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Abstract: We obtain closed-form expressions for the value of the joint Laplace transform of the
running maximum and minimum of a diffusion-type process stopped at the first time at which the
associated drawdown or drawup process hits a constant level before an independent exponential
random time. It is assumed that the coefficients of the diffusion-type process are regular functions
of the current values of its running maximum and minimum. The proof is based on the solution to
the equivalent inhomogeneous ordinary differential boundary-value problem and the application
of the normal-reflection conditions for the value function at the edges of the state space of the
resulting three-dimensional Markov process. The result is related to the computation of probability
characteristics of the take-profit and stop-loss values of a market trader during a given time period.

Keywords: Laplace transform; first hitting time; diffusion-type process; running maximum and
minimum processes; boundary-value problem; normal reflection.

1. Introduction

The aim of this paper is to derive closed-form expressions for the joint Laplace transform (4) of the
first time to a fixed drawdown occurring before a fixed drawup of the diffusion-type process X and its
running maximum and minimum S and Q defined in (1)—(2) considered up to a random exponentially
distributed time 7, which is independent of the driving standard Brownian motion. We consider a
model for the diffusion-type process X with the coefficients being regular functions of the current values
of the process X itself as well as of its running maximum and minimum S and Q. The value function
in (4) provides the Laplace transform of the value function in (6) which is the joint Laplace transform
of the same random variables representing functionals of the diffusion-type process X stopped before
a fixed time. We derive a closed-form solution to the equivalent inhomogeneous ordinary differential
boundary-value problem for the value of the joint Laplace transform as a stopping problem for
the resulting three-dimensional continuous Markov process (X, S, Q). This result can therefore be
interpreted as the computation of the probability characteristics of the random variables associated
with the take-profit and stop-loss values of a market trader on a fixed-time interval. The problem of
computation of the Laplace transform of the same random times and variables in a model in which
the coefficients of the original diffusion-type process depend on the current values of the running
maximum and minimum as well as on the maximum drawdown and maximum drawup was explicitly
solved in Gapeev and Rodosthenous (2015) on the infinite time interval. Other functionals of diffusion
processes evaluated at independent exponential times were computed in Borodin and Salminen
(Borodin and Salminen 2002, Part II) among others.
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The joint Laplace transform of the first time at which a Brownian motion with linear drift hits
a given drawdown value and the running maximum stopped at the same time was computed by
Taylor (1975). The joint distribution of the same random variables was obtained by Lehoczky (1977).
The mean value and the density of the maximum drawdown of a Brownian motion with linear drift
were explicitly derived by (Douady et al. 2000; Magdon-Ismail et al. 2004), respectively. More recently,
Pospisil et al. (2009) computed the probability of the event that the drawdown of a one-dimensional
diffusion reaches a fixed value occurs before the drawup of the same process reaches another fixed value.

Mijatovi¢ and Pistorius (2012) obtained the distribution laws of the first-passage times of spectrally
positive and negative Lévy processes over constant levels and derived explicit expressions for several
related characteristics for the drawdowns and drawups in those models. An extensive overview of
various probabilistic and practically applied aspects of drawdowns such as the speed of market crashes
and others was recently provided in the monograph of Zhang (2018).

The diffusion-type processes can be considered as immediate generalisations of the diffusion
processes particularly arising in the so-called local volatility models introduced by Dupire (1997),
where the local drift and diffusion coefficients depend only on the running value of the original
process. Other generalisations of the original processes with diffusion coefficients depending on the
running values of the initial processes and their running minima were constructed by Forde (2011)
for given joint laws of the terminal level and supremum at an independent exponential time (see
also Forde et al. 2013; Zhang 2014) for other important probability characteristics of processes of such
type). The valuation functional equations for general functional path-dependent volatility models
were derived in (Cont and Fournié 2013; Fournié 2010), who also considered the sensitivity analysis of
path-dependent financial derivative securities. Henry-Labordere (2009) and Ren et al. (2007), among
others, considered the option pricing and calibration problems in models of stochastic interest rates
and volatility based on diffusion-type processes with tractable path-dependent coefficients.

