB increased sharply. Furthermore, a notable feature was the negative signs of MES in the case of
the AMC, DB, RB, and TMF. This suggested that the financial sub-industries responded negatively
to the downfall of the market. Laopodis (2016) pointed out the presence of a significant explanatory
power from industry to stock market returns, indicating the consistent informational leadership from
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the financial industry to other industries. When NetMES and the Bayesian NetMES were considered,
the negative values were present mainly for AMC and TMF. Additionally, MES for DB and TMF started
to increase again in 2012 (Greek default) and in 2013 reached another peak. In the case of NetMES and
Bayesian NetMES, there was a peak of the systemic risk measures for the IBB sub-industry.

Figure 3. Average MES, NetMES, and Bayesian NetMES per sub-industry of survived financial
institutions. In the left (right) figures appear the evolution of the large (small) cap survived financial
institutions, denoted with “L” (“S”) before the name of the sub-industry. On the right axis (when it
exists), MES of large cap Diversified Banks DB (LDB), NetMES, and Bayesian of large cap Thrifts &
Mortgage Finance (LTMF). AMC, Asset Management & Custody Banks; IBB, Investment Banking &
Brokerage; DCM, Diversified Capital Markets; RB, Regional Banks.

For the small cap, the systemic risk measures reached their highs in late 2008–early 2009.
The sub-industries systemic risk change in magnitude could be interpreted in relation to the level of
the financial leverage ratio9. It was shown that TMF was the one that had the highest leverage increase
during the crisis period, followed by DB. It is noticeable that the magnitude change of NetMES and
Bayesian NetMES was affected by the magnitude change of leverage. This indicated that the change
magnitude within the netted financial risk network was leverage driven, which captured the specificity
of the subprime mortgage crisis. This feature infused the debate on the MES rational concept, in which
the MES was argued to be close to the too interconnected to fail (TITF) logic rather than the too big to

9 See Table A3. We estimated the financial leverage as the ratio of the sum of short and long term debt and market capitalization,
divided by market capitalization.
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fail (TBTF) one. This logical relation could also be noticed from the sub-industries market capitalization
(see Table A3) showing that large DB had the highest total market capitalization for the overall and the
crisis periods, and the highest change in magnitude during the crisis period, while the change was
a decrease for TMF, consistent with its higher leverage increase relative to its smaller capitalization.
Several theories support the view that large and complex banks contribute to systemic risk. In the
TBTF hypothesis, the regulators were reluctant to close or unwind large and complex banks, resulting
in moral hazard behavior. As a result, the leading banks took on excessive risks in the expectation of
government bailouts (Farhi and Tirole 2012).

Subsequent to our initial approach, we will tackle the issue in terms of the individual institution’s
system risk importance capturing their vulnerability to a market-wide systemic shock10. The rankings
were based on the MES, the NetMES, and the Bayesian NetMES, respectively. We compared the three
rankings by implementing a Kolmogorov–Smirnov test that compared their corresponding cumulative
distributions. For the large cap, we rejected at 5% the null hypotheses in favor of the alternative that
the MES of the large cap institutions was larger than the NetMES. The null hypothesis was not rejected
when we compared the distributions of NetMES and the Bayesian NetMES. For the small cap, the MES
and NetMES were found again significantly different. The null hypothesis was not rejected for NetMES
and Bayesian NetMES, and MES and Bayesian NetMES. Additionally, we examined the autocorrelation
structure of the series. Kendall’s τ between the spot and the lagged value of the systemic risk measures
equaled 0.7488 (MES), 0.6005 (NetMES), and 0.5631 (Bayesian NetMES) for the large cap survived
financial institutions and 0.8856 (MES), 0.6566 (NetMES), and 0.6611 (Bayesian NetMES), indicating
strong autocorrelation of the MES values, and consequently, the more reluctant to changes rankings
compared to NetMES and Bayesian NetMES values.

Next, we followed Benoit et al. (2013), who used the top ten financial institutions by systemic risk
importance, which accounted for 10% of their sample, and we proceeded with our analysis using the top
six the financial institutions, which accounted for 12.84% of the total number of the survived financial
institutions11. For each sub-period, the institutions and the countries are provided in a dot joint
ticker country column (Ticker.Country). Tables 1 and 2 summarize the financial institutions’ systemic
importance assumed by at least one of the systemic risk measures examined (Analytically, the top
six ranked institutions per sub-industry are provided in the Tables A.2–A.7 of (Arakelian et al. 2019)).
From the tables above, if we focus on the financial institutions retained systemically important by all
the measures, we obtained a list of companies that was consistent with what happened to them:

In the United States, Legg Mason Inc. (LM.US) was one of the institutional investors that bore
a huge loss when Bear Stearns collapsed, as the group held 11% of Bear Stearns, making the
group the bank’s biggest shareholder. Legg Mason was also ranked among the most important
institutions by Acharya et al. (2017), as well as Goldman Sachs, TD Ameritrade, and New York
Community Bancorp for the period June 2006–June 2007 that the authors examined.
In France, two prominent French financial institutions were among the most massively hit by
the fear of contingent liabilities: Natixis, France’s fourth largest bank, also assumed systemically
important, had announced a €1.2 billion write-down of exposure to bad U.S. mortgage debt.
Natixis, a publicly-listed corporate and investment banking firm jointly controlled by Caisses d’
Epargne (the French Savings Banks group) and Banques Populaires, and Dexia, a French-Belgian
bank specializing in the financing of municipalities. In both cases, the problems were related to
their investments in bond insurers in the United States: CDC IXIS Financial Guaranty (CIFG) in
the case of Natixis and Financial Security Assurance (FSA) in the case of Dexia12.

10 We acknowledge the fact that the systemic risk measures did not identify simultaneously a financial institution as a top SIFI,
as it was addressed by some papers in the literature, e.g., Danielsson et al. (2016), Benoit et al. (2013).

11 We selected the top six financial institutions from both the large and the small cap groups.
12 The state coordinated restructuring of Natixis precipitated the merger of its two parent groups to form the newly branded

B.P.C.E. group in February 2009. In August 2009, the French investment bank Natixis said that its partially state-owned parent
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In Germany, an investment-banking arm of Deutsche Bank deeply involved in toxic securities
was found systemic by all measures. By some estimates, German banks at the outset of the crisis
had an average ratio of debt to net worth of 52 to one compared with 12 to one in the U.S. Indeed,
the U.S. Federal Reserve helped Deutsche Bank with $290 billion in mortgage securities.
In South Africa, Investec Bank was systemically important by all the measures. Indeed, the
British government was forced to act by injecting liquidity into financial markets through various
schemes including a 50 billion Credit Guarantee Scheme in October 2008, in which Investec Bank
was eligible to participate.

