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Abstract: In this paper, we propose a clustering procedure of financial time series according to the
coefficient of weak lower-tail maximal dependence (WLTMD). Due to the potential asymmetry of
the matrix of WLTMD coefficients, the clustering procedure is based on a generalized weighted
cuts method instead of the dissimilarity-based methods. The performance of the new clustering
procedure is evaluated by simulation studies. Finally, we illustrate that the optimal mean-variance
portfolio constructed based on the resulting clusters manages to reduce the risk of simultaneous large
losses effectively.
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1. Introduction

It is of great interest in identifying the risk of simultaneous large losses in portfolio selection
and financial risk management. If this type of risk is identified properly, candidate assets could be
grouped such that asset prices or returns from different groups are unlikely to drop simultaneously.
An investment strategy is called portfolio diversification if the portfolio is constructed by selecting one
asset from each group. As we could see, the performance of portfolio diversification depends on how
the assets are grouped.

In general, the observed prices or returns of assets are essentially time series. To group assets
properly, time series clustering techniques are usually involved. Early works on time series clustering
include interdependence measure between asset returns such as the (Pearson or Spearman type)
cross-correlation coefficients (cf. Kaufman and Rousseeuw 1990). In particular, Mantegna (1999) and
Bonanno et al. (2004) quantified the degree of interdependence between the synchronous time evolution
of a pair of stock prices and used it in financial time series clustering. Moreover, as another extension
of dependence-based method, Baragona (2001) and Brockwell and Davis (2002) developed a new
measure of interdependence from the residuals obtained by fitting the data to acceptable time series.
In addition, inspired by the dynamic conditional correlation (DCC) model developed by Engle and
Sheppard (2001) and Engle (2002), Billio et al. (2006) and Billio and Caporin (2009) proposed the Flexible
Dynamic Conditional Correlation (FDCC) multivariate GARCH model and provided an estimate of
the dynamics of correlation coefficients within groups of financial assets for asset allocations.

However, cross-correlation coefficients do not always guarantee a sufficient degree of portfolio
diversification because these coefficients cannot always capture the possible extreme co-movements of
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asset returns in lower tails. Extreme co-movement of asset returns in lower tails plays an important
role in studying contagion of financial crisis. Bae et al. (2003) provided evidence of the existence
of extreme co-movements in terms of coexceedances when studying the phenomenon of contagion.
More formally, the contagion of financial crisis could be defined directly as a significant increase of
extreme co-movements if financial crisis occurs in one of the markets (cf. Pericoli and Sbracia 2003,
Definition 4). Hence, if a portfolio diversification arrangement fails to diversify the risk of extreme
co-movement in the lower tail, it might be vulnerable to the contagion of financial crisis occurring in
other markets.

Even when there is no contagion, extreme co-movements of asset returns may also exist
due to the similarity of fundamentals from the traditional point of view, investor trading
patterns(Barberis et al. 2005), or incomplete information (Veldkamp 2006). To diversify the risk
of extreme co-movement in lower tail, De Luca and Zuccolotto (2011) proposed a dissimilarity
measure based on tail dependence coefficients (TDC) instead of cross-correlation coefficients to obtain
homogeneous groups of time series with an association between extreme low values. Inspired by this
work, Durante et al. (2014) developed a time series clustering procedure with a conditional version
of Spearman’s correlation coefficient for extremely low values introduced by Durante et al. (2014),
and a non-parametric estimator of tail dependence provided in Durante et al. (2015). De Luca and
Zuccolotto (2015) further proposed a dynamic clustering procedure so that the coefficient employed to
measure the lower tail dependence can be time-varying on the basis of historical market volatility.

In this paper, we propose to cluster time series via the coefficients of maximum tail dependence
introduced by Furman et al. (2015). The coefficients of maximal tail dependence are direct extensions
of TDCs including the tail dependence coefficient λ, the weak tail dependence coefficient χ and the
tail order κ. The major difference is that the coefficients of maximal tail dependence are calculated
with convergence paths that are possibly other than the diagonal path. As a result, the matrix of
coefficients of maximal tail dependence may not be symmetric and thus cannot be used as a similarity
(or dissimilarity) matrix in clustering procedures. Instead, such a matrix may be seen as a type of
affinity matrix representing directed relations between assets.

