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Abstract: Interest rate benchmarks are currently undergoing a major transition. The LIBOR
benchmark is planned to be discontinued by the end of 2021 and superseded by what ISDA calls an
adjusted risk-free rate (RFR). ISDA has recently announced that the LIBOR replacement will most
likely be constructed from a compounded running average of RFR overnight rates over a period
matching the LIBOR tenor. This new backward-looking benchmark is markedly different when
compared with LIBOR. It is measurable only at the end of the term in contrast to the forward-looking
LIBOR, which is measurable at the start of the term. The RFR provides a simplification because
the cash flows and the discount factors may be derived from the same discounting curve, thus
avoiding—on a superficial level—any multi-curve complications. We develop a new class of savings
account models and derive a novel interest rate system specifically designed to facilitate a high
degree of tractability for the pricing of RFR-based fixed-income instruments. The rational form of the
savings account models under the risk-neutral measure enables the pricing in closed form of caplets,
swaptions and futures written on the backward-looking interest rate benchmark.

Keywords: LIBOR; SOFR; SONIA; LIBOR transition; risk-free rates; rational term structure models;
swaptions; caplets; futures

1. Introduction

Since the speech of Andrew Bailey, the Chief Executive of the Financial Conduct Authority, in 2017
on the future of the London interbank offered rate (LIBOR) it has steadily become clearer that the LIBOR
interest rate benchmarks are no longer going to be supported in several major currency denominations.
The change is primarily justified by the observation that unsecured (term-) lending, the cost of which
LIBOR is meant to measure, is no longer a significant source of financing for financial institutions.
Furthermore, the current LIBOR benchmark has fallen out favour, i.a., due to its survey-based nature
prone to manipulation, see e.g., Gyntelberg and Wooldridge (2008).

The move, much advocated by regulators suchlike the Financial Conduct Authority (FCA), has
been towards a benchmark detached from the subjective opinions of a panel, such as the LIBOR panel
of global banks, and closer to actual financial transactions. It has been decided, see ISDA (2019),
that reliance on LIBOR and most of the other IBOR benchmarks should end and a transaction-based
overnight rate—a so-called risk-free rate (RFR)—introduced as the alternative. In the USA, the
Secured Overnight Financing Rate (SOFR)—an overnight rate derived from repurchase agreement
transactions—is the chosen RFR. A similar benchmark, the reformed Sterling Overnight Index Average
(SONIA), has been chosen in the UK, while in the Eurozone the Euro Short-Term Rate (eSTR) is
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the preferred RFR, which is to supersede EURIBOR1. By construction, IBORs and the RFRs do not
capture/reflect the same risks, see Backwell et al. (2019) for a discussion of this central discrepancy
between overnight and term-based benchmarks. Even if they did, LIBOR is a term rate and therefore
cannot be replaced as such by an overnight rate. A transformation of the RFR is thus necessary in order
to achieve a certain level of affinity with the current LIBOR benchmark. After consulting a panel of
market participants, the International Swaps and Derivatives Association (ISDA) has recently reported,
c.f. ISDA (2019), that the preferred LIBOR replacement will be based on a discretely compounded
average of daily rates, averaged over a period matching the LIBOR tenors, it is to supplant. Such a
successor rate is known as a backward-looking benchmark. Furthermore, to account for differences in
the risk premia associated with LIBOR and the RFR, respectively, a constant spread will be added to
the backward-looking benchmark that will be based on historical data. The details of its determination
can be found in ISDA (2019).

LIBOR is expected to be fully discontinued by the end of 2021. However, it is still (at the time
of writing) the main benchmark newly issued loans and derivatives are linked to. In May 2018, the
Chicago Mercantile Exchange (CME) launched SOFR and SONIA futures on their trading platform,
and, while trading in these contracts is still sparse, the volume is growing. One would expect other
linear and non-linear SOFR derivatives to follow suit as the 2021 deadline nears. Taking the current
LIBOR-based derivatives market as an indicator, one would expect RFR linked versions of swaps, caps
and swaptions along with the already trading SOFR/SONIA futures to become liquid once LIBOR has
been discontinued.

In this paper we develop a class of discounting models that allows for closed-form pricing
of derivatives written on a backward-looking benchmark. It is motivated by the recent work of
Mercurio (2018) and Lyashenko and Mercurio (2019). The former presents a short-rate model for SOFR
with a view towards the pricing of futures derivatives. The second paper extends the LIBOR Market
Model (LMM) of Miltersen et al. (1997) to make it compatible with the backward-looking benchmark.
Both approaches allow for explicit modelling of the backward-looking benchmark, but both suffer
from the the same drawbacks of the short-rate modelling and LMM frameworks, respectively. Neither
approach allows for closed-form pricing of swaptions for higher dimensions of the state vector.
In particular, even the simplest version of the LMM heavily relies on approximations for the pricing
of swaptions and of futures. Our rational savings account models are inspired by the rational term
structure models originally proposed in Flesaker and Hughston (1996) and more recently further
developed in Akahori and Macrina (2012), Akahori et al. (2014), Macrina (2014), Nguyen and Seifried
(2015), Crépey et al. (2016), Filipović et al. (2017), and Macrina and Mahomed (2018). Most of the
rational term structures models allow for closed-form swaption pricing, but—as we will show—these
models are not well-suited for modelling a backward-looking benchmark. We develop a different class
of models which share similarities with the rational models framework but, instead of modelling the
pricing kernel under the real-world measure P, we model the savings account under the risk-neutral
measure. Leaning on Döberlein and Schweizer (2001), we give conditions under which a rational
savings account model may be expressed in terms of a short rate of interest process. As we shall show,
rational savings account models are better suited for backward-looking interest rate benchmarks than
the classical approach under the real-world probability measure. In particular, our framework allows
for closed-form pricing of caplets, swaptions and futures, by which we mean that these prices can be
calculated as one-dimensional numerical integrals. Hence, our model structure is tractable at a level
comparable to the rational term structure models cited above.

1 One may expect that the Euro Overnight Index Average (EONIA), essentially a one-day EURIBOR, may in time become
outdated as it is made superfluous by an established eSTR.
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We begin with a general description of the model, and then we present the pricing formulas
in a model driven by affine processes. We wrap up with concluding remarks and an outlook on
future investigations.

