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Abstract: The study of connectedness is key to assess spillover effects and identify lead-lag
relationships among market exchanges trading the same asset. By means of an extension of Diebold
and Yilmaz (2012) econometric connectedness measures, we examined the relationships of five major
Bitcoin exchange platforms during two periods of main interest: the 2017 surge in prices and the 2018
decline. We concluded that Bitfinex and Gemini are leading exchanges in terms of return spillover
transmission during the analyzed time-frame, while Bittrexs act as a follower. We also found that
connectedness of overall returns fell substantially right before the Bitcoin price hype, whereas it
leveled out during the period the down market period. We confirmed that the results are robust with
regards to the modeling strategies.

Keywords: Bitcoin; market risk; market linkages; vector error correction; forecast error variance
decomposition; spillovers

1. Introduction

The study of connectedness is a key topic arising in the field of financial econometrics.
As Diebold and Yilmaz (2009) state, connectedness features in important aspects of market risk, i.e.,
portfolio concentration and return connectedness, credit risk—default connectedness, systemic risk,
that is system-wide connectedness, counter-party risk—, and bilateral and multilateral contractual
connectedness, as well as business cycle risk, with intra- and inter-country real activity connectedness.

In particular, throughout the study of return and volatility, connectedness of financial assets is able
to retrieve system-wide and pairwise connectedness measures that are useful to assess the systemic
risk of financial groups and/or single entities. Furthermore, the study of directional connectedness
is able to shed light on which are leading assets in terms of shock transmission and, rather, which
are those that follow others in the process. This contributes to the stream of econometric literature
studying price discovery.

However, in the financial literature there is a lack of studies exploring interconnectedness related
to the same asset traded on different exchange platforms. Indeed, it is widely known that prices of
the same good traded on different venues may consistently vary across exchange markets and that
this is possibly due to lead-lag relationships existing across exchanges. This paper aims to fill this
gap, as the study of system-wide connectedness can give insights on how much different trading
platforms are synchronized in terms of returns (and, therefore, market prices), as well as how the study
of directional connectedness is able to shed light on the lead-lag relationship among exchange markets.
Indeed, unlike previous studies, we explored dynamic return connectedness among different exchange
markets trading the same good: Bitcoin.

The methodology we employed can be applied, without loss of generality, to the rest of the
cryptocurrency market, as well as to other financial products. To illustrate, studying interconnectedness
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and price discovery on the same asset or commodity returns when traded on different exchange
platforms might give some insights on where the price formation process takes primarily place.
Moreover, this technique may be applied to highly integrated markets to effectively measure spillovers
taking into account for the common stochastic trends driving the co-movement of the underlying
variables, as it can be the case for spot and future markets.

2. Literature Review

Much research in the field of financial econometrics has dealt with how econometric connectedness
measures development. To illustrate, Billio et al. (2012) built systemic risk and econometric
measures of interdependency which are suitable to be used in the finance and insurance sectors.
Diebold and Yilmaz (2012) developed overall and directional measures for return and volatility
spillovers which are built upon forecast error variance decompositions deriving from vector
autoregressive models (VARs). In a related work, Diebold and Yilmaz (2014) extended their previously
developed measures to a network topology representation of the forecast error variance decomposition,
linking the econometric connectedness literature to that of financial networks. More recently and
following the same approach, Baruník and Křehlík (2018) proposed a framework based on the spectral
representation of variance decompositions to measure connectedness among financial variables which
arise due to heterogeneous frequency responses.

Today, the existing literature focuses largely on measures applied to interconnectedness between
financial entities belonging to different groups in terms of geography, financial sectors, etc. To illustrate,
Diebold and Yilmaz (2013) studied the dynamics of global business cycle connectedness for a set of
real output of six developed countries between 1962 and 2011. Demirer et al. (2018) studied the global
bank equity connectedness linking the publicly-traded subset of the world’s top 150 banks during
the period 2003–2014. Baruník et al. (2016) explored asymmetries in volatility spillovers that emerge
due to bad and good volatility with the use of data regarding most liquid U.S. stocks across seven
different sectors.

Since the birth of cryptocurrencies, a stream of literature started focusing on interconnectedness,
spillover analyses and shock transmissions involving the cryptocurrency market. Fry and Cheah (2016)
borrowed some modeling strategies from econophysics to study shocks and crashes in cryptocurrency
markets and show that in the period of negative bubble there is a spillover from Ripple to Bitcoin.
Yi et al. (2018) used a LASSO-VAR to estimate a volatility connectedness network linking as much
as 52 different cryptocurrencies. Koutmos (2018) explored connectedness across 18 cryptocurrencies
finding growing interdependencies among them. Corbet et al. (2018) analyzed dynamic volatility
spillovers between traditional financial assets, such as gold, bond, equities, and the global volatility
index (VIX) and three major cryptocurrencies, i.e., Bitcoin, Litecoin, and Ripple, through the Diebold
and Yilmaz (2012) methodology, finding evidence of a relative isolation of the latter category with
respect to the traditional ones. Using the same technique, Ji et al. (2019) studied connectedness
across six large cryptocurrencies and showed that Litecoin and Bitcoin belong to the center of the
connected network of returns, besides proving that connectedness is stronger via negative returns
rather than via positive ones. Zięba et al. (2019) used, instead, minimum spanning trees (MSTs) to
form cryptocurrency clusters and VAR models to examine the transmissions of demand shocks within
clusters. They concluded that Bitcoin’s role, which was dominant until 2017, had then diminished,
and they showed the presence of causal relationships between cryptocurrencies, excluding Bitcoin.
Antonakakis et al. (2019) employed a TVP-FAVAR connectedness approach in order to investigate the
transmission mechanism among nine major cryptocurrencies. They concluded that total cryptocurrency
connectedness shows large dynamic variability and that, despite the fact that Bitcoin still preserves
its influencing role in the market, Ethereum has recently become the number one transmitting
cryptocurrency.