The paper is organized as follows. Section 2 is a brief introduction of the coefficients of maximal
tail dependence. The proposed clustering procedure of time series is formally described in Section 3.
The performance of the proposed procedure is evaluated in Section 4. An application to real exchange
rates of G20 countries is presented and analyzed in Section 5. Section 6 concludes.

2. The Coefficients of Maximal Tail Dependence

Several coefficients have been introduced by researchers to measure the extreme co-movements
in recent years. For example, one of the most important measures is the lower (upper) tail dependence,
which is formally defined by

λL := lim
u→0+

P
(

X ≤ F−1
X (u)|Y ≤ F−1

Y (u)
)

λU := lim
u→1−

P
(

X > F−1
X (u)|Y > F−1

Y (u)
) ,

where random variables X and Y represent the potentially dependent risks. Since by Sklar’s Theorem
(cf. Nelsen 2006) there is a uniquely determined copula function C : [0, 1]2 → [0, 1] such that

FX,Y(x, y) = C
(

FX(x), FY(y)
)

,

the lower (upper) tail dependence could be defined as the limiting point of a functional of the copula
function, namely,

λL := λL(C) = lim
u→0+

C(u, u)
u

, λU := λU(C) = lim
u→0+

Ĉ(u, u)
u

,
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where Ĉ is the survival copula with respect to C. Apart from the lower (upper) tail dependence, similar
measures include the weak lower (upper) tail dependence

χL := χL(C) = lim
u→0+

2 log u
log C(u, u)

− 1, χU := χU(C) = lim
u→0+

2 log u
log Ĉ(u, u)

− 1,

(cf. Coles et al. 1999) and lower (upper) tail order κL (κU) defined via:

C(u, u) = `L(u)uκL , Ĉ(1− u, 1− u) = `U(u)uκU , u ∈ (0, 1)

where `L and `U are slowly varying functions of u at 0 (cf. Hua and Joe 2011).
The aforementioned measures of tail dependence are all limiting values of functionals of C as

the arguments (u, v) shrink to (0, 0) along the diagonal line of the square [0, 1]2. However, as pointed
out by Furman et al. (2015), these measures may sometimes underestimate the extent of extreme
co-movements for dependent risks, and, for this reason, the authors proposed improved versions
of these coefficients of tail dependence, named as the coefficients of the maximal tail dependence, which
are more sensitive to extreme co-movements. Accordingly, a clustering procedure based on such
coefficients may provide better clustering results than those based on other coefficients of tail
dependence such as those proposed by De Luca and Zuccolotto (2011) and Durante et al. (2014),
and the portfolios constructed based on such clustering results may also outperform.

The coefficients of the maximum tail dependence are limiting values of the usual versions of the
corresponding functionals of C (or Ĉ) converging to the lower-left (or upper-right) vertex along paths
of maximal tail dependence. To formally define the paths of maximal tail dependence, consider
a function ϕ : [0, 1] 7→ [0, 1] satisfying the following admissible conditions (see Furman et al. 2015,
Definition 2.1):

1. ϕ(u) ∈ [u2, 1] for every u ∈ [0, 1]; and
2. both ϕ(u) and u2/ϕ(u) converge to 0 when u ↓ 0.

The collection of such kind of functions is called the admissible set, denoted as A. Then, a path(
ϕ(u), u2/ϕ(u)

)
06u61

shrinking to the lower-left (or upper-right) vertex is called admissible

whenever ϕ belongs to A. Specifically, the diagonal path used to define the usual coefficients
of tail dependence (u, u)06u61 is admissible as the function ϕ0(u) = u, u ∈ [0, 1] is admissible.
According to (Furman et al. 2015, Definition 2.2), the paths of maximal tail dependence is denoted as(

ϕ∗(u), u2/ϕ∗(u)
)

06u61
where

ϕ∗(u) = arg max
ϕ∈A

C
(

ϕ(u), u2/ϕ(u)
)

.