2. Derivatives on Backward-Looking Rates

Let (Ω,F ,Q, (Ft)t∈[0,T̄]) be a filtered probability space with T̄ < ∞. The bank account numeraire
process (Bt)t≥0 is associated with the risk-neutral measure denoted by Q. It is customary to model the
bank account numeraire by

Bt = B0 exp
(∫ t

0
rs ds

)
(1)

where (rt)t≥0 is a specified instantaneous short rate. Instead, we shall work with a generalised notion
of the bank account referred to as an implied savings account in Döberlein and Schweizer (2001). Thus
we assume that (Bt)t≥0 is a strictly positive process of finite variation, which generalises (1).

With LIBOR discontinued and superseded by an RFR benchmark, the rate-fixing and discounting
are applied by using the same numeraire process (Bt)t≥0. Hence no features typical of multi-curve
interest rate systems emerge, and one is effectively back in a single-curve setting. The standard
zero-coupon bond (ZCB) has a price process (PtT)t≤T given by

PtT = Bt Et

[
B−1

T

]
.

A European-style derivative with random payoff XT at time T has at time t ≤ T a price given by

St = Et

[
Bt

BT
XT

]
.

Letting δ1d denote the day-count fraction of an overnight loan, it follows from standard interest
rate theory that the discrete overnight rate is

R1d(t) :=
1

δ1d
(1/Pt,t+δ1d − 1).

This is what ISDA refers to as the Risk-Free Rate (RFR), a benchmark rate that may correspond
to SOFR, SONIA, eSTR etc., in their respective currencies. The proposed LIBOR replacement is the
following rate referred to as the backward-looking benchmark:

R̄(T, U) =
1
δ

(
nδ

∏
i=1

(1 + δ1dR1d(Ti))− 1

)
, δ = U − T,

where T ≤ T1, . . . , Tnδ
≤ U. A standard approximation applied in the literature, and in particular in

Lyashenko and Mercurio (2019), is to replace discrete by continuous compounding and hence use

R̄(T, U) ≈ R(T, U) :=
1
δ

(
BU
BT
− 1
)

.

We will use this approximation throughout the paper.2

We can compare this rate to a classical discrete forward-looking term rate

F(T, U) := (1/PTU − 1)/δ,

2 After consecutive applications of the tower property one sees that, for t ≤ T ≤ U, BtEt[B−1
T R̄(t, T)] = BtEt[B−1

T R(t, T)], and
it thus follows that pricing linear derivatives, i.e., any derivative that is linear in the rate, is unaffected by the continuous
compounding approximation in the case of t ≤ T ≤ U.
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again with tenor δ = U − T, i.e., the rate on a loan that starts at time T and has to be repaid at time
U. The term rate F(T, U) is based on the same curve as the backward-looking benchmark and can be
thought of as LIBOR without the risk premia for credit and liquidity mentioned in the introduction.

In order to account for the risk premia, the actual LIBOR fallback used when converting existing
LIBOR contracts will be R̄(T, U) + c, where c is determined by the historical relationship between
LIBOR and R̄(T, U), see ISDA (2019). For ease of presentation, we shall ignore the spread, and we focus
on the implications of changing to a backward-looking benchmark from a classical forward-looking
rate. The first thing to notice is that R(T, U) is FU-measurable while F(T, U) is FT-measurable, where
T ≤ U. This change, while subtle, has substantial implications for the pricing of interest rate derivatives
as we show in the next section.

2.1. Swaplet

Let us first consider the expectation of the discounted rate or what could be called a zero-strike
swaplet, or one element in the floating leg of a swap. For t ≤ T ≤ U, we have

SW0
t = δBt Et

[
B−1

U R(T, U)
]
= Bt Et

[
B−1

T − B−1
U

]
= (PtT − PtU) = δBt Et

[
B−1

U F(T, U)
]

.

The latter equality reveals that, for t ≤ T ≤ U, backward-looking rates are priced in the same way as
the forward-looking equivalent, and by implication it follows that the valuation of linear derivatives
remains essentially unaffected by the backward-looking nature of R(T, U). However, for t ∈ [T, U],
one has instead

SW0
t = δBt Et

[
B−1

U R(T, U)
]
=

Bt

BT
− PtU (2)

6= δBt Et

[
B−1

U F(T, U)
]
=

PtU
PTU
− PtU . (3)

Thus when one moves to pricing the derivative after its initiation at t > T the payoff is still
undetermined as R(T, U) is only measurable at time U. Relation (2) thus becomes explicitly dependent
on the value of the bank account BT , which is not the case in a classic forward-looking setting as given
in the Expression (3).

2.2. Forward Rate Agreement

The forward rate agreement (FRA) based on a forward-looking benchmark rate, generates a
cash flow

FRAT =
δ(F(T, U)− K)

1 + δF(T, U)
(4)

at time T. In a single-curve setting, this can be considered a linear derivative by noting that for t ≤ T

FRAt = BtEt

[
B−1

T
δ(F(T, U)− K)

1 + δF(T, U)

]
= BtEt[B−1

T PTUδ(F(T, U)− K)] (5)

= δBtEt[B−1
U (F(T, U)− K)] = SW0

t − δKPtU . (6)

The price of the FRA thus becomes equivalent to the value of a contract with a cash flow
δ(F(T, U)− K) at time U. It is not possible to readily substitute F(T, U) with R(T, U) in Equation (4),
because the latter is not measurable at time T (aka ‘measurability problem’). This is likely to make
transitioning FRA contracts from the forward- to the backward-looking benchmarks challenging as
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discussed in Henrard (2019). The closest backward-looking counterpart to the FRA is a swaplet paying
δ(R(T, U)− K) at time U. This would be congruent with the standard FRA for t ≤ T, since

SWK
t = BtEt [BUδ(R(T, U)− K)] = SW0

t − δKPtU = FRAt. (7)

However, for t ∈ [T, U] we have

SWK
t =

Bt

BT
− (1 + δK)PtU 6= FRAt = FRAT

1
PTt

. (8)

The fact that the payoff is random beyond the initiation point T may appear inconsequential, but
in practice it matters a great deal, for many risk management systems now have to be reconfigured
to address correctly the randomness within the interval [T, U]. See again Henrard (2019) for
further discussion.