Some research on price discovery of cryptocurrencies has recently emerged, specifically, on
Bitcoin exchanges. Brauneis and Mestel (2018) investigated efficiency and predictability of a set of
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cryptocurrency returns time series, concluding that they become less efficient and predictable when
liquidity raises. Brandvold et al. (2015) discovered through information share measures that Mt.Gox
and BTC-e were leaders of the price formation process during their analyzed period. On the other
hand, Pagnottoni and Dimpfl (2018), who analyzed a subsequent timespan, concluded the decreased
role of BTC-e and the increased one of Chinese exchange platforms in the price discovery mechanism
by means of the (Hasbrouck 1995; Gonzalo and Granger 1995) techniques. Recently, (Giudici and
Abu-Hashish 2018; Giudici and Pagnottoni 2019) have also focused on price discovery, analyzing
Bitcoin daily prices, respectively, with a VAR model and a vector error correction model (VECM).

Against this background, our contribution is the extension of the Diebold and Yilmaz (2012)
methodology for high frequency data, which takes into account the non-stationary and cointegrated
behavior of the time series analyzed. In other words, we rely on vector error correction models
(VECMs) rather than VARs to derive the forecast error variance decompositions and build dynamic
connectedness measures, contributing both from a methodological and economic viewpoint. This
is done by analyzing five major Bitcoin intraday exchange prices, i.e., Bitstamp, Gemini, Coinbase,
Kraken, and Bittrex. We conclude that total and directional connectedness consistently evolve over
time, and that, overall, Bitfinex and Gemini are leading exchanges during the analyzed period, while
Bittrex is a follower.

We also remark that our paper bears some similarities with Koutmos (2018), in particular as far as
the methodology to measure spillovers is concerned. Indeed, Koutmos (2018) decompose volatility
and return shocks among 18 major cryptocurrencies by means of the technique outlined by Diebold
and Yilmaz (2009), which is based on a VAR framework. However, in the present paper, we look at
return spillovers in Bitcoin exchanges, meaning the same cryptocurrency trading on different venues,
rather than at spillovers among cryptocurrencies themselves. Thus, we also rely on an extension of the
methodology used in Diebold and Yilmaz (2009), with the aim of taking into account for the peculiar
non-stationary and cointegrated behavior of the time series analyzed through VECMs rather than
VARs. The focus on Bitcoin allows us to determine interconnectedness and lead-lag relationships of
market exchanges trading Bitcoin.

The paper proceeds as follows. Section 2 illustrates the methodology employed. Section 3 presents
the data analyzed and provides their preliminary analysis. In Section 4, we discuss the empirical
results obtained. Section 5 provides a robustness analysis. Section 6 concludes.

3. Methodology

The methodology builds on the law of one price, stating that the prices of the same good traded
on different venues should not deviate in the long run. In other words, the absence of arbitrage implies
that (log-)price series related to the same asset and denominated in the same currency should yield to
a stationary process when linearly combined. Furthermore, when time series exhibit non-stationary,
and, particularly, I(1) behavior as Bitcoin prices do, we must take cointegration of the series into
account. We thus make use of the econometric vector error correction framework designed by Engle
and Granger (1987) to deal with the cointegration problem.

We denote continuous returns for a generic exchange i at time t as:

∆xi
t = xi

t − xi
t−1, (1)

where i = 1, 2, . . . , n and n is the number of exchanges considered, xi
t is the Bitcoin (log-)price of an

exchange i at time t.
We define ∆xt = (∆x1

t , . . . , ∆xi
t, . . . , ∆xn

t )
′ with i = 1, 2, . . . , n. In line with the notations above,

the vector error correction model assumes the following form:

∆xt = αβ′xt−1 +
k−1

∑
i=1

ζi∆xt−i + εt, (2)
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with α being the (n× h) adjustment coefficient matrix, β the (n× h) cointegrating matrix, ζi the (n× n)
parameter matrices with i = 1, . . . , n, k the autoregressive order, and εt is the zero-mean white noise
process having variance-covariance matrix Σ and h the cointegrating rank. Financial theory suggests
that, in this case, the time series in levels shall follow one common stochastic trend, which means
having a cointegrating rank of the system which is h = n− 1.

Recall that by means of the recursive computations αβ′ = ∑k
i=1 Φi − In and Ψi = −∑k

j=i+1 Φj
one is able to retrieve the equivalent non-stationary n−variable VAR(k) representation from the
VECM(k− 1) in (2), which is:

xt =
k

∑
i=1

Φixt−i + εt, (3)

where Φ1, Φ2, . . . , Φk with i = 1, . . . , n are the (n× n) autoregressive parameter matrices.
Note that Diebold and Yilmaz (2012) started from a stationary VAR as the one in (3) to build

their methodology.
We may also rewrite the systems from above in the vector moving average (VMA)

representation, namely:

xt = εt + Ψ1εt−1 + Ψ2εt−2 + . . . , (4)

where Ψ1, Ψ2, . . . the (n × n) denote the matrices of VMA coefficients. The VMA coefficients are
recursively computed as Ψi = Φ1Ψi−1 + Φ2Ψi−2 + · · ·+ ΦiΨ1, having Ψi = 0 ∀i < 0 and Ψ1 = In.