To simplify the notations, we denote Π∗(u) = C
(

ϕ∗(u), u2/ϕ∗(u)
)

if the optimal value exists.
Then, the lower tail maximal dependence (LTMD) is defined via:

λ∗L := λ∗L(C) = lim
u→0+

Π∗(u)
u

,

the weak lower tail maximal dependence (WLTMD) is defined via:

χ∗L := χ∗L(C) = lim
u→0+

2 log u
log Π∗(u)

− 1,

and the order of lower tail maximal dependence is defined via:

Π∗(u) = `∗L(u)u
κ∗L , u ∈ (0, 1)
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where `∗L is a slowly varying function of u at 0. In particular, for κ∗L, we have the following result
similar to that of the usual tail order κL (cf. Hua and Joe 2011):

Proposition 1. For any bivariate copula function C, if ϕ∗(u) ∈ A exists, then the corresponding index of
maximal tail dependence κ∗L ∈ [1, 2].

The proof is given in Appendix A. As a result, χ∗L ∈ [0, 1] may also not be a desirable affinity
measure for common clustering procedures such as k means clustering or hierarchical clustering.
However, χ∗L is a desirable weight for graphs. The larger χ∗L of two assets is, the stronger the extreme
co-movement between these assets is, and hence a bigger weight is posed by χ∗L.

We refer to Furman et al. (2015) for examples of expressions for λ∗L and κ∗L with closed forms
in the case of parametric families of distributions. Notably, Furman et al. (2016) proved that, in the
Gaussian case, the classical and maximal tail dependence coefficients coincide. In the present paper,
however, to speed up practical calculations, we resort to non-parametric approach in the following
sections. In particular, we find a clustering procedure based on χ∗L to be very attractive.

3. Clustering Procedure

Typically, clustering based on dissimilarity matrices such as given by De Luca and Zuccolotto
(2011, sct. 3) could be achieved through the hierarchical clustering method directly. However, to cluster
using the affinity matrix constructed with χ∗L, we could not use the hierarchical clustering method
because the affinity matrix may not be symmetric. Hence, we have to consider graph based clustering
procedures.

Suppose we have n assets in total available for a portfolio construction. Then, the affinity matrix
∆ =

(
∆ij

)
n×n

is given by

∆ij = χ∗L,ij =
2

κ∗L,ij
− 1 (1)

(cf. Furman et al. 2015, sct. 5). Theoretically, ∆ should be a symmetric matrix which could be seen
as an affinity matrix consisting of edge weights for an undirected graph and thus could be used
for clustering with the hierarchical clustering method. This is because Π∗(u) is unique as long as
it exists and thus κ∗L,ij = κ∗L,ji. However, for those asymmetric copulas such as the unexchangeable
Marshall–Olkin copulas

CMO
a,b (u, v) = min{u1−av, uv1−b}, a, b ∈ (0, 1), a 6= b

the estimated parameters may differ due to that for two series of observations there are actually
two different copulas to be chosen for the parameter estimation procedure: CMO

a,b (u, v) and
CMO

b,a (u, v) = CMO
a,b (v, u). In other words, for two arbitrary series of observations, it is impossible to

determine which group should be regarded as “u” and the other group as “v” in practice, even though
we are sure that these observations are generated from an unexchangeable Marshall–Olkin copula.

For simplicity, when constructing the affinity matrix ∆, we keep only one of the two possible
copulas whenever we have to estimate the parameters of the copula from pairwise observations.
The advantage of this idea is that, taking CMO

a,b (u, v) for instance, the lower triangle part of ∆ is
calculated by assuming the pairwise observations are generated from CMO

a,b (u, v) and then estimating
the parameters a and b while the upper triangle part of ∆ is actually calculated by assuming the same
pairwise observations are generated from CMO

b,a (u, v) = CMO
a,b (v, u) and then estimating the parameters

a and b. In other words, the resulting affinity matrix ∆ contains information of estimated parameters
from both CMO

a,b (u, v) and CMO
b,a (u, v) = CMO

a,b (v, u) in fact.
Since such an affinity matrix may not necessarily be symmetric, the hierarchical clustering method

fails to work. In this case, the resulting affinity matrix could be considered as a matrix of weighted
edges in a directed graph instead of an undirected graph. The clustering task could be achieved with
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the Weighted Normalized Cuts (WNACut for short) introduced by Meilă and Pentney (2007), which is
initially developed to analyze directed graphs related to the link data.

