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Abstract: Stability indicators are essential to banks in order to identify instability caused by adverse
economic circumstances or increasing risks such as customer defaults. This paper develops a novel
comprehensive stability indicator (CSI) that can readily be used by individual banks, or by regulators
to benchmark financial health across banks. The CSI incorporates the three key risk factors of
Creditworthiness, Conditions and Capital (3Cs), using a traffic light system (green, orange and red) to
classify bank risk. The CSI achieves similar outcomes in ranking the risk of 20 US banks to the much
more complex US Federal Reserve Dodd-Frank stress tests.
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1. Introduction

The Global Financial Crisis (GFC) highlighted the major impact that troubled banks can have on
global economies. The successful development of an economy, as noted by (Gavurova et al. 2017), is
dependent on the efficient and stable performance of its banks. This leads to the necessity for sound
risk indicators for banks. These can be referred to as “stability indicators” (the term we use in this
study) or “financial soundness indicators” as used by the International Monetary Fund 2018 (IMF).
Such indicators, according to the IMF, provide insight into the health of a country’s financial institutions
and support economic and financial stability analysis. Indicators should highlight weaknesses in the
financial sector and assist in the formulation of macroeconomic policy (Navajas and Thegeya 2013).
The indicators can also be incorporated into wider stress testing, which is entrenched in Basel III
and requires banks to undertake multifactor tests that capture historical extreme environments and
plausible future market instability, thus helping to improve the banking sector’s ability to absorb
financial and economic shocks.

There is a diverse range of potential stability indicators. The International Monetary Fund 2018
recommends 28 indicators (discussed further in Section 2), covering a wide range of risks. While
comprehensive, a large number of indicators can cause complexity difficulties when comparing overall
financial stability across different banks or regions. The purpose of this research is to construct
a comprehensive stability indicator (CSI) that has the simplicity of only three factors (the 3Cs of
Creditworthiness, Conditions and Capital) but which can adequately compare banks so that problems can
be promptly identified and addressed.

In formulating the model, several key requirements were considered. First, the model should be
backwards and forwards looking. Second, risk should be identified through incorporating easy to
access internal (bank) and external (market) factors which can be readily modelled by banks or at a
regional regulator level. Third, the indicator must provide clear outcome categories which are not only
pass/fail, but which also identify banks where improvements could be made. Fourth, it should be able
to be applied uniformly across banks, but as no model can cover all circumstances, it should allow for
judgement in the interpretation of results and implementation of remedial action.
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As noted, our model incorporates 3Cs: Creditworthiness, Conditions and Capital. Creditworthiness
is the internal bank factor which measures loan quality, which in our model is represented by
nonperforming loans (NPL) to gross loans ratio. Conditions (market conditions) are measured in our
model by a (Merton 1974) type model, which measures bank market asset value volatility. As market
asset values should incorporate all available market information, this approach acts as a substitute for
the analysis of a wide range of individual macroeconomic factors. Capital is the banks’ safety net which
absorbs adverse risk movements. These three factors are combined into a comprehensive stability
indicator (CSI), which is a Leverage to Creditworthiness coverage ratio modified by market Conditions.
Results are categorised using a traffic light model, red (danger), orange (caution) or green (pass).

We show that these 3Cs explain 91% of bank failures in the United States. The CSI is developed
from these 3Cs using data over the 13 year period from 2005 to 2017, which includes the GFC. We then
apply the CSI to 20 US Banks and find that it achieves similar results to much more complex Federal
Reserve tests in ranking the relative riskiness of these US banks. It should be emphasised that the
CSI model is a stability indicator, not a stress test. Stress tests are usually far more comprehensive
undertakings which follow very specific procedures, and sometimes using multiple scenarios (see for
example (Montesi and Papiro 2018)). Therefore, the CSI is not designed to replace comprehensive
stress tests like the Federal Reserve tests. However, the CSI can be a very useful ongoing indicator to
regulators or banks of risk in periods between comprehensive tests, or for regulators to compare risk
among a wider range of banks who have not been included in the comprehensive stress tests.

The key contribution and novelty of the model is in the new combination of variables considered
and the way the model is integrated is into a new comprehensive stability indicator (CSI). The above
discussion has highlighted several benefits and improvements that the model can bring to existing
solutions. First is the simplicity of the model, in that it focuses on a much narrower set of inputs
(three) than used by most existing models which are discussed in Section 2 (such as the 28 indicators of
the International Monetary Fund). This makes it readily usable by banks in those situations noted
in the above paragraph. Second, the combination of the three underlying variables provides a good
prediction of bank failure (as discussed in Section 5) and can achieve similar outcomes in classifying
risky banks as much more complex solutions (as noted by the comparisons with the Dodd—-Frank stress
tests in Section 6). Third, the benefit of the traffic light system component of the model is that it does
not only provide pass/fail outcomes, but also highlights banks where caution (orange) is needed and
where remedial action needs to be taken before the situation deteriorates.