As it is widely accepted in the financial econometric literature, the variance decomposition tools
are used to evaluate the impact of shocks in one system variable on the others. Strictly speaking,
variance decompositions decompose the H-step-ahead error variance in forecasting xi which is due to
shocks to xj, ∀j 6= i and ∀i = 1, . . . , n.

In this paper, we make use of the Kwiatkowski–Phillips–Schmidt–Shin (KPPS) H-step-ahead
forecast error variance decompositions, as Diebold and Yilmaz (2012) do. This is because we avoid
imposing an a priori ordering of Bitcoin exchange prices regarding the influence of shocks across the
system variables, as popular techniques, like the Cholesky identification scheme, do. Indeed, the KPPS
H-step-ahead forecast errors are convenient as they are invariant with respect to the variable ordering.

As already stated, Diebold and Yilmaz (2012) found their methodology on the H-step ahead
forecast error variance decomposition. Considering two generic variables, xi and xj, they define the
own variance shares as the proportion of the H-step ahead error variance in predicting xi due to shocks
in xi itself, ∀i = 1, . . . , n. On the other hand, the cross variance shares (spillovers) are defined as the
H-step ahead error variance in forecasting xi due to shocks in xj, ∀i = 1, . . . , n with j 6= i.

In other words, denoting as θ
g
ij(H) the KPPS H-step forecast error variance decompositions, with

h = 1, . . . , H, we have:

θ
g
ij(H) =

σ−1
jj ∑H−1

h=0 (e′iΨhΣej)
2

∑H−1
h=0 (e′iΨhΣΨ′hei)

, (5)

with σjj being the standard deviation of the innovation for equation j and ei the selection vector, i.e.,
a vector having one as ith element and zeros elsewhere. Intuitively, the own variance shares and cross
variance shares (spillovers) measure the contribution of each variable to the forecast error variance of
itself and the other variables in the system, respectively, thus giving a measure of the importance of
each variable in predicting the others.
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Note that the row sum of the generalized variance decomposition is not equal to 1, meaning
∑H−1

h=0 θ
g
ij(H) 6= 1. Diebold and Yilmaz (2012) circumvent this problem by normalizing each entry of

the variance decomposition matrix by its own row sum, i.e.,:

θ̃
g
ij(H) =

θ
g
ij(H)

∑n
j=1 θ

g
ij(H)

. (6)

This tackles the above mentioned issue and yields to ∑n
j=1 θ̃

g
ij(H) = 1, and ∑n

j,i=1 θ̃
g
ij(H) = n.

As a measure of the fraction of forecast error variance coming from spillovers, Diebold and Yilmaz
(2012) define the total spillover index (TSI):

TSI(H) =

∑n
j=1
j 6=i

θ̃
g
ij(H)

∑n
j,i=1 θ̃

g
ij(H)

· 100 =

∑n
j=1
j 6=i

θ̃
g
ij(H)

n
· 100. (7)

Moreover, we also make use of directional spillovers indexes (DSI) to measure, respectively,
through Equations (8) and (9), the spillover from exchange i to all other exchanges J (cfr. Equation (8))
and the spillover from all exchanges J to exchange i (cfr. Equation (9)) as:

DSIJ←i(H) =

∑n
j=1
j 6=i

θ̃
g
ji(H)

∑n
j,i=1 θ̃

g
ij(H)

· 100, (8)

DSIi←J(H) =

∑n
j=1
j 6=i

θ̃
g
ij(H)

∑n
j,i=1 θ̃

g
ij(H)

· 100. (9)

Directional spillovers may be conceived as providing a decomposition of total spillovers into
those coming from—or to—a particular variable. In other words, they measure the fraction of forecast
error variance which comes from (or to) one of the variables included in the system—and, hence, the
importance of the variable itself in forecasting the others. From the definitions of directional spillover
indexes, it is natural to build a net contribution measure, impounded in the net spillover index (NSI)
from market i to all other markets J, namely:

NSIi(H) = DSIJ←i(H)− DSIi←J(H). (10)

Another very important metric to measure the difference between the gross shocks transmitted
from market i to j and gross shocks transmitted from j to i is the net pairwise spillover (NPS), defined as:

PNSij(H) =

(
θ̃

g
ij(H)

∑n
q=1 θ̃

g
iq(H)

−
θ̃

g
ji(H)

∑n
q=1 θ̃

g
jq(H)

)
· 100. (11)

All the metrics discussed above are able to yield insights regarding the mechanisms of market
exchange spillovers both from a system-wide and a net pairwise point of view. Furthermore,
performing the analyses on rolling windows, we are able to study the dynamics of spillover indexes
over time.

4. Data

Our empirical analysis examines the most widely known and capitalized cryptocurrency in
current times: Bitcoin. We considered hourly Bitcoin exchange prices expressed in USD sampled
on hourly basis. We analyzed a one year time-frame which ranges from 1 July 2017 to 30 June 2018,
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counting 8750 observations1. The timespan analyzed includes two sub-periods of great interest for
crypto investors: the spectacular price growth in 2017 and its correction in 2018. The period was
chosen to be quasi-symmetric around bull and bear times.