To understand the WNACut method, let C = {C1, . . . , CK}1≤K≤n be an arbitrary partition of the set
of all assets. Then, the cut of Ck to Ck′ represents the total influence of Cluster Ck on Cluster Ck′ , namely,

Cut(Ck, Ck′) = ∑
i∈Ck

∑
j∈Ck′

∆ij. (2)

Hence, the total weighted cut of all clusters is defined via:

WCut(C) =
K

∑
k=1

∑
k′ 6=k

Cut(Ck, Ck′)

∑i∈Ck
Vi

,

where Vi = ∑n
j=1 ∆ij for i = 1, . . . , n. Then, our target cluster C∗ is such that

WCut(C∗) = min
C

WCut(C).

This optimization problem could be solved through a spectral clustering algorithm named
“BestWCut”. Similar to the clustering procedure proposed by De Luca and Zuccolotto (2011),
this algorithm is also a two-stage clustering procedure, in which the non-metric multidimensional
scaling (MDS) in the first stage is substituted by a process that transforms the asymmetric affinity
matrix consisting of the WLTMDs into k orthonormal columns, where k is the predetermined number
of clusters. The details are given in Algorithm A1. In Meilă and Pentney (2007), the WNACut method
is shown to consistently outperform all other clustering methods chosen to be tested with synthetic
data in their experiments. For this reason, we adopt this method to finish the clustering task in our
proposed procedure.

4. A Simulation Study of Synthetic Data

As mentioned, our proposed clustering procedure is a two-stage procedure, as shown in
Algorithm A1. However, there is no information related to the choice of clustering method for the
second stage in this particular situation revealed. Hence, a simulation study is designed in this section
to compare the performance of the second stage clustering method in WNACut with that of a list
of commonly used clustering methods, including the classical k-means method and hierarchical
clustering procedure with Ward’s minimum variance method (considering both Ward’s criterion
and Ward’s criterion squared, the results are denoted as Ward.D2 and Ward.D, respectively), single
linkage method, complete linkage method, average linkage method, McQuitty’s linkage method,
median linkage method, and centroid linkage method. The performances are measured in two metrics:
the misclassification error (ME) described in Verma and Meilă (2003) and variation in information (VI)
introduced in Meilă (2003). Both criteria tend to be smaller if the resulting clusters are more similar to
the K known clusters.

To begin with, we assume there are K different known clusters whose numbers of elements are
N1, . . . , NK, respectively. The dependence structure employed to generate the realizations in each
cluster is a particular case of the asymmetric multivariate copula given by Liebscher (2008, eq. 3);
namely, for cluster k, we have

Ck(uk,1, . . . , uk,n1) = uγ1/(γ0+γ1)
k,1

(
u−1/(γ0+γ1)

k,1 +
n1

∑
i=2

(
u−1/γ0

k,i − 1
))−γ0

,

where γ0 > 0 and γ1 ≥ 0. Then, the joint CDF of the distribution used to generate the realizations is
given by
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C(u1,1, . . . , u1,n1 , . . . , uK,1, . . . , uK,nK ; γ0, γ1) =
K

∏
k=1

Ck(uk,1, . . . , uk,n1).

Notice that, with the above model settings, the pairwise marginal copulas could be written
as either

C(u, v) = uγ1/(γ0+γ1)
(

u−1/(γ0+γ1) + v−1/γ0 − 1
)−γ0

, γ1 ∈ [0, ∞], (3)

or
C(u, v) = vγ1/(γ0+γ1)

(
v−1/(γ0+γ1) + u−1/γ0 − 1

)−γ0
, γ1 ∈ [0, ∞], (4)

which includes both the pairwise independent copula C(u, v) = uv as the particular case γ1 = ∞

and the pairwise standard Clayton copula C(u, v) =
(

u−1/γ0 + v−1/γ0 − 1
)−γ0

as the particular case
γ1 = 0. Then, as discussed in Section 3, we only keep (3) for further analysis. When the realizations are
generated, the affinity matrix consisting of pairwise WLTMDs could be calculated by first estimating
γ0 and γ1 with the maximal likelihood method based on (3) and then calculating the WLTMDs using

κ̂∗L,ij = 1 + γ̂1,ij/(γ̂1,ij + 2γ̂0,ij)

(cf. Furman et al. 2015, eq. 6.2). Therefore, with all pairwise κ̂∗L,ij obtained, the affinity matrix ∆ could
be calculated through Equation (1). Then, given the predetermined number of clusters k, the first stage
of the BestWCut will transform the affinity matrix ∆ into k orthonormal columns.

