

  risks-07-00071




risks-07-00071







Risks 2019, 7(3), 71; doi:10.3390/risks7030071




Article



On the Validation of Claims with Excess Zeros in Liability Insurance: A Comparative Study



Marjan Qazvini





Department of Actuarial Mathematics and Statistics, School of Mathematical and Computer Sciences, Heriot-Watt University Malaysia, 62200 Putrajaya, Wilayah Persekutuan Putrajaya, Malaysia







Received: 27 May 2019 / Accepted: 19 June 2019 / Published: 30 June 2019



Abstract

:

In this study, we consider the problem of zero claims in a liability insurance portfolio and compare the predictability of three models. We use French motor third party liability (MTPL) insurance data, which has been used for a pricing game, and show that how the type of coverage and policyholders’ willingness to subscribe to insurance pricing, based on telematics data, affects their driving behaviour and hence their claims. Using our validation set, we then predict the number of zero claims. Our results show that although a zero-inflated Poisson (ZIP) model performs better than a Poisson regression, it can even be outperformed by logistic regression.
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1. Introduction


There are two main types of machine learning: (i) predictive or supervised learning in which the machine trains data and learns the relationship between inputs and outputs and (ii) descriptive and unsupervised learning in which machine uses the inputs and discovers the outputs (Murphy 2012). Classification and regression are two supervised learning approaches which are well-known in general insurance. One of the objectives of the insurance companies is to charge premiums which is commensurate with the risk characteristics of their policyholders and for this, they classify the policyholders into homogeneous groups according to, say, age, sex, type of policy, subscription to telematics-based insurance pricing (see, Section 3), etc. Regression analysis and its extensions such as generalised linear modelling (GLM) are strong tools in insurance pricing. Unlike regression models, GLM is not constrained to a normal distribution and can be applied to any distribution from an exponential family. For example, a logistic regression model handles binary responses and thus is suitable for a Bernoulli distribution and a Poisson regression model applies to count data and deals with discrete random variables. GLM has long been used in actuarial practice to model claims amounts and claims frequency in the insurance portfolio (Haberman and Renshaw 1996; McCullagh and Nelder 1998).



In this study, we consider motor third party liability (MTPL) insurance. One of the problems in modelling claims frequency in this class of insurance is the number of zero claims and building a model that can capture all these zero claims. Zero claims in MTPL does not necessarily mean that there has been no accident during the term of a policy, rather it means that there has been no reported accident to the insurance company. This particularly happens under a no claim discount (NCD) system as some policyholders, known as bonus hunger, prefer to benefit from a discount by not reporting a claim. Another problem which is related to the previous one is the problem of over-dispersion. In a Poisson regression model, claims are distributed according to a Poisson distribution with equal mean and variance. Therefore, to build an appropriate model we need to test our dataset for the presence of over-dispersion (Peruman-Chaney et al. 2013; Wilson and Einbeck 2018). Binomial regression, negative binomial (NB) regression and zero-inflated Poisson (ZIP) model are techniques that can handle over and under dispersed data with the latter being able to distinguish between structured and unstructured zeros. Lambert (1992) considers a ZIP model where the probability of only possible observation, i.e., 0 and the parameter of a Poisson distribution depend on some covariates. Lambert (1992) applies this technique to model the number of defects in manufacturing. Since then, this model has been applied in different settings including insurance pricing. For example, Lee et al. (2002) use this model to analyse the impact of lifestyle and motivations on car crashes involving young drivers in Australia. Yip and Yau (2005) use ZIP to model claims frequency in car insurance. They compare different types of zero-inflated count models and conclude that a zero-inflated double Poisson regression model is a good fit for their dataset. Boucher et al. (2007) compare zero-inflated, hurdle and compound frequency models and conclude that the bonus rate is an important factor for policyholders to report the claim. In another study, Boucher et al. (2009) consider the problem of bonus hunger and construct a ZIP model to distinguish between the distribution of the number of claims and the number of accidents.



Model fitting and the selection of risk factors can be challenging in some cases. There are some papers that consider these problems. For example, Tang et al. (2014) propose a method to determine the variables in a ZIP model. They combine EM algorithm and adaptive LASSO and find that their technique performs better for the non-inflated part of the ZIP regression. Liu and Pitt (2017) also apply LASSO and ridge regression to address this issue in a bivariate negative binomial regression model. See, also, Cantoni and Auda (2018), Chowdhury et al. (2019) and Chen et al. (2019) among others.



The impact of mileage as a risk factor is considered by Lemaire et al. (2015). They conclude that annual mileage is a powerful predictor of the number of claims at-fault. Tselentis et al. (2017) provide a review of some Usage-based motor insurance (UBI) including Pay-as-you-drive (PAYD), Pay-how-you-drive (PHYD) and Pay-at-the-pump (PATP). PATP is a pricing method that considers fuel consumption as a rating factor but did not get enough attention from researchers. These new pricing methods require telematics data. In recent years, there is much research on telematics data and mileage based (MB) insurance. Boucher et al. (2017) apply generalised additive models and consider both time and mileage in insurance pricing. See the following papers on the relevance of including the mileage as a risk factor (Ayuso et al. 2019; Guillen et al. 2019; Verbelen et al. 2018).



In addition to regression analysis, neural network, decision tree, random forest and boosting algorithms such as XGBoost, etc., are other machine learning techniques that can be applied to model claims frequency and insurance pricing. However, although these models have good predictive power, unlike regression models, it is difficult to interpret their parameters and their computation time is long. Weerasinghe and Wijegunasekara (2016) study neural network, decision tree and multinomial logistic regression models. Their results show that the neural network has the best predictive performance among the three models. However, they state that to understand the relationship between independent and dependent variables, the logistic regression is the best model. Fauzan and Murfi (2018) compare XGBoost, neural network and random forest models and find that in terms of the Gini index, XGBoost is a more accurate algorithm. See, also, Spedicato et al. (2018) and Gao et al. (2019) and the references therein.



In this study, we consider the classical Poisson and logistic regression and compare our findings with a ZIP model. We divide our dataset into training and validation (hold-out) set to predict the number of zero claims. This paper is organised as follows. In the next section, we present models and notation. Section 3 discusses our dataset. In Section 4, we build our models and in Section 5 we test their validation. Finally, Section 6 concludes.




2. Methodology and Notation


Risk classification is an important concept in general insurance pricing. An insurance company tries to determine the insurance premium according to risk characteristics of policyholders such as age, sex, type of policy and car model, etc. Regression analysis is a well-known technique to incorporate such risk (rating) factors. In this section, we review Poisson regression, Logistic regression and ZIP model.



Let    y i  ∈  { 0 , 1 , 2 , ⋯ }    be a dependent or response variable such as number of claims, for   i = 1 , ⋯ , n   that follows a Poisson distribution with parameter   λ i  . Assuming a log link function and that   λ i   is a linear combination of rating factors    β 0  +  β 1   x  i 1   + ⋯ +  β k   x  i k     we have


     E  [  y i  |  x i  ]  =  λ i  = exp  {  β 0  +  β 1   x  i 1   + ⋯ +  β k   x  i k   }  ,       y i  ∼ Pois  (  λ i  )    for   i = 1 , 2 , ⋯ , n .     



(1)







When we consider the average number of claims for each policyholder, we need to specify a unit measure or exposure. We cannot expect two policyholders with the same risk characteristics, but different terms, to be equally risky. Normally, the length of coverage is considered as an exposure. However, in recent years, it is argued that even if policyholders join at different times, some may drive fewer distances than others. Therefore, when such information is available as in telematics data, mileage travelled is considered as a more appropriate exposure (Guillen et al. 2019). In our study, all policyholders are under observation for one year and thus the exposure for each policyholder is 1.