Following this introduction, Section 2 discusses existing stability indicators. Section 3 sets out
key principles of the CSI model, while Section 4 explains the rationale and methodology. Section 5
describes our data and tests the appropriateness of the model. Section 6 presents the results and
Section 7 concludes.

2. Existing Stability or Soundness Indicators

This section examines various existing indicators and shows how our proposed model differs
from these.

In several studies, a multitude of indicators are applied to determine the financial soundness
of banks. For example, the IMF (International Monetary Fund 2018) have 28 financial soundness
indicators for deposit institutions relating to aspects such as capital, nonperforming loans, liquidity,
sectoral and geographic distribution, foreign exchange exposure and credit growth. (Adrian and
Brunnermeier 2016), include a wide range of variables into their ACoVaR measure of systemic risk,
including macro-state indicators (such as market returns and volatility on various instruments) and
internal indicators (relating to aspects such as leverage, maturity mismatch, size, growth and various
asset and liability variables). The Bank of England (BOE) Risk Assessment Model (RAMS]I) is another
multi-factor model, which measures stresses for the ‘whole’ banking system and for individual
banks (Burrows et al. 2012). The US Federal Reserve (US Federal Reserve 2018a) Dodd—Frank stress
tests included 28 indicators in their analysis of 35 Bank Holding Companies, covering a range of
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macroeconomic and bank specific factors and found that, while losses may be experienced by the
banks under severely adverse scenarios, none would fall below regulatory capital ratios, and were
thus deemed to have passed the tests. The z-score (Laeven and Levine 2009; Lepetit and Strobel 2013;
Doumpos et al. 2015) includes capital to assets (leverage) and return on assets (ROA), a far lower
number of indicators (two) than those of the IMFE. Value at Risk (VaR), which measures maximum
losses at a given level of confidence has become a predominant measure of risk among banks given
its incorporation into Basel Regulatory requirements (see (Fischer et al. 2018) for a comprehensive
evaluation of VaR techniques). (Powell 2017) compares small and large banks from Malaysia to the
overall ASEAN region using NPLs and conditional distance to default CDD (a tail risk measure of
default) to show that larger banks are generally of lower risk than smaller banks. Our proposed
model differs substantially from all these approaches in the number of variables proposed and in our
integration of the variables into a single comprehensive stability indicator (CSI).

Many studies discuss the importance of macroeconomic factors in assessing bank risk. (Borio
et al. 2014), believe that micro (bank specific) and macro (system-wide) indicators should be used
together, serving as a useful cross-check for each other. (Drehmann et al. 2011) investigated a range
of macroeconomic, market, and banking sector indicators as signals for the build-up and release of
capital buffers. They found that credit to GDP ratios (deviation from their long-term average) were the
most effective in signalling the need for capital build up, but that no single trigger was appropriate
over all countries and time periods, and therefore some degree of judgment would be necessary when
setting countercyclical buffers. (Rosch and Scheule 2015) found that bank losses can be decomposed
into fundamental and macroeconomic observable factors. (Guha and Hiris 2002; Joutz and Maxwell
2002; Trizeck 2010; Bellotti and Crook 2012) all incorporated macroeconomic factors into credit models.

While the above studies all highlight the importance of macroeconomic indicators, these can add
a high level of complexity. (Borio et al. 2014) states that where models are very complex, there is high
potential for misspecification. Market variables have been viewed as an alternative to macroeconomic
factors when assessing financial risk (Allen and Powell 2009). A key premise is that market prices
should incorporate all available information. Thus, if there are any economic or financial concerns in
markets then these should be all (or largely) captured in market asset prices, alleviating the need to
analyse individual macroeconomic factors.

The importance of the link between the market asset value volatility of banks (measured by
models like the Merton structural model outlined later in this paper) and capital adequacy, was
emphasised by the (Bank of England 2008), who state that as default probabilities increased during
the GFC, market participants placed greater weight on mark to market asset values, implying lower
asset values and higher capital needs for banks. The link between market volatility and credit risk
is highlighted by (Bucher et al. 2013), who argue that volatility can drive the dynamics and stability
of credit. Market based capital adequacy metrics have been found to be much more sensitive to risk
factors than accounting/regulatory based capital models (Hasana et al. 2015). (Angelini et al. 2011)
found market factors to dominate firm specific credit factors in times of crisis. (Allen et al. 2015) found
that a Merton type structural model which incorporated market asset value volatility was much more
responsive to dynamic economic circumstances than macroeconomic or ratings-based models. The
above discussion highlights that macroeconomic models and market models each have disadvantages
and advantages, and that market models provide a plausible alternative to macroeconomic models.

A major point of departure of our study from prior studies who use a multitude of indicators is
that we simplify this wide range of indicators to three core indicators, measuring the key areas of Capital,
Creditworthiness and Conditions. Another key point of departure of our model is the amalgamation of
these three indicators into a unique single overall comprehensive stability indicator (CSI), making it
easy to compare diverse banks on a common basis, which indicator is then linked to simple traffic
light colour zones red, orange and green, that not only indicate major problem areas (red) but also
highlight areas where improvement could be made (orange). While the z-score mentioned in our prior
discussion does have a single z-indicator, this includes a different set of variables (ROA and Capital) to
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our model. This Conditions variable is used as an alternative to the macroeconomic variables applied in
many studies, based on the premise that market prices should incorporate all available macroeconomic
information. In addition, a further advantage of our model compared to the other indicators above
which primarily measure historical events, is that it incorporates a forward-looking stability factor
which examines how the colour zones will change under distressed Conditions.