2.3. Caplet

Similarly, a caplet written on the backward-looking rate would presumably pay (R(T, U)− K)+

at time U. We can similarly price it for ∀t ≤ U. Let K̃ = 1 + δK, and we have

CPt = δBt Et

[
B−1

U (R(T, U)− K)+
]
= Bt Et

[(
B−1

T − K̃B−1
U

)+]
, (9)

which we can compare with the price of a standard caplet with payoff δ(F(T, U)− K)+ at time U.
For t ≤ T ≤ U we have

δBt Et

[
B−1

U (F(T, U)− K)+
]
= Bt Et

[
B−1

T (1− K̃PTU)
+
]
6= CPt. (10)

While the linear derivatives are priced the same in the backward- and forward-looking setting, at
least for t ≤ T, it is clear from the above equation that the caplets are not. In fact, as also shown in
Lyashenko and Mercurio (2019) an application of Jensen’s inequality to Equation (33) reveals that

CPt ≥ Bt Et

[(
ET [B−1

T − K̃B−1
U ]
)+]

=Bt Et

[(
B−1

T − K̃B−1
T PTU ]

)+]
=δBt Et

[
B−1

U (F(T, U)− K)+
]

. (11)

In other words a caplet written on the backward-looking benchmark is always worth more than
or equal to its forward-looking counterpart.

2.4. Swaps and Swaptions

An RFR swap can be defined as a contract that has a floating leg paying {R(Ti−1, Ti)}{i=a+1,...,b} at
times Ta+1, . . . , Tb and a fixed leg paying K at the same dates. We can value the swap at time t ≤ Ta as

Va,b
t = Bt Et

[
b

∑
i=a+1

B−1
Ti

δ(R(Ti−1, Ti)− K)

]
= PtTa − PtTb − δK

b

∑
i=a+1

PtTi . (12)

We notice that, for t ≤ Ta, Va,b
t is in fact equivalent to the value of a classical swap paying the

discrete forward-looking rate F(Ti−1, Ti) at time Ti instead of R(Ti−1, Ti) at time Ti. This is not the case
for t ∈ [Tk−1, Tk] for some k ∈ (a + 1, . . . , b) where the value of future payments becomes

Va,b
t = Bt Et

[
b

∑
i=k

B−1
Ti

δ(R(Ti−1, Ti)− K)

]
=

Bt

BTk

− P(t, Tb)− δK
b

∑
i=k

PtTi . (13)
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It again demonstrates that the underlying challenge with the backward-looking regime is that
one gets explicit dependence on the savings account process once the valuation continues beyond the
initiation date of the contract.

A swaption is an option to enter into a swap at time Ta, and we can of course price it for t ≤ Ta as

SWPt = Bt Et

[
B−1

Ta

(
Va,b

Ta

)+]
. (14)

Since the valuation of the swap is unaffected by whether or not the underlying rate is backward-
or forward-looking if priced before the starting time Ta, it follows that swaption pricing is unaffected
by the shift from forward to backward-looking rates.

2.5. Considerations

These preliminary examples illustrate that changing the benchmark from forward-looking to
backward-looking rates will alter the pricing and risk management of linear and nonlinear derivatives.
In particular (2) and (9) suggest that a modelling paradigm that provides an explicit expression for the
bank account (Bt) or more precisely its reciprocal (B−1

t ) is advantageous. This is possible by using an
affine short-rate model, via the relation Bt = exp(

∫ t
0 rsds), but, as is well-known, this choice does not

in general lead to a closed-form solution for swaptions—approximations such as the one in Singleton
and Umantsev (2002) have to be applied. Lyashenko and Mercurio (2019) extend the LMM framework
to include explicit expressions for the bank account in the time interval [T, U], but the framework
suffers from the general tractability issues in the standard LMM, which involve non-trivial issues with
Monte-Carlo simulation, and a lack of closed-form pricing for swaptions as well as futures.

A framework that prices swaptions in closed-form is one that results in discounted ZCB prices
being linear in the spacial variable. The pricing kernel models by Flesaker and Hughston (1996)
and Rutkowski (1997) are established examples thereof. This approach has been further studied and
extended in Filipović et al. (2017), who demonstrate that it has excellent empirical properties. Its
calibration properties in a multi-curve context are studied in Crépey et al. (2016). Such models of
rational form could naturally be applied also to price swaptions on backward-looking rates. However,
in the case of derivatives with payoffs requiring direct modelling of the savings account, it turns out
that it is not as straightforward as that. Consider the well-known relation

πt =
dP
dQ

∣∣∣
Ft

B−1
t , (15)

where Q is the risk-neutral measure associated with the savings account (numeraire) process (Bt)t≥0. If
the aim is to obtain a rational form for the savings account process (Bt), see Assumption 1 below, then
modelling the pricing kernel (πt) directly may be a tedious path to take, which not necessarily will lead
to the desired goal. What we are really interested in is an explicit expression for the process (Bt)t≥0.
Thus, we propose that the savings account process be of rational form, as postulated in Assumption 1
below. We will show that this allows for closed-form pricing under a risk-neutral measure of all
derivatives written on a backward-looking interest rate benchmark studied in this section. For the
theory underpinning the distinction between an (implied) savings account and a so-called classical
savings account (one that may be written in terms of a short rate process), we refer to Döberlein and
Schweizer (2001).

The discontinuation of interbank offered rate benchmarks has been described by some as the
biggest experiment ever in financial markets. These are momentous times while market participants
scramble to prepare for the transition to RFR benchmarks. The discontinuation of term-based
benchmarks, such as LIBOR, reduces a multiple-curve interest rate system to a single-curve one,
akin to the ones in place before the great financial crisis more than a decade ago. As discussed in
Backwell et al. (2019), the lack of a term-rate system produces increased exposure to roll-over risk. As a
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consequence, one can expect a refinancing strategy to become costlier due to the increased roll-over
frequency of debt that is rolled-over on an overnight basis. One ought to expect such effects to also
impact any so-called ‘LIBOR fallback’ provisions and in particular the calculation of any adjustment
(spread) to legacy contracts written on term-rates, see Mercurio (2018) and Henrard (2019) for example.
The adoption of a consistent pricing and hedging approach that models and explains the nature of
term rates and the impact of roll-over risk on borrowing strategies appears the right way forward. This
would allow for a transparent treatment of term rates and overnight interest rate benchmarks so that a
proposed transition to the latter has a chance to be appreciated in its entirety. A lack of term-based
benchmark rates may produce a level of opacity in lending markets. Market makers may offer rates,
which cannot be ‘independently assessed’ in the sense that a mark-to-market comparison to a FRA
market is not going to be available. For first advancements on consistent approaches to term- and
overnight interest rate benchmarks, we here refer to Alfeus et al. (2018), Backwell et al. (2019), and to an
article by Macrina & Mahomed (in preparation) with a focus on term risk in interest rate markets. We
conclude our reflections by noting that, at the time of writing, there is no global consensus regarding
the transition to RFRs. Depending on the jurisdiction, term-based benchmarks are to be superseded
by RFRs (e.g., UK), term-based and RFR benchmarks shall coexist until both are accepted as market
representatives (e.g., USA, Eurozone). Such ambiguities are perhaps a reflection of the differences
between market structures, but also derive from the different natures of the benchmarks themselves
that are being used.