We use logistic regression when    y i  ∈  { 0 , 1 }    is a binary, also called dichotomous variable. In that case,


     E  [  y i  |  x i  ]  =  π i   ( x )  = g   β 0  +  β 1   x  i 1   + ⋯ +  β k   x  i k        








where g is a logistic link function to ensure that   π i   is between 0 and 1. Hence


      π i   ( x )  =   exp   β 0  +  β 1   x  i 1   + ⋯ +  β k   x  i k      1 + exp   β 0  +  β 1   x  i 1   + ⋯ +  β k   x  i k          



(2)




or, more commonly


     log     π i   ( x )    1 −  π i   ( x )     =  β 0  +  β 1   x  i 1   + ⋯ +  β k   x  i k   .     











In this paper, we use logistic regression to answer the question: “What is the probability of a claim   (  y i  = 1 )   and zero claims   (  y i  = 0 )   for a given policyholder with particular risk characteristics?”



When the mean and variance of the underlying population is not equal, the assumption of a Poisson distribution is not suitable and a better candidate is a distribution that can allow for over/under dispersion such as a binomial or NB distribution. However, sometimes we deal with a large number of zeros in our dataset. For example, we see in the next section that many policyholders have zero claims, which does not necessarily mean that they were involved in no accidents, but they are low risk. In such cases, we can apply a ZIP model which is a mixture of a point mass at zero, also called structural zeros, and another claims frequency distribution, such as a Poisson or NB, which can be written as


     Pr  (  y i  = j )  =       π i  +  ( 1 −  π i  )  Pr  (  y i  = 0 )      j = 0        ( 1 −  π i  )  Pr  (  y i  = j )      j = 1 , 2 , ⋯          



(3)




where   π i   is given by Equation (2) and denotes the probability of zeros when zero is the only possible observation. In a ZIP model,   y i   follows a Poisson distribution with parameters being given by Equation (1).



We can easily implement these models in R and the codes are provided in Appendix A (Frees et al. 2014, 2016).




3. Data


We use datasets provided by the French Institute of Actuaries for the 2017 pricing game, which is based on French MTPL insurance. The dataset is available in Package ‘CASdatasets’ by Dutang and Dutang and Charpentier (2019) and to the best of the author’s knowledge, this is the first time it is used in a study. The dataset contains some information about the new pricing strategy of the company. The policyholders were given a choice whether they would like to join a new mileage-based (MB) pricing system or not. We would like to see how policyholders’ perception regarding this new system affects their driving behaviour and hence their number of claims. There are two types of datasets: (i) underwriting and (ii) claims dataset. Underwriting datasets are available for three years, whereas claims dataset is only publicly available for year 0. Therefore, we only use data from year 0. After merging claims and underwriting datasets, we randomly split our data into training and validation sets with   60 %   being in training and   40 %   in the validation set. As some policyholders have more than one car, we assume that each policy covers only one car and therefore consider the number of policies and claims per policy rather than claims per policyholder. We have 100,000 policies (rows in underwriting dataset) and 12,654 policies with claims (rows in claims dataset after consolidation). Table 1 shows the variables we use in our study. In addition to these variables, information about Insee town code, make and model, marketing duration and age of driving license are also provided. However, we do not take into account these variables as, for example, there is a considerable number of policies with 113 years for driving license age which is not reasonable.



In Table 1 policy ID refers to the combination of the vehicle ID and policyholder ID. In this study, we have 100,000 policy ID. Bonus coefficient is the percentage of the full premium that policyholders pay allowing for their claims experience and the allocated discount. There are four types of coverage available: Maxi, Median 2, Median 1 and Mini. The time from the last policy alteration, such as the inclusion of a new driver, is represented by situation duration. Payments can be made annually, semi-annually, quarterly and monthly. As it is usual for the liability insurance, some of the claims amounts are negative1. Therefore, we set all claims amounts of less than 30 equal to zero (Ferreira and Minikel 2012; Frees et al. 2014).



Subscription to mileage-based (MB) policy refers to a new scheme in which one of the main risk factors is the travel distance and policyholders are charged based on their mileage, also known as PAYD scheme. Policy Usage includes WorkPrivate, Retired, Professional and AllTrips. If a policy covers two drivers, age and gender are provided for both drivers. Different features of the car including age, engine power (represented by Din), fuel type, max speed (provided by manufacturing company), type—Tourism and Commercial, value and weight are provided and will be used as rating factors. In this study, we only consider the number of claims as a dependent variable.



We now provide some explanatory analysis based on the training set. The minimum policy term in our dataset is one year, which means all these policies have been under observation for at least one year. Since claims have occurred in Year 0, we consider car years or earned exposure of one year for all policies. The maximum claims number is 6, the oldest policyholder is 103 years old and the oldest car is 66 years old. Table 2 presents mean and standard deviation of our numerical explanatory variables for all policies, policies without claims and policies with at least one claim based on the training set. In order to examine which variables are considerably different in the group of policies with claims and the group of policies without claims and hence are effective on the frequency of claims, we can apply Mann-Whitney test. The Mann-Whitney test is a nonparametric test of the null hypothesis that it is equally likely that a randomly selected value from one sample is less than or greater than a randomly selected value from a second sample. The Mann-Whitney test shows that the difference in the mean for all these variables is statistically significant with p-value   < 0.0001  , except for policy duration and driver age 2 with p-values   0.001232   and   0.004252  , respectively.



Figure 1 shows the distribution of the number of claims. We can observe that zero claims form a large part of our portfolio.



Figure 2 illustrates how policies are distributed across categorical variables. As we can see, most of our policies cover one driver and most of the drivers are men aged between 51 and 70. Our policyholders prefer Maxi and drive tourism cars for work and private purposes. Most of them pay annually and are distributed almost evenly across monthly and biannual payment categories. They have not registered for MB scheme and they use diesel with very few of them using a hybrid car. Next, we see how claims are distributed across categorical variables.



Table 3 presents the distribution of the number of claims across different categories. For the variable policy usage, although professional usage forms a small portion of our portfolio, claims under professional group is more than private and retired groups. However, from Figure 3 professional and retired groups have almost the same median loss and except for all trips we can see little difference among policies in this group. Under this insurance, the most comprehensive protection is provided by maxis and as can be expected this may lead to moral hazard. We can see there are more claims under maxis than under other types of coverage. The order of coverage is maxis, median 2, median 1 and mini and unsurprisingly, the percentage of claims reduces in the same order. Under mini,   97.39 %   of the policies have made zero claims. Perhaps lower coverage is a motivation for policyholders to take more precautious measures. Figure 3 shows the effect of policy coverage on the amounts of claims and as we can see this will be an effective covariate in our model. From Table 3 those policyholders who were willing to subscribe to MB plan are less likely to have an accident. Figure 3 shows that the subscribers are less dispersed than those who have not subscribed. From the regulatory point of view, gender cannot be used as a discriminatory factor. In fact, we can see there is no considerable difference between male’s and female’s number of claims. In Figure 2 the least favourable payment frequency is quarterly payment, but we do not see considerable differences in claim numbers and amounts for different categories of payments. A large number of policies provide coverage only for one driver, but policies with two drivers have a slightly greater chance of making claims. The age of the first driver ranges from 19 to 103. We classify the policyholders in different age groups as 18–30, 31–50, 51–70, 71–85 and 85+. Most of the policyholders are in the range 51–70 and the next largest group is between 31 and 50. Both Table 3 and Figure 3 do not show a significant difference in claims frequency and claim amounts for different age categories and it seems that some categories can be combined together. In fact, in the next section we see that instead of these categories, we use age as a numerical covariate in our models as some categories are not statistically significant.