The total number of iterations for our simulation study is 500, which is the same as De Luca and
Zuccolotto (2011). Other values of the parameters for the simulation study are given below:

• The number of known clusters K = 4.
• The number of objects in each cluster n1, . . . , nK are independently sampled from {3, 4, . . . , 8} at

random for each iteration.
• γ0 = 4.
• γ1 = 1, 8, 64, which result in theoretical κ∗L = 10/9, 1.5, 17/9, respectively, if the two series of

realizations are neither independent nor dependent with a classical Clayton copula.
• The distances used in hierarchical clustering methods are all Euclidean distance in RK.

The results of MEs and VIs are given in Tables 1 and 2, respectively, in which we can see that,
with Ward’s criterion squared, the Ward’s minimum variance method is consistently competitive or
even outperforms other methods. Moreover, the distributional properties of the simulated ME’s are
shown in Figures 1–3 for γ1 = 1, γ1 = 8, and γ1 = 64, respectively, and the distributional properties of
the simulated VIs are shown in Figures 4–6 for γ1 = 1, γ1 = 8, and γ1 = 64, respectively. All these
figures indicate that the Ward’s minimum variance method might be the best choice for the second
stage of the proposed clustering procedure.

The results shown in Tables 1 and 2 also indicate the sensitivity of the ME/VI to κ∗L.
Taking the Ward’s minimum variance method as an example, when κ∗L increases or decreases by
(3.5/9/1.5 =) 25.93% (i.e., γ1 increases from 8 to 64 or decreases from 8 to 1, correspondingly) the
average ME increases by 179.25% or decreases by 19.57%, correspondingly, while the average VI
increases by 79.8% or decreases by 38.39%, correspondingly. Thus, our proposed clustering procedure
seems to perform better as the true WLTMD κ∗L gets closer to 1, and as the true WLTMD κ∗L moves
towards 2, the performance of our proposed clustering procedure worsens rapidly.
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Table 1. Means and variances of simulated MEs using various clustering methods in the second stage
of WNACut for γ1 = 1, γ1 = 8 and γ1 = 64, respectively.

γ1 = 1 γ1 = 8 γ1 = 64

Mean Var Mean Var Mean Var

k means 0.1269 0.0143 0.1795 0.0132 0.3875 0.0109
ward.D 0.1089 0.0095 0.1354 0.0012 0.3781 0.0113

ward.D2 0.1206 0.0117 0.1326 0.0014 0.3913 0.0111
single 0.3341 0.0271 0.1477 0.0037 0.5311 0.0089

complete 0.1715 0.0205 0.1349 0.0034 0.4244 0.0121
average 0.1988 0.0242 0.1329 0.0021 0.4582 0.0127

McQuitty 0.1995 0.0217 0.1345 0.0023 0.4536 0.0124
median 0.3430 0.0324 0.1422 0.0033 0.5201 0.0088
centroid 0.3223 0.0377 0.1349 0.0019 0.5284 0.0091

Table 2. Means and variances of simulated VIs using various clustering methods in the second stage of
WNACut for γ1 = 1, γ1 = 8 and γ1 = 64, respectively.

γ1 = 1 γ1 = 8 γ1 = 64
Mean Var Mean Var Mean Var

k means 0.6323 0.2236 1.0234 0.1347 1.8849 0.2088
ward.D 0.6317 0.1959 1.0254 0.0346 1.8437 0.2202

ward.D2 0.6486 0.2043 1.0085 0.0462 1.8738 0.2095
single 1.1335 0.2906 1.0446 0.0383 1.9781 0.1007

complete 0.7914 0.2827 0.9977 0.0659 1.9327 0.1998
average 0.8225 0.2750 1.0000 0.0551 1.8980 0.1622

McQuitty 0.8285 0.2620 1.0085 0.0509 1.9295 0.1804
median 1.2115 0.3518 1.0340 0.0405 1.9935 0.1115
centroid 1.1504 0.3994 1.0158 0.0484 1.9783 0.1013

k.means ward.D ward.D2 single complete average mcquitty median centroid

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Misclassifiction Error for WNACut Methods

Figure 1. Box plots of simulated MEs using various clustering methods in the second stage of WNACut
for γ1 = 1.
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0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Misclassifiction Error for WNACut Methods

Figure 2. Box plots of simulated MEs using various clustering methods in the second stage of WNACut
for γ1 = 8.
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Figure 3. Box plots of simulated MEs using various clustering methods in the second stage of WNACut
for γ1 = 64.
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Variation in Information for WNACut Methods

Figure 4. Box plots of simulated VIs using various clustering methods in the second stage of WNACut
for γ1 = 1.
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Figure 5. Box plots of simulated MEs for all hierarchical clustering methods when γ = 8.

k.means ward.D ward.D2 single complete average mcquitty median centroid
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.0

Variation in Information for WNACut Methods

Figure 6. Box plots of simulated VIs using various clustering methods in the second stage of WNACut
for γ1 = 64.