3. Key Principles of the Model

This section summarises the key principles used in the model for measuring bank safety. Further
detail and motivation behind the choices is in Section 4.

Forward and backward looking: The importance of looking forwards to future potential events in
addition to backwards is highlighted by the Basel III regulations and by (Paraschiv et al. 2015; Li et
al. 2018). Looking backwards involves an assessment of past factors causing banking distress, which
provides guidance to potential future distress. Looking forwards involves a ‘what if” approach which
determines how well banks are placed to deal with future distressed Conditions and usually involves
simulation of shocks to macroeconomic, internal, and market variables. In our model, this means
looking to the past for guidance on how well banks are currently placed to withstand potential future
shocks. Our model uses historical indicators (the variables from our 3Cs model mentioned below), to
which we apply a distress factor (DF) as shown under the parameters and definitions in Section 4, to
determine a bank’s resilience to a future distress scenario. Thus, as noted in Section 2, a key benefit of
our model is that it is forward looking, whereas many indicators examined in that section are primarily
backward looking.

Core components: Our ‘3 Cs’ model assesses Creditworthiness (of the underlying customers),
Conditions (the environment) and Capital (the safety net). The first two factors can cause bank distress,
while the third factor is a safety net for bank distress. As outlined in Section 4, we explore two measures
of Capital. The first is a total capital to total assets ratio (as it has some similarities to regulatory
leverage ratios, we will term this Leverage) and the second is a capital ratio based on the market value of
capital which we term KM. These 3C factors are combined into a single overall comprehensive stability
indicator (CSI) per Equations (2) and (3) in Section 4.2, making it easy to compare risk among banks.

Results classification: We use a traffic light system to categorise the results of our CSI (per Equation
(3)), where red is danger (failed the adverse scenario), orange is caution (marginally passed, and
situation needs closer scrutiny to determine potential improvements), and green is go (pass). This
classification has the benefit over other stability indicators, in that not only does it provide clear easily
understandable signals, it also highlights those banks where improvements can be made.

Simplicity and judgement: The stability indicators should be easy to implement and to understand
and be as uniform as possible. Using only three core factors (as compared to multifactor models
examined in Section 2) has the benefit of simplicity, making the model readily useable among different
banks. The argument for fewer or more factors in finance and economic models is not new. The Capital
Asset Pricing Model, for example, proposes a single factor (Beta) to explain stock returns. The (Fama
and French 1992) three factor model found that the three factors of beta (exposure to market), size
(small minus big) and value (book to market) can explain almost all the return of a stock portfolio. The
benefits of fewer factors are reduced complexity and cost, and improved ease of use, thus enabling
banks and regulators to readily benchmark financial health across diverse banks, and potentially
between regions.

It should also be recognised that no set of rules can apply to all circumstances. Therefore, sound
judgement should be applied in conjunction with the rules when considering the unique circumstances
of individual banks.
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4. Model Methodology and Motivation for Factor Choice

The model, (see Figure 1), incorporates the principles outlined in Section 3 and our 3Cs of
Creditworthiness, Conditions and Capital. The arrows for the causal factors of distress, Creditworthiness
and Conditions, point towards bank distress. The other arrow points away from bank distress towards
our distress relief factor, Capital.

Simplicity
. and
C’e‘?'t' judgement
worthiness
Forwards
and Bank
backwards
looking Stress
Results
classification
using traffic
light system

Figure 1. Comprehensive Stability Indicator (CSI) Model.

Choosing the factors involved some important considerations. The key objective is a model
which applies a common approach across all banks, in order to benchmark them against each other,
set a standard, and indicate where improvements are needed. The model is not intended to align
microscopically with each banks” unique circumstances, nor to replace bank specific models. Thus, a
complex model with detailed criteria is not sought. Rather, simplicity and uniformity are paramount
in the model which is why it is restricted to the three core factors of Creditworthiness, Conditions and
Capital, combined into an overall comprehensive stability indicator (CSI).

4.1. The 3C Factors

This section focuses on firstly outlining each of the three factors and the rationale for their choice,
and then secondly explaining how these are combined into an overall CSI.

The objective of the components of the model is to provide core measures of internal bank specific
risk (measured by Creditworthiness), external market risk impacting on banks (measured by Conditions)
and the protection or safety net that banks have against risk (measured by Capital).