Subsequent to our initial objective was to investigate the network structure among the top six
systemically important institutions per sub-industry. The network investigation aimed at modeling
the interlinkages between the large and the small cap, revealing the channels through which shocks
could propagate more widely in the financial system. Figures 4–6 represent the yearly correlation
networks for MES, NetMES, and Bayesian NetMES vectors of the top six financial institutions per
sub-industry based on eigenvector centrality, providing a ranking of the nodes from the most to the
least systemically important (the details of the graphs, as well as, the ranking provided by using
other centrality measures are given summarized into centrality measures in Tables A4–A6). The large
cap financial institutions are represented by the dark blue nodes, and the small cap by the light blue
nodes. The link between any two nodes of financial institutions represents the presence of a significant
correlation coefficient between them. The main result was the strong clustering, both within the
institution of the same market capitalization and between them. There were very few cases where an
institution was not connected to the system, and digging more deeply could not identify any specific
feature for them. For example, the country of domicile did not play any role, as the institutions that
were not connected were based both in countries with many institutions in our sample, like the USA,
or few, like Malaysia. Using the centrality measures in Tables A4–A6, notice that the MES and Bayesian
NetMES had a higher node degree during the global financial crisis of 2008 and than in 2012 during the
European sovereign debt crisis, but NetMES had a higher increase in 2007 and 2010. This fact implied
that the measures were complementary to each other and were responsive in identifying the presence
of a crisis period. However, MES and Bayesian NetMES showed higher density during the crisis and
upon the crisis materialization, while NetMES showed higher density during the early crisis stage.
From the MES correlation network, we note that closeness, node degree, and betweenness centrality
were mostly dominated by large cap, while eigenvector centrality identified SDBbriefly during 2008.
NetMES and Bayesian NetMES exhibited a similar behavior for closeness and node degree centrality
of the LAMCand LDB, but showed an interplay between SRBand several large cap sub-industries
for eigenvector and betweenness centrality. Bayesian NetMES exhibited similar behavior to NetMES
within the different centrality measures. The networks’ summary in terms of closeness indicated that
large cap institutions could influence the entire network more quickly than small cap, and node degree
indicated that large cap were very connected to the system, implying an informational advantage
and most likely more cross-sectional positions with the other network participants than was the case
for small cap institutions. Eigenvector centrality showed that the higher influence on the network in
terms of risk during crisis times, and especially during 2008, cane from small cap rather than large cap.
Betweenness centrality showed that small cap had the ability to influence the whole network during
crisis times, and not just those connected to it, due to the behavior of the small cap as a connection
bridge between the different network participants. It was obvious that both eigenvector centrality

company would guarantee about €35 billion in toxic assets on its books, in what amounted to a government-engineered
reinforcement of its troubled finances. B.P.C.E., which held 70% of Natixis, guaranteed the loans, equivalent to $50 billion, in
exchange for fees of €48 million a year. The parent took on the risk for 85% of the assets, with Natixis holding the remaining
15%. Natixis reported a second-quarter loss of 883 million euros. While that was down from a loss of more than €1 billion for
the same period last year, it marked the fifth straight losing quarter for Natixis, which continued to write down its monoline
bond insurance portfolio, asset-backed securities, and collateralized debt obligations underpinned by subprime mortgages.
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and betweenness reflected the difference in the network during turmoil times. Minoiu and Reyes
(2013) showed that a change in the network interconnectedness of a country would signify a higher
probability of a banking crisis that may lead to the instability of its financial system. In addition,
Chowdhury et al. (2019) indicated the higher connectivity of the financial network during crisis periods.
Furthermore, Heiberger (2014) showed that the stock network stability changed during crisis times as
it changed its composition to become more tightened with a more centralized topology.

Table 1. Top six systemically important large cap survived financial institutions. In the fourth column,
“3”: systemically important by all three systemic risk measures (MES, NetMES, Bayesian NetMES); “2”
systemically important by two of the three systemic risk measures; “1”: systemically important by one
of the three systemic risk measures.

Financial Institution Sub-Industry Country

Legg Mason Inc. AMC UNITED STATES 3
Jafco Co Ltd. AMC JAPAN 3
Santander Chile Holding SA AMC CHILE 3
VP Bank AG AMC LIECHTENSTEIN 3
Vontobel Holding AG AMC SWITZERLAND 3
Alpha Bank AE DB GREECE 3
Hellenic Bank PCL DB CYPRUS 3
Credicorp Ltd. DB PERU 3
Natixis SA DCM FRANCE 3
China Everbright Ltd. DCM HONG KONG 3
Investec Ltd. DCM SOUTH AFRICA 3
Macquarie Group Ltd. DCM AUSTRALIA 3
Mirae Asset Daewoo Co Ltd. DCM SOUTH KOREA 3
Deutsche Bank AG DCM GERMANY 3
Tokai Tokyo Financial Holdings Inc. IBB JAPAN 3
Goldman Sachs Group Inc/The, TD Ameritrade Holding Corp IBB UNITED STATES 3
Daiwa Securities Group Inc. IBB JAPAN 3
Caisse Regionale de Credit Agricole Mutuel de Paris et d’Ile-de-France RB FRANCE 3
Paragon Banking Group PLC TMF GREAT BRITAIN 3
MGIC Investment Corp, TrustCo Bank Corp NY, New York Community
Bancorp Inc, Capitol Federal Financial Inc.

TMF UNITED STATES 3

MLP SE AMC GERMANY 2
Allied Irish Banks PLC DB IRELAND 2
China Banking Corp DB PHILIPPINES 2
Swedbank AB DB SWEDEN 2
Investment Technology Group Inc. IBB UNITED STATES 2
Capital Securities Corp IBB TAIWAN 2
Caisse Regionale de Credit Agricole Mutuel Alpes Provence RB FRANCE 2
Oldenburgische Landesbank AG RB GERMANY 2
Public Financial Holdings Ltd. RB HONG KONG 2
Daishi Bank Ltd/The, Nishi-Nippon City Bank Ltd/The RB JAPAN 2
Federal Home Loan Mortgage Corp TMF UNITED STATES 2
Federated Investors Inc. AMC UNITED STATES 2
Rathbone Brothers PLC AMC GREAT BRITAIN 2
RHB Capital Bhd DB MALAYSIA 2
Bank Maybank Indonesia Tbk PT DB INDONESIA 2
CIMB Group Holdings Bhd DB MALAYSIA 2
Bank Cler AG DB SWITZERLAND 2
KB Securities Co Ltd. IBB SOUTH KOREA 2
Minato Bank Ltd/The RB JAPAN 2
Popular Inc. RB PUERTO RICO 2
First Midwest Bancorp Inc/IL, Synovus Financial Corp, UMB Financial
Corp, 1st Source Corp

RB UNITED STATES 2

Bank of America Corp DB UNITED STATES 1
Scotiabank Peru SAA DB PERU 1
TMB Bank PCL DB THAILAND 1
Mediobanca Banca di Credito Finanziario SpA DB ITALY 1
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Table 1. Cont.

Financial Institution Sub-Industry Country

AFFIN Holdings Bhd DB MALAYSIA 1
BMCE Bank DB MOROCCO 1
Astoria Financial Corp TMF UNITED STATES 1
Aberdeen Asset Management PLC AMC GREAT BRITAIN 1
KBC Group NV DB BELGIUM 1
State Bank of India DB INDIA 1
BGC Partners Inc. IBB UNITED STATES 1
Marusan Securities Co Ltd. IBB JAPAN 1
BB&T Corp RB UNITED STATES 1
Piraeus Bank SA DB GREECE 1

Table 2. Top six systemically important small cap survived financial institutions. In the fourth column,
“3”: systemically important by all the three systemic risk measures (MES, NetMES, Bayesian NetMES);
“2”: systemically important by two of the three systemic risk measures; “1”: systemically important by
one of the three systemic risk measures.

Financial Institution Sub-Industry Country

180 Degree Capital Corp AMC UNITED STATES 3
Effecten-Spiegel AG, Deutsche Beteiligungs AG AMC GERMANY 3
FDG Kinetic Ltd. AMC HONG KONG 3
GSD Holding AS DB TURKEY 3
Bank Ochrony Srodowiska SA DB POLAND 3
Alandsbanken Abp DB FINLAND 3
Barclays Bank of Botswana Ltd. DB BOTSWANA 3
Oppenheimer Holdings Inc. IBB UNITED STATES 3
Banca Profilo SpA IBB ITALY 3
Charles Stanley Group PLC IBB GREAT BRITAIN 3
Toyo Securities Co Ltd. IBB JAPAN 3
Banestes SA Banco do Estado do Espirito Santo RB BRAZIL 3
Seacoast Banking Corp of Florida, FNCB Bancorp Inc. RB UNITED STATES 3
Locindus SA TMF FRANCE 3
Federal Agricultural Mortgage Corp, NASB Financial Inc, OceanFirst Financial
Corp, Provident Financial Holdings Inc.