Optimal stopping problems for running maxima of some diffusion processes were studied by
(Jacka 1991; Dubins et al. 1993; Peskir 1998; Peskir and Shiryaev 2006, chp. V) among others. Discounted
optimal stopping problems for certain payoff functions depending on the current values of the running
maxima of geometric Brownian motions were initiated by (Shepp and Shiryaev 1993, 1994) and
then taken further by (Pedersen 2000; Guo and Shepp 2001; Guo and Zervos 2010, Glover et al. 2013;
Rodosthenous and Zervos 2017) among others. Moreover, Peskir (2012, 2014) studied optimal stopping
problems for three-dimensional Markov processes having the initial diffusion process as well as its
maximum and minimum as state space components. Other three-dimensional optimal stopping problems
for continuous Markov processes of such type were studied in (Gapeev and Rodosthenous 2014, 2016)
among others. The main feature of the resulting optimal stopping problems and their equivalent
free-boundary problems was the application of the normal-reflection conditions for the value functions
at the edges of the multi-dimensional state spaces to derive systems of first-order nonlinear ordinary
differential equations for the optimal stopping boundaries depending on the current values of the running
extremal processes. Optimal stopping problems for diffusion and spectrally negative Lévy processes
on random time intervals were considered in (Carr 1998; Avram et al. 2004; Agarwal et al. 2016) among
others. It turned out that the resulting value functions and optimal stopping boundaries in models with
exponentially distributed time horizons independent of the underlying processes are analytically more
tractable than those obtained in models with fixed time horizons. Other optimal stopping problems
for exponentially distributed time horizons which are dependent of the underlying Lévy process were
recently considered in Rodosthenous and Zhang (2018).

Glattfelder et al. (2011) suggested a new paradigm, the directional changes, that summarises
the price dynamics in the financial market. Unlike interval based summary along the physical time,
the new paradigm summarizes the price movements along the intrinsic time scale of the market that
is driven by the events in the market. The events in the market are identified by the a priori defined
significant percentage of price moves known as thresholds. For a given threshold, the price movements
are summarised by identifying the local price extremes from where there has been a percentage drop
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(or rise) in price that accedes the threshold. The process of price drop (or rise) from a local price
extreme to the point where the price is dropped (risen) by the threshold is defined as directional change
event. The price movement that continues after directional change event in the same direction beyond
the threshold is considered as overshoot. Roughly speaking, directional changes and overshoots
summarise the upward or downward trends in the market according to the prescribed thresholds. It is
obvious that the summary of the directional changes is depending on the selected threshold. Using
the high frequency foreign exchange data, in Glattfelder et al. (2011) scaling laws were demonstrated
in intrinsic times for the variables like average times that are taken for directional changes, event
thresholds, average overshoots, etc. The authors of Glattfelder et al. (2011) have identified 12 scaling
laws across 13 currency pairs that are consistent over varying time intervals. The scaling laws throw
light on market physics of moving prices. Each scaling law encapsulates certain stylised facts of the
market. The scaling law that describes the relationship between the directional change and overshoot
sections of the total price move has drawn quite a lot of attention. Even though the empirical evidence
of the scaling laws is demonstrated in the literature (see, e.g., Bakhach et al. 2018; Bakhach et al. 2018;
Tsang et al. 2017), the required theoretical framework is not developed yet. We believe that the present
work on first hitting times for drawdowns and drawups on diffusion-type processes on random time
horizons throws light on the underlying theoretical aspects of the scaling laws that are presented in
financial data.

The paper is organised as follows. In Section 2, we introduce the setting and notation of the
model with a three-dimensional continuous Markov process, whose state space components are the
original process and its running maximum and minimum processes. We define the value function
of the joint Laplace transform of the first time to a fixed drawdown occurring before the first time
of a fixed drawup and an independent exponential time together with the running maximum and
minimum processes stopped at the earliest of those times. In Section 3, we obtain a closed-form
solution to the associated inhomogeneous ordinary differential boundary-value problem and show
that the value function represents a linear combination of the solutions to the systems of first-order
partial differential equations which arise from the application of the normal-reflection conditions
for this function at the edges of the three-dimensional state space. We also illustrate the results
on several examples of the original processes representing locally a Brownian motion with drift,
or a mean-reverting Ornstein-Uhlenbeck process, or the logarithm of a Feller square root process.
In Section 4, we formulate the result of the paper and prove that the solution to the boundary-value
problem provides the required joint Laplace transform.

2. Preliminaries

In this section, we give a precise formulation of the model and the three-dimensional stopping
problem as well as its equivalent boundary-value problem.