Most of our policyholders drive gasoline cars and very few of them have hybrid cars.2 According to Table 3, hybrid cars make more claims than gasoline and diesel cars. Most policies cover tourism cars and claims percentage made by this type of cars is more than commercial cars. Our initial analysis suggests that payment frequency and gender are not significant variables and therefore can be removed from our study. In the next section, we will see that they are indeed insignificant and are not included in our final models.




4. Results


In this section, we use statistical software R and package “pscl” to build Poisson, logistic and ZIP models (Zeileis et al. 2008). Our purpose is to estimate the frequency and the probability of claims and compare our results with a ZIP model using Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).



Table 4 presents three Poisson regression models with their estimated coefficients and their corresponding p-values. Model 1 is the full model where we consider all the variables from Section 3. However, according to pricing game document, there is a correlation between vehicle cylinder, weight, value, speed and power and in our dataset, some of the entries for weight, value and cylinder are missing. Therefore, we only incorporate speed and power into our models. We build Model 2 using the stepwise selection of variables that can be implemented in R. In Model 3 we only consider variables which are statistically significant at 0.05.



As we can see, some of the coefficients are statistically significant at   0.0001  . For example, the coefficient associated with the Bonus is significant and positive as expected. The bonus represents the percentage of the full premium and a large percentage shows an adverse claims history of a policyholder. The positive sign indicates that as the percentage of the full premium increases, the mean of claims frequency will increase. The coefficients associated with Coverage are negative for all categories and significant. The coefficient of Median 2 shows that the policyholders with this type of coverage have fewer claims than policyholders with Maxi coverage (the reference level). For example, in Model 1, a policyholder with a Median 2 has fewer claims than a policyholder with a Maxi coverage by   exp ( − 0.1854 ) = 0.83   and a policyholder with a Mini coverage has fewer claims by   exp ( − 1.2611 ) = 0.28  . The coefficient of the car’s power, represented by Din, is positive and significant, which indicates that powerful cars are more likely to be involved in an accident and therefore the mean of claims frequency for the owners of the powerful cars is higher. Unlike Ayuso et al. (2019) and Guillen et al. (2019), we found that Vehicle age has a negative impact on the number of claims. In our study, most of the policyholders are middle-aged and more likely to have old cars. In Section 3 we saw that the mean of the vehicle age is 9.56 for all policies and 7.30 for policies with at least one claim. Our portfolio of middle-aged policyholders also affects the sign of the coefficient associated with Age 1. Our dataset includes drivers as old as 103. Therefore, it seems reasonable to find a positive impact of age on the mean of the number of claims. In Model 1 the coefficients which are not significantly different from zero include Female 1, car usage for Retired and All trips, Hybrid fuel, Type and Speed. The coefficient of Professional usage indicates that Professional usage increases the mean of claims frequency compared to Work and private usage (the reference level) by   exp ( 0.1536 ) = 1.17  . This is in line with Table 3 that policies for professional purposes make more claims. We obtain similar results for gasoline cars as in Table 3. Owners of Gasoline cars have fewer claims than owners of Diesel cars by   exp ( − 0.2621 ) = 0.77  . We can see that the coefficient associated with Driver2 is positive. This seems reasonable as a policy that covers two drivers is more likely to make claims. The coefficient of Age 2 is negative. One interpretation can be that the average age of the second drivers is lower than the average age of the first drivers. However, in Section 3, we saw that driver age 2 is not significantly different for policies with claims and policies without claims. The coefficients associated with Duration and Policy duration are both negative. This implies that more experienced policyholders make fewer claims and also the more stable a policy is, the lower the mean of the number of claims. The coefficient of subscription to MB is negative and therefore this variable reduces the mean of claims frequency. Perhaps those who are willing to be monitored by telematics technology are more confident about their driving behaviour. We saw in the previous section that payment frequency is not a significant variable. As we can see, their corresponding p-values for some categories in models 1 and 2 are not significant at   0.05   and therefore we have removed them from Model 3. However, we decided to keep the variable Usage, although not all categories are significant at 0.05, as we found in the previous section that it is effective on the number of claims. Among our three models, Model 2 has the lowest AIC and Model 3 has the lowest BIC. As we can see, the computation time for Model 2 is longer than the other two models. The reason is that the stepwise algorithm examines different models to find the one with the smallest AIC.



Table 5 presents three logistic models with their coefficients and the corresponding p-values. Similar to Table 4, Model 1 includes all variables, Model 2 is based on the stepwise algorithm and Model 3 only includes significant variables. The interpretation of the coefficients in logistic regression is similar to Poisson regression and as we can see, the signs of the coefficients are the same. The only difference is that in logistic regression we look at the impact of variables on the odds of the occurrence of claims. So, for example, the interpretation of the coefficient associated with Bonus is that, the greater the percentage of the full premium (adverse claims history) is, the higher the odds of the occurrence of the claims for the coefficient associated with professional usage; we can say that the odds of the occurrence of claims for policyholders with professional usage increases by   exp ( 0.1691 ) = 1.18   as opposed to policyholders with work and private usage. For the negative coefficient associated with subscription to MB, we can say that the odds of the occurrence of claims fall for a policyholder who joins this scheme. Other variables can be similarly interpreted. Model 2 is built by examining different models and finding the one with the lowest AIC. All variables in this model are the same as the variables in stepwise Poisson regression except for duration which is not included in stepwise logistic regression. For Model 3 we again remove all variables with a p-value greater than 0.05. In addition, we do not include payment frequency as this has been proved to be insignificant in Section 3. As we can see, Model 2 has the smallest AIC and Model 3 has the smallest BIC. Further, the computation time for the stepwise algorithm is longer than the stepwise Poisson regression model.



When building a model, it is important to consider the underlying assumptions. For example, to fit a ZIP model to our data, we first need to test for the presence of over-dispersion. One approach is to fit a quasi-Poisson and to determine the dispersion parameter, i.e.,  θ  in Var  ( y ) = θ   E  [ y ]  . In our case, using only significant variables from Table 4 and Table 5, the dispersion parameter is   1.1  . Alternatively, we can fit NB regression and compare our new model with Poisson regression. In our case, AIC and BIC for NB regression are 46,184 and 46,346, respectively, which are lower than AIC and BIC for the Poisson regression. Now, since we have the problem of over-dispersion and excess zeros, we can fit a ZIP model to our data. Table 6 shows the estimated coefficients and their p-values for the Poisson (count) part and zero-inflated part of three ZIP models. Model 1 is the full model where we consider the variables of the full model in Table 4 for the count part and the variables of the full model in Table 5 for the zero-inflated part. As we can see, most variables are not significantly different from zero. If we consider the significant level of 0.1, the coefficient associated with Age 1 is positive as in Table 4 and statistically significant in the count part. In addition, the coefficient associated with Age 2 is positive and significant in the zero-inflated part, but not in the count part. From Section 3, we know that the second divers are younger than the first drivers. Therefore, we can claim that in this group older drivers are more likely to have zero claims. The coefficient of situation duration in the count part is negative and significant as in Table 4 with the same interpretation. The coefficients associated with coverage are significant at 0.01 in the count part with the identical signs as in Table 4, but they are not significant in the zero-inflated part. The interpretation is that the mean frequency of claims for policyholders covered under, for example, Mini coverage is less than the policyholders covered under Maxi coverage by   exp ( − 1.0487 ) = 0.35  .