TMF UNITED STATES 3

Street Capital Group Inc. TMF CANADA 3
Bear State Financial Inc. TMF UNITED STATES 3
Peregrine Holdings Ltd. AMC SOUTH AFRICA 2
Sparebanken Vest DB NORWAY 2
Asia Plus Group Holdings PCL IBB THAILAND 2
First United Corp, CommunityOne Bancorp RB UNITED STATES 2
Atinum Investment Co Ltd. AMC SOUTH KOREA 2
National Bank of Kuwait-Egypt SAE DB EGYPT 2
Lan & Spar Bank DB DENMARK 2
Berliner Effektengesellschaft AG IBB GERMANY 2
GronlandsBANKEN A/S RB GREENLAND 2
Capital City Bank Group Inc, Baylake Corp RB UNITED STATES 2
SHK Hong Kong Industries Ltd. AMC HONG KONG 1
KAS Bank NV AMC NETHERLANDS 1
Airesis SA AMC SWITZERLAND 1
Norvestia Oyj AMC FINLAND 1
Sparebanken Ost DB NORWAY 1
Takagi Securities Co Ltd. IBB JAPAN 1
Cie Financiere Tradition SA IBB SWITZERLAND 1
South China Financial Holdings Ltd. IBB HONG KONG 1
Bryn Mawr Bank Corp, Cascade Bancorp, Commercial National Financial
Corp/PA, Peoples Financial Corp/MS, C&F Financial Corp, Independent Bank
Corp/MI, First Community Bancshares Inc/VA, First South Bancorp Inc/NC,
Financial Institutions Inc, Heritage Commerce Corp, HopFed Bancorp Inc,
MainSource Financial Group Inc, Pacific Continental Corp, Sun Bancorp Inc/NJ

RB UNITED STATES 1

Tsukuba Bank Ltd. RB JAPAN 1
Sachsenmilch AG AMC GERMANY 1
Peapack Gladstone Financial Corp RB UNITED STATES 1
First US Bancshares Inc. UNITED STATES 1
KAF-Seagroatt & Campbell Bhd IBB MALAYSIA 1
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(a) 2005 (b) 2006

(c) 2007 (d) 2008

(e) 2009 (f) 2010

(g) 2011 (h) 2012

(i) 2013 (j) 2014
Figure 4. Yearly correlation networks for MES vectors of the top six MES financial institutions per
sub-industry based on eigenvector centrality. The large cap financial institutions are in dark blue
and the small cap financial institutions in light blue. The link between any two nodes of financial
institutions represents the presence of a significant correlation coefficient between them. The graphs
are summarized into the centrality measures provided in Table A4. The centrality measures rank the
financial institutions on a yearly basis from the most to the least systemically important.
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(a) 2005 (b) 2006
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(g) 2011 (h) 2012

(i) 2013 (j) 2014
Figure 5. Yearly correlation networks for NetMES vectors of the top six NetMES financial institutions
per sub-industry based on eigenvector centrality. The large cap financial institutions are in dark blue
and the small cap financial institutions in light blue. The link between any two nodes of financial
institutions represents the presence of a significant correlation coefficient between them. The graphs
are summarized into the centrality measures provided in Table A5. The centrality measures rank the
financial institutions on yearly basis from the most to the least systemically important.
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(a) 2005 (b) 2006
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(g) 2011 (h) 2012

(i) 2013 (j) 2014
Figure 6. Yearly correlation networks for Bayesian NetMES vectors of the top six Bayesian NetMES
financial institutions per sub-industry based on eigenvector centrality. The large cap financial
institutions are in dark blue and the small cap financial institutions in light blue. The link between any
two nodes of financial institutions represents the presence of a significant correlation coefficient
between them. The graphs are summarized into the centrality measures provided in Table A6.
The centrality measures rank the financial institutions on yearly basis from the most to the least
systemically important.
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6. Conclusions

In this work, we investigated the lead-lag relation between the large and the small cap indices
that were rebalanced on a weekly basis, in terms of returns and in terms of systemic risk. Constructing
a large and a small cap index of financial institutions, we found that the large cap index returns almost
always led the small cap index returns. Kinnunen (2017) similarly showed that the returns of the large
portfolio led the returns of the small one with a variation in the effect over time in relation to the change
in the variance of the large-firm portfolio returns and indicated the overly restrictive traditional vector
autoregressive analysis with constant cross-autoregressive coefficients upon analyzing the lead-lag
relation in stock markets.

We also examined if the lead-lag relation was sustained when using systemic risk indicators for
the large and the small cap financial institutions that remained constituents of the indices in every
weekly rebalancing. To estimate the risk exposure of an individual institutions to the market, we used
the standard bivariate based marginal expected shortfall (MES) systemic risk measure, as well as two
alternatives: the network based MES (NetMES) that extends MES taking multivariate dependencies
into account; and the Bayesian NetMES, which further accounts for network model uncertainty.
Those market based risk measures allowed modifying expectations regarding the risk effect from
holding a specific firm’s returns within a portfolio on a real-time basis. Upon the estimation of the
MES, NetMES, and Bayesian NetMES, we derived conclusions on which sub-industry and period led
to the highest systemic risk. Our main findings implied that the risk measures reflected a change in the
lead-lag relation during a financial downturn, in which the small cap led the large cap, which diverted
from our findings in terms of returns. This implied that MES, NetMES, and Bayesian NetMES captured
the change in the correlation between tranquil and turmoil market conditions, in addition to the lower
capital buffers that small cap institutions possessed, making them exhibit higher volatility along with
a herding behavior during a financial downturn relative to the behavior of larger cap institutions that
were subject to receive governmental bailouts based on their size. Those results raised a question
regarding the benefits of portfolio diversification during crisis times. Likewise, Chiang et al. (2007)
showed a change in the correlation between two successive phases of the Asian crisis, with the first
phase being characterized by an increase in the correlation as an implication of contagion, while the
second implied the herding effect through the continuation of a high correlation that was accompanied
by a change in variance during crisis times. Sandoval and Franca (2012) pointed out the presence of a
link between the higher market volatility and stronger correlations, implying the herding behavior of
market participants during a market crash, in addition to a common global comovements among the
market indices that were characterized by non-normal correlation. Caporale et al. (2005) suggested the
inefficiency of portfolio diversification during a financial crisis and the possible effect that resulted
from bailouts.

We also identified the systemic importance of financial institutions by examining sub-industries.
We found that for the large cap survived financial institutions, MES indicated higher importance
of DB and TMF especially during the 2012-2013 European sovereign debt crisis, but NetMES and
Bayesian NetMES indicated a higher importance of IBB. For the small cap, TMF and DB had higher
importance during 2008 and early 2009. We also found that the magnitude change in the netted
measures of NetMES and Bayesian NetMES was driven by leverage. On the other hand, large DB had
the highest market capitalization and the highest change in market during the crisis period in market
capitalization, which supported the point that large and complex banks’ structure would contribute to
systemic risk.
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Next, we followed up by investigating the top six systemically important financial institutions
per sub-industry. We found that the MES of large cap firms was significantly larger than NetMES and
Bayesian NetMES, but we did not find a significant difference between the three measures for the small
cap firms. Digging more into financial institutions’ features, it appeared that large cap received financial
aid due to their huge losses during the financial crisis of 2007. Additionally, we studied the evolution
of the financial institutions network linkages as they changed during crisis times. The networks’
summary indicated that large cap institutions were very connected to the system and could influence
the entire network more quickly than small cap. In addition, we found that the higher influence on the
network in terms of risk came from small cap that had the ability to influence the whole network during
crisis times, and not just those connected to it, due to the behavior of the small cap as a connection
bridge between the different network participants. Our findings suggested the existence of contagion
not only from large cap institutions, but also from small cap institutions that acted in a herding manner
during crisis periods. Xu et al. (2019) showed that the financial system interconnectedness level peaked
during market downturns and could not be ignored in estimating the systemic risk of individual
institutions.