2.1. Formulation of the Problem

Let us consider a probability space (), F, P) with a standard Brownian motion B = (B;);> and
a positive random time 7 such that P(5y > t) = e~ ™, for all t > 0 and some a > 0 fixed (B and 7 are
supposed to be independent). Assume that there exists a process X = (X¢);>0 solving the stochastic
differential equation

dX; = p(Xi, St, Q) dt + (X1, St, Q) dBr - (Xo = x) @

where x € R is fixed, and u(x,s,q) and o(x,s,q) > 0 are continuously differentiable functions
on [—oo,00]®> which are of at most linear growth in x and uniformly bounded in s and g.
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Here, the associated with X running maximum process S = (S¢)¢>0 and the running minimum process
Q = (Qt)s>0 are defined by

= X = in X 2
Sy svorgl;la%(t v and QO qu?fglt u 2)

for arbitrary g < x < s. It follows from the result of (Liptser and Shiryaev [1977] 2001, chp. 1V,
Theorem 4.8) that the equation in (1) admits a pathwise unique (strong) solution. We also define the
associated first hitting (stopping) times

T, =inf{t >0|S; — X¢ >a} and (, =inf{t >0|X;— Q; > b} (3)

for some a,b > 0 fixed.

The purpose of the present paper is to derive closed-form expressions for the joint Laplace
transform of the random time 7, A {; A 77 and the random variables S, nz, Ay and Qg ag, ny- We therefore
need to compute the value function of the following stopping problem for the (time-homogeneous
strong) Markov process (X, S, Q) = (X¢, St, Qt)1>0 given by

Vil,8,0) = Euag e 0~ 50u 1(, < )] @

for any (x,s,q) € E® and some A,0,x > 0 fixed, where I(-) denotes the indicator function. Here,
Eys,q denotes the expectation under the assumption that the (three-dimensional) Markov process
(X, S,Q) defined in (1)—(2) starts at (x,s,q) € E3, where we assume that the state space of (X, S, Q) is
essentially E*> = {(x,s,q) € R3|q < x < s} with its border planes 43 = {(x,s,9) € R*|x = s} and
& ={(x,s,9) €eR3|x = q}.

It follows from the independence of the process X and the random time # that the value function
in (4) admits the representation

Vi(x,s,9) = / Wi (T;x,s,q) ae T 4T (5)
0
where we set
W*(T, X, S,q) — Ex,s,q [ef/\(Tg/\T)*GSTa/\T*KQTa/\T I(Ta < gh)] (6)

for any (x,s,q) € E3, and each T > 0 fixed.

2.2. The Boundary-Value Problems

By means of standard arguments based on the application of Itd’s formula (see, e.g., Karatzas and
Shreve 1991, chp. V, sct. 5.1), it is shown that the infinitesimal operator L of the process (X, S, Q) acts
on a function F(x,s,q) from the class C>!! on the interior of E? according to the rule

o?(x,5,9)

(LE)(x,5,q) = p(x,5,q) 0xF(x,5,4) + ——

dxxF(x,s,q) (7)

for all g < x < s. It follows from the results of general theory of Markov processes
(see, e.g., Dynkin 1965, chp. V) that the value function W, (T;x,s,q) in (6) solves the equivalent
parabolic-type boundary-value problem
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(LW — AW —orW)(T;x,5,4q) =0 for (s—a)Vg<x<sA(q+b) (8)
W(T; x, s,q)|x:(s_u)+ =% for s—g>a 9)
W(T;x,s,q)|x:(q+b)7 =0 for s—q>b (10)
c')qW(T;x,s,q)]X:tH =0 for 0<s—g<a (11)
BSW(T;x,s,q)‘x:s_ =0 for 0<s—qg<b (12)

for all T > 0. In this case, using the integration-by-parts formula, and taking into account the
assumption that the value function in (6) is bounded, we have

/ BTW(T;x,s,q)ocef“T dT (13)
0
{W(szq “T} +/ (T;x,s,q) a®e~*TdT

— e 0 W+/ (T;x,s,q) 0% e T dT = —ae ™ 4 aV(x,s,q)

/(; 0 W(T;x,5,q) we T dT = 3,V (x,s,q) (14)

/Ooo 0xxW(T; x,s,q)oce*”‘T dT = 0V (x,s,q) (15)

/Ooo QW(T;x,5,q)ae T dT =0,V (x,s,q) (16)
and

/Ooo GSW(T;x,s,q)txe*“T dT = 9;V(x,s,9) (17)

for all (x,s,q) € E®. Hence, it follows from the boundary-value problem in (8)-(12), that the value
function V. (x,s,q) in (6) solves the equivalent inhomogeneous ordinary boundary-value problem

(LV — (e +A) V)(x,5,9) = —ae %™ for (s—a)Vg<x<sA(qg+Db) (18)
V(x, s,q)|x:(s_a)4r =e %M for s—g>a (19)
V(x,s,q)‘x:(lﬁb)f =0 for s—q>b (20)
aqV(x,s,q)|x:q+ =0 for 0<s—g<a (21)
9V (x, s,q)]xzsf =0 for 0<s—qg<b (22)

for a,b > 0 fixed. Note that the homogeneous version of the ordinary differential boundary-value
problem in (18)—(22) in a model with more general diffusion-type processes X was explicitly solved in
(Gapeev and Rodosthenous 2015, sct. 3).