The coefficient of fuel (gasoline) is positive and significant which indicates that the odds of zero claims for drivers of gasoline cars increases by   exp ( 0.5066 ) = 1.66   as opposed to drivers of diesel cars. Further, in the zero-inflated part, the coefficient of Driver2? is negative and significant. Therefore, a policy with two drivers is less likely to have zero claims, in other words, a policy with the 2nd driver is more likely to be involved in an accident and to make a claim. The associated coefficient of vehicle age is positive and significantly different from zero in the zero-inflated part, which is in line with our findings for Poisson and logistic models that it is more likely for the owners of older cars to have zero claims. All other variables including subscription to MB are not significantly different from zero. The variables of Model 2 in the count and zero-inflated part come from the variables of stepwise models in Table 4 and Table 5, respectively. The coefficients have the same sign and therefore similar interpretation as in Model 1. Again the coefficient of subscription to MB is not significantly different from zero. Model 3 can be built using the variables of the models that contain only significant variables in Table 4 and Table 5. Coverage in the count part and Age 2, Driver2?, fuel and vehicle age in the zero-inflated part are all significantly different from zero. In Table 6 the signs of some of the coefficients do not conform to Table 4 and Table 5. For example, subscription to MB is positive both in the count part and in the zero-inflated part. Since such coefficients are not statistically significant, we can conclude that they are not significantly different from zero. Comparing AIC and BIC of these three models, we can see that the smallest AIC can be obtained by Model 2 where the variables come from stepwise models in Table 4 and Table 5 and the smallest BIC by Model 3. In addition, AIC has considerably improved for ZIP models compared to Poisson models in Table 4. In the next section, we show that the prediction of zero claims by ZIP is considerably better than Poisson regression.




5. Validation


In this section, we use our validation set to compare the predictability of the models discussed in Section 4. Table 7 presents the predicted number of zero and non-zero claims by our models in Section 4. In this table, individual 1 refers to an 85-year-old male policyholder with a maxi policy that pays biannually with the bonus (percentage of the full premium) of 0.5. He holds this policy for retired usage, for 29 years and has not signed to MB scheme. The policy was modified nine years ago. He owns a 10-year-old tourism car with gasoline, the din of 98 and max speed of 182. In year 0, this policyholder has not made any claim and the probability of zero claims predicted by Poisson regression according to full model is   exp ( − 0.1036 )   where 0.1036 is the estimated parameter  λ  and the probability of zero claims predicted by logistic regression is   1 − 0.0903   where   0.0903   is the estimated   π =   Pr  ( y = 1 )  . Prediction of zero claims by ZIP is 0.9104. Individual 2 is a male policyholder with a maxi policy. This policy covers two drivers aged 54 and 56 and has been held for six years and been modified two years ago with a bonus of   0.5   and monthly premium payment. The policyholder owns a two-year old tourism car with diesel for work and private purposes with the din of 75 and max speed of 163. The estimated parameter by Poisson regression is   λ = 0.1794   and by logistic regression is   π = 0.1525  . As we can see, the count part of ZIP for the two policyholders is very close to the estimated value of Poisson regression. If we add the probability of zero claims in all these models, we can approximate the number of zero claims. Results show that ZIP models considerably outperform Poisson regression and logistic regression performs better than ZIP models in predicting zero claims. Further, we can see that there is a slight difference between predictions made by full models, stepwise models and the models with only significant variables.




6. Conclusions


We have divided our dataset into training and validation sets. Using our training set, we have developed three models and compared our models according to their AIC and BIC values. We found that type of coverage, vehicle age and fuel are statistically significant in most of our models. We then validated our models and showed that a ZIP model can predict the frequency of claims better than a Poisson regression. Further, we have shown that if we are just concerned about the number of zero and non-zero claims, logistic regression can even outperform a ZIP model. In fact, logistic regression is a one layer neural network and there is a scope to extend our study to a more generalised form of logistic regression for future research. We saw that the policyholders who were willing to be monitored by telematics devices are less likely to make a claim. A thorough study of the policyholders’ behaviour before and after being monitored by telematics devices can be another area of future research. Given the current concern regarding climate change and sustainability, the possibility of the inclusion of fuel consumption into a pricing model may be considered in the future (Tselentis et al. 2017).
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Appendix A