3. Rational Savings Account Models

In the case where one deals with backward-looking rates, we have now shown instances where
the payoff itself will explicitly depend on the savings account. It is therefore a clear advantage to
directly model the process (Bt)t≥0. Building on Döberlein and Schweizer (2001), we make the following
assumption throughout this paper:

Assumption 1. The savings account model (Bt)t≥0 is given by

Bt :=
1

a(t) + b(t)Yt
, (16)

for all t ≥ 0, and where (Yt)t≥0 is a stochastic, nonnegative process of finite variation. The function a(t) is
deterministic, strictly positive, of bounded variation while b(t) is deterministic, nonnegative and of bounded
variation. It is assumed they satisfy the initial condition,

a(0) + b(0)Y0 = 1.

The financial or economic interpretation of the savings account is no different from that of a
classical bank account. The savings account (Bt)t≥0 discounts/accrues cash flows, and, as the name
suggests, quantifies the savings made over a period of time. It is also the numeraire associated with
an equivalent risk-neutral measure. The difference here is that the savings account model, given by
Definition (16), is more general than bank account processes defined in terms of a short-rate model.
The rational form of Relation (16) allows for an increased level of tractability, as we will see next, when
deriving the price dynamics of interest rate derivatives under a risk-neutral measure Q.

Lemma 1. The savings account (Bt)t≥0, defined by Equation (16), is a strictly positive and
finite-variation process.

Proof. Let the sample path for a given ω ∈ Ω be h : t → Yt(ω) and define the mapping g : t →
a(t) + b(t)h(t). The functions a, b and h have bounded variation. It follows from the chain rule of
bounded variation, see Ambrosio and Dal Masio (1990), that the product (and trivially the sum) of two
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functions of bounded variation are of bounded variation. Hence, the mapping g has bounded variation.
Let f : x → 1/x. Then the savings account is given by the composite function Bt(ω) = f ◦ g(t, ω). The
function f is Lipschitz-continuous and strictly positive on R>0. By another application of the chain
rule result, it turns out that the composite function Bt(ω) is of bounded variation for all ω ∈ Ω and
thus that the stochastic process (Bt)t≥0 is strictly positive and has finite variation for all t ≥ 0.

Lemma 1 establishes that the specification in Equation (16) is a savings account in the sense of
Döberlein and Schweizer (2001). The probability measure Q, associated with the numeraire process
(Bt)t≥0, is hence a risk-neutral measure.

Remark 1. If any of the conditions underpinning Lemma 1 are relaxed, resulting in (Bt)t≥0 being a positive
semi-martingale that is not of finite variation, then (Bt)t≥ is no longer a savings account. It would however still
qualify as a numeraire and its associated measure would still be a martingale measure, though not a risk-neutral
measure. This means that the true savings account process would no longer be directly specified, thus making
the modelling advantage of our approach void.

We are now in the position to write down the price process of a discount bond:

PtT = Bt Et

[
B−1

T

]
=

a(T) + b(T)Et [YT ]

a(t) + b(t)Yt
, (17)

where we recall that the conditional expectation is taken with respect to the risk-neutral measure Q.
Assuming that the bond price function P(t, T) is differentiable in T, the instantaneous bond return
process (ηt)t≥0 has the form

ηt = −∂T ln(PtT)
∣∣
T=t = −

ȧ(t) + ḃ(t)Et [YT ] |T=t + b(t) (∂TEt [YT ]) |T=t
a(t) + b(t)Et [YT ] |T=t

, (18)

where the dot-notation stands for differentiation with respect to t. It is worth emphasising that the
instantaneous bond return may not be given by a short rate, as used in Equation (1), in general. While
(Yt)t≥0 is of finite variation, (Et[YT ])t∈[0,T] is not of finite variation, in general. It follows that the ZCB
price process and the instantaneous bond return process may also be of infinite variation. The above
expression also reveals that, even in the case of a strictly increasing process (Yt)t≥0, the support of
(ηt)t≥0 is not limited to a positive domain. Its sign is controlled by the time-derivatives ȧ(t) and ḃ(t),
which may have either sign, and the model can produce positive as well as negative rates. Furthermore,
the Form (17) of the discount bond allows for the calibration of the price model to the discount bond
initial term-structure (P0t)0≤t≤T . We have

P0t = a(t) + b(t)E [Yt] , (19)

where 0 ≤ t ≤ T. Solving for a(t) and inserting the result into Equation (17), one obtains

PtT =
P0T + b(T) (Et [YT ]−E [YT ])

P0t + b(t) (Yt −E [Yt])
. (20)

Similar to an HJM-style model, the deterministic function a(t)0≤t≤T may be automatically
calibrated to the initial term structure while b(t)0≤t≤T and the specific parameters related to the
process (Yt)t≥0 can be used to calibrate to non-linear derivatives.

Assumption 2. The stochastic process (Yt)t≥0 is taken to be

Yt =
∫ t

0
(w · Zs)ds, t ≥ 0, (21)
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where w ∈ Rd−1
≥0 and (Zt)t≥0 is an affine process, as characterised in the appendix, defined on Rd−1

≥0 and such
that w · Z0 > 0.

Remark 2. In line with Proposition 12 in Döberlein and Schweizer (2001), for a process (Yt)0≤t of the form
(21)—not necessarily defined in terms of an affine process—such that E[w · Zt] < ∞ for all t ≥ 0, it follows
that the dynamics of the savings account, given by Relation (16), may be written as dBt = rtBtdt, where

rt := − ȧ(t) + ḃ(t)Yt + b(t)w · Zt

a(t) + b(t)Yt
(22)

is the short rate of interest. This is obtained by applying Ito’s quotient rule. It then also follows that the
instantaneous return, with Form (18), on the discount bond satisfies ηt = rt, 0 ≤ t ≤ T.