Creditworthiness is our internal credit risk factor, measured by NPL to total gross loans, with
figures available via World Bank data at a US country level and from annual reports for individual
banks. Credit risk was acknowledged as the leading source of risk for banks long before the GFC (Basel
Committee on Banking Supervision 2000). This was subsequently reinforced by the role that sub-prime
and securitised loans played in the GFC. (Alali and Romero 2012) and (Kim and Lee 2019) find NPLs
to be very informative in the prediction of bank failure. The importance of credit risk continues to be
reinforced through the major role it plays in determining capital requirements under Basel III. Credit
facilities typically represent around 80% of all assets in US banks (US Federal Reserve 2018b), and
around 80% of the risk weighted assets used in capital adequacy calculations of banks (as shown in
their annual reports). We do not ignore the other risks, because, as we will see later, the threshold for
our CSI (Equation (3) in Section 4.2) can be adjusted to incorporate the other 20% of risks like liquidity
and operational risk.
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Conditions is our external factor. The importance incorporating of market-based variables into
stability indicators was discussed in Section 2. Our Conditions variable is the market asset value
volatility of banks (measured by the (Merton 1974) structural model approach), which as, discussed
in Section 2, captures all conditions impacting on an entity at the aggregate level. As the (Merton
1974) model is well documented, we only provide a brief summary of its key features here to assist the
reader. Key components of the model are equity (E), volatility of equity (o), market asset values of the
firm (A), debt (F) and market asset value volatility (c4) (Conditions). The firm defaults when liabilities
exceed assets. This equals the payoff of a call option on the firm’s value with strike price F. If, at time
T, loans exceed assets, then the option will expire unexercised and the owners will default. The call
option is in the money where Ar — F > 0, and out the money where A — F < 0. As A — F is a measure
of the firm’s capital, in our model A = F is where the lender has run out of capital. An increase in
Conditions risk indicates capital erosion, which needs to be restored, as noted by the BOE and IMF (see
Section 1). In calculating the Conditions, we follow the (Merton 1974) approach, as outlined in (Bharath
and Shumway 2008). An initial asset value and its volatility (04) is estimated in Equation (1):

GA:GE(E«EHT) @

Then a comprehensive iteration, convergence and correlation procedure is applied in order to
estimate the market value of assets every day, and the standard deviation thereof, for each bank in our
sample over the 13 year period. Any thin trading is compensated for using a moving average model as
outlined by (Miller et al. 1994).

Capital is our safety net. Capital buffers can help reduce banks’ systemic importance and their
individual risk-taking (Andries et al. 2018) and increase the resilience of banks (Hossain et al. 2017).
We use a total capital to total assets ratio rather than risk-weighted regulatory ratios. Many soundness
or stability indicators and their incorporation into stress tests, assess whether the existing level of
regulatory capital ratios can withstand shocks. However, the accuracy of the risk-weighting process,
globally, has been hotly debated given that different internal models used by banks result in different
risk-weightings. The (Basel Committee on Banking Supervision 2014), attribute this problem to a mix
of differences in the underlying risk and to different banking and supervisory practices. A further
argument in favour of our use of an unweighted capital ratio is that the purpose of risk weighting is to
apply favourable weightings to lower risk categories of loans, whereas our Creditworthiness factor is
based on NPLs which all fall into the high-risk category.

To illustrate the rationale behind the three factors chosen, consider the example of two countries
(Australia and the US). Going into the GFC, the US had almost double the Leverage ratio of Australia
(10.7% vs. 5.8%). Yet, the US had considerable losses and bank failures during the GFC, whereas
Australian banks all remained profitable. The problem was that the US had treble the level of
Creditworthiness risk (4.0% vs. 1.7%) and almost four times the Conditions risk (17.5% vs. 4.3%), leading
to severe erosion of US bank market capital values, with poor ability to meet nonperforming loans.
Thus, capital only tells part of the story of bank soundness. As noted by (Flannery and Giacomini 2015),
many large banks’ losses were absorbed by their governments during the GFC, despite these banks
complying with Basel standards for “adequate” capital. It is the deterioration of Creditworthiness and
market Conditions that leads to distress and losses for banks, which causes the need for capital buffers
to absorb this risk. There is not necessarily a relationship between capital and default risk (Bichsel and
Blum 2007). Thus, Leverage is not a preventative measure. It is the insurance policy—the safety net in
the event of a fall. It is the quality of lending and market conditions that determine distress levels.
Thus, in this study we examine distress using all these factors, i.e., the 3Cs of Capital, Creditworthiness
and Conditions.
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4.2. The Comprehensive Stability Indicator

Once the 3Cs are calculated, our objective is to provide an overall measure of bank distress, by
combining the factors into a single comprehensive stability indicator (CSI). This measures the extent
to which Leverage, modified by changes in volatility in market asset values (Conditions) to derive the
market value of capital KM, can cover Creditworthiness in the form of the NPL to gross loans ratio.

With the objective of ascertaining changes to CSI if distress is applied to the underlying variables,
the model incorporates a distress factor (DF), which is the amount of distress applied to a particular
scenario. Our zones of red, orange and green, have the objective of classifying CSI into different
risk bands.