During the two sub-periods, many events involving cryptocurrencies occurred and some of them
have meaningfully affected their price dynamics, mostly Bitcoin. The main events are summarized in
Table 1. Some notable events include: In the beginning of September 2017, People’s Bank of China
ban of fund raising by Initial Coin Offerings (ICOs) was linked this with a 5 % drop in the Bitcoin
price. This was followed by the dramatic announcement by the Chinese authority to shut down
trading of cryptocurrencies at national level. In early December, the approval of Bitcoin futures by the
Commodities Futures Trading Commission (CFTC) had a high impact on Bitcoin investors. Bitcoin
price spectacularly grew from around 10,000 USD a coin when the news broke to a high just below
20,000 USD on 18 December; at the beginning of 2018, the South Korean regulators banned anonymous
bank accounts being used to buy and sell cryptocurrencies. After that move, Bitcoin price declined
from just below 11,000 USD to a daily low of 10,179 USD. The Bitcoin price fall then continued and
was accompanied by many negative news regarding cryptocurrencies. Indeed, during the first half
of 2018, the exchange platform Bitconnect shut down, Coincheck was hacked and Coinsecure was
robbed, leading to unavoidable price declines. Moreover, the Bitcoin price suffered from the moves of
the Chinese government towards blocking all websites that enable cryptocurrency trading and ICOs
and foreign platforms that enable Bitcoin trading in February, as well as from the social network bans
on advertisements for ICOs and token sales.

We studied return connectedness of five major Bitcoin market exchanges, meaning Bitstamp,
Gemini, Coinbase, Kraken, and Bittrex2. The main features of the Bitcoin exchange platforms analyzed
in this study are summarized in Table 2. Bitstamp and Kraken are two of the oldest cryptocurrency
exchanges existing, whereas Gemini, Coinbase, and Bittrex are relatively newer ones. Except for
Bitstamp, whose headquarter is located in the UK, all the exchanges included in the sample are
U.S.-based. The number of traded pairs varies quite a lot across exchanges, with Bitstamp and Gemini
being the ones trading the smallest number coin pairs and Bittrex the one showing more variety of
trading pairs. Trading fees are generally quite comparable across the analyzed exchanges, whereas
trading volumes during the analyzed time-frame are all above 5 million USD, and the time to withdraw
or deposit fiat currencies is generally between 1–5 business days, except for Gemini, which shows
lower trading volumes and higher withdrawal and deposit time of fiat currencies. As far as the
supported currencies, Kraken is the one supporting the biggest number of fiat currencies, whereas
Gemini and Bittrex support only USD and USDT, respectively.

1 Exchange prices were collected from http://www.cryptodatadownload.com/data.
2 The five exchanges were selected accounting for their total market capitalization and data availability over the time

period studied.

http://www.cryptodatadownload.com/data
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Table 1. Main events related to cryptocurrencies.

Date Event Description

(1) 01/08/2017 Bitcoin Cash hard fork Bitcoin forked into two derivative digital currencies, the Bitcoin (BTC) chain with 1 MB blocksize limit and the
Bitcoin Cash (BCH) chain with 8 MB blocksize limit.

(2) 04/09/2017 China banning Initial Coin
Offerings (ICOs)

People’s Bank of China banned fund raising by ICOs referring to the threat to economic and financial stability.
Largely due to the high amount of suspicious ICOs accused of illegally raising money and aiding intentional fraud.

(3) 16/09/2017 China exiting local trading
Chinese authorities announced a ban on trading cryptocurrencies at national exchange services. Firstly, leaked
documents were online just four days after the ban of ICOs, on 8 September. On 15 September the Chinese platforms
Huobi and OKCoin announced that they will halt trading for local customers by 31 October.

(4) 24/10/2017 Japan establish a self-regulatory
industry body

The Financial Services Agency (FSA), the responsible overseer of banking, securities, insurance, and exchange sector
of Japan, set up the Japan Virtual Currency Exchange Association (JVCEA)—a consortium of 16 FSA-approved
domestic cryptocurrency exchanges—to establish as a certified fund settlement business association.

(5) 24/10/2017 Coinbase received New York
state banking license

Coinbase Custody received a license to operate as an independent qualified custodian, i.e., a Limited Purpose Trust
Company chartered by the New York Department of Financial Services (NYDFS).

(6) 28/11/2017 Bitcoin price $ 10,000 Bitcoin price reaches the level of $10,000.

(7) 01/12/2017 CFTC Bitcoin futures approval
The Commodities Futures Trading Commission (CFTC) approved the request by CME Group and Cboe Global
Markets to launch Bitcoin futures. The two markets, which were launched on December 10 and 18, respectively,
allow investors to bet on the future price of Bitcoin.

(8) 17/12/2017 Bitcoin price $20,000 Bitcoin price reaches the level of $20,000.

(9) 19/12/2017 Yapian filed for bankruptcy Yapian, a company owning the Youbit cryptocurrency exchange in South Korea, filed for bankruptcy following a
hack, saying it lost 17% of its assets.

(10) 08/01/2018 China scrutinizing mining The Public Bank of China started to investigate Bitcoin mining and outlined the plan to deter Bitcoin miners by
limiting power consumption.

(11) 08/01/2018 Korean crypto bank accounts
investigation

Korean financial authorities launched an investigation into cryptocurrency-related services provided by local banks.
In particular, the Financial Intelligence Unit (FIU)—a body under the Financial Services Commission (FSC) which
monitors illegal financial activities—and the Financial Supervisory Commission - the country’s financial
supervisor—were looking into cryptocurrency-related virtual accounts at six local banks to check their compliance
with anti-money laundering regulations.
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Table 1. Cont.