It follows from standard theory that (Yt)t≥0 is strictly positive and of finite variation. Theorem 4.1
in Keller-Ressel (2008) states that if one defines

Xt := (Yt, Zt), ∀t ≥ 0,

then (Xt)t≥0 is affine in Rd
≥0. By definition of an affine process, there exist functions φ : [0, T̄]×Cd → C

and ψ : [0, T̄]×Cd → Cd such that

Et

[
eu·XT

]
= exp

(
φT−t(u) + ψT−t(u) · Xt

)
, (23)

for all t ∈ [0, T]. Here, u ∈ S(I) where

I :=
{

u ∈ Rd : sup
t∈[0,T̄]

E[eu·Xt ] < ∞
}

, (24)

and where S(I) := {z ∈ Cd : <z ∈ I} is the the strip of existence. We assume that 0 ∈ int(I) where
int denotes the interior of the set I . Furthermore, we will often need the derivatives with respect to
the vector u = [u1, . . . , ud]

>, and so

∂φT−t(u)
∂u

=

[
∂ψT−t(u)

∂u1
, . . . ,

∂ψT−t(u)
∂ud

]>
, (25)

∂ψT−t(u)
∂u

=
[

∂ψT−t(u)
∂u1

, · · · , ∂ψT−t(u)
∂ud

]
=


∂ψ1

T−t(u)
∂u1

. . .
∂ψ1

T−t(u)
∂ud

...
. . .

...
∂ψd

T−t(u)
∂u1

. . .
∂ψd

T−t(u)
∂ud

 . (26)

Next, we derive the pricing formulas of the main fixed-income derivative instruments under
Assumptions 1 and 2.

3.1. Linear Derivatives

We next make use of the savings account process introduced in Assumption 1, and in
particular consider the setting in Assumption 2, to derive the no-arbitrage price process of linear
derivatives written on a backward-looking benchmark. In the following proposition, we begin with a
discount bond.
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Proposition 1. The discount bond price process is given by

PtT =
a(T) + b(T)

(
∂φT−t(u)

∂u1

∣∣
u=0 +

∂ψT−t(u)
∂u1

|u=0 · Xt

)
a(t) + b(t)Yt

=
ã(t, T) + b̃(t, T) · Xt

a(t) + b(t)Yt
, (27)

where ã(t, T) = a(T) + b(T) ∂φT−t(u)
∂u1

∣∣∣
u=0

and b̃(t, T) = b(T) ∂ψT−t(u)
∂u1

∣∣
u=0.

Proof. We apply Lemma A4 to obtain

Et[YT ] = Et[e1 · XT ] = e1 ·
(

∂φT−t(u)
∂u

∣∣∣
u=0

+

(
∂ψT−t(u)

∂u

∣∣∣
u=0

)>
Xt

)
(28)

=

(
∂φT−t(u)

∂u1

∣∣∣
u=0

+
∂ψT−t(u)

∂u1

∣∣∣
u=0
· Xt

)
, (29)

where e1 is a d-dimensional unit-vector with one in the first entry and zero elsewhere. Inserting the
above in Equation (17) yields the Equality (27).

3.2. Caplets and Swaptions

Proposition 2. The price of a caplet paying (R(T, U)− K)+ at time U for any t ≤ U is,

CPt =δBtEt[B−1
U (R(T, U)− K)+] = δBtEt

[
(c0 + c1 · XT + c2 · XU)

+
]

(30)

=
δBt

π

∫ ∞

0
<
[

q̂(R + iν)
(R + iν)2

]
dν, (31)

where δ = U − T, K̃ = 1 + δK, c1 = e1BT , c2 = e1K̃BU and

q̂(k) : = Et

[
ek(c0+c1·XT+c2·XU

]
(32)

=

{
ekc0+φT−U(c2)+φT−t(c1+ψT−U(c2))+ψT−t(c1+ψT−t(c2))·Xt , ∀t ≤ T < U
ekc0+c1·XT+φU−t(kc2)+ψU−t(kc2)·Xt , ∀t ∈ [T, U]

, (33)

for any k ∈ C such that kc1, kc2 ∈ S(I) and where R is any real constant such that q̂(R) < ∞.

Proof. Relation (30) follows by direct insertion of the definition of (Bt) and R(T, U) and from rewriting
the expression as a function of XT and XU . Result (31) follows directly from Theorem 4 in Filipović
et al. (2017), and Equation (33) follows from Lemma A5 in Appendix B.

The following proposition shows that a closed-form formula for swaptions similar to those
derived in, e.g., Flesaker and Hughston (1996) and other works on rational models, can be derived in
our setup.

Proposition 3. The price of a swaption is given as

SWPt = Bt Et[B(Ta)
−1(Va,b

Ta
)+] = Bt Et[(ãa,b + b̃a,b · XTa)

+] (34)

=
Bt

π

∫ ∞

0
<
[

q̂(R + iν)
(R + iν)2

]
dν, (35)

where ãa,b = ã(t, Ta)− ã(t, Tb)− δK ∑b
i=a+1 ã(t, Ti) and b̃a,b = b̃(t, Ta)− b̃(t, Tb)− δK ∑b

i=a+1 b̃(t, Ti) and
we have

q̂(k) = Et

[
ek(ãa,b+b̃a,b ·Xt)

]
= ekãa,b

eφTa−t(kb̃a,b)+ψTa−t(kb̃a,b)·Xt). (36)
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For all k ∈ C such that kb̃a,b ∈ S(I). R > 0 is any real constant such that q̂(R) < ∞.

Proof. Relation (34) follows by direct insertion of Expression (27) into Relation (13) and from rewriting
the expression as a function of XTa . Equation (35) follows by an application of Theorem 4 in Filipović
et al. (2017).

3.3. Futures

Finally, we consider the contract of a future. A standard result, presented in, e.g., Hunt and
Kennedy (2004), is that the price of a future contract with a random payoff X, measurable at time U, is
priced as the risk-neutral expectation thereof, without discounting, that is, Et[X]. The convention for
three-month SOFR/SONIA futures is that their payoff is given by the difference between a notional and
the discretely compounded backward-looking rate. Assuming a unit notional, the payoff is 1− R̄(T, U),
where δ = U − T ≈ three months. As in Mercurio (2018), we use Et[R̄(T, U)] ≈ Et[R(T, U)] and
define the futures rate for a three-month contract by

f 3m(t, U) = Et[R(T, U)]. (37)

In a LIBOR market model, this expectation cannot be solved in closed-form; an approximation
is developed in Lyashenko and Mercurio (2019). In the following proposition, we show that in our
setting no approximation is needed.