5. Application to Real Data

In this section, we apply the proposed procedure on the log-returns of foreign exchange rates
with respect to US dollars from Group of 20 (known as G20). Since US dollar is used as the underlying
currency, there are 19 time series of exchange rates in total. The exchange rates of France, Germany and
Italy are excluded from our analysis due to their perfect linear correlation with euros, which results in
16 time series of exchange rates available for our clustering analysis1. The data were collected weekly
from 5 September 2012 to 17 August 2016, covering 207 × 16 active observations during these four
years, which can be downloaded from “PACIFIC Exchange Rate Service”, 2016, by Werner Antweiler,
University of British Columbia. The descriptive statistics and histograms of observations for the 16
currencies are given in Table 3 and Figure 7.

1 The currencies include: Argentine Pesos, Australian Dollars, Brazilian Reals, British Pounds, Canadian Dollars, Chinese
Renminbi, European Euros, Indian Rupees, Indonesian Rupiah, Japanese Yen, Mexican Pesos, Russian Rubles, Saudi Arabian
Riyal, South African Rand, South Korean Won, and Turkish New Lira.
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Table 3. Descriptive statistics of (log)returns of 16 selected currencies.

Min. 1st Qu. Median Mean 3rd Qu. Max. Std

ARS −0.1466 −0.0048 −0.0026 −0.0056 −0.0010 0.0415 0.0112
AUD −0.0294 −0.0085 −0.0005 −0.0014 0.0060 0.0295 0.0175
BRL −0.0584 −0.0128 −0.0012 -0.0022 0.0086 0.0474 0.0086
CAD −0.0239 −0.0071 −0.0008 −0.0013 0.0038 0.0228 0.0028
CNY −0.0211 −0.0011 0.0000 -0.0002 0.0010 0.0079 0.0106
EUR −0.0379 −0.0067 −0.0006 −0.0006 0.0058 0.0268 0.0087
GBP −0.0840 −0.0063 −0.0005 −0.0010 0.0052 0.0304 0.0093
IDR −0.0366 −0.0059 −0.0015 −0.0015 0.0016 0.0502 0.0118
INR −0.0408 −0.0050 −0.0010 −0.0009 0.0037 0.0409 0.0089
JPY −0.0482 −0.0078 −0.0008 −0.0012 0.0051 0.0409 0.0110

KRW −0.0273 −0.0055 0.0004 0.0001 0.0059 0.0266 0.0245
MXN −0.0318 −0.0077 −0.0012 −0.0016 0.0052 0.0280 0.0158
RUB −0.1215 −0.0124 −0.0022 −0.0034 0.0080 0.1253 0.0126
SAR −0.0052 −0.0008 0.0000 −0.0000 0.0008 0.0045 0.0097
TRY −0.0484 −0.0099 −0.0006 −0.0023 0.0057 0.0346 0.0112
ZAR −0.0487 −0.0130 −0.0017 −0.0023 0.0079 0.0437 0.0175
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Figure 7. Histograms for the 16 selected currencies.

5.1. Preliminary Analysis

For each series of the exchange rates, the log-returns are obtained by taking logarithm of the
fraction between two consecutive weekly exchange rates, part of which are shown in Figure 8.
To eliminate the potential autocorrelation and heteroskedasticity of the log-returns, a univariate
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generalized error distribution (GED) ARMA-GARCH (1, 1) model is applied to each time series of
log-returns and the fitted standardized residuals are extracted for the purpose of clustering.
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Figure 8. Log return of exchange rates for some of the G20 members.