Date Event Description

(12) 16/01/2018 Bitconnect exchange shut-down
announcement

Bitconnect announced it would shut down its cryptocurrency exchange and lending operation after North Carolina
and Texas regulators issued a cease-and-desist order against it, stating it was suspected of being fraudulent.

(13) 22/01/2018 South Korean regulation about
anonymity

South Korea brought in a regulation requiring all Bitcoin traders to reveal their identity, hence banning anonymous
trading of Bitcoins.

(14) 26/01/2018 Coincheck hacked Japan’s largest cryptocurrency OTC market, Coincheck, was hacked and as much as 530 million USD of NEMs were
stolen, causing Coincheck to suspend trading.

(15) 05/02/2018 China’s announcement of
blocking foreign trading

With the aim of preventing Chinese investors from financial risks, as in September 2017, China’s authorities
announced their willingness to ban trading of cryptocurrencies by blocking internet access to foreign trading
platforms.

(16) 07/03/2018 Irregular trades Compromised Binance API keys were used to place irregular trades.

(17) Late 03/2018 Social network bans Facebook, Google, and Twitter banned advertisements for ICOs and token sales.

(18) 13/04/2018 Coinsecure robbery
Coinsecure, one of India’s biggest exchange platforms, lost 438 Bitcoins as a result of a theft. Based on the prices at
the time of the occurrence of the event this translates to approximately 3 million $ (i.e., roughly 190 million rupees in
local currency).

Note: The table reports major events related to cryptocurrencies during the sample period analyzed in the paper, i.e., 1 July 2019–30 June 2019.

Table 2. Bitcoin exchange features.

Bitstamp Gemini Coinbase Kraken Bittrex

Launched Jul 2011 Oct 2014 May 2014 Jul 2011 Feb 2014
Headquarter location UK USA USA USA USA
Trading pairs 14 15 53 95 355
BTC trading volume during analyzed period 6.37 M 2.63 M 7.46 M 5.46 M NA
Trading fees 0.10–0.25% 0.00–0.25% 0.10–0.30% 0.00–0.25% 0.25%
Fiat currencies withrawal/deposit time 1–5 business days 4–5 business days 1–5 business days 1–5 business days -
Supported currencies USD, EUR USD USD, EUR, GBP CAD, EUR, GBP, JPY, USD USDT

Note: The table summarizes the characteristics of the Bitcoin exchanges investigated in the study at the date of 05/10/2019. Maker fees may be smaller than taker fees and fees may
be lower for high trading sizes.
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Given that in our analysis we consider the price of the same crypto (Bitcoin) traded on different
venues, prices exhibit almost identical dynamics—i.e., they co-move. Therefore, without loss of
generality, we plot the Bitstamp price series during the considered period in Figure 1, highlighting the
main events related to cryptocurrencies described in Table 1.

Figure 1. Bitstamp price (USD). Note: The figure shows the Bitstamp price series (USD) related to
the sample period 1 July 2017–30 June 2018. Dotted lines indicate the dates at which the main events
related to cryptocurrencies described in Table 1 occurred.

A simple visual inspection yields to the conclusion that the upward and downward trend periods
split the sample into two almost equal time-frames. More importantly, from an econometric point of
view, it can be noticed that the Bitcoin price series seem to be highly non-stationary in levels, arguably
I(1). This consideration, together with the non-deviation of Bitcoin exchange prices in the long run
prescribed by the law of one price, made us expect a cointegrating relationship among the Bitcoin price
series we analyzed.

For the sake of completeness, we also plotted the continuous returns of the exchange price series
in Figure 2.

Figure 2. Exchange continuous returns. Note: The figure illustrates the analyzed Bitcoin exchange
continuous returns during the sample period 1 July 2017–30 June 2018.
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In this case, we noticed a few data points in which there is a consistent disequilibrium in returns,
meaning that they diverge quite drastically. This suggests that some exchanges behave dissimilarly
to others during certain periods. The latter proposition is also supported by the summary statistics
contained in Table 3. Again, from an econometric point of view, the graph showing continuous
returns provides evidence to the hypothesis that Bitcoin price series are I(1) time series, which will be
empirically tested in the following.

Table 3. Summary Statistics of Returns.

Bitstamp Gemini Coinbase Kraken Bittrex

Mean 0.0001 0.0001 0.0001 0.0001 0.0001
Median 0.0002 0.0001 0.0009 0.0006 0.0006
Maximum 0.1079 0.1083 0.1220 0.0980 0.0969
Minimum −0.1076 −0.1222 −0.1979 −0.1052 −0.1565
Std. Dev. 0.0122 0.0121 0.0122 0.0115 0.0124
Skewness 0.0497 0.1303 −1.3244 −0.5429 −0.9601
Kurtosis 8.0090 9.3869 25.3352 9.4711 11.2719

Note: The table includes relevant summary statistics for returns related to the analyzed exchanges considering
the entire sample period.

As a preliminary analysis, we need to ensure that the analyzed time series are characterized
by a non-stationary and cointegrated behavior. To this aim, we conducted two widely employed
stationarity and cointegration tests.

To test for (non-)stationarity, we performed the Augmented Dickey–Fuller (ADF) tests—see
Dickey and Fuller (1979)—on prices, expressed in log-levels. The test results are shown in Table 4.

Table 4. Augmented Dickey–Fuller test.