# Loading the prepared data
 Data <- read.csv("Year0.csv", header = TRUE)
# Creating training and validation datasets
set.seed(123567)
random <- runif(dim(Data)[1])
# Training set is our data <<0.6
train <- random < 0.6
DataTrain <- cbind(Data, random, train)
# Validation set is everything not included in training set
valid <- !(train) ; DataValid <- cbind(Data, random, valid)
# Exporting our sets
write.csv(DataTrain[train == TRUE,], "DataTrain.csv")
write.csv(DataValid[valid == TRUE,], "DataValid.csv")
# Codes to produce Table~\ref{tab.2}:
DataTrain <- read.csv("DataTrain.csv", header = TRUE)
# Remove negative claim amounts
DataTrain$claim_amount[DataTrain$claim_amount < 30] <- 0
# Adjusting claim numbers
DataTrain$claim_nb <- DataTrain$claim_nb ∗ (DataTrain$claim_amount > 0)
# Removing zeros
DataTrain$drv_age2[DataTrain$drv_age2==0]         <- NA
DataTrain$vh_value[DataTrain$vh_value==0]         <- NA
DataTrain$vh_cyl[DataTrain$vh_cyl==0]             <- NA
DataTrain$vh_weight[DataTrain$vh_weight==0]       <- NA
DataTrain$drv_drv2[DataTrain$drv_drv2==0]         <- NA
# Separating the training set into two sets of policies with and without claims
NClaim <- subset(DataTrain, DataTrain$claim_nb == 0)
Claim  <- subset(DataTrain, DataTrain$claim_nb > 0)
# Calculations for all policies
Mydata <- data.frame(cbind(DataTrain$claim_nb, DataTrain$pol_duration,
        DataTrain$pol_sit_duration,  DataTrain$drv_age1, DataTrain$drv_age2,
        DataTrain$vh_value, DataTrain$vh_age, DataTrain$vh_cyl,
        DataTrain$vh_speed, DataTrain$vh_weight, DataTrain$vh_din))
Mean <- sapply(Mydata, mean, na.rm = TRUE)
SD   <- sapply(Mydata, sd,   na.rm = TRUE)
# Calculations for policies without claims
NMydata <- data.frame(cbind(NClaim$claim_nb, NClaim$pol_duration,
           NClaim$pol_sit_duration, NClaim$drv_age1, NClaim$drv_age2,
           NClaim$vh_value, NClaim$vh_age, NClaim$vh_cyl, NClaim$vh_speed,
           NClaim$vh_weight,NClaim$vh_din))
NMean <- with(NClaim, sapply(NMydata, mean, na.rm = TRUE))
NSD   <- with(NClaim, sapply(NMydata, sd, na.rm = TRUE))
# Calculations for policies with claims
CMydata <- data.frame(cbind(Claim$claim_nb, Claim$pol_duration,
          Claim$pol_sit_duration, Claim$drv_age1, Claim$drv_age2,
          Claim$vh_value, Claim$vh_age, Claim$vh_cyl, Claim$vh_speed,
          Claim$vh_weight, Claim$vh_din))
CMean <- with(Claim, sapply(CMydata, mean, na.rm = TRUE))
CSD   <- with(Claim, sapply(CMydata, sd, na.rm = TRUE))
# Modelling
DataTrain <- read.csv("DataTrain.csv", header = TRUE)
DataTrain$claim_amount[DataTrain$claim_amount < 30] <- 0
DataTrain$claim_nb <- DataTrain$claim_nb ∗ (DataTrain$claim_amount > 0)
# Re-leveling categorical variables:
DataTrain$drv_sex1_r     <- relevel(factor(DataTrain$drv_sex1), ref = "M")
DataTrain$pol_coverage_r <- relevel(factor(DataTrain$pol_coverage), ref = "Maxi")
DataTrain$pol_pay_freq_r <- relevel(factor(DataTrain$pol_pay_freq), ref = "Yearly")
DataTrain$pol_payd_r     <- relevel(factor(DataTrain$pol_payd), ref = "No")
DataTrain$pol_usage_r    <- relevel(factor(DataTrain$pol_usage), ref = "WorkPrivate")
DataTrain$vh_fuel_r      <- relevel(factor(DataTrain$vh_fuel), ref = "Diesel")
DataTrain$vh_type_r      <- relevel(factor(DataTrain$vh_type), ref = "Tourism")
DataTrain$drv_drv2_r     <- relevel(factor(DataTrain$drv_drv2), ref = "No")# Poisson regression
Model.poi <- glm(claim_nb ~ drv_age1 + drv_age2 + drv_sex1_r + drv_drv2_r + pol_sit_duration
              + pol_bonus + pol_coverage_r + pol_pay_freq_r + pol_payd_r + pol_usage_r
              + pol_duration + vh_fuel_r + vh_type_r + vh_din + vh_age + vh_speed,
              data = DataTrain,
              family = poisson(link = "log"), offset = log(Exposures), na.action = na.omit)
# Logistic regression
# y=1 represents claim and y=0 no claim
DataTrain$y[DataTrain$claim_nb==0]  <- 0
DataTrain$y[DataTrain$claim_nb > 0] <- 1
# Model:
Model.log <- glm(y ~ drv_age1 + drv_age2 + drv_sex1_r + drv_drv2_r + pol_sit_duration
              + pol_bonus + pol_coverage_r + pol_pay_freq_r + pol_payd_r + pol_usage_r
              + pol_duration + vh_fuel_r + vh_type_r + vh_din + vh_age + vh_speed,
              data = DataTrain,
              family = binomial(link = "logit"), na.action = na.omit)# ZIP regression
library("pscl")
Model.zeropoi <- zeroinfl(claim_nb ~ drv_age1 + drv_age2 + drv_sex1_r + drv_drv2_r
              + pol_sit_duration + pol_bonus + pol_coverage_r + pol_pay_freq_r
              + pol_payd_r + pol_usage_r
              + pol_duration + vh_fuel_r + vh_type_r + vh_din + vh_age + vh_speed,
              data = DataTrain, na.action = na.omit,
               dist = "poisson", link = "logit")
# Validation:
# loading validation set
DataValid <- read.csv("DataValid.csv", header = TRUE)
DataValid$claim_amount[DataValid$claim_amount < 30] <- 0
DataValid$claim_nb <- DataValid$claim_nb ∗ (DataValid$claim_amount > 0)
#
DataValid$pol_coverage_r <- DataValid$pol_coverage
DataValid$vh_fuel_r      <- DataValid$vh_fuel
DataValid$vh_type_r      <- DataValid$vh_type
DataValid$pol_pay_freq_r <- DataValid$pol_pay_freq
DataValid$pol_payd_r     <- DataValid$pol_payd
DataValid$drv_drv2_r     <- DataValid$drv_drv2
DataValid$pol_usage_r    <- DataValid$pol_usage
DataValid$drv_sex1_r  <- DataValid$drv_sex1
DataValid$y[DataValid$claim_nb==0]  <- 0
DataValid$y[DataValid$claim_nb > 0] <- 1
# Prediction:
predict.poi <- predict(Model.poi, DataValid, type = "response")
#
predict.log <- predict(Model.log, DataValid, type = "response")
#
predict.zeropoi <- cbind( DataValid, Mean = predict(Model.zeropoi,
                 DataValid, type = "response"),Probab = predict(Model.zeropoi,
                 DataValid, type = "prob"))
# Test for dispersion
library("AER")
dispersiontest(Model.poi,trafo=1)
Model.neg <- MASS::glm.nb(claim_nb ~ drv_age1 + drv_age2 + drv_drv2_r + pol_sit_duration
              + pol_bonus + pol_coverage_r + pol_payd_r + pol_usage_r
              + vh_fuel_r + vh_din + vh_age , data = DataTrain,
              link = "log", na.action = na.omit)
odTest(Model.neg)
# Codes to predict zero claims:
sum(exp(-predict(Model.poi, DataValid, type = "response")))
sum(1-predict(Model.log, DataValid, type = "response"))
sum(predict(Model.zeropoi, DataValid, type = "prob")[,1])
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	1
	
This happens due to subrogation rights of the insurer.





	2
	
According to the game document, hybrid cars were not popular at the time of collecting this dataset.
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Figure 1. Distribution of claims frequency. 
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Figure 2. Distribution of policies according to categorical variables. 
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Figure 3. Distribution of log of claims amounts according to categorical variables. 
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Table 1. Variables in our datasets.
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	Control
	Policy
	Driver (1 and 2)
	Vehicle
	Response





	policy ID
	bonus coefficient
	driver 2?
	age
	number of claims



	
	type of coverage
	age
	cylinder
	



	
	duration
	gender
	din power
	



	
	situation duration
	
	fuel type
	



	
	payment frequency
	
	max speed
	



	
	subscription to MB
	
	type
	



	
	usage
	
	value
	



	
	
	
	weight
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Table 2. The mean and standard deviation of numerical variables in the training set.
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Variables

	
All Policies

	
Policies without Claims

	
Policies with Claims




	
Mean

	
SD

	
Mean

	
SD

	
Mean

	
SD






	
Policy duration

	
   11.09   

	
   8.56   

	
   11.13   

	
   8.57   

	
   10.78   

	
   8.56   




	
Policy duration since the last change

	
   2.74   

	
   2.36   

	
   2.78   

	
   2.41   

	
   2.40   

	
   2.36   




	
Driver age 1

	
   54.65   

	
   14.86   

	
   54.75   

	
   14.86   

	
   53.84   

	
   14.86   




	
Driver age 2

	
   46.93   

	
   16.21   

	
   47.06   

	
   16.19   

	
   46.04   

	
   16.21   




	
Vehicle value

	
18,086

	
8677.92

	
17,858

	
8618.47

	
19,894

	
8677.92




	
Vehicle age

	
   9.56   

	
   7.03   

	
   9.84   

	
   7.19   

	
   7.30   

	
   7.03   




	
Engine cylinder

	
1645

	
   460.59   

	
1,639

	
   464.05   

	
1,696

	
   460.59   




	
Speed

	
   170.71   

	
   23.48   

	
   170.13   

	
   23.69   

	
   175.31   

	
   23.48   




	
Weight

	
   1171.59   

	
   288.39   

	
1164.36

	
   288.68   

	
   1228.89   

	
   288.39   




	
Motor power (din)

	
   91.43   

	
   34.41   

	
   90.58   

	
   34.35   

	
   98.23   

	
   34.41   
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Table 3. Frequency of claims per categorical variables in the training set.






Table 3. Frequency of claims per categorical variables in the training set.