The model has the following parameters and definitions:

Conditions = market asset value volatility, per Equation (1)

Creditworthiness ~ = nonperforming loans to total gross loans

Leverage = total capital to total assets ratio

KM = market value of capital (per Equation (2), which measures Leverage based on the impact
of a change in Conditions)

CsI = Comprehensive stability indicator (Equation (3), which is Leverage to Creditworthiness,
modified by changes in Conditions)

t = time period (year), and thus Conditions; is Conditions for historical period t

tc = current time period (i.e., if the most recent period in the sample is 2017, then Conditionsi.
is COl’ldiinTl52017)

DF = distress factor, which is the predetermined shock applied to a variable in a particular

scenario. In our scenario in Section 6 we apply distress to current factors up to the 90%
threshold («x = 0.90) level of historical experiences (e.g., the 90th percentile worst year in
our sample). Our example analysis of the US banks that is undertaken in Section 6 shows
that for Conditions this is 2.0 X the current Conditions level and that the associated
Creditworthiness at that distressed Conditions level is 2.5 X the current Creditworthiness level.
Thus, DFconditions0.90 = 2-0 and DFcyegitworthinessso.90 = 2.5. Therefore, Conditionsgistressed =
Conditionsi. X 2.0 and Creditworthiness gisressed = Creditworthinessy. X 2.5.

Zone =red, orange, or green, as determined by Section 6.1.4.

Note: The above factors are developed using figures for the total US market to determine a uniform Distress

Factor (DF). This DF is then applied to the 3Cs specific to each bank in the sample.

The equations referred to above are as follows, assuming 2017 as the current year:

KMt = Leverageog17 X (Conditionsygy7 / Conditionst) @)
Leverage; Conditionsyg17
Iy = I =
CSli CSl Creditworthiness; Conditions; G

CSl serves as a financial stability indicator, measuring the extent to which Leverage, modified by
changes in volatility in market asset values (Conditions), is able to cover Creditworthiness in the form of
the NPL to gross loans ratio. As Creditworthiness risk increases, or as Leverage decreases, this coverage
will reduce, indicating a reduction in the financial soundness of the firm. As economic and market
conditions deteriorate (such as in 2008 at the height of the GFC), market asset values become more
volatile, impacting on CSI. Thus, CSlpypg will be lower than CSI for other years in our sample, showing
a deterioration in financial soundness, and a need to restore the Leverage of the firm. CSI is linked to
colour bands red (danger), orange (caution) and green (pass).

5. Data and Testing the Appropriateness of the Model

This section outlines the data used in our modelling and undertakes regression testing of the
appropriateness of the underlying factors of the model, prior to running and presenting the results of
the full model in Section 6. Our CSI model requires data for Leverage, Creditworthiness and Conditions,
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including daily share price data on all individual banks in the sample. The period examined in the
CSI model is from 2005 to 2017 which importantly, includes the 2008-2009 GFC period, as well as
pre-GFC and post-GFC years. For Leverage and for Creditworthiness we use annual figures obtained
from World Bank data at the country level, supplemented by data on individual banks obtained from
Datastream and annual reports. The data we need to calculate Conditions, using the methodology
outlined in Section 4 to derive the daily asset values, is also obtained from Datastream.

Because we compare our results to the sample of banks used in the Federal Reserve Stress Tests
severely distressed scenario (35 banks in the 2018 tests), we only used banks in our sample which were
included in those tests. Our data sample was further restricted to listed USA owned banks, in the
Datastream US Banks index, and which had sufficient data available over the studied period. This gave
us a sample of 20 Banks common to those from the Federal Reserve tests, including Ally, American
Express, Bank of America, Bank of New York Mellon, BB&T, Capital One, Citigroup, Citizens, Discover,
Fifth Third, Huntington, JP Morgan Chase, Key Corp, M&T, Morgan Stanley, Northern Trust, PNC,
SunTrust, US Bancorp, and Wells Fargo. Between them, these 20 banks hold 67% of the total assets
(which comprise mainly loan assets) of all US banks.

To test the appropriateness of our selected factors, we back-tested them against actual bank failures
in the US, as obtained from FDIC (Federal Deposit Insurance Corporation 2017). This initial test of
ours included quarterly bank failure (BF) figures for the entire US banking industry (as opposed to just
our sample of 20 individual banks mentioned above), which amounted to a total of 581 failures for our
studied period). Using ordinary least squares regression, we regressed these quarterly bank failure
figures (BF) against quarterly aggregated figures for the entire US banking industry for Creditworthiness,
Conditions, and Leverage (as defined for these three variables in Section 4.2) obtained from a combination
of World Bank and DataStream data for 20 years from 1998 to 2017, thus having 80 observations for
each variable.

BF = B + B1Creditworthiness; + (3,Conditions; + 33Leverage;s + € 4)

We tested a variety of lags, finding that no-lag for Creditworthiness and Leverage yielded the highest
explanatory values, and for Conditions (where each quarterly observation was a rolling figure of the
volatility over the prior 12 months), a lag of three quarterly periods was the most explanatory. This
supported the prior findings of (Allen et al. 2015) that market factors can provide an early warning
indicator of potential bank problems (in this case 9 months prior to the failure), and by the time
problems actually occur, the market has moved on to new news.