There are numerous avenues for future work. First, we would like to study the behavior of
the network, the interlinkages, and channels of risk transmission using different portfolio strategies.
Second, we would like to examine the importance of institutions’ corporate governance, as the
market capitalization is not a factor that discriminates the institutions towards their behavior to major
market events.
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Appendix A

Table A1. Global Industry Classification Standard (GICS) definitions.

Sector: Financials. Industry Group: Banks

Industry Sub-industry

Banks Diversified Banks (abbrev. DB) (e.g., Citigroup Inc. (U.S.), Bank of America Corp (U.S.),
JPMorgan Chase & Co (U.S.), Wells Fargo & Co (U.S.), Banco Santander SA (Spain))
Large, geographically diverse banks with a national footprint whose revenues are derived
primarily from conventional banking operations, have significant business activity in retail
banking and small and medium corporate lending, and provide a diverse range of financial
services. Excludes banks classified in the Regional Banks and Thrifts & Mortgage Finance
sub-industries. Also excludes investment banks classified in the Investment Banking &
Brokerage Sub-industry.
Regional Banks (abbrev. RB) (e.g., SunTrust Banks Inc. (U.S.), BB&T Corp (U.S.), PNC
Financial Services Group Inc/The (U.S.), Regions Financial Corp (U.S.), Fifth Third Bancorp
(U.S.), M&T Bank Corp (U.S.))
Commercial banks whose businesses are derived primarily from conventional banking
operations and have significant business activity in retail banking and small and medium
corporate lending. Regional banks tend to operate in limited geographic regions. Excludes
companies classified in the Diversified Banks and Thrifts & Mortgage Banks sub-industries.
Also excludes investment banks classified in the Investment Banking & Brokerage
sub-industry.

Thrifts &
Mortgage
Finance

Thrifts & Mortgage Finance (abbrev. TMF) (e.g., Federal National Mortgage Association
(U.S.), Federal Home Loan Mortgage Corp (U.S.), Housing Development Finance Corp Ltd.
(India), MGIC Investment Corp (U.S.), New York Community Bancorp Inc. (U.S.))
Financial institutions providing mortgage and mortgage related services. These include
financial institutions whose assets are primarily mortgage related, savings & loans,
mortgage lending institutions, building societies and companies providing insurance to
mortgage banks.

Capital
Markets

Asset Management & Custody Banks (abbrev. AMC) (e.g., Bank of New York Mellon
Corp/The (U.S.) Franklin Resources Inc. (U.S.), State Street Corp (U.S.), Brookfield Asset
Management Inc. (Canada), T Rowe Price Group Inc. (U.S.) Man Group PLC (U.K.))
Financial institutions primarily engaged in investment management and/or related custody
and securities fee based services. Includes companies operating mutual funds, closed-end
funds and unit investment trusts. Excludes banks and other financial institutions primarily
involved in commercial lending, investment banking, brokerage and other specialized
financial activities.
Investment Banking & Brokerage (abbrev. IBB) (e.g., Goldman Sachs Group Inc/The
(U.S.), Morgan Stanley (U.S.), Nomura Holdings Inc. (Japan) Charles Schwab Corp/The
(U.S.), Daiwa Securities Group Inc. (Japan))
Financial institutions primarily engaged in investment banking & brokerage services,
including equity and debt underwriting, mergers and acquisitions, securities lending and
advisory services. Excludes banks and other financial institutions primarily involved in
commercial lending, asset management and specialized financial activities.
Diversified Capital Markets (abbrev. DCM) (e.g., UBS Group AG (Switzerland), Deutsche
Bank AG (Germany), Credit Suisse Group AG (Switzerland), Natixis SA (France),
Macquarie Group Ltd. (Australia))
Financial institutions primarily engaged in diversified capital markets activities, including
a significant presence in at least two of the following area: large/major corporate lending,
investment banking, brokerage and asset management. Excludes less diversified companies
classified in the Asset Management & Custody Banks or Investment Banking & Brokerage
sub-industries. Also excludes companies classified in the Banks or Insurance industry
groups or the Consumer Finance Sub-industry.
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Table A2. Descriptive statistics and Granger causality test for the weekly large and small capitalization
index returns (LCR and SCR, respectively) from 1 January 2005 to 31 December 2014.

Mean Median Maximum Minimum Std.Dev. Skewness Kurtosis Jarque-Bera Prob.

LCR 0.0046 0.0127 0.2243 −0.2128 0.0527 −0.3325 7.4896 102.9966 0.0000
SCR 0.0076 0.0138 0.1793 −0.1778 0.0449 −0.3497 6.8502 76.57078 0.0000

Pairwise Granger Causality Tests

Null Hypothesis F-Statistic Prob.

SCR does not Granger cause LCR 1.3653 0.2450
LCR does not Granger cause SCR 6.1030 0.0149

Table A3. Financial leverage and market capitalization of survived financial institutions per
sub-industry (GICS). Panels A and C provide leverage of the large and small cap survived financial
institutions per sub-industry calculated over two year sub periods from 2005–2014. Panels B and D
provide the market capitalization of the large and small cap survived financial institutions calculated
like the financial leverage.

Panel A: Financial Leverage of Large-Cap Survived Financial Institutions (Average Per Period)

Sub-industry 1/1/2005–12/31/2006 1/1/2007–12/31/2008 1/1/2009–12/31/2010 1/1/2011–12/31/2012 1/1/2013–12/31/2014

Asset Management & Custody Banks (AMC) 1.44 1.82 1.77 1.49 1.41
Diversified Banks (DB) 2.80 3.75 5.67 6.23 4.68
Diversified Capital Markets (DCM) 2.65 3.77 3.76 4.04 4.24
Investment Banking & Brokerage (IBB) 3.34 4.13 4.97 7.13 5.51
Regional Banks (RB) 1.81 2.28 2.92 2.58 2.36
Thrifts & Mortgage Finance (TMF) 5.75 20.64 144.54 382.19 82.07

Panel B: Market Capitalization of Large-Cap Survived Financial Institutions (Total Per Period. Numbers in Billion U.S. Dollars)

Sub-industry 1/1/2005–12/31/2006 1/1/2007–12/31/2008 1/1/2009–12/31/2010 1/1/2011–12/31/2012 1/1/2013–12/31/2014

Asset Management & Custody Banks (AMC) 212,536 271,262 197,192 219,003 289,875
Diversified Banks (DB) 2,092,360 2,278,660 1,944,820 2,231,659 2,941,330
Diversified Capital Markets (DCM) 88,566 109,625 77,923 77,553 95,089
Investment Banking & Brokerage (IBB) 210,996 216,106 174,965 151,316 219,165
Regional Banks (RB) 342,808 300,445 228,424 257,018 322,905
Thrifts & Mortgage Finance (TMF) 125,271 90,002 36,084 37,321 67,174

Panel C: Financial Leverage of Small-Cap Survived Financial Institutions Per Sub-Industry (Average Per Period)