3. Solutions to the Boundary-Value Problem

In this section, we obtain closed-form solutions to the boundary-value problem in (18)—(22) under
various relations on the parameters of the model.
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3.1. The General Solution of the Ordinary Differential Equation

We first observe that the general solution of the equation in (18) has the form

V(x,s,q) = Ci(s,q) ¥Y1(x,s,9) + Ca(s,q) Ya(x,s,q) + e 0s—q (23)

atA
where C;(s,q), i = 1,2, are some arbitrary continuously differentiable functions, and ¥;(x,s,q),i = 1,2,
are the two fundamental positive solutions (i.e., nontrivial linearly independent particular solutions)
of the homogeneous version of the second-order ordinary differential equation in (18). Without loss of
generality, we may assume that ¥1(x, s, q) and ¥,(x, s, q) are the (strictly) increasing and decreasing
(convex) functions, respectively. Note that these solutions should satisfy the properties ¥1(r,7,7) 1 co
and ¥, (r,r,r) J Oasr 1 ooand ¥q(r,7,r) | 0and ¥y (r,7,7) T co as r | —oo on the state space E3 of the
process (X, S, Q). These functions can be represented as the functionals

¥ (n,q) = | Froale EIE <o), i x < (24)
- 1/ Eygqle™1(5 < 00)], if x>
and
Ya(x,s,q9) = 1/Ey ol I(E < 0)], if x<x o
S, Ex,s,q[efAé’/](g/ < )], it x>«

of the first hitting times ¢ = inf{t > 0| X; = x} and ¢’ = inf{t > 0| X; = x'} of the process X
solving the stochastic differential equation in (1) and started at x and x such that (x,s,q), (x',s,q) € E3,
respectively (see, e.g., Rogers and Williams 1987, chp. V, sct. 50 for further details).

Hence, by applying the conditions of (19)—(22) to the function in (23), we obtain the equalities

A

Ci(s,9)¥Y1(s —a,s,q9) + Ca(s,q) ¥a(s — a,s,q9) = DY e 05—xq (26)

fors—gq>a,
& _pe_

Ci(s,9) ¥1(q +b,5,9) + Ca(s,q) Ya(qg + b,s,9) = ———e bs=xd (27)
fors—g>1b,

i (8 Ci(s,9) ¥i(q,s,9) + Ci(s,9) 9,¥i(x,s,9)| ) = A s (28)

i:1171/ 1\"r°s 1\°r [/ AN x=q 0(-'—/\
for0<s—g<a,

- (5,Ci(5,0) ¥ Cils,q) 9505, _ 00 e

Y (0sCi(s,q) ¥i(s,s,9) + Ci(s,q) 9595 ¥i(x,5,9) | =l (29)

Il
=

for0 <s—gq <b.

3.2. The Solution to the Boundary-Value Problem

We now derive the solution of the boundary-value problem in (18)—(22). For this purpose, we
recall that the second and third components of the process (X, S, Q) can increase and decrease only at
the planes d{’ and dg, that is, when X; = 5; and X; = Q; for t > 0, respectively.
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(i) Let us first consider the domain a Vb < s —g < a4+ b. In this case, solving the system of
equations in (26) and (27), we conclude that the candidate value function admits the representation

14

—0s—xq
a+A ¢ (30)

V(x,8,4;00) = C1(s,9;00) ¥1(x,8,9) + Ca(s, q;00) ¥a(x,5,q) +

in the region R3(c0) = {(x,5,9) € E?|g<s—a < x <q+b <s}, with

e (AY2(q +b,s,q) +a¥a(s —a,5,9))/ (x + A)
Yi(s—a,s,9)¥2(q+b,s,9) = ¥1(q+b,s,9)¥2(s —a,5,9)

Ci(s,g;00) = (31)

and
eI N (g + by, ) + a¥i(s — a,5,4))/ (a+ A)
o) = g5, 5,0)%20 — a,5,0) — ¥ (s — 4,5,0) %20 + b,5,0) 2

forallg+aVb <s<g+a+b(see Figures 1 and 2 below).