The regression results are summarised in Table 1. R?, which measures the extent to which the
factors can explain BF was found to be a high 91.2% for the multiple regression, with high (99%)
significance for Creditworthiness and Conditions (lag % year), and relatively lower (95%) significance
for Leverage. To test the additional value of each variable, we commence with our highest factor
(Creditworthiness at R? = 86.5%), then add the other variables. Adding Conditions (lag % year) (which on
its own has an R? of 43.9%), increases the R? obtained by Creditworthiness by a further 4.0% to 90.5%
but Leverage adds very little value to the explanation as seen by the very small increase in total R? of
0.7%. If we add the Credit to GDP variable recommended by Drehmann et al. in Section 2 as a good
indicator of capital buffers, (which on its own has an R? of 29.5%) we improve the R? of our multiple
regression model only marginally to 92.1%. These figures re-enforce Creditworthiness and Conditions as
important causal factors, and Leverage as a non-causal factor, but as discussed, a safety net factor.

We found no evidence of high multicollinearity between the independent variables, which all had
a low Variance Inflation Factor (VIF) of below 3. Having broadly established the significance of our
underlying variables, we now undertake the full CSI modelling, with the results presented in Section 6.
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Table 1. Summary of US banks’ test regression results.

Factor Significance Factor R? Adjusted R?
Creditworthiness i Creditworthiness 86.5% 86.2%
Conditions(aga/a) i Creditworthiness + Conditions(agasy ~ 90.5% 90.2%

Leverage ** All factors 91.2% 90.9%

The table shows the significance of regression variables in estimating US bank failures over a 20 year period to 2017.
In the table, *** denotes significance at the 99% level and ** at the 95% level.

6. Results of the CSI Modelling

There are two core stages in calculating and applying the CSI. The first stage (undertaken in
Section 6.1) is to determine the 3Cs of the US as a whole, and to use these to calculate an annual CSI
and zones (green, orange red) for the US. From this, distress factors (DF, as defined in Section 4.2), will
be determined. Then (in Section 6.2), DF will be uniformly applied to the individual 3Cs of each of the
20 banks in our sample. This is to determine the individual banks’” CSIs and zones under distressed
conditions, which will be compared to outcomes of Federal Reserve Dodd-Frank stress tests.

6.1. Results for the US as a Whole

This section begins by presenting summary results graphs for each of our 3C factors in
Sections 6.1.1-6.1.3. Then Section 6.1.4 presents the CSI modelling results for the US.

6.1.1. Factor 1: Creditworthiness

While the US Creditworthinessyoiy risk is at relatively low historical levels (Figure 2), the US had
low Creditworthiness risk (below 1%) just prior to the GFC, which spiked during the GFC (almost 5%),
after which, financial sector reforms such as the Dodd-Frank Act were introduced, and Creditworthiness
showed a reducing trend to 1.13% in 2017. The lines in Figure 2 plot the annual figure for Creditworthiness,
which as defined in Section 4 is NPL to Gross Loans for U.S. banks as provided by the World Bank at
an aggregated country level.

8.00%
6.00%
4.00%
2.00%

0.00%
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

mess

Creditworth

Figure 2. Trend in Creditworthiness.

6.1.2. Factor 2: Conditions

Our market-based metric is Conditions, measured by market asset value volatility. The US
demonstrated a huge spike in the GFC as seen in Figure 3, where the lines in Figure 3 plot the
annual Conditions.
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Figure 3. Trend in Conditions.

6.1.3. Factor 3: Capital

The lines in Figure 4a plot annual Leverage, which, as defined in Section 4, is total capital to total
assets ratio for banks, as provided by the World Bank at the country level. The lines in Figure 4b plot
the annual market value of capital KM, which is defined in Section 4 and measured by Equation (2).
As seen in Figure 4a, Leverage, which is based on book values, has stayed far more consistent than
the market values of capital, which showed a large drop to almost zero during the GFC, thereafter
showing an upward trend (though still volatile compared to Leverage).

15.00%
10.00% —\/

5.00%

Leverage

0.00%
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

(a)

20%

=
M 10%

0%
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(b)
Figure 4. (a) Leverage Trend; (b) Market Value of Capital (KM) Trend.

6.1.4. Combined Factors: The Comprehensive Stability Indicator (CSI)

In Table 2, we show historical zones (red, orange, green) and CSI calculations for each year.

A summary of the calculation methods is included in the notes to the table. While there are many
possible alternative methods of setting thresholds for various purposes, (see for example (Hansen
2000)), for the purposes of illustrating our model, CSI thresholds for the colour zones were set as
follows: red < 1.2, orange < 2, green > 2. These zones can be set by the bank or regulator according
to their requirements or risk tolerance. The threshold we set here between orange and red is not
arbitrary—having a CSI ratio of 1.2 or above (i.e., above red) means that Creditworthiness is fully covered
by KM with a 20% buffer to cover other risks such as Market and Operational risk (which we have
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already noted form around 20% of the risks of US Banks). The model not only highlights pass/fail but
identifies banks where improvements could be made (orange).