Proposition 4. The futures rate for a three-month SOFR futures contract expiring at time U with δ = U− T ≈
three months is given by

f 3m(t, U) = Et[R(T, U)] =
1
δ

(∫ ∞

0
ec2(s)+φT−t(v2(s))+ψT−t(v2(s))·Xt

(
ā(s) + b̄(s) · Xt

)
ds− 1

)
, (38)

where ā(s) = a(T) + b(T) ∂φT−t(u)
∂u1

∣∣∣
u=v2(s)

and b̄(s) = b(T) ∂ψT−t(u)
∂u1

∣∣
u=v2(s)

. Moreover,

v2(s) := ψU−T(−se1BU), c2(s) := −sa(U) + φU−T(−se1BU). (39)

Proof. From Lemma A2 (see Appendix A) we obtain

ET [BU ] = ET

[
(a(U) + b(U)YU)

−1
]
=
∫ ∞

0
ET

[
e−s(a(U)+b(U)YU)

]
ds (40)

=
∫ ∞

0
exp (−sa(U) + φU−T(−se1b(U)) + ψU−T(−se1b(U)) · XT)ds. (41)

Then,

Et

[
BU
BT

]
= Et

[
1

BT
ET [BU ]

]
(42)

= Et

[
(a(T) + b(T)YT)

∫ ∞

0
e−sa(U)+φU−T(−se1b(U))+ψU−T(−se1b(U))·XT ds

]
(43)

=
∫ ∞

0
e−sa(U)+φU−T(−se1b(U))Et

[
(a(T) + b(T)e1 · XT)eψU−T(−se1b(U))·XT

]
ds (44)

=
∫ ∞

0
ec2(s)+φT−t(v2(s))+ψT−t(v2(s))·Xt

×
(

a(T) + b(T)e1 ·
[

∂φT−t(u)
∂u

∣∣∣
u=v2(s)

+

(
∂ψT−t(u)

∂u

∣∣∣
u=v2(s)

)>
Xt

])
ds, (45)
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from which Equation (38) follows. In the third equality, Fubini’s theorem is applied. This is valid
subject to ψU−T(−se1b(U)) ∈ I for all s ≥ 0. This condition holds because −se1b(U) ∈ I for all
s ≥ 0.

The convention for one-month SOFR futures is that their payoff is an arithmetic average rate
instead of a geometric compounded rate. Following Mercurio (2018), we define the rate of one-month
futures expiring at time U, where 1m ≈ δ = U − T, by

f 1m(t, U) = Et[R1m(T, U)], (46)

where R1m(T, U) is the arithmetic average of the overnight rate over one month. Then,

R1m(T, U) =
1
δ

n1M

∑
i=1

R1d(Ti)δ1d, R1d(t) =
1

δ1d

(
1

P(t, t + δ1d)
− 1
)

. (47)

Here, T = T1 < · · · < Tn1m+1 = U spans the course of one month. This case is not covered in the
LMM context of Lyashenko and Mercurio (2019), and it is not clear how one would proceed without
further approximations. It is investigated in a short rate model in Mercurio (2018), where the arithmetic
average is approximated by an integral over the short rate of interest. This approximation simplifies
the expression for Solution (46) in an affine short rate model, but it is in fact not necessary—even for
the short rate model they present. As shown below, tractability depends on obtaining an analytical
result for the expression Et[1/PTU ], which exists by definition in an exponential affine short rate model.
In our savings account setting the resulting expression for the conditional expectation is a little more
involved, but nevertheless it only amounts to performing a one-dimensional integration.

Lemma 2. For all t ∈ [T, U) we have

Et [1/PTU ] =
∫ ∞

0
[a(T)q1(−s) + b(T)q2(−s)]ds, (48)

where

q1(s) = Et

[
es[ã(T,U)+b̃(T,U)·XT ]

]
= esã(T,U)+φT−t(sb̃(T,U))+ψT−t(sb̃(T,U)·Xt , (49)

q2(s) = Et

[
YT es[ã(T,U)+b̃(T,U)·XT ]

]
(50)

= esã(T,U)+φT−t(sb̃(T,U))+ψT−t(sb̃(T,U))·Xt

[
∂φT−t(u)

∂u1

∣∣∣
u=sb̃(T,U)

+

(
∂ψT−t(u)

∂u1

∣∣∣
u=sb̃(T,U)

)
· Xt

]
. (51)

Proof.

Et[1/PTU ] = Et

[
a(T) + b(T)YT

ã(T, U) + b̃(T, U) · Xt

]
(52)

= a(T)Et

[
1

ã(T, U) + b̃(T, U) · XT

]
+ b(T)Et

[
YT

1
ã(T, U) + b̃(T, U) · XT

]
. (53)

Applying Lemma A2 to the first term yields

Et[(ã(T, U) + b̃(T, U) · XT)
−1] =

∫ ∞

0
Et

[
e−s[ã(T,U)+b̃(T,U)·XT]

]
ds (54)

=
∫ ∞

0
e−sã(T,U)+φT−t(−sb̃(T,U))+ψT−t(−sb̃(T,U))·Xt ds. (55)
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Similarly, by applying Lemmas A3 and A4 to the second term gives

Et

[
YT(ã(T, U) + b̃(T, U) · XT)

−1
]
=
∫ ∞

0
Et

[
YT e−s(ã(T,U)+b̃(T,U)·XT)

]
ds (56)

=
∫ ∞

0

[
esã(T,U)+φT−t(sb̃(T,U))+ψT−t(sb̃(T,U))·Xt

[
∂φT−t(u)

∂u1

∣∣∣
u=sb̃(T,U)

+

(
∂ψT−t(u)

∂u1

∣∣∣
u=sb̃(T,U)

)
· Xt

]]
ds. (57)

With this result at hand, we can now express the one-month futures rate:

Proposition 5.

f 1m(t, U) = Et[R1m(T, U)] =
1
δ

∫ ∞

0

n1m

∑
i=1

(a(Ti)q1(t, Ti, s) + b(Ti)q2(t, Ti, s))ds− n1m
δ

, (58)

where

q1(t, T, s) = Et[es[ã(T,T+δ1d)+b̃(T,T+δ1d)·XT ]] = esã(T,U)+φT−t(sb̃(T,T+δ1d))+ψT−t(sb̃(T,T+δ1d)·Xt ], (59)

q2(t, T, s) = Et[YT es[ã(T,T+δ1d)+b̃(T,T+δ1d)·XT ]] (60)

= esã(T,T+δ1d)+φT−t(sb̃(T,T+δ1d))+ψT−t(sb̃(T,T+δ1d))·Xt

×
[

∂φT−t(u)
∂u1

∣∣∣
u=sb̃(T,T+δ1d)

+

(
∂ψT−t(u)

∂u1

∣∣∣
u=sb̃(T,T+δ1d)

)
· Xt

]
. (61)

Proof. A direct application of Lemma 2 in Relation (46) confirms the result.