RS(OO>

r=S8s—a

R¥(a)

R*(0)

k——ax=q+0b

Figure 1. A computer drawing of the state space of the process (X, S, Q), for some g € R fixed and
a<b.

(ii) Let us now consider the domain a < s — g < b. In this case, it follows from the equations
in (26) and (29) that the candidate value function admits the representation

V(x,s,q;a) = Ci(s,q;a) ¥1(x,5,9) + Ca(s,g;a) Ya(x,s,9) + {Xj% e~0s—rq (33)
in the region R3(a) = {(x,s,9) € E?|qg <s—a < x <s < g+ b}, with
e 0s—xq Yi(s—a,s,
Co(s,q;a) = — Ci(s,q;a) u (34)

a+A¥(s—a,s,q) Yy(s—a,s,q)

for g+ a <s < q+ b, where Cy (s, q; a) solves the first-order linear ordinary differential equation

9sC1(s,q;a) Hi2(s,g;a) + C1(s,q;a) Hi1(s,q;a) = Hy9(s,q; a) (35)
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with

Yi(s—a,s,
Hl,Z (S, q; a) = \Ijl (S, 5, q) - \PZ (S/ S, ‘7) M

Hi(s,q;a) = 0s¥1(x,s,9)| _, (37)

o (Hils=asa) _Hhis—asq)
’ <T2(5 —4,5,q) Halsis,q) Yo(s —a,s,9) 95¥1(x,5,4)]

(36)

X=Ss

Hio(s,g;a) = HL/\ (9 e tsxa (38)

67957’(‘7 efesf;cq
“(Fleasg) B g PRl

forall g +a < s < g+ b. Observe that the process (X, S, Q) can exit the region R3(a) by passing to
the region R®(c0) in part (i) of this subsection only through the point x = s = g + b, by hitting the
plane d‘i’ so that increasing its second component S. Thus, the candidate function V(x, s, q) should be
continuous at the point (g + b,q + b, q), that is expressed by the equality

i - —K
Ci(q+b,g;0)¥1(q+b,q+b,9) + Ca(g +b,q:0) ¥a(g +b,q+b,q) = ——e 6a+b)=xq  (39)

for all g € R (see Figure 1 above). Hence, solving the differential equation in (35) together with the
system of equations in (34) with s = g 4+ b and (39), we obtain

9+b Hy1(u,q;a
Ci(s,q;a) = C1(q+b,q;a) exp ( i Im du) (40)

9+b Hy o(u, q;a) ( “Hy(v,q;a) >
- VS LA IREAT) 4o ) du
s Hip(u,q;a) P Hi (v, q;0a)

forallq+a <s < g+Db, where C;(q +b,q;a) is given by

Ci(g+b,q;a) (41)

_ e YUt (A5 (g +b,g+b,9) +a¥a(q+b—a,q+b,q)/(x+A)
Yi(q+b—a,q+b,q9)¥Y2(q+b,g+b,q) —Y1(g+b,q+b,q)¥2(g+b—a,q+b,4q)

forallg € R.

Note that in the case in which p(s,q) = u(s) and o(s,q) = o(s) in (1) aswellas k = 0and b = o
in (6), the candidate value function admits the representation of (33) with V(x,s,q;a) = U(x, s;a) and
Ci(s,q;a) = Dj(s;a) as well as ¥;(x,s,9) = ®;(x,s), i = 1,2. Moreover, we observe that D;(co;a) =0
should hold in (33), since otherwise U(x, s;a) — o0 as x = s 1 0o, which must be excluded, by virtue
of the obvious fact that the value function V. (x,s,q) = U.(x,s) in (6) is bounded. Therefore, using
arguments similar to the ones above, we conclude that the function C,(s,q;a) = D;(s;a) has the form
of (34) with C1(s,q;a) = D1(s;a) given by

v [®Go(u0) * Gy,1(v; )
D;(s;a) = i 7G1,2(u;oo) exp i 7(31’2(0;00) dv | du (42)

and Hllj(s, ga) = Gl,]-(s;a),j =0,1,2, from (36)-(38), for all s € R.