	
Variables

	
Categories

	
Claim Frequency

	
Total




	
0

	
1

	
2

	
3

	
4

	
5

	
6






	
Policy usage

	
WorkPrivate

	
35,248

	
   3,877   

	
450

	
49

	
7

	
0

	
1

	
39,632




	

	

	
   88.94 %   

	
   9.78 %   

	
   1.14 %   

	

	

	

	

	




	

	
Retired

	
14,193

	
   1,462   

	
191

	
20

	
3

	
0

	
0

	
15,869




	

	

	
   89.44 %   

	
   9.21 %   

	
   1.20 %   

	

	

	

	

	




	

	
Professional

	
   3,729   

	
544

	
76

	
10

	
0

	
0

	
0

	
   4,359   




	

	

	
   85.55 %   

	
   12.48 %   

	
   1.74 %   

	

	

	

	

	




	

	
All trips

	
41

	
10

	
1

	
0

	
0

	
0

	
0

	
52




	

	

	
   78.85 %   

	
   19.23 %   

	
   1.92 %   

	

	

	

	

	




	
Policy coverage

	
Maxis

	
33,459

	
4,489

	
600

	
70

	
9

	
0

	
1

	
38,628




	

	

	
   86.62 %   

	
   11.62 %   

	
   1.55 %   

	

	

	

	

	




	

	
Median 2

	
9,628

	
862

	
82

	
7

	
1

	
0

	
0

	
10,580




	

	

	
   91.00 %   

	
   8.15 %   

	
   0.78 %   

	

	

	

	

	




	

	
Median 1

	
   5,122   

	
412

	
32

	
2

	
0

	
0

	
0

	
   5,568   




	

	

	
   91.99 %   

	
   7.04 %   

	
   0.57 %   

	

	

	

	

	




	

	
Mini

	
   5,002   

	
130

	
4

	
0

	
0

	
0

	
0

	
   5,136   




	

	

	
   97.39 %   

	
   2.53 %   

	
   0.08 %   

	

	

	

	

	




	
Subscription to MB

	
No

	
50,946

	
   5,714   

	
693

	
76

	
10

	
0

	
1

	
57,440




	

	

	
   88.69 %   

	
   9.95 %   

	
   1.21 %   

	

	

	

	

	




	

	
Yes

	
   2,265   

	
179

	
25

	
3

	
0

	
0

	
0

	
   2,472   




	

	

	
   91.63 %   

	
   7.24 %   

	
   1.01 %   

	

	

	

	

	




	
Payment

	
Yearly

	
20,094

	
   2,106   

	
263

	
25

	
3

	
0

	
1

	
22,492




	

	

	
   89.34 %   

	
   9.36 %   

	
   1.17 %   

	

	

	

	

	




	

	
Biannual

	
15,930

	
1,746

	
199

	
29

	
3

	
0

	
0

	
17,907




	

	

	
   88.96 %   

	
   9.75 %   

	
   1.11 %   

	

	

	

	

	




	

	
Monthly

	
15,880

	
   1,875   

	
234

	
23

	
4

	
0

	
0

	
18,016




	

	

	
   88.14 %   

	
   10.41 %   

	
   1.30 %   

	

	

	

	

	




	

	
Quarterly

	
   1,307   

	
166

	
22

	
2

	
0

	
0

	
0

	
   1,497   




	

	

	
   87.31 %   

	
   11.09 %   

	
   1.47 %   

	

	

	

	

	




	
Policy with 2 drivers

	
No

	
35,675

	
   3,814   

	
457

	
47

	
6

	
0

	
0

	
39,999




	

	

	
   89.19 %   

	
   9.54 %   

	
   1.14 %   

	

	

	

	

	




	

	
Yes

	
17,536

	
2,079

	
261

	
32

	
4

	
0

	
1

	
19,913




	

	

	
   88.06 %   

	
   10.44 %   

	
   1.31 %   

	

	

	

	

	




	
Gender 1

	
Male

	
32,118

	
   3,501   

	
433

	
52

	
4

	
0

	
0

	
36,108




	

	

	
   88.95 %   

	
   9.70 %   

	
   1.20 %   

	

	

	

	

	




	

	
Female

	
21,093

	
   2,392   

	
285

	
27

	
6

	
0

	
1

	
23,804




	

	

	
   88.61 %   

	
   10.05 %   

	
   1.20 %   

	

	

	

	

	




	
Age 1

	
18–30

	
   2,471   

	
299

	
29

	
4

	
0

	
0

	
1

	
   2,804   




	

	

	
   88.12 %   

	
   10.66 %   

	
   1.03 %   

	

	

	

	

	




	

	
31–50

	
18,961

	
   2,228   

	
256

	
24

	
4

	
0

	
0

	
21,473




	

	

	
   88.30 %   

	
   10.38 %   

	
   1.19 %   

	

	

	

	

	




	

	
51–70

	
22,978

	
   2,479   

	
322

	
40

	
3

	
0

	
0

	
25,822




	

	

	
   89.99 %   

	
   9.60 %   

	
   1.25 %   

	

	

	

	

	




	

	
71–85

	
8,154

	
822

	
105

	
9

	
3

	
0

	
0

	
   9,093   




	

	

	
   89.67 %   

	
   9.04 %   

	
   1.15 %   

	

	

	

	

	




	

	
   85 +   

	
647

	
65

	
6

	
2

	
0

	
0

	
0

	
720




	

	

	
   89.86 %   

	
   9.03 %   

	
   0.83 %   

	

	

	

	

	




	
Vehicle fuel

	
Diesel

	
28,605

	
   3,783   

	
475

	
54

	
7

	
0

	
1

	
32,925




	

	

	
   86.88 %   

	
   11.49 %   

	
   1.44 %   

	

	

	

	

	




	

	
Gasoline

	
24,565

	
   2,104   

	
241

	
25

	
3

	
0

	
0

	
26,938




	

	

	
   91.19 %   

	
   7.81 %   

	
   0.89 %   

	

	

	

	

	




	

	
Hybrid

	
41

	
6

	
2

	
0

	
0

	
0

	
0

	
49




	

	

	
   83.67 %   

	
   12.24 %   

	
   4.08 %   

	

	

	

	

	




	
Vehicle type

	
Tourism

	
47,891

	
   5,387   

	
668

	
73

	
10

	
0

	
1

	
54,030




	

	

	
   88.64 %   

	
   9.97 %   

	
   1.24 %   

	

	

	

	

	




	

	
Commercial

	
   5,320   

	
506

	
50

	
6

	
0

	
0

	
0

	
   5,882   




	

	

	
   90.45 %   

	
   8.60 %   

	
   0.85 %   

	

	

	

	

	




	
Total

	

	
53,211

	
5,893

	
718

	
79

	
10

	
0

	
1

	
59,912
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Table 4. Regression coefficient of Poisson models.
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Coefficients

	
Model 1: All Variables

	
Model 2: Stepwise Selection

	
Model 3: Only Significant




	
Estimate

	
p-Value

	
Estimate

	
p-Value

	
Estimate

	
p-Value






	
Intercept

	
   − 2.6883   

	
<  0.0001  

	
   − 2.5645   

	
<  0.0001  

	
   − 2.4729   

	
<  0.0001  




	
Age 1

	
   0.0048   

	
   0.0001   

	
   0.0048   

	
   0.0002   

	
   0.0036   

	
   0.0026   




	
Age 2

	
   − 0.0034   

	
   0.0084   

	
   − 0.0034   

	
   0.0087   

	
   − 0.0033   

	
   0.0111   




	
Female 1

	
   0.0380   

	
   0.1251   

	
   0.0374   

	
   0.1285   




	
Driver2?