Example: Multidimensional CIR Process

We conclude with a sketch of an example. Assume Xt = (Yt, Zt) = (
∫ t

0 w · Zsds, Zt) where
Zt = [Z1

t , . . . , Zd−1
t ]> and where Zi

t is given by

dZi
t = κi(θi − Zi

t)dt + σi

√
Zi

tdWi
t , Zi

0 > 0, ∀i = 1, . . . , d− 1, (62)

and κi, θi, σi > 0 and (Wi
t ) is standard Brownian motion independent of (W j

t ) for i 6= j. The conditional
moment generating function Et[eXT ] = eφT−t(u)+ψT−t(u)·Xt for (Xt)t≥0 defined above is found by first
noticing that

eu·Xt =
d−1

∏
i=1

exp
(

u1wi

∫ t

0
Zi

sds + ui+1Zi
t

)
. (63)

Using the independence property of the processes (Zi
t)t≥0 and applying Lemma A6 gives

φT−t(u) =
d−1

∑
i=1

Ai
T−t(wiu1, ui+1), ψT−t(u) = [u1, B1

T−t(w1u1, u2), . . . , Bd−1
T−t(wd−1u1, ud)]

>, (64)

Ai
s(v1, v2) =

2κiθi

σ2
i

ln

(
2γie(γi+κi)s/2

(κi − v2σ2
i )(e

γis − 1) + γi(eγis + 1)

)
, (65)

Bi
s(v1, v2) =

v2(κi + γi + eγis(γi − κi)) + 2v1(eγis − 1)
(κi − v2σ2

i )(e
γis − 1) + γi(eγis + 1)

, (66)

γi =
√

κ2
i − 2σ2

i v1. (67)
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It follows from Lemma A6 that the result holds for the set {u ∈ Rd|u1wi <
κ2

i
2σ2

i
& ui+1 <

κi/σ2
i , ∀i = 1, . . . d− 1}. The derivatives needed in the pricing equations can be calculated as follows:

∂φt(u)
∂u1

=
d−1

∑
i=1

∂Ai
T−t(wiu1, ui+1)

∂u1
, (68)

∂ψt(u)
∂u1

=

[
1,

∂B1
T−t(w1u1, u2)

∂u1
, . . . ,

∂Bd−1
T−t(wd−1u1, ud)

∂u1

]>
. (69)

The explicit expressions are lengthy and tedious to calculate by hand, but can be obtained with
ease by using a software such as Mathematica offering symbolic calculations. In Appendices A and B,
we include some results that assist with the mathematical developments in this section.

4. Conclusions and Outlook

In this paper we develop a new class of rational term structure models that is tailored to the
new backward-looking interest rate benchmarks, which are meant to supersede the forward-looking
LIBOR. Currently, only the three-month SOFR and SONIA futures can be said to be traded on the new
overnight benchmarks, and trading volumes are still rather limited, but nevertheless growing as the
LIBOR discontinuation deadline nears. As trade volumes in SOFR/SONIA-based contracts rise, we
expect that swaps, caps and swaptions enter the market in a fashion similar to what is described in this
paper. A maturing market will generate the needed data also to perform empirical investigations on the
validity of the proposed models. At present, not even linear derivatives are traded liquidly, meaning
that an initial term structure (P0t)t≥0 cannot be implied in a straightforward way. An implied initial
term structure would allow for the construction of market-implied, forward-looking term rates via the
formula F(t, t + δ) = (1/Pt,t+δ − 1)/δ; an important benchmark, much coveted by market participants.
The most liquid market instrument referencing RFR rates are the one-month and three-month SOFR
futures contracts trading on the Chicago Mercantile Exchange. The non-linearity of the futures contract
implies that futures prices do not determine the initial curve (P0t)t≥0 in a unique fashion and vice
versa, of course. However, model-free attempts to use futures prices to infer the SOFR-curve have
been pursued by applying an approximation in Heitfield and Park (2019). The authors envisage to
work on a similar procedure, but performed in an arbitrage- and approximation-free manner using the
model structure presented in this paper.

A much easier and model-free approach to infer the initial curve would be possible should a
liquid market for truly linear derivatives, such as swaps, arise. In this case the initial curve could be
constructed using standard single-curve bootstrapping techniques.

It is unclear whether cash market participants will be satisfied with solely using a benchmark
free of credit and liquidity risk premia such as SOFR. Alternative indices, such as the ICE Bank Yield
Index or AMERIBOR, which include credit risk premia, might soon become increasingly relevant
as an alternative to SOFR once LIBOR is discontinued. If this is what the future will bring, then
the single-curve framework of this paper would need to be extended to a multi-curve setting in
order to price the differences in risk premia across indices. This could be done along the lines
of Crépey et al. (2016) and Macrina and Mahomed (2018), properly adjusting for the difference in
model structure.
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Appendix A. General Results

Lemma A1. Let U be a random variable and assume there exists δ > 0 such that MU(v) := E[evU ] < ∞ for
all v ∈ (−δ, δ). Then

E
[
UeνU

]
=

∂MU(v)
∂v

∣∣
v=ν

, ∀ν ∈ (−δ, δ).

Lemma A2. If U > 0 is a random variable then it satisfies

E
[
U−1

]
=
∫ ∞

0
E
[
e−sU

]
ds.

Proof. One has that, for x > 0,
∫ ∞

0 e−sxds = 1/x. The result is produced by applying
Fubini’s Theorem:

E[U−1] = E
[∫ ∞

0
e−sUds

]
=
∫ ∞

0
E
[
e−sU

]
ds. (A1)

Lemma A3. Let U > 0 and W be random variables, and there exists a δ > 0 such that E[ev1U+v2W ] < ∞ for
all v1, v2 ∈ (−δ, δ), then

E
[
WU−1

]
=
∫ ∞

0
E
[
We−sU

]
ds.