(iii) Let us now consider the domain b < s — g < a. In this case, it follows from the equations
in (27) and (28) that the candidate value function admits the representation

V(x,s,q;b) = C1(s,q;b) ¥Y1(x,s,q9) + Ca(s,q;b) Ya(x,s,q) + e 0s—xq (43)

a+ A
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in the region R3(b) = {(x,s,9) € E3|s —a < g < x < q+b < s}, with

x et ¥1(q+b,5,0)

Cy(s,q;b) = — —Cq(s,q;b) ————12 44
2(5,9;b) a+A¥(q+10,s,q) 18/ )‘FZ(q+b/S/q) 4

for g +b <s < g+ a, where C; (s, q; ) solves the first-order linear ordinary differential equation
9;C1(s,q;b) Hy2(s,q;b) + Ci(s,q9;b) Hy1(s,q;b) = Hap(s,q;b) (45)

with
Yi(g+1b,5,9)
Hyo(s,q;b) =Y1(q,5,9) —¥Y2(q,5.9) 77— 46
22(5:4;) = ¥1(0,.0) = ¥2(0,5,9) @ (59 (46)
Hy(s,q;b) = 051 (x, s,q)|x:q (47)
9 (%(Hbsq) Ya(q,s,9) maqTZ(x,W)’x:q
) — d —0s—xq

Haals, i) = 5 (e )

e 0s—xq e 0s—xq

o (‘I'z(qubSq)> Ya(0,59) + g g 50 Yt S,q)|x_q>

forall g +b < s < g+ a. Observe that the process (X, S, Q) can exit R3(b) by passing to the region
R3(c0) in part (i) of this subsection only through the point x = g = s — 4, by hitting the plane d3 so
that decreasing its third component Q. Then, the candidate value function should be continuous at the
point (s — a,s,5 — a), that is expressed by the equality

o

— = efesf;c(sfa) (49)

Ci(s,s —a;b)¥1(s —a,s,s —a) + Ca(s,s —a;b) ¥a(s —a,s,s —a) =

for all s € R (see Figure 2 below). Hence, solving the differential equation in (45) together with the
system of equations in (44) with ¢ = s — a and (49), we obtain

. . . q H2,1 (S, u, b)
C](S,q,b) —C](S,S—a,b) eXp<_.s_aI—I2,2(S,u/’b) u (50)
9 Hpo(s,u;b) < 9 Hy1(s,0;b) )
—— — =" " Zdv|d
s—a Hapo(s,u; b) u Hao(s,v;b) o)au
forallq+b <s < g+ a, where Ci(s,s — a;b) is given by
Ci(s,s —a;b) (51)

B e 05 =) (AY, (s —a+b,s,5 —a) +a¥y(s —a,s,s —a))/(a+A)
" Yi(s—a,s,s—a)¥a(s—a+b,s,s—a)—Yi(s—a+b,s,s—a)¥a(s—a,s,s—a)

fors € R.
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r=s—a R3(00)

Figure 2. A computer drawing of the state space of the process (X, S, Q), for some q € R fixed and
b<a.

(iv) Let us now consider the domain 0 < s — g < a A b. In this case, it follows that the candidate
value function admits the representation

V(x,s,4;0) = Ci(s,4;,0) ¥1(x,s,9) + Ca(s,4;0) Ya(x,5,9) + uc;% e 05 (52)
in the region R3(0) = {(x,s,q9) € E3|s —a < g < x < s < q+ b}, where Ci(s,4;0),i = 1,2, solve the
first-order linear partial differential equations in (28) and (29), for all 0 < s —g < a A'b. Observe
that, the process (X, S, Q) can exit R3(0) by passing to the region R3(a A b) in part (ii) or (iii) of this
subsection only through the points x = s = g+ a Aband x = g = s — a A b, by hitting the plane d3 or
d3, so that increasing its second or third components, S or Q, respectively. Then, the candidate value
function should be continuous at the points (§ +aAb,q+aAb,q) and (s —aAb,s,s —a AD), thatis
expressed by the equalities

Ci(q+anb,g0)¥Y1(g+anb,g+anb,q) (53)

+Ca(q+anb,g0)¥Ya(q+anb,g+anb,q)

=Ci(g+anb,ganb)¥i(g+anbg+anb,q)
+Co(g+anb,g;anb)¥Yar(g+anb,g+anb,q)

forallg € R, and

Ci(s,s —anb,0)¥i(s—aAnb,s,s—aAb) (54)

+ Ca(s,s —aAb;0)¥a(s—aAb,s,s—aAb)

=Ci(s,s—aAb;anb)¥i(s—aAb,s,s—aAb)
+Ca(s,s—anbanb)¥a(s—aAnb,s,s—aAb)

forall s € R, where Cj(q +aAb,q;a ANb) and Ci(s,s —a Ab;aAb),i=1,2,are found in (34) + (40) or
(44) + (50). Moreover, we have the property C(r,7;0) — 0 as r | —oo, since otherwise V(r,7,7;0) —
+oo, that must be excluded by virtue of the obvious fact that the value function in (6) is bounded
(see Figures 1 and 2 above). We may therefore conclude that the candidate value function admits the
representation of (52) in the region R3(0) above, where C;(s, 4;0), i = 1,2, provide a unique solution of
the two-dimensional system of first-order linear partial differential equations in (21) and (22) with the
boundary conditions of (53)-(54) and C,(r,7;0) — 0 as r | —co. Here, the existence and uniqueness
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of solutions to such special kinds of systems of equations follow from the classical existence and
uniqueness results of solutions to appropriate boundary-value problems for first-order linear partial
differential equations.