A preliminary test of correlation indicates that the standardized residuals of Argentine Pesos
seem to be uncorrelated to those of all the other currencies. The details of the correlation tests are
shown in Table 4, from which we could see that all p-values are greater than 0.05. Thus, we suspect
that all WLTMDs between the residuals of ARS and any other currency are approximately 0. To this
end, let TX,i = min{RARS,i, RX,i} where X represents some currency and RX,i is the random variable
having the same distribution as the standard residuals obtained by fitting the log-returns of currency
X with GED ARMA-GARCH(1, 1) model. Then, by Coles et al. (1999, eq. 4.2), we have

P
(
TX,i > t

)
∼ `X(t)t−ηX
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as t→ ∞ where ηX = 2/(1 + χL,ARS(X)) and χL,ARS(X) is the weak lower-tail dependence between
the standard residuals of the log-returns of ARS and currency X. Hence, our concern about whether
χL,ARS(X) = 0 is equivalent to test

H0 : ηX = 2 v.s. H1 : ηX 6= 2.

The test statistic, which is asymptotically standard normal, could be obtained using the improved
OLS method given in Gabaix and Ibragimov (2011). When 50 pairs of observations are used,
the resulting p-values are all greater than 0.1, as shown in Table 4. Thus, H0 could not be rejected,
which leads to η̂GI ≈ 2 and hence χ̂L,ARS(X) ≈ 0 for all currencies other than ARS. Notice that by
definition WLTMD should always be smaller than or equal to the corresponding weak lower-tail
dependence, therefore the WLTMDs between the residuals of ARS and those of any other currency
are approximately 0, which allows us to evaluate ARS as an isolated point that will not be taken into
account in further analysis.

Table 4. The p-values of correlation tests between the standardized residuals of ARS and those of
the other 15 currencies based on Pearson’s product moment correlation coefficient, Kendall’s τ and
Spearman’s ρ, respectively. The last column contains the p-values of the test of H0 using the OLS
test statistic.

Currency Pearson Kendall Spearman η̂GI

AUD 0.3437 0.2111 0.2248 0.9268
BRL 0.0530 0.6239 0.6545 0.5408
CAD 0.0922 0.1932 0.2157 0.6553
CNY 0.1825 0.9444 0.9718 0.1550
GBP 0.3954 0.8485 0.8263 0.8356
INR 0.6418 0.2816 0.3278 0.8877
IDR 0.3542 0.3807 0.3855 0.2402
JPY 0.6390 0.2889 0.2957 0.3472

KRW 0.7797 0.9702 0.9660 0.6733
MXN 0.8750 0.8962 0.9712 0.4198
RUB 0.4855 0.9944 0.9739 0.3999
SAR 0.7583 0.5040 0.4771 0.9567
ZAR 0.8412 0.1508 0.1746 0.7425
TRY 0.2061 0.0696 0.0741 0.6147
EUR 0.4067 0.2103 0.2173 0.6303

In fact, ARS is not the only currency that should be excluded from further clustering procedure.
When testing the correlation between standardized residuals of the fitted GED ARMA-GARCH (1, 1)
model for log-returns, we discover that the residuals of SAR have negative correlation with majority
of the residuals of the other currencies (see the columns entitled “Sign of estimated coefficients”
in Table 5). Furthermore, we can see in Table 5 that only AUD, CNY, GBP and JPY are currencies
whose standard residuals may not be negatively correlated with SAR. Unfortunately, none of the
corresponding p-values show significant correlation between the standardized residuals of these
currencies and SAR. Therefore, it is reasonable to suspect the WLTMDs between the residuals of SAR
and any other currency are approximately 0. As expected, the last column in Table 5 verifies this result
using the OLS test statistics with only 30 pairs of observations. Therefore, we do not include SAR in
our next step of clustering procedure either.
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Table 5. The sign of Estimated Correlation Coefficients and p-values of correlation tests between the
standardized residuals of SAR and those of the other 14 currencies based on Pearson’s product moment
correlation coefficient, Kendall’s τ and Spearman’s ρ, respectively. The last column is the p-values of
the test of H0 using the OLS test statistic.