Bitstamp Gemini Coinbase Kraken Bittrex

p-valuelog−levels 0.7669 0.7718 0.7232 0.7945 0.7440
p-valuelog−returns <0.0100 <0.0100 <0.0100 <0.0100 <0.0100

Note: The table shows the resulting p-values for the Augmented Dickey–Fuller (ADF) test considering the
entire sample period. The test in levels includes a constant but no time trend in the model specification.
The minimum p-value reported is 0.01.

The ADF test provides strong support towards the non-stationarity of the price series in log-levels,
whereas it provides evidence for stationarity of their first differences—i.e., of continuous returns. This
is true for all conventional significance level. Therefore, we can claim that the Bitcoin price series
analyzed are I(1) time series.

To test for cointegration, we employed the Johansen trace test, as proposed by Johansen (1991).
In line with our methodological approach, we expected to find a cointegrating rank of the system
which amounts to h = n− g = 5− 1 = 4. This is because the law of one price entails that prices related
to the same asset should be driven by g = 1 unique common stochastic trend. The test outcomes are
illustrated in Table 5.

The test statistics allow us to reject the null hypothesis of a cointegrating rank h of at most 3
against the alternative of a cointegrating rank of 4. In other words, the test suggests a cointegrating
rank of the system h = 4, i.e., the presence of g = 1 common stochastic trend driving the fundamental
Bitcoin price, in line with our previous considerations. This guarantees assumptions are met and the
methodology can be soundly applied to our real data.
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Table 5. Cointegration (Johansen Trace test).

Test Stat Critical 10% Critical 5% Critical 1%

h <= 4 3.10 6.50 8.18 11.65
h <= 3 188.84 15.66 17.95 3.52
h <= 2 752.42 28.71 31.52 37.22
h <= 1 1627.95 45.23 48.28 55.43
h = 0 3230.01 66.49 70.60 78.87

Note: The table illustrates the test statistics statistics and critical values for the Johansen Trace test for
cointegration for the full sample period. The test does not include any costant nor time trend, neither in the
model specification nor in the cointegrating relationship.

5. Empirical Findings

In this paper, we investigated Bitcoin exchange return connectedness from a dynamic viewpoint.
In other words, rather than estimating spillover measures on the full sample period, which would
provide the “average” or “unconditional” connectedness, we estimated spillover indexes on rolling
windows, with the aim to explore the dynamic features of exchange interconnectedness. In particular,
we set a predictive horizon for the variance decomposition of H = 12. As far as the approximating
model is concerned, we used a VECM lag length of 2, corresponding to a lag length of 3 in its
vector autoregressive representation. We then considered a one-sided estimation rolling window of
w = 336 h—corresponding to two weeks3.

Firstly, we derived the total return spillover index and provided its plot—together with the
Bitstamp Bitcoin price related to the same period—in Figure 3.

Figure 3. Total Spillover Index (TSI). Note: The plot illustrates the total return spillover index versus
the Bitstamp Bitcoin price series. The rolling window set for the estimations is 2 weeks. Values for the
TSI are expressed in percentage terms, while the Bitcoin price is denominated in USD.

3 The first two choices are in line with (Diebold and Yilmaz 2014), who fix their forecast horizon to H = 12 for the variance
decomposition and the lag length of the approximating VAR model to 3. The second choice was pursued for empirical
reasons, meaning that we considered the previous two full Bitcoin trading weeks to carry on the estimations.
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The total return spillover index ranges from a minimum of 72.24% to a maximum of 79.79%,
with an average value of 78.13% over the examined period. This suggests that system-wide return
connectedness is relatively high when considering Bitcoin exchanges.

Similarly to the Bitcoin price, the TSI seem to show two main cycles: one in which the index
witness a downward trend, as well as a following one where it steadily grows and finally smooths out.
However, its dynamics are not synchronized with that of the Bitcoin price. This suggests that both in
hype and correction periods interconnectedness may either lower or increase depending on specific
market features.

In our case, system-wide connectedness generally fell during the first cycle, specifically until the
beginning of November 2017 period, in which the Bitcoin price started an unprecedented year-end
rally. Right after the minimum peak of the index, Bitcoin prices began to surge like never before, and
the index goes back rapidly to its previous values. This means that, while during the first price growth
phase we encountered interconnectedness among Bitcoin exchanges lowers, contagion effects begin to
be more consistent during the year-end Bitcoin price hype. During the second cycle, the TSI wiggles
and grows at first, whereas it levels out and stabilizes in the range 79–80% starting from February
2018. This also coincides with the end of the hard correction of Bitcoin price, after which exchange
interconnectedness becomes relatively steady.

After that, we studied the directional return spillover indexes, i.e., the “from”, “to”, and “net”
spillover indexes. A plot illustrating their dynamics over the considered time-frame is contained in
Figure 4.

(a) From (b) To

(c) Net

Figure 4. Directional Spillover Indexes (DSI). Note: The figure shows the directional return spillover
indexes “from” others (a) and “to” others (b), as well as the net ones (c). The rolling window set for the
estimations is 336 h—corresponding to two weeks. Values are expressed in percentage terms.
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At first glance, one may notice that the range of variation related to the directional spillovers to
others is wider than that of the directional spillovers from others. Indeed, while the return spillover
indexes from others range from a minimum of 7.80% to a maximum of 19.23%, the spillovers indexes
to others show a minimum of 0.47%, a maximum of 39.32% during the studied period. This reflects
into an as wide range for the net return spillover indexes, with values between −18.57% and 30.13%.