Sub-industry 1/1/2005–12/31/2006 1/1/2007–12/31/2008 1/1/2009–12/31/2010 1/1/2011–12/31/2012 1/1/2013–12/31/2014

Asset Management & Custody Banks (AMC) 2.16 2.43 2.61 1.78 1.60
Diversified Banks (DB) 5.09 8.14 11.71 7.82 6.89
Investment Banking & Brokerage (IBB) 1.48 1.78 1.78 3.13 4.02
Regional Banks (RB) 1.78 2.31 3.54 2.99 2.23
Thrifts & Mortgage Finance (TMF) 5.36 27.92 56.08 23.04 10.45

Panel D: Market Capitalization of Small-Cap Survived Financial Institutions (Total Per Period. Numbers in Billion U.S. Dollars)

Sub-industry 1/1/2005–12/31/2006 1/1/2007–12/31/2008 1/1/2009–12/31/2010 1/1/2011–12/31/2012 1/1/2013–12/31/2014
Asset Management & Custody Banks (AMC) 4634 5834 3727 3794 4039
Diversified Banks (DB) 4034 6734 6180 5345 5331
Diversified Capital Markets (DCM) 2077 2440 857 680 600
Investment Banking & Brokerage (IBB) 5857 7802 6015 5250 5904
Regional Banks (RB) 19,721 17,564 11,918 13,117 16,876
Thrifts & Mortgage Finance (TMF) 3468 2506 1690 1988 2632
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Table A4. Yearly centrality measures for MES correlation network of top 6 survived financial
institutions per sub-industry provided in Figure 4. The table lists the highest 6 ranking institutions
based on their centrality measure.

Industry Closeness Industry Degree Industry Eigenvector Centrality Industry Betweenness %

2005 SANTGRU.CI L.AM 0.005181 LM.US L.AM 14 OCFC.US S.TMF 0.178653 OCFC.US S.TMF 0.048558
LM.US L.AM 0.004975 SANTGRU.CI L.AM 12 PGR.SJ S.AMC 0.177352 ALBAV.FH S.DB 0.047278
MLP.GR L.AM 0.004608 MLP.GR L.AM 6 SANTGRU.CI L.AM 0.174771 IMH.US S.TMF 0.037376
VONN.SW L.AM 0.003922 8616.JP L.IBB 4 FSBK.US S.RB 0.173471 8614.JP S.IBB 0.035849
CAF.FP L.RB 0.003861 BPI.PM L.DB 4 SCB.TB L.DB 0.171668 8616.JP L.IBB 0.034817
CHFC.US L.RB 0.003861 KN.FP L.DCM 4 MQG.AU L.DCM 0.170623 GKG.SP S.RCS 0.032493

2006 8595.JP L.AM 0.005102 LM.US L.AM 13 TPEIR.GA L.DB 0.181499 GKG.SP S.RCS 0.052294
LM.US L.AM 0.005051 MLP.GR L.AM 9 CRAP.FP L.RB 0.180081 FSBK.US S.RB 0.051185
MLP.GR L.AM 0.004762 VPBN.SW L.AM 6 CAF.FP L.RB 0.169709 KNK.MK S.IBB 0.035955
VONN.SW L.AM 0.004065 8601.JP L.IBB 6 PGR.SJ S.AMC 0.168861 CAF.FP L.RB 0.029135
BAC.US L.DB 0.003906 ITG.US L.IBB 5 SECH.KK S.DCM 0.167201 IMH.US S.TMF 0.026233
SANTGRU.CI L.AM 0.003876 8595.JP L.AM 4 8616.JP L.IBB 0.164756 CHIB.PM L.DB 0.025356

2007 MLP.GR L.AM 0.005291 8595.JP L.AM 14 MTG.US L.TMF 0.172005 TMB.TB L.DB 0.055944
8595.JP L.AM 0.005181 SANTGRU.CI L.AM 9 FCBC.US S.RB 0.171019 CNS.TB S.IBB 0.042395
SANTGRU.CI L.AM 0.004831 VPBN.SW L.AM 7 CFFN.US L.TMF 0.165398 OPY.US S.IBB 0.034206
LM.US L.AM 0.004082 MLP.GR L.AM 6 CHIB.PM L.DB 0.165047 DXIL.IT S.DB 0.033959
BPSO.IM L.DB 0.004082 LM.US L.AM 5 165.HK L.DCM 0.164251 AMTD.US L.IBB 0.030148
VPBN.SW L.AM 0.003984 TMB.TB L.DB 5 SBCF.US S.RB 0.162894 BPSO.IM L.DB 0.027496

2008 SANTGRU.CI L.AM 0.00578 SANTGRU.CI L.AM 12 GSDHO.TI S.DB 0.140767 626.HK L.RB 0.078572
MLP.GR L.AM 0.004975 ALBK.ID L.DB 10 GKG.SP S.RCS 0.139739 MLP.GR L.AM 0.043968
ALBK.ID L.DB 0.004739 VPBN.SW L.AM 9 NYCB.US L.TMF 0.138752 GKG.SP S.RCS 0.043732
HB.CY L.DB 0.004484 ALPHA.GA L.DB 6 MTG.US L.TMF 0.138549 GSDHO.TI S.DB 0.041172
INL.SJ L.DCM 0.004329 INL.SJ L.DCM 5 PGR.SJ S.AMC 0.138138 EFS.GR S.AMC 0.036526
8601.JP L.IBB 0.004329 8601.JP L.IBB 5 SANTGRU.CI L.AM 0.138068 KN.FP L.DCM 0.032975

2009 VPBN.SW L.AM 0.005435 VPBN.SW L.AM 16 626.HK L.RB 0.142476 626.HK L.RB 0.020224
LM.US L.AM 0.004505 8595.JP L.AM 7 OPY.US S.IBB 0.141236 OPY.US S.IBB 0.017514
BAC.US L.DB 0.004464 SWEDA.SS L.DB 7 TRST.US L.TMF 0.141071 TRST.US L.TMF 0.018687
BAP.US L.DB 0.004464 BAC.US L.DB 5 NYCB.US L.TMF 0.140346 NYCB.US L.TMF 0.013479
8595.JP L.AM 0.004167 ITG.US L.IBB 5 MQG.AU L.DCM 0.140346 MQG.AU L.DCM 0.013479
INL.SJ L.DCM 0.004032 AIRE.SW S.AMC 5 KA.NA S.AMC 0.14023 KA.NA S.AMC 0.013905

2010 8595.JP L.AM 0.005587 8595.JP L.AM 10 AF.US L.TMF 0.174098 AF.US L.TMF 0.021152
SANTGRU.CI L.AM 0.005128 VPBN.SW L.AM 8 FBAK.US L.RB 0.170886 FBAK.US L.RB 0.027655
VPBN.SW L.AM 0.004695 SANTGRU.CI L.AM 7 INL.SJ L.DCM 0.170254 INL.SJ L.DCM 0.026623
ALPHA.GA L.DB 0.004255 ALPHA.GA L.DB 6 NYCB.US L.TMF 0.169919 NYCB.US L.TMF 0.016441
DBK.GR L.DCM 0.004219 8616.JP L.IBB 6 165.HK L.DCM 0.158964 165.HK L.DCM 0.025424
LM.US L.AM 0.004219 LM.US L.AM 5 KN.FP L.DCM 0.158697 KN.FP L.DCM 0.010844