3.3. Some Examples

Let us finally consider some examples of processes X from (1) and present explicit expressions
for the fundamental solutions ¥;(x,s,q), i = 1,2, of the homogeneous version of the second-order
ordinary differential equation in (18).

Example 1. Let u(x,s,q) = B(s,q) and o(x,s,q) = v(s,q), for all (x,s,q) € E3 and some continuously

differentiable functions B(s,q) and v(s,q) > 0 on [—oc0, 0|2, so that the process X from (1) represents locally a
Brownian motion with linear drift. In this case, we have Yi(x,s,q) = eViEDX with
o o) — (s, (a+2)
’Yl(s/ Q) - 1/ \/ 1/2 S q) (55)

for every i = 1,2, so that y2(s,q) < 0 < y1(s,q), forall g <s.

Example 2. Let u(x,s,q) = B(s,q) — 6(s,q)x and o(x,s,q) = v(s,q), for all (x,s,q) € E® and some
continuously differentiable functions B(s,q), 6(s,q) # 0, and v(s,q) > 0 on [—c0, 0|2, so that the process X
from (1) represents locally a mean-reverting Ornstein-Uhlenbeck process. In this case, we have

(&A1 (Bls,g) —d(s,9)x)?
wwsn) =M (e i) o0

and
2 tA 1 (B(s,q) — (s, 9)x)
wwsn) U5 ey ) ©7
where we denote by

(¢,¢Z—1+Z%k— (58)

d
: U(p,y;2) = &M@, piz)+ D Mg+ 1-p2—giz) (59)

T Tet+l-y) TV I'(¢) v

Kummer’s confluent hypergeometric functions of the first and second kind, respectively, for ¢ #0,-1,-2,...,
() = @9 +1)---(¢+k—1) and () = ¢p(p+1)--- (¢ +k—1), k € N. Note that the series in
(58) converges under all z > 0 (see, e.g., Abramovitz and Stegun 1972, chp. XIII; Bateman and Erdély 1953,
chp. VI), and T denotes Euler’s gamma function. Note that the functions in (58) and (59) admit the integral
representations

r 1
M(p,¢;z) = 1"((4))/0 o (1 —0)¥ 9 1do, (60)

forp > @ >0andallz € R, and

1 o
U(g,¢;z) = —/ e o 114 0)¥ ¢ 14y, (61)
(0,49 = 5 . (1+9)
for v > 0 and all z > 0, respectively (see, e.g., Abramovitz and Stequn 1972, chp. XIII and
Bateman and Erdély 1953, chp. VI).
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Example 3. Let u(x,s,q) = (B(s,q) — v*(s,q)/2)e ™ — 6(s,q) and o(x,s,9) = v(s,q)e /2, for all
(x,5,9) € E3 and some continuously differentiable functions B(s,q), 6(s,q) # 0, and v(s,q) > 0 such
that B(s,q) > v?(s,q)/2 on [—o0,00]?, so that the process X from (1) represents locally the logarithm of a
mean-reverting Feller square root diffusion process. In this case, we have

a+A 2B(s,q) 26(s,g)e
(s, q)" v2(s,q)" v2(s,q) > (62)

Y1(x,s,9) = M<

and

¥a(x,5,q) = U(zx—i-/\ 28(s,q) 25(s,q)ex> 63)

3(s,9)" v3(s,q)" v3(s,9)
where the functions M(¢, {;z) and U (¢, P; z) are Kummer’s confluent hypergeometric functions of the first
and second kind given by (58) and (59) above, respectively.

4. The Result and Proof

Taking into account the facts proved above, we now formulate the main result of the paper,
which extends the assertion of (Gapeev and Rodosthenous 2015, Theorem 4.1) to the case of the model
with a random independent exponential time horizon and the (X, S, Q)-setting.