In general, we find that to some extent there is a kind of equilibrium with regards to the directional
spillovers from and to others, as well as in the net ones. During most of the analyzed period, Bitcoin
exchanges can be split into two groups: those who transmit return spillovers to others, namely Bitstamp
and Gemini, and those who instead receive return spillovers, i.e., Bittrex, Coinbase, and Kraken. This
can be immediately stated by a visual inspection of the net spillover indexes in Figure 4, which give us
a hint on the leading and following Bitcoin exchanges during the analyzed time-frame. Moreover, we
may add that the dynamics and magnitude of the directional return spillovers is quite similar within
the same group.

However, there is a specific period in which the equilibrium witnesses a substantial instability.
This is related to the same period in which the total return spillover index starts to rise after a steady
decline. The directional spillover indexes suggest that in this phase Kraken and Coinbase rapidly start
transmitting return spillovers to others, and they keep doing that until the dramatic year-end price
surge, whereas Bitstamp and Gemini receive spillovers during the same phase, together with Bittrex.
The strong change in leadership pushes from 20% to 5% the transmitted spillover contributions of the
two exchanges leading before in less than one month, besides making that of Bittrex drop to almost
null values.

The unique exchange which constantly emerges as a return spillover receiver—even more in the
latter mentioned timespan—is Bittrex, being its net spillover index values as much as 96.98% of the
times below 0. This is in line with the fact that leading exchanges are generally those in which most of
the trading volumes lie, as Bittrex is the smallest exchange we selected in terms of trading volumes.

After the year-end Bitcoin price surge, directional spillover indexes go back to their previous
equilibrium. Indeed, the down market not only brings system-wide connectedness to its previous
levels but also re-establishes the exchange ranking in terms of return shock transmitted. In particular,
despite some fluctuations from the end of 2017 onwards, Bitstamp and Gemini re-confirmed their
previous leading position, while Bittrex, Kraken, and Coinbase were that of follower.

Finally, we explored the net pairwise spillover indexes, which give us information on how return
shocks are transmitted across Bitcoin market exchanges, from a pairwise viewpoint. We plotted the net
pairwise spillover indexes in Figure 5.

First of all, pairwise spillover indexes vary in wide ranges, meaning that pairwise connectedness
relationships show considerably different magnitudes across exchange pairs. To illustrate, the
narrowest range of variation can be found in the pairwise spillover index between Gemini and
Bitstamp, which shows a minimum of −3.56 and a maximum of 1.07, whereas the widest range in
the index is that of Bitstamp and Coinbase, that is from −6.19% to 8.88%—more than three times the
latter one.
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(a) Coinbase-Bitstamp (b) Kraken-Bitstamp (c) Gemini-Bitstamp (d) Bittrex-Bitstamp (e) Bittrex-Gemini

(f) Coinbase-Gemini (g) Kraken-Gemini (h) Kraken-Bittrex (i) Bittrex-Coinbase (j) Coinbase-Kraken

Figure 5. Net Pairwise Spillover Indexes (NPSI). Note: The figure illustrates the net pairwise return spillover indexes. The rolling window set for the estimations is
336 h—corresponding to two weeks. Values are expressed in percentage terms.
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The study of net pairwise spillover indexes provides more depth to the conclusions on the
exchange interconnectedness that emerged from the total and directional spillover indexes analysis.
Overall, Bitstamp and Gemini transmit a significant portion of return spillovers to all other exchanges,
with Bittrex being the most affected. However, in line with the earlier findings, during the period
before the year-end price hype, Coinbase and Kraken transmit shocks to all other exchanges, with
relatively high and comparable magnitudes.

It is interesting to study the interaction between the exchanges on the top of the ranking. The net
pairwise spillover index between Gemini and Bitstamp oscillates around the zero line and assumes
relatively low values. From a visual inspection, Bitstamp seems to dominate Gemini in terms of return
spillover transmission, both in terms of timespan and magnitude. As a matter of fact, the net pairwise
spillover index Gemini-Bitstamp assumes negative values as much as almost two-thirds (66.58%) of
the time. Moreover, the contribution of Gemini towards Bitstamp does rarely overcome a value of 0.4,
as opposed to the return spillovers transmitted from Bitstamp to Gemini, which not only double but
even triple in size.

For the sake of ranking completeness, we also investigated the relationship between Coinbase
and Kraken. It is not clear from a graphical point of view which exchange contributes more in terms of
return spillover. Contribution magnitudes show quite comparable ranges, and the number of times
Coinbase transmits shocks to Kraken is almost the same as the opposite situation (49.01%). It is clear
that the two exchanges interact in a different way with respect to the two leading ones, as their net
pairwise spillover index oscillates much less around 0. This means their role of transmitter and receiver
are more stable over time than in the previous case.

To summarize our empirical contribution in a nutshell, we are able to shed further light on
price discovery among Bitcoin exchange markets. Previous papers, such as (Brandvold et al. 2015;
Pagnottoni and Dimpfl 2018; Giudici and Pagnottoni 2019), found that the exchange markets with
higher traded volumes are typically the ones that drive prices and spillovers. Differently from the
previous papers, based on daily price data, we considered high frequency data. The analysis of this
data led to confirm the conclusions from the previous papers. In addition, it allowed an important
discovery on the dynamic nature of return spillovers: Although stable to some extent, the lead-lag
relationship among Bitcoin exchanges is dynamic and witnesses notable changes over time. These
changes may be fundamental for both policymakers and investors, who should monitor them for the
purpose of an efficient decision-making process and investment decision, respectively.