	
   0.1790   

	
   0.0057   

	
   0.1781   

	
   0.0060   

	
   0.1717   

	
   0.0080   




	
Situation duration

	
   − 0.0185   

	
   0.0078   

	
   − 0.0185   

	
   0.0080   

	
   − 0.0220   

	
   0.0013   




	
Bonus

	
   0.8677   

	
<  0.0001  

	
   0.8683   

	
<  0.0001  

	
   0.9125   

	
<  0.0001  




	
Coverage(Med2)

	
   − 0.1854   

	
<  0.0001  

	
   − 0.1847   

	
<  0.0001  

	
   − 0.1877   

	
<  0.0001  




	
Coverage(Med1)

	
   − 0.2282   

	
<  0.0001  

	
   − 0.2280   

	
<  0.0001  

	
   − 0.2306   

	
<  0.0001  




	
Coverage(Mini)

	
   − 1.2611   

	
<  0.0001  

	
   − 1.2631   

	
<  0.0001  

	
   − 1.2723   

	
<  0.0001  




	
Payment(biannual)

	
   0.0485   

	
   0.0919   

	
   0.0487   

	
   0.0908   




	
Payment(quarterly)

	
   0.1676   

	
   0.0184   

	
   0.1681   

	
   0.0181   




	
Payment(monthly)

	
   0.0911   

	
   0.0018   

	
   0.0912   

	
   0.0018   




	
Subscription to MB

	
   − 0.1586   

	
   0.0198   

	
   − 0.1587   

	
   0.0197   

	
   − 0.1675   

	
   0.01370   




	
Usage(retired)

	
   − 0.0304   

	
   0.4331   

	
   − 0.0297   

	
   0.4433   

	
   − 0.0315   

	
   0.4146   




	
Usage(professional)

	
   0.1536   

	
   0.0003   

	
   0.1535   

	
   0.0002   

	
   0.1481   

	
   0.0002   




	
Usage(all trips)

	
   0.3451   

	
   0.2328   

	
   0.3456   

	
   0.2321   

	
   0.3448   

	
   0.2332   




	
Duration

	
   − 0.0025   

	
   0.0969   

	
   − 0.0025   

	
   0.0978   




	
Fuel(gasoline)

	
   − 0.2621   

	
<  0.0001  

	
   − 0.2630   

	
<  0.0001  

	
   − 0.2607   

	
<  0.0001  




	
Fuel(hybrid)

	
   0.1265   

	
   0.6896   

	
   0.1225   

	
   0.6988   

	
   0.1196   

	
   0.70588   




	
Type(commercial)

	
   0.0318   

	
   0.5466   




	
Din(power)

	
   0.0022   

	
   0.0004   

	
   0.0026   

	
<  0.0001  

	
   0.0024   

	
<  0.0001  




	
Vehicle age

	
   − 0.0316   

	
<  0.0001  

	
   − 0.0318   

	
<  0.0001  

	
   − 0.0332   

	
<  0.0001  




	
Vehicle speed

	
   0.0009   

	
   0.3967   

	

	

	

	




	
Log-likelihood

	
−23,207

	
−23,207

	
−23,216




	
Degrees of freedom

	
24

	
22

	
17




	
AIC

	
46,462

	
46,458

	
46,466




	
BIC

	
46,678

	
46,656

	
46,619




	
Running time (s)

	
   0.761   

	
   7.336   

	
   0.601   
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Table 5. Regression coefficients of logistic models.






Table 5. Regression coefficients of logistic models.





	
Coefficients

	
Model 1: All variables

	
Model 2: Stepwise Selection

	
Model 3: Only Significant




	
Estimate

	
p-Value

	
Estimate

	
p-Value

	
Estimate

	
p-Value






	
Intercept

	
   − 2.6571   

	
<  0.0001  

	
   − 2.5321   

	
<  0.0001  

	
   − 2.4255   

	
<  0.0001  




	
Age 1

	
   0.0043   

	
   0.0036   

	
   0.0038   

	
   0.0066   

	
   0.0032   

	
   0.0226   




	
Age 2

	
   − 0.0048   

	
   0.0011   

	
   − 0.0047   

	
   0.0013   

	
   − 0.0047   

	
   0.0013   




	
Female 1

	
   0.0441   

	
   0.1198   

	
   0.0428   

	
   0.1275   

	

	




	
Driver2?

	
   0.2410   

	
   0.0012   

	
   0.2363   

	
   0.0014   

	
   0.2340   

	
   0.0016   




	
Situation duration

	
   − 0.0234   

	
   0.0027   

	
   − 0.0248   

	
   0.0013   

	
   − 0.0265   

	
   0.0006   




	
Bonus

	
   0.9017   

	
<  0.0001  

	
   0.9151   

	
<  0.0001  

	
   0.9447   

	
<  0.0001  




	
Coverage(Med2)

	
   − 0.1814   

	
<  0.0001  

	
   − 0.1786   

	
<  0.0001  

	
   − 0.1832   

	
<  0.0001  




	
Coverage(Med1)

	
   − 0.2111   

	
   0.0005   

	
   − 0.2061   

	
   0.0007   

	
   − 0.2132   

	
   0.0004   




	
Coverage(Mini)

	
   − 1.2481   

	
<  0.0001  

	
   − 1.2438   

	
<  0.0001  

	
   − 1.2589   

	
<  0.0001  




	
Payment(biannual)

	
   0.0522   

	
   0.1121   

	
   0.0490   

	
   0.1335   

	

	




	
Payment(quarterly)

	
   0.1852   

	
   0.0240   

	
   0.1883   

	
   0.0217   

	

	




	
Payment(monthly)

	
   0.0939   

	
   0.0049   

	
   0.0936   

	
   0.0051   

	

	




	
Subscription to MB

	
   − 0.2014   

	
   0.0088   

	
   − 0.2038   

	
   0.0080   

	
   − 0.2098   

	
   0.0063   




	
Usage(retired)

	
   − 0.0180   

	
   0.6847   

	
   − 0.0149   

	
   0.7364   

	
   − 0.0203   

	
   0.6455   




	
Usage(professional)

	
   0.1691   

	
   0.0007   

	
   0.1733   

	
   0.0002   

	
   0.1664   

	
   0.0004   




	
Usage(all trips)

	
   0.4841   

	
   0.1577   

	
   0.4856   

	
   0.1563   

	
   0.4835   

	
   0.1577   




	
Duration

	
   − 0.0019   

	
   0.2708   

	

	

	

	




	
Fuel(gasoline)

	
   − 0.2885   

	
<  0.0001  

	
   − 0.2914   

	
<  0.0001  

	
   − 0.2875   

	
<  0.0001  




	
Fuel(hybrid)

	
   0.0707   

	
   0.8560   

	
   0.0691   

	
   0.8592   

	
   0.0598   

	
   0.8778   




	
Type(commercial)

	
   0.0462   

	
   0.4402   

	

	

	

	




	
Din(power)

	
   0.0022   

	
   0.0019   

	
   0.0027   

	
<  0.0001  

	
   0.0025   

	
<  0.0001  




	
Vehicle age

	
   − 0.0336   

	
<  0.0001  

	
   − 0.0336   

	
<  0.0001  

	
   − 0.0332   

	
<  0.0001  




	
Vehicle speed

	
   0.0010   

	
   0.4404   

	

	

	

	




	
Log-likelihood

	
−20,292

	
−20,293

	
−20,299




	
Degrees of freedom

	
24

	
21

	
17




	
AIC

	
40,632

	
40,628

	
40,633




	
BIC

	
40,848

	
40,817

	
40,785




	
Running time (s)

	
   0.634   

	
   31.611   

	
   0.431   
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Table 6. Regression coefficients of zero-inflated Poisson (ZIP) models.