2011 LM.US L.AM 0.005525 LM.US L.AM 10 6800.KS L.DCM 0.152724 CAF.FP L.RB 0.094042
SANTGRU.CI L.AM 0.004651 MLP.GR L.AM 8 CAF.FP L.RB 0.152315 PAG.LN L.TMF 0.051556
8595.JP L.AM 0.004566 VPBN.SW L.AM 7 VONN.SW L.AM 0.151866 OCFC.US S.TMF 0.043034
VPBN.SW L.AM 0.004405 8595.JP L.AM 6 OCFC.US S.TMF 0.151594 SNBC.US S.RB 0.035732
BAC.US L.DB 0.004329 SANTGRU.CI L.AM 5 PAG.LN L.TMF 0.151027 ALBAV.FH S.DB 0.033062
ALPHA.GA L.DB 0.004115 8616.JP L.IBB 5 BPOP.US L.RB 0.150388 VPBN.SW L.AM 0.030576

2012 LM.US L.AM 0.005525 LM.US L.AM 19 KN.FP L.DCM 0.167036 NYCB.US L.TMF 0.06052
8595.JP L.AM 0.004975 KN.FP L.DCM 6 165.HK L.DCM 0.167036 ALPHA.GA L.DB 0.042107
SANTGRU.CI L.AM 0.004292 PAG.LN L.TMF 6 AF.US L.TMF 0.165888 FDEF.US S.TMF 0.041178
VPBN.SW L.AM 0.004219 8595.JP L.AM 5 TRST.US L.TMF 0.164555 GKG.SP S.RCS 0.036114
VONN.SW L.AM 0.004219 SANTGRU.CI L.AM 5 INL.SJ L.DCM 0.164464 SANTGRU.CI L.AM 0.035323
MB.IM L.DB 0.004115 MB.IM L.DB 4 SNBC.US S.RB 0.16297 8595.JP L.AM 0.028406

2013 LM.US L.AM 0.00578 SANTGRU.CI L.AM 10 SPOG.NO S.DB 0.176911 8601.JP L.IBB 0.050827
SANTGRU.CI L.AM 0.005128 LM.US L.AM 9 MTG.US L.TMF 0.175996 TRST.US L.TMF 0.047171
MLP.GR L.AM 0.005076 MLP.GR L.AM 7 ADC.GR S.AMC 0.170295 8614.JP S.IBB 0.045854
165.HK L.DCM 0.004367 DBK.GR L.DCM 7 SNV.US L.RB 0.170002 LD.FP L.DB 0.036833
666.HK S.AMC 0.004292 TPEIR.GA L.DB 6 8625.JP S.IBB 0.16952 KN.FP L.DCM 0.031443
VPBN.SW L.AM 0.004219 165.HK L.DCM 5 666.HK S.AMC 0.167537 6005.TT L.IBB 0.030302

2014 8595.JP L.AM 0.005618 8595.JP L.AM 10 8616.JP L.IBB 0.190897 MTG.US L.TMF 0.050147
SANTGRU.CI L.AM 0.005102 LM.US L.AM 9 8601.JP L.IBB 0.187831 NASB.US S.TMF 0.045331
LM.US L.AM 0.00495 SANTGRU.CI L.AM 7 SGC.KK S.DCM 0.184773 8625.JP S.IBB 0.040566
VPBN.SW L.AM 0.004202 VPBN.SW L.AM 7 INL.SJ L.DCM 0.180898 626.HK L.RB 0.033206
BCE.MC L.DB 0.004202 VONN.SW L.AM 7 GS.US L.IBB 0.175884 SVEG.NO S.DB 0.032992
DBK.GR L.DCM 0.004167 BAC.US L.DB 6 ALMUTAHE.KK L.DB 0.173706 OPY.US S.IBB 0.031155
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Table A5. Yearly centrality measures for NetMES correlation network of top 6 survived financial
institutions per sub-industry provided in Figure 5. The table lists the highest 6 ranking institutions
based on their centrality measure.

Industry Closeness Industry Node Degree Industry Eigenvector Centrality Industry Betweenness %

2005 LM.US L.AMC 0.00565 8595.JP L.AMC 11 MQG.AU L.DCM 0.18481 PAG.LN L.TMF 0.08888
8595.JP L.AMC 0.00541 LM.US L.AMC 8 KN.FP L.DCM 0.18021 CAY.LN S.IBB 0.06871
VONN.SW L.AMC 0.00465 VONN.SW L.AMC 5 SANTGRU.CI L.AMC 0.17996 CFFN.US L.TMF 0.05712
RHBC.MK L.DB 0.00444 ALBK.ID L.DB 5 8601.JP L.IBB 0.17986 ALPHA.GA L.DB 0.05152
FII.US L.AMC 0.00437 BGCP.US L.IBB 5 OCFC.US S.TMF 0.17947 SNV.US L.RB 0.04891
ALBK.ID L.DB 0.00437 PAG.LN L.TMF 5 FMBI.US L.RB 0.17833 6800.KS L.DCM 0.03544

2006 LM.US L.AMC 0.00532 LM.US L.AMC 9 8595.JP L.AMC 0.21323 DBK.GR L.DCM 0.05677
ADN.LN L.AMC 0.00500 ADN.LN L.AMC 9 BCBB.BG S.DB 0.18794 8616.JP L.IBB 0.04787
8595.JP L.AMC 0.00459 VONN.SW L.AMC 8 FMBI.US L.RB 0.18423 turn.US S.AMC 0.03986
SANTGRU.CI L.AMC 0.00420 HB.CY L.DB 7 6800.KS L.DCM 0.18017 CFFN.US L.TMF 0.03901
BNII.IJ L.DB 0.00413 8616.JP L.IBB 5 BSF.US S.TMF 0.17666 BCBB.BG S.DB 0.03863
HB.CY L.DB 0.00407 BPOP.US L.RB 4 PRO.IM S.IBB 0.17000 8614.JP S.IBB 0.03312

2007 LM.US L.AMC 0.00552 BNII.IJ L.DB 11 PAG.LN L.TMF 0.19450 OCFC.US S.TMF 0.07308
SANTGRU.CI L.AMC 0.00493 LM.US L.AMC 7 BSF.US S.TMF 0.18938 turn.US S.AMC 0.04301
VONN.SW L.AMC 0.00478 VPBN.SW L.AMC 6 BIM.IM L.IBB 0.18883 DBK.GR L.DCM 0.03838
BNII.IJ L.DB 0.00474 SANTGRU.CI L.AMC 5 TRST.US L.TMF 0.18745 PRO.IM S.IBB 0.03820
ADN.LN L.AMC 0.00422 ADN.LN L.AMC 5 MQG.AU L.DCM 0.18658 BGCP.US L.IBB 0.03497
INL.SJ L.DCM 0.00412 BIM.IM L.IBB 5 165.HK L.DCM 0.18517 CIMB.MK L.DB 0.03384

2008 LM.US L.AMC 0.00488 LM.US L.AMC 8 SANTGRU.CI L.AMC 0.18377 VONN.SW L.AMC 0.05474
8595.JP L.AMC 0.00474 KN.FP L.DCM 7 NYCB.US L.TMF 0.17727 CFFN.US L.TMF 0.05473
BC.SW L.DB 0.00429 BC.SW L.DB 6 MQG.AU L.DCM 0.17473 FMCC.US L.TMF 0.05193
VONN.SW L.AMC 0.00422 VONN.SW L.AMC 6 PRO.IM S.IBB 0.17240 KN.FP L.DCM 0.03658
BNII.IJ L.DB 0.00386 BNII.IJ L.DB 6 INL.SJ L.DCM 0.17126 SVEG.NO S.DB 0.03565
RAT.LN L.AMC 0.00386 RHBC.MK L.DB 6 BSF.US S.TMF 0.16836 ASP.TB S.IBB 0.03523