6. Robustness

In this section, we propose a robustness analysis of our results with respect to the choices of the
parameters used in the modeling strategy. To illustrate, we examine the total return spillover index for
alternative rolling windows w set for the model estimations and alternative predictive horizons H. We
increased and decreased the window width and predictive horizon by +50% and −50%, resulting in
window width choices of w = 168, 336, 504 and predictive horizon choices of H = 6, 12, 18.4 In this
way, we investigate the robustness of the TSI when considering rolling estimation windows of 1, 2,
and 3 weeks, as well as predictive horizons of 1

4 , 1
2 , and 3

4 of a day. Plots related to the alternative total
spillover in TSI are shown in Figure 6.

The TSI seems to be just slightly influenced by changes in the window width w. As one may
expect, the larger the rolling window the smoother is the index, whereas tighter windows yield to a
more fluctuating one. However, in our case, we can state that results are qualitatively unaffected by
the choice of the rolling window.

4 A similar robustness analysis is performed by Diebold and Yilmaz (2014). By means of increasing and decreasing the
estimation parameters by +50% and −50%, we are coherent with their choices with regards to the forecast horizon
(H = 6, 12, 18), while we take into account an even wider range of rolling window widths (w = 168, 336, 504 as opposed to
w = 75, 100, 125), ensuring a punctual robustness check of our outcomes.
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The index appears to be more sensitive to the choice of the forecast horizon H to compute the
forecast error variance decompositions rather than to the rolling window. However, there is much
more similarity in the behavior of the spillover index between choices of the forecast horizons H
of 12 and 18 rather than those of 6 and 12. This suggests that a judicious predictive horizon choice
should grant stability of the index without losing information about its surge or decline and related
magnitude. More importantly, the dynamics of the indexes show quite similar patterns, which just
differ in their scale of values. This means that—once more—the qualitative interpretation of our results
is not influenced by the choice of the predictive horizon H.

To conclude, our empirical outcomes appear robust with respect to the rolling window set for the
estimation and the predictive horizons used in the forecast error variance decompositions.

(a) w = 168, H = 6 (b) w = 168, H = 12 (c) w = 168, H = 18

(d) w = 336, H = 6 (e) w = 336, H = 12 (f) w = 336, H = 18

(g) w = 504, H = 6 (h) w = 504, H = 12 (i) w = 504, H = 18

Figure 6. Robustness analysis. Note: The figure shows the TSI with estimation window widths w of
168, 336, and 504 h—corresponding to 1, 2, and 3 weeks, respectively—and predictive horizons H of 6,
12, and 18 h. Values are expressed in percentage terms.

7. Conclusions

This paper explores system-wide and directional connectedness, along with price discovery
mechanisms among five major Bitcoin exchange markets. This is done by extending the Diebold and
Yilmaz (2012) forecast error variance decomposition from a VAR to a VECM framework, which enables
us to take into account the non-stationary and cointegrated behavior of the time series analyzed.
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We remark that the methodological improve illustrated above is neither exclusively tied to Bitcoin
exchange platforms nor to cryptocurrency ones. Indeed, this technique can be extended to the study of
interconnectedness among all exchange platforms trading the same financial products.

Our results show that overall connectedness strongly evolves over time and, in particular, it
generally decreases during bull market times and decreases during down market periods. We also
find that Bitfinex and Gemini can be all over considered as leading exchanges in the price formation
process, being mostly a transmitter of a significant portion of return spillover during the considered
timespan. On the other hand, we identify Bittrex as follower, given it acts as a receiver of return shocks
during the whole time period considered.

We also highlight the dynamic nature of return spillover across Bitcoin exchanges, as they
considerably evolve over time. This means that the lead-lag relationships existing among Bitcoin
exchanges is not constant and is subject to changes over time.

From a practical viewpoint, our results suggest that, to predict the direction of price movements
and contagion effects, potential investors should pay attention to spillovers and, particularly, to the
exchanges that have the highest trading volumes, in general. However, the time dynamics should also
be taken into account, with a particular eye on events that may affect price volatilities and spillovers.
This is also true for policymakers, who can come up with more efficient decision-making by monitoring
spillover effects due to events belonging to the regulatory framework.

Future research may include different model paradigms, based on Bayesian analysis—as in
(Giudici et al. 2003; Figini and Giudici 2011), on network models—as in Giudici and Bilotta (2004)—or
on extreme value models—as in Calabrese and Giudici (2015).
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cryptocurrency market. Is Bitcoin the most influential? International Review of Financial Analysis 64: 102–25.
[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1468-0297.2008.02208.x
http://dx.doi.org/10.1016/j.ijforecast.2011.02.006
http://dx.doi.org/10.1016/j.jeconom.2014.04.012
http://dx.doi.org/10.2307/1913236
http://dx.doi.org/10.1057/jors.2010.41
http://dx.doi.org/10.1016/j.irfa.2016.02.008
http://dx.doi.org/10.1016/j.frl.2018.05.013
http://dx.doi.org/10.1002/qre.655
http://dx.doi.org/10.1002/asmb
http://dx.doi.org/10.1016/S0378-3758(02)00291-4
http://dx.doi.org/10.1111/j.1540-6261.1995.tb04054.x
http://dx.doi.org/10.1016/j.irfa.2018.12.002
http://dx.doi.org/10.2307/2938278
http://dx.doi.org/10.1016/j.econlet.2018.10.004
http://dx.doi.org/10.1016/j.irfa.2018.08.012
http://dx.doi.org/10.1016/j.irfa.2019.04.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Methodology
	Data
	Empirical Findings
	Robustness
	Conclusions
	References