Theorem 1. Suppose that the coefficients i (x,s,q) and o (x,s, q) of the diffusion-type process X given by (1)—(2)
are continuously differentiable functions on [—oco, 0|3 which are of at most linear growth in x and uniformly
bounded in s and q. Let n be a random time with the distribution P(y > t) = e ™, forall t > 0 and
some & > 0 fixed, which is independent of the process X. Then, the joint Laplace transform V. (x,s,q)
from (4) of the associated with X random variables T, N1, St,ny, and Q,ny such that T, < {p from (3),
admits the representation

V(x,s,q;00), fq<s—a<x<q+b<s
14 /5,49 7 j S — S S b
Vi(x,s,q9) = (x,5,q;0) fg<s—a<x<s<g+ o
V(x,s,q;b), ifs—a<q<x<g+b<s
V(-xrsrq;o), l'fS—a<q§x§S<q+b

forany a,b > 0 fixed. Here, the function V(x, s, q; c0) takes the form of (30) with the coefficients C;(s, q; o),
i = 1,2, given by (31)~(32), V(x,s,q; a) takes the form of (33) with C;(s,q;a), i = 1,2, given by (34) and
(40) (or (42) when u(x,s,q) = u(x,s) and o(x,s,q) = o(x,s) aswellasx = 0and b = o0) V(x,s,q; b) takes
the form of (43) with C;(s, q;b), i = 1,2, given by (44) and (50), and V (x,s, q;0) takes the form of (52) with
Ci(s,q;0), i = 1,2, being a unique solution of the two-dimensional system of first-order partial differential
equations in (28)—(29) and satisfying the conditions of (53)—(54) together with the property Cy(r,r;0) — 0 as
rl —oo.

Proof. In order to verify the assertion stated above, it remains to show that the function defined in (64)
coincides with the value function in (6). For this purpose, let us denote by V(x, s, q) the right-hand
side of the expression in (64). Then, taking into account the fact that the function V(x, s,q) is C>! on
E3, by applying the change-of-variable formula from (Peskir 2007, Theorem 3.1) to e MV (X;, S¢, Q;),
we obtain that the expression

e MmAGAD V(Xgagunts Stngunts Quagynt) = VI(%,8,9) + My ag,at

[N A (LY — (a4 AV A e 0505 Qu) (X, Sy, Qu) I(Xyy # Su, Xu # Qu) du
+ fom " A9,V (Ko, Suy Qu) 1(Xu = Qu) dQu

[N =AYV (X, Suy Qu) T(Xu = Su) Sy

(65)
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holds, for the stopping times 7, and {; given by (3), and all t > 0. Here, the process M = (M;)>0
defined by

M= | e M 3LV (X Suy Qu) (X # Suy X # Q) (S, Qu) dBy (66)

is a continuous local martingale under Py s 4. Note that, since the time spent by the process X at the
hyperplanes d2, k = 1,2, is of Lebesgue measure zero, the indicators in the second line of the expression
in (65) and in (66) can be ignored. Moreover, since the processes S and Q change their values only on
the hyperplanes 4 and d3, respectively, the indicators appearing in the third and fourth lines of (65)
can be set equal to one.

By virtue of straightforward calculations and the arguments of the previous section, it is
verified that the function V(x,s,q) solves the ordinary differential equation in (18) and satisfies
the normal-reflection conditions in (21)—(22). Observe that the process (Mq,g,at)i>0 is @ uniformly
integrable martingale, since the derivative and the coefficient in (66) are bounded functions on the
compact set {(x,s,9) € R®|a Vg < x < s Ab}. Then, using the properties of the indicators mentioned
above and taking the expectation with respect to Py s, in (65), by means of the optional sampling
theorem (see, e.g., Liptser and Shiryaev [1977] 2001, chp. III, Theorem 3.6 or Karatzas and Shreve 1991,
chp. I, Theorem 3.22), we get

[efA(Tn/\gb/\t) V(Xeungynts Srungpnts Qrwéw)] (67)

=V(x,5,9) + Exsq[Meagne] = V(x,5,9)

Exrslq

for all (x,s,q) € E3. Therefore, letting  go to infinity and using the instantaneous-stopping conditions
in (19)—(20) as well as the fact that e~ (@%b V(Xeng, Stungy Qung,) = 0on {15 Ay = oo} (Pysg-as.),
we can apply the Lebesgue dominated convergence theorem for (67) to obtain the equalities

Ersg [efA(Ta/\gb)*GSmAéb*KQTa/\éb I(ta < p)] (68)
= Ex,s,q [E_A(Ta/\gh) V(Xr,,/\gbrsra/\gbr QTa/\Cb)] = V(x/ S, Q)

for all (x,s,q) € E3, which directly implies the desired assertion. [
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