Table 6. Regression coefficients of zero-inflated Poisson (ZIP) models.





	
Coefficients

	
Model 1 *

	

	
Model 2 *

	

	
Model 3 *

	




	
Estimate

	
p-Value

	

	
Estimate

	
p-Value

	

	
Estimate

	
p-Value

	






	
Poisson (count) part

	

	

	

	

	

	

	

	

	




	
Intercept

	
−2.2750

	
<  0.0001  

	

	
−2.1404

	
<  0.0001  

	

	
−2.0736

	
<  0.0001  

	




	
Age 1

	
0.0066

	
0.0513

	

	
0.0063

	
0.0542

	

	
0.0046

	
0.1347

	




	
Age 2

	
0.0012

	
0.6647

	

	
0.0013

	
0.6290

	

	
0.0019

	
0.4998

	




	
Female 1

	
−0.0448

	
0.4746

	

	
−0.0479

	
0.4324

	

	

	

	




	
Driver2?

	
−0.0473

	
0.7366

	

	
−0.0536

	
0.6972

	

	
−0.0809

	
0.5584

	




	
Situation duration

	
−0.0009

	
0.0194

	

	
−0.0017

	
0.9282

	

	
−0.0011

	
0.9558

	




	
Bonus

	
0.5787

	
0.2021

	

	
0.5953

	
0.2068

	

	
0.5433

	
0.2026

	




	
Coverage(Med2)

	
−0.3670

	
0.0006

	

	
−0.3734

	
0.0004

	

	
−0.3646

	
0.0006

	




	
Coverage(Med1)

	
−0.4294

	
0.0022

	

	
−0.4231

	
0.0022

	

	
−0.4269

	
0.0024

	




	
Coverage(Mini)

	
−1.0487

	
0.0017

	

	
−1.0599

	
0.0016

	

	
−1.1031

	
0.0007

	




	
Payment(biannual)

	
−0.0691

	
0.3318

	

	
−0.0668

	
0.3472

	

	

	

	




	
Payment(quarterly)

	
-0.0569

	
0.7525

	

	
−0.0452

	
0.8002

	

	

	

	




	
Payment(monthly)

	
0.0091

	
0.8961

	

	
0.0137

	
0.8427

	

	

	

	




	
Subscription to MB

	
0.0596

	
0.7580

	

	
0.0462

	
0.8099

	

	
0.0126

	
0.9486

	




	
Usage(retired)

	
−0.0623

	
0.5523

	

	
−0.0623

	
0.5455

	

	
−0.0538

	
0.6006

	




	
Usage(professional)

	
0.0723

	
0.5491

	

	
0.0710

	
0.5063

	

	
0.0952

	
0.3725

	




	
Usage(all trips)

	
0.2543

	
0.6523

	

	
0.2375

	
0.6765

	

	
−0.0332

	
0.9544

	




	
Duration

	
−0.0043

	
0.2948

	

	
−0.0025

	
0.1145

	

	

	

	




	
Fuel(gasoline)

	
−0.0346

	
0.6549

	

	
−0.0387

	
0.6228

	

	
−0.0759

	
0.3854

	




	
Fuel(hybrid)

	
0.6976

	
0.2553

	

	
0.7050

	
0.2500

	

	
0.6366

	
0.3302

	




	
Type(commercial)

	
0.0284

	
0.8457

	

	

	

	

	

	

	




	
Din(power)

	
0.0023

	
0.3055

	

	
0.0026

	
0.1207

	

	
0.0024

	
0.3063

	




	
Vehicle age

	
0.0024

	
0.7925

	

	
0.0032

	
0.1207

	

	
0.0063

	
0.4799

	




	
Vehicle speed

	
0.0010

	
0.7557

	

	

	

	

	

	

	




	
Zero-inflation part

	

	

	

	

	

	

	

	

	




	
Intercept

	
−0.5544

	
0.6449

	

	
−0.4634

	
0.6883

	

	
−0.4819

	
0.6826

	




	
Age 1

	
0.0040

	
0.5922

	

	
0.0032

	
0.6558

	

	
0.0020

	
0.7736

	




	
Age 2

	
0.0108

	
0.0653

	

	
0.0111

	
0.0546

	

	
0.0121

	
0.0356

	




	
Female 1

	
−0.1962

	
0.1572

	

	
−0.2020

	
0.1358

	

	

	

	




	
Driver2?

	
−0.5491

	
0.0892

	

	
−0.5633

	
0.0748

	

	
−0.6165

	
0.0522

	




	
Situation duration

	
0.0331

	
0.3289

	

	
0.0309

	
0.3575

	

	
0.0387

	
0.2442

	




	
Bonus

	
−0.8651

	
0.4958

	

	
−0.8200

	
0.5308

	

	
−1.0637

	
0.3802

	




	
Coverage(Med2)

	
−0.3798

	
0.1014

	

	
−0.3932

	
0.0848

	

	
−0.3595

	
0.1139

	




	
Coverage(Med1)

	
−0.4030

	
0.1541

	

	
−0.3871

	
0.1601

	

	
−0.3847

	
0.1645

	




	
Coverage(Mini)

	
0.2803

	
0.5949

	

	
0.2610

	
0.6222

	

	
0.2052

	
0.6923

	




	
Payment(biannual)

	
−0.2596

	
0.0910

	

	
−0.2547

	
0.0963

	

	

	

	




	
Payment(quarterly)

	
−0.5661

	
0.2637

	

	
−0.5354

	
0.2798

	

	

	

	




	
Payment(monthly)

	
−0.1721

	
0.2518

	

	
−0.1615

	
0.2751

	

	

	

	




	
Subscription to MB

	
0.4226

	
0.2041

	

	
0.3978

	
0.2310

	

	
0.3560

	
0.3030

	




	
Usage(retired)

	
−0.0775

	
0.7250

	

	
−0.0783

	
0.7177

	

	
−0.0533

	
0.8043

	




	
Usage(professional)

	
−0.2215

	
0.4672

	

	
−0.2273

	
0.4063

	

	
−0.1510

	
0.5703

	




	
Usage(all trips)

	
−0.3050

	
0.8550

	

	
−0.3668

	
0.8345

	

	
−1.8681

	
0.7405

	




	
Duration

	
−0.0040

	
0.6448

	

	

	

	

	

	

	




	
Fuel(gasoline)

	
0.5066

	
0.0017

	

	
0.5002

	
0.0021

	

	
0.4090

	
0.0236

	




	
Fuel(hybrid)

	
114.80

	
0.1984

	

	
116.60

	
0.1890

	

	
1.0632

	
0.2829

	




	
Type(commercial)

	
0.0041

	
0.9901

	

	

	

	

	

	

	




	
Din(power)

	
0.0000

	
0.9944

	

	
-0.0000

	
0.9959

	

	
−0.0002

	
0.9627

	




	
Vehicle age

	
0.0696

	
<  0.0001  

	

	
0.0712

	
<  0.0001  

	

	
0.0756

	
<  0.0001  

	




	
Vehicle speed

	
0.0006

	
0.9258

	

	

	

	

	

	

	




	
Log-likelihood

	
−23,044

	

	
−23,045

	

	
−23,054




	
Degrees of freedom

	
48

	

	
43

	

	
34




	
AIC

	
46,184

	

	
46,175

	

	
46,177




	
BIC

	
46,616

	

	
46,563

	

	
46,482




	
Running time (s)

	
16.719

	

	
   18.81   

	

	
   13.951   








* Model 1: full model; Model 2: based on the variables of stepwise models in Table 4 and Table 5; Model 3: based on the variables of only significant models in Table 4 and Table 5.
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