2009 SANTGRU.CI L.AMC 0.00397 KBC.BB L.DB 7 6800.KS L.DCM 0.17504 BGCP.US L.IBB 0.05660
8595.JP L.AMC 0.00394 BC.SW L.DB 6 NYCB.US L.TMF 0.17484 FMBI.US L.RB 0.05599
BC.SW L.DB 0.00385 HB.CY L.DB 6 TRST.US L.TMF 0.17296 8616.JP L.IBB 0.04728
LM.US L.AMC 0.00355 8616.JP L.IBB 6 CIMB.MK L.DB 0.17213 8543.JP L.RB 0.04667
CIMB.MK L.DB 0.00352 SANTGRU.CI L.AMC 5 OPY.US S.IBB 0.17158 SCB.CN S.TMF 0.03621
VPBN.SW L.AMC 0.00338 VONN.SW L.AMC 5 8595.JP L.AMC 0.17122 8614.JP S.IBB 0.03620

2010 8595.JP L.AMC 0.00746 8595.JP L.AMC 21 SBCF.US S.RB 0.20901 UMBF.US L.RB 0.04446
HB.CY L.DB 0.00538 8601.JP L.IBB 5 BIM.IM L.IBB 0.20752 BPOP.US L.RB 0.04340
SANTGRU.CI L.AMC 0.00538 HB.CY L.DB 4 PROV.US S.TMF 0.20503 NYCB.US L.TMF 0.04130
8601.JP L.IBB 0.00532 LM.US L.AMC 4 MTG.US L.TMF 0.20125 OPY.US S.IBB 0.04088
LM.US L.AMC 0.00532 AMTD.US L.IBB 4 HB.CY L.DB 0.19200 21080.KS S.AMC 0.04041
VPBN.SW L.AMC 0.00532 VPBN.SW L.AMC 3 COB.US S.RB 0.18107 HB.CY L.DB 0.03626

2011 8595.JP L.AMC 0.00595 8595.JP L.AMC 17 NYCB.US L.TMF 0.19414 fusb.US S.RB 0.05917
VONN.SW L.AMC 0.00556 VONN.SW L.AMC 5 CIMB.MK L.DB 0.18736 GRLA.DC S.RB 0.04212
BNII.IJ L.DB 0.00463 BNII.IJ L.DB 5 BPOP.US L.RB 0.18640 BIM.IM L.IBB 0.03264
ADN.LN L.AMC 0.00463 ADN.LN L.AMC 4 GRLA.DC S.RB 0.18410 DBAN.GR S.AMC 0.03170
LM.US L.AMC 0.00442 LM.US L.AMC 4 OPY.US S.IBB 0.18175 BPOP.US L.RB 0.03066
DBK.GR L.DCM 0.00442 INL.SJ L.DCM 4 MTG.US L.TMF 0.17993 KBC.BB L.DB 0.02907

2012 VONN.SW L.AMC 0.00559 VONN.SW L.AMC 14 MQG.AU L.DCM 0.19355 BPOP.US L.RB 0.05108
8595.JP L.AMC 0.00498 BNII.IJ L.DB 6 ASP.TB S.IBB 0.19056 CAY.LN S.IBB 0.04924
BNII.IJ L.DB 0.00452 8595.JP L.AMC 5 KN.FP L.DCM 0.19051 165.HK L.DCM 0.04543
ALPHA.GA L.DB 0.00433 KBC.BB L.DB 5 SCB.CN S.TMF 0.18788 BGCP.US L.IBB 0.04254
SANTGRU.CI L.AMC 0.00422 CIMB.MK L.DB 4 INL.SJ L.DCM 0.18722 HB.CY L.DB 0.03695
CIMB.MK L.DB 0.00422 165.HK L.DCM 4 CIMB.MK L.DB 0.18647 CIMB.MK L.DB 0.03101

2013 LM.US L.AMC 0.00498 LM.US L.AMC 8 COB.US S.RB 0.21207 NBKE.EY S.DB 0.04629
HB.CY L.DB 0.00457 HB.CY L.DB 8 MTG.US L.TMF 0.20954 21080.KS S.AMC 0.04582
8595.JP L.AMC 0.00441 8595.JP L.AMC 6 BIM.IM L.IBB 0.20328 BIM.IM L.IBB 0.04438
ADN.LN L.AMC 0.00405 BNII.IJ L.DB 6 21080.KS S.AMC 0.19951 COB.US S.RB 0.04286
DBK.GR L.DCM 0.00395 ADN.LN L.AMC 4 8625.JP S.IBB 0.19386 8543.JP L.RB 0.03941
VPBN.SW L.AMC 0.00386 VPBN.SW L.AMC 4 SNV.US L.RB 0.19106 8616.JP L.IBB 0.03316

2014 8595.JP L.AMC 0.00658 8595.JP L.AMC 15 ASP.TB S.IBB 0.21532 SAHA.GR S.AMC 0.05481
VONN.SW L.AMC 0.00641 VONN.SW L.AMC 11 PRO.IM S.IBB 0.20648 BGCP.US L.IBB 0.05294
SANTGRU.CI L.AMC 0.00505 MTG.US L.TMF 5 INL.SJ L.DCM 0.19970 ASP.TB S.IBB 0.04377
DBK.GR L.DCM 0.00481 FII.US L.AMC 5 165.HK L.DCM 0.19798 LD.FP S.TMF 0.03818
MTG.US L.TMF 0.00481 DBK.GR L.DCM 4 FMBI.US L.RB 0.19687 PAG.LN L.TMF 0.03757
KN.FP L.DCM 0.00481 KN.FP L.DCM 4 GRLA.DC S.RB 0.19351 BCBB.BG S.DB 0.03618
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Table A6. Yearly centrality measures for Bayesian NetMES correlation network of top 6 survived
financial institutions per sub-industry provided in Figure 6. The table lists the highest 6 ranking
institutions based on their centrality measure.

Industry Closeness Industry Node Degree Industry Eigenvector Centrality Industry Betweenness %

2005 8595.JP L.AMC 0.005319 LM.US L.AMC 11 MQG.AU L.DCM 0.184416 BCBB.BG S.DB 0.081837
VONN.SW L.AMC 0.005102 8595.JP L.AMC 11 BIM.IM L.IBB 0.181143 CAF.FP L.RB 0.071296
BAP.US L.DB 0.004587 SBIN.IN L.DB 6 OCFC.US S.TMF 0.179697 PAG.LN L.TMF 0.061393
LM.US L.AMC 0.004425 DBK.GR L.DCM 6 OPY.US S.IBB 0.179587 CAY.LN S.IBB 0.038407
SBIN.IN L.DB 0.004132 6800.KS L.DCM 6 KN.FP L.DCM 0.179040 21080.KS S.AMC 0.036663
HB.CY L.DB 0.004098 HB.CY L.DB 4 SANTGRU.CI L.AMC 0.178505 CFFN.US L.TMF 0.035094

2006 VONN.SW L.AMC 0.006452 VONN.SW L.AMC 14 BCBB.BG S.DB 0.195170 BCBB.BG S.DB 0.073190
RAT.LN L.AMC 0.005780 RAT.LN L.AMC 11 165.HK L.DCM 0.192246 DBK.GR L.DCM 0.050477
8595.JP L.AMC 0.005348 LM.US L.AMC 6 DBK.GR L.DCM 0.185441 8616.JP L.IBB 0.046745
8543.JP L.RB 0.004785 8595.JP L.AMC 6 NASB.US S.TMF 0.183326 8543.JP L.RB 0.039037
BAP.US L.DB 0.004739 SANTGRU.CI L.AMC 5 6800.KS L.DCM 0.182559 8614.JP S.IBB 0.038075
SBIN.IN L.DB 0.004608 8543.JP L.RB 5 8595.JP L.AMC 0.180163 PAG.LN L.TMF 0.037034