Table 2. Historical figures for the US banking market as a whole.

Year (t) Creditworthiness B Leverage B Conditions B KM B CSI Zone
2005 0.70% 0.25 10.30% 0.88 0.013 0.21 21.96% 2.83 31.37 Green
2006 0.80% 0.29 10.50% 0.90 0.015 0.25 19.03% 2.45 23.79 Green
2007 1.40% 0.51 10.30% 0.88 0.050 0.83 5.71% 0.74 4.08 Green
2008 3.00% 1.08 9.30% 0.79 0.279 461 1.02% 0.13 0.34 Red
2009 4.96% 1.79 12.37% 1.06 0.052 0.87 5.41% 0.70 1.09 Red
2010 4.39% 1.59 12.74% 1.09 0.044 0.73 6.43% 0.83 147 Orange
2011 3.78% 1.37 12.23% 1.05 0.052 0.86 5.46% 0.70 1.44 Orange
2012 3.32% 1.20 11.96% 1.02 0.031 0.51 9.17% 1.18 2.76 Green
2013 2.45% 0.89 11.78% 1.01 0.026 0.43 11.00% 1.42 4.49 Green
2014 1.85% 0.67 11.66% 1.00 0.027 0.45 10.47% 1.35 5.66 Green
2015 1.47% 0.53 11.71% 1.00 0.039 0.64 7.40% 0.95 5.02 Green
2016 1.32% 0.48 11.59% 0.99 0.030 0.49 9.57% 1.23 7.25 Green
2017 1.13% 0.41 11.65% 1.00 0.024 0.40 11.65% 1.50 10.34 Green

Average 2.35% 11.39% 0.052 9.56% 7.62
90th percentile 0.052

Notes: Leverage is total capital to total assets ratio. Conditions is market value asset volatility, calculated as shown in
Section 4. KM (market value of capital) is per Equation (2), where KM = Leverage x (Conditionsygi7/Conditionst) and
CSI (comprehensive stability indicator) is per Equation (3), where CSI; = KMy/Creditworthinessi, and t represents the
year for which the statistic is being calculated. Zones have been set according to the CSI level as: red < 1.2, orange <
2, green > 2. 3 (Beta)is the relevant statistic for year t as shown in the prior column, relative to the long-term average
for that variable (as shown in the final row of that column). The 90th percentile (« = 0.90) is the 90th percentile
ranking for an indicator (e.g., 9th best or second worst in a 10 year sample, which lies slightly below the 12th ranked
observation in a 13 year sample).

6.2. Results for Individual Banks Compared to Federal Reserve Tests

We compared outcomes from our model to the US Federal Reserve (2018a, 2015) Dodd-Frank
stress tests for the 20 banks in our sample. The 2018 Federal Reserve tests were undertaken on 2017 US
Banks’ data and the 2015 Federal Reserve tests on 2014 data. We began by calculating DF factors from
the 2017 figures in the above table, applying them to the 20 US banks in the sample, and comparing
these outcomes to results for the same banks from the 2018 Federal Reserve tests. We found that
all 20 banks achieved green on our model. This was a similar result to the 2018 US Federal Reserve
tests, where all banks were found to have passed due to being above the required regulatory capital
ratios based on the severely distressed scenario. This is not surprising, given the vastly improved
Creditworthiness, Conditions, KM and CSI figures for the US over the past few years that we have shown
in this study. However, when we went back to the 2015 Federal Reserve tests (based on 2014 data),
a greater range of pass/caution/fail results were provided by the CSI model (based on 2014 3Cs data),
which better illustrates the nuances of our model than the 2018 tests. Hence the detailed comparisons
to the 2015 tests (based on 2014 data) are the ones we present here.

Table 2 was based on historical zones (looking back) for the US market as a whole. We
then ascertained, based on the individual Leverageyg14 and Creditworthinessyp 4 for each of the 20
banks in the sample, how well each individual bank could withstand a future shock that reflects
realistic and plausible extreme changes to Conditions, guided by the past volatility of the US market.
The distressed scenario thus applied a uniform shock to each of the banks in the sample, and
ascertained changes to their colour zone. For the overall US banking market, calculated from figures
in Table 2, Conditionsg g9 was approximately 2.0x higher than Conditionsygi4 and Creditworthiness at
the Conditionsg g level exceeded Creditworthinessyy4 by approximately 2.5%. So, to illustrate our
model, we used these as our distress factors (DFcongitions = 2-0; DF Creditworthiness = 2-5) to apply to
the 20 individual banks. Thus, Conditionsgjsiressed = Conditionsygr4 X 2.0, and Creditworthinessgistressed
= Creditworthinessygja X 2.5. Again, banks or regulators can determine their own distress factors.
We then used these Creditworthinessgistressed and Conditionsgisiressed Values to calculate KM gistressed
(=Leveragespa X Conditionsyn4/Conditionsgisiressed ), CSldistressed, (FKMdistressed/Creditworthinessgistressed)
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and Zonegistressed for each bank. As shown in Table 3, applying these factors to our model achieved a
99% level of confidence similarity to the Federal Reserve tests in the rankings of banks (best to worst),
using a Spearman ranking correlation test which compares the relative ordinal risk of observations
across datasets (Powell et al. 2018).