Proof. Observe that
∫ ∞

0 e−sxds = 1/x. The result is obtained by applying Fubini’s Theorem:

E
[
WU−1

]
= E

[∫ ∞

0
We−sUds

]
=
∫ ∞

0
E
[
We−sU

]
ds. (A2)

Appendix B. Affine Processes

Let (Ω,F ,Q) be a filtered probability space, where (Ft)0≤t≤T̄ denotes the associated filtration
and 0 < T̄ < ∞. We set

I :=
{

u ∈ Rd : sup
t∈[0,T̄]

E
[
eu·Xt

]
< ∞

}
. (A3)

We denote by S(I) the strip S(I) = {z ∈ Cd : <z ∈ I}. We defineD := {(t, u) ∈ (0, T̄)×C, u ∈ S(I)},
and we let (Xt)t≥0 be an affine process in the sense of Definition 3.1 in Cuchiero et al. (2011), meaning
that there exist functions φ : D → C and ψ : D → Cd such that

E
[
eu·Xt

]
= exp (φt(u) + ψt(u) · x) . (A4)

For all (t, u) ∈ D. Since affine processes are also time-homogeneous Markov process, it follows that

Et

[
eu·XT

]
= exp(φT−t(u) + ψT−t(u) · Xt) for 0 ≤ t ≤ T ≤ T̄, u ∈ S(I). (A5)

Lemma A4. For any v2 ∈ int(I) and for 0 ≤ t ≤ T ≤ T̄ and ∀c1, c2 ∈ R and ∀v1 ∈ Rd. It follows that

Et

[
(c1 + v1 · XT)ec2+v2 ·XT

]
= ec2+φT−t(v2)+ψT−t(v2)·Xt

(
c1 + v1 ·

[
∂φT−t(u)

∂u

∣∣∣
u=v2

+

(
∂ψT−t(u)

∂u

∣∣∣
u=v2

)>
Xt

])
. (A6)
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Proof. Let X j
T and uj be an arbitrary component in XT and u ∈ int(I), respectively. Then

∂

∂uj Et

[
eu·XT

]
= Et

[
∂

∂uj eu·XT

]
= Et

[
X j

Teu·XT
]

. (A7)

Differentiating within the expectation hinges, by way of the dominated convergence theorem, on the
condition Et[|X j

Teu·XT |] < ∞ which can be established by Hölder’s inequality. We have

Et

[
|X j

Teu·XT |
]
≤ Et

[
|X j

T |
p
]1/p

Et

[
equ·XT

]1/q
, p > 1, q = p/(p− 1). (A8)

Since 0 is in the interior of I , it follows that E[|X j
T |p] < ∞. As p can be chosen arbitrarily large

it follows that, since u ∈ int(I), q can be made sufficiently close to 1 such that qu ∈ I and thus
Et[equ·XT ] < ∞. From Inequality (A8) one then has Et[|X j

Teu·XT |] < ∞. Applying the same arguments
for all j = 1, . . . , d and using Equations (A5) and (A7) we get

Et

[
XTev2 ·XT

]
=

∂

∂u
Et

[
eu·XT

] ∣∣∣
u=v2

= eφT−t(v2)+ψT−t(v2)·Xt

([
∂φT−t(u)

∂u

∣∣∣
u=v2

+

(
∂ψT−t(u)

∂u

∣∣∣
u=v2

)>
Xt

])
, (A9)

from which Equation (A6) follows.

Lemma A5. For all u, v ∈ S(I), such that u + ψT−U(v) ∈ S(I) we have for 0 ≤ t ≤ T ≤ U

Et

[
eu·XT+v·XU

]
= eφT−U(v)+φT−t(u+ψT−U(v))+ψT−t(u+ψT−t(v))·Xt . (A10)

Proof. Using the tower property and Equation (A5), one has that

Et

[
eu·XT+v·XU

]
= Et

[
eu·XTET [eu·XU ]

]
= exp [φT−U(v) + φT−t(u + ψT−U(v)) + ψT−t(u + ψT−t(v)) · Xt] . (A11)

Lemma A6. Let (Zt) be a one dimensional square-root process, described by

dZt = κ(θ − Zt)dt + σ
√

ZtdWt, Z0 > 0, (A12)

where (Wt)t≥0 is a standard Brownian motion, κ, θ and σ are positive constants. The joint moment generating
function is given by

E
[

exp
(

u1

∫ t

0
Zsds + u2Zt

)]
= exp (At(u1, u2) + Bt(u1, u2)Z0) , (A13)

where

Bt(u1, u2) =
u2(κ + γ + eγt(γ− k)) + 2u1(eγt − 1)

(κ − u2σ2)(eγt − 1) + γ(eγt + 1)
(A14)

At(u1, u2) =
2κθ

σ2 ln

(
2γ(γ+κ)t/2

(κ − u2σ2)(eγt − 1) + γ(eγt + 1)

)
, γ =

√
κ2 − 2σ2u1, (A15)

∀u1, u2 ∈ Ī ⊆ I . Here, I is full the strip of existence for moment generating function of the affine process
(
∫ t

0 Zsds, Zt)t≥0 and Ī = {(u1, u2) ∈ R2|u1 < k2

2σ2 , u2 ≤ κ
σ2 }.
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Proof. The expressions for At(u1, u2) and Bt(u1, u2) are stated to hold for u1, u2 ≤ 0 in Proposition
6.3.4.1 in Jeanblanc et al. (2009). The functions At(u1, u2) and Bt(u1, u2) are verified to be analytical
also for u1 < k2/(2σ2) and u2 ≤ κ/σ2. To verify that the analytical extension remains the unique
moment generating function in the extended domain, Keller-Ressel and Mayerhofer (2015) show that a
sufficient and necessary condition is that the functions At(u1, u2) and Bt(u1, u2) are solutions to the
generalized Riccati equations associated with the affine process (

∫ t
0 Zsds, Zt)t≥0. By standard theory,

see for example Duffie et al. (2000), these are given by

dBt = −κBt +
1
2

σ2B2
t + u1, B0(0) = u2, (A16)

dAt = κθBt, A0(0) = 0. (A17)

Inserting the expressions At(u1, u2) and Bt(u1, u2) above and verifying that they are indeed solutions
completes the proof.
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