2007 ADN.LN L.AMC 0.004808 CHIB.PM L.DB 9 BSF.US S.TMF 0.189265 OCFC.US S.TMF 0.069634
LM.US L.AMC 0.004762 RHBC.MK L.DB 8 TRST.US L.TMF 0.187098 BGCP.US L.IBB 0.062759
CHIB.PM L.DB 0.004505 RAT.LN L.AMC 7 BIM.IM L.IBB 0.184806 turn.US S.AMC 0.043719
RAT.LN L.AMC 0.004425 VONN.SW L.AMC 4 165.HK L.DCM 0.184042 DBK.GR L.DCM 0.039933
165.HK L.DCM 0.003788 LM.US L.AMC 4 MQG.AU L.DCM 0.183710 PRO.IM S.IBB 0.032516
VONN.SW L.AMC 0.003759 ADN.LN L.AMC 4 PAG.LN L.TMF 0.181808 PGR.SJ S.AMC 0.031952

2008 SANTGRU.CI L.AMC 0.005780 BAP.US L.DB 9 NYCB.US L.TMF 0.177473 CFFN.US L.TMF 0.070379
RAT.LN L.AMC 0.005348 8616.JP L.IBB 9 MQG.AU L.DCM 0.176199 VONN.SW L.AMC 0.050911
LM.US L.AMC 0.004785 RAT.LN L.AMC 8 INL.SJ L.DCM 0.175540 FMCC.US L.TMF 0.049563
8616.JP L.IBB 0.004739 LM.US L.AMC 7 LASP.DC S.DB 0.174415 KN.FP L.DCM 0.037231
BAP.US L.DB 0.004405 SANTGRU.CI L.AMC 5 OCFC.US S.TMF 0.174060 LASP.DC S.DB 0.033454
VPBN.SW L.AMC 0.004367 ALPHA.GA L.DB 4 PRO.IM S.IBB 0.173592 8614.JP S.IBB 0.031573

2009 LM.US L.AMC 0.006369 LM.US L.AMC 13 OPY.US S.IBB 0.176723 UMBF.US L.RB 0.047378
8595.JP L.AMC 0.005464 8595.JP L.AMC 8 8595.JP L.AMC 0.175862 SANTGRU.CI L.AMC 0.044767
VONN.SW L.AMC 0.005076 VONN.SW L.AMC 7 NYCB.US L.TMF 0.174494 KN.FP L.DCM 0.043701
INL.SJ L.DCM 0.004831 INL.SJ L.DCM 6 6800.KS L.DCM 0.172134 BCBB.BG S.DB 0.042210
KN.FP L.DCM 0.004651 VPBN.SW L.AMC 4 TRST.US L.TMF 0.171775 GRLA.DC S.RB 0.040354
6800.KS L.DCM 0.004651 RAT.LN L.AMC 3 MQG.AU L.DCM 0.171251 FMBI.US L.RB 0.033752

2010 VONN.SW L.AMC 0.005263 VONN.SW L.AMC 10 BIM.IM L.IBB 0.200952 OPY.US S.IBB 0.087552
LM.US L.AMC 0.005000 BNII.IJ L.DB 8 SBCF.US S.RB 0.200207 SANTGRU.CI L.AMC 0.052690
8595.JP L.AMC 0.004587 LM.US L.AMC 6 PROV.US S.TMF 0.200207 NYCB.US L.TMF 0.047267
HB.CY L.DB 0.004505 HB.CY L.DB 6 MTG.US L.TMF 0.195417 LM.US L.AMC 0.039902
RAT.LN L.AMC 0.004032 8595.JP L.AMC 5 BAP.US L.DB 0.193931 OCFC.US S.TMF 0.039587
8543.JP L.RB 0.004032 BIM.IM L.IBB 5 HB.CY L.DB 0.183587 BAP.US L.DB 0.037286

2011 VONN.SW L.AMC 0.006024 VONN.SW L.AMC 13 NYCB.US L.TMF 0.188460 DBAN.GR S.AMC 0.046681
C.US L.AMC 0.005319 C.US L.AMC 9 CIMB.MK L.DB 0.182926 BIM.IM L.IBB 0.043714
LM.US L.AMC 0.005155 CHIB.PM L.DB 6 KN.FP L.DCM 0.180730 PGR.SJ S.AMC 0.039625
FII.US L.AMC 0.004545 LM.US L.AMC 5 MTG.US L.TMF 0.176983 CACB.US S.RB 0.037534
CIMB.MK L.DB 0.004505 RAT.LN L.AMC 5 BSF.US S.TMF 0.176903 FMBI.US L.RB 0.032418
6800.KS L.DCM 0.004464 INL.SJ L.DCM 5 BPOP.US L.RB 0.176642 ALPHA.GA L.DB 0.030919

2012 8595.JP L.AMC 0.006173 8595.JP L.AMC 13 KN.FP L.DCM 0.198168 BAP.US L.DB 0.052362
VONN.SW L.AMC 0.005155 VONN.SW L.AMC 6 INL.SJ L.DCM 0.193101 CAY.LN S.IBB 0.048778
DBK.GR L.DCM 0.005051 RAT.LN L.AMC 6 MQG.AU L.DCM 0.189807 INL.SJ L.DCM 0.047073
RAT.LN L.AMC 0.004950 CHIB.PM L.DB 6 TRST.US L.TMF 0.187221 BPOP.US L.RB 0.045089
BNII.IJ L.DB 0.004587 DBK.GR L.DCM 6 165.HK L.DCM 0.180399 BGCP.US L.IBB 0.043087
LM.US L.AMC 0.004464 KN.FP L.DCM 6 ALPHA.GA L.DB 0.174612 HB.CY L.DB 0.039755

2013 LM.US L.AMC 0.005587 LM.US L.AMC 10 MTG.US L.TMF 0.211206 BCBB.BG S.DB 0.050632
VONN.SW L.AMC 0.005291 ALPHA.GA L.DB 8 SNV.US L.RB 0.199877 SCB.TB L.DB 0.047976
ALPHA.GA L.DB 0.004831 SANTGRU.CI L.AMC 6 BIM.IM L.IBB 0.199045 NBKE.EY S.DB 0.039395
SANTGRU.CI L.AMC 0.004525 165.HK L.DCM 5 BYLK.US S.RB 0.193692 21080.KS S.AMC 0.038239
165.HK L.DCM 0.004405 MTG.US L.TMF 5 21080.KS S.AMC 0.190409 BIM.IM L.IBB 0.037467
DBK.GR L.DCM 0.004255 VONN.SW L.AMC 4 8614.JP S.IBB 0.187220 BSF.US S.TMF 0.034415

2014 VONN.SW L.AMC 0.004808 VONN.SW L.AMC 7 PRO.IM S.IBB 0.208298 BGCP.US L.IBB 0.048682
8595.JP L.AMC 0.004505 RAT.LN L.AMC 6 CFFI.US S.RB 0.205214 NYCB.US L.TMF 0.040771
SANTGRU.CI L.AMC 0.004274 SANTGRU.CI L.AMC 5 INL.SJ L.DCM 0.203851 LD.FP S.TMF 0.040653
CHIB.PM L.DB 0.004098 BAP.US L.DB 5 PGR.SJ S.AMC 0.198631 PGR.SJ S.AMC 0.038840
FII.US L.AMC 0.003906 SBIN.IN L.DB 5 BYLK.US S.RB 0.192585 BCBB.BG S.DB 0.035816
8616.JP L.IBB 0.003817 8595.JP L.AMC 4 165.HK L.DCM 0.192335 ALPHA.GA L.DB 0.032856
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