Table 3. Summary statistics for 20 US banks.

Association b/w Our Model and Fed

Zone (Our Model) Count %o Tier 1 Model
Green 15 75.0% n 20
Orange 5 25.0% r 0.662
Red 0 0.0% t 3.751
Critical value 95% 2.101
Critical value 99% 2.878
Significance el

The table applies our CSI zones to 20 US banks, and then compares the ranking of the banks on our model to the
ranking of US Federal Reserve stress tests. 7 is number of observations, r is the Spearman rank correlation coefficient,
and t measures the significance of r using a t test and must exceed the critical value to be significant. *** Denotes
significance at the 99% level.

A key difference is that, whereas the Federal Reserve results issued every bank with a pass based
on a pass/fail grading, our traffic light system, with its additional ‘caution’ (orange) category, classified
25% of banks (five banks) as orange. As shown in Table 2, the overall US banking system, while
showing an overall green on our model in 2014, nonetheless has much higher Creditworthiness and
overall CSI risk than is shown in 2017, and it is therefore not surprising that some banks achieved
orange in our tests based on the 2014 data. A quartile analysis of the results in Table 4 provides a very
interesting comparison.

Table 4. Quartile statistics for 20 US banks (five banks per quartile).

Quartile Fed Model—Stressed = Our Model—Distressed

Tier 1 Ratio (%) CSI

Q1 average 12.7 5.0

Q2 average 10.1 3.4

Q3 average 9.1 3.1

Q4 average 7.3 18

Quartile No. Green % Green No Orange % Orange

Q1-3 (15 banks) 14 93.3% 1 6.7%
Q4 (five banks) 1 20.0% 4 80.0%

The table compares outcomes of US Federal Reserve Stress Tests (Stressed Tier 1%) for five banks per quartile (where
Q1 is lowest risk), to those same banks using our distressed CSI test. The lower half of the table shows the zones
achieved for those banks on the distressed CSI test.

The 20 banks in our sample were allocated to these quartiles according to their ranking for the
severely stressed tier 1 ratio achieved in the 2015 Federal Reserve Bank Dodd-Frank stress tests. Q1 is
the least risky quartile (the average of those five banks with the highest tier 1 ratios), and Q4 is the
riskiest quartile. The first results column in the upper section of Table 4 shows the average stressed
Tier 1 ratio for each quartile, compared to the second results column which shows average distressed
coverage (CS12014 per Equation (3)) for our model, for the same set of banks as contained in column
1 for each quartile. What is evident is that, as the risk increases for each quartile on the US Federal
Reserve tests, our model also shows a corresponding increase in risk. The lower section of Table 4
shows the percentage of banks that achieved orange on our model out of the 15 banks in the lower
risk quartiles Q1-3, as compared to the highest risk Q4 quartiles. 80% of our oranges align with the
banks in the highest risk quartile of U.S. Federal Reserve tests. Overall, therefore, our model ranks
banks very similar (at a 99% confidence level per Table 3) to the U.S. Federal reserve tests, but it has the
advantage of the orange ‘warning’ indicator.
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7. Conclusions and Implications

Stability indicators are essential to understand the ability of banks to withstand adverse financial
and economic shocks. This paper developed a CSI model which uses three single factors (3Cs),
Creditworthiness, Conditions and Capital to capture the risk of banks. The 3Cs were shown to be strong
determinants of bank failures and the CSI model demonstrated the capacity to achieve significantly
similar risk ranking of banks to the much more complex Federal Reserve tests, with the added benefit of
the traffic light system which highlighted banks that needed improvement (orange). While our model
is based around specific parameters for assessing bank safety, we also highlighted the importance of
exercising sound judgment in interpreting results and implementing remedial measures.

The CSI model has implications for both banks and regulators. It is usually only practical to
undertake formal stress tests, with a high number of variables and scenarios, on a periodic basis and
not all banks have sufficient modelling capacity to undertake the highly detailed and sophisticated
modelling required. The simplicity of the CSI model in using only three factors, however, means that it
can be readily used to measure risk between formal stress tests, or applied by banks and regulators to
banks which are not included in the formal stress tests, or to compare financial distress across multiple
entities or potentially across countries. This can help increase the frequency and coverage of the
measurement of bank risk. The use of the CSI, coupled with the warning indicator (orange), can allow
regulators and banks to identify risk at an early stage and implement contingency plans to address the
risk, thus helping to avoid more serious circumstances such as the bankruptcy of individual banks or
systemic financial crises.

In terms of potential future studies, the model could be applied to developing regions, who might
not have the depth of data and systems required to undertake highly detailed and complex stress
testing, but who could benefit from the application of the relatively simpler 3Cs-based CSI.
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