Currency
Sign of Estimated Coefficients p-Values

Pearson Kendall Spearman Pearson Kendall Spearman η̂GI

AUD + − − 0.8734 0.7981 0.8015 0.6997
BRL − − − 0.0021 0.0007 0.0008 0.9334
CAD − − − 0.2140 0.0641 0.0514 0.5117
CNY − + + 0.8798 0.7593 0.7691 0.9141
GBP + − − 0.2583 0.8755 0.8342 0.8694
INR − − − 0.0592 0.0240 0.0213 0.6743
IDR − − − 0.8543 0.7563 0.7676 0.9509
JPY + + + 0.4373 0.5078 0.5216 0.1236

KRW − − − 0.9862 0.9492 0.9391 0.9861
MXN − − − 0.0043 0.0044 0.0041 0.4444
RUB − − − 0.0290 0.0022 0.0021 0.2088
ZAR − − − 0.0899 0.0283 0.0233 0.7497
TRY − − − 0.1121 0.0549 0.0471 0.4727
EUR − − − 0.5123 0.3963 0.4209 0.7975

Since there are no more currencies that could be evaluated as isolated points based on correlation
tests or OLS test statistics, we retain all of the rest 14 exchange rates in our further clustering analysis.

5.2. Clustering the Exchange Rates Using WLTMD

For each pair of the residuals fitted from the log-return series, a bivariate Clayton copula function
(see Liebscher 2008, for instance) is adopted with the form of Equation (3) on the estimated empirical
distribution functions (pseudo observations), where γ0 ≥ 0 and γ1 ≥ 0 are unknown parameters to be
specified. Notice that the Clayton-type copula defined in Equation (3) relaxes the restriction γ1 = 0 in
the classical Clayton copula and hence is not necessarily symmetric. With this Clayton-type copula,
the tail order of maximal dependence is proved to have the following analytic form:

κ∗L = 1 + γ1/(γ1 + 2γ0)

(cf. Furman et al. 2015, eq. 6.2). The parameters can be estimated by the maximum likelihood
method, and hence the estimate of the lower tail of the maximal dependence is given by
κ̂∗L = 1 + γ̂1/(γ̂1 + 2γ̂0). To measure the goodness-of-fit of the assumed copula, we employ a test
based on the Rosenblatt transformation (see Breymann et al. 2003) between two dependent random
variables Y1 and Y2, given by

S(Y1, Y2) =
[
Φ−1 (F1(Y1)

)]2
+
[
Φ−1 (C(F2(Y2)|F1(Y1))

)]2

where Φ denotes the standard normal c.d.f. and C(F2(Y2)|F1(Y1)) the conditional copula.
Then, the random variable S(Y1, Y2) should have a χ2

2 distribution if C is the true copula, which can
be tested by a Kolmogorov–Smirnov test between S as a function of pseudo observations and χ2

2
for each pair of the standardized residuals for different currencies. The test statistics are given in
Table A1 in Appendix C. Notice that n = 206 in our situation, thus the 5% critical value for the
Kolmogorov–Smirnov test is equal to 1.358/

√
206 = 0.095, indicating none of the fitted copulas should

be rejected as the true copulas.
Using the fitted parameters γ̂0 and γ̂1, we obtain the fitted tail order of maximal dependence

κ̂L as well as the fitted WLTMD χ̂L. Then, we apply the WNACut algorithm for the first stage of the
clustering procedure and Ward1 method for the second stage on the affinity matrix constructed by
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the (14× 14 = 196) χ̂Ls for k = 2, . . . , 13, respectively. The total weights for WNACut is k, and the
percentages of weights cut of the total weights WCut(C∗)/k against k are shown in Figure 9,
which indicates that a relatively stable clustering result is obtained when the number of clusters k ≥ 4.
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Figure 9. Percentage of weights cut against the number of clusters.

To get a closer look at the clustering result, first we consider the case k = 3 whose cluster
dendrogram is given by Figure 10.
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Figure 10. The dendrogram of the clustering procedure based on WNACut methods with affinity matrix
as WLTMDs for k = 3.

The resulting clusters are listed in Table 6 which provides a regional segmentation of the world:
Northeast Asia, the East/Southeast Asia and the rest of the world. Obviously, such a cluster result has
the lowest percentage of weighted cuts and seems to perform well for currencies of countries in the
Northeast Asia, East Asia and Southeast Asia. However, it fails to distinguish the currencies of the rest
of the world. For the purpose of comparison, in Table 6, we also provide the clustering results given
by the method of De Luca and Zuccolotto (2011) for k = 3.
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Table 6. Members for each of the clusters when k = 3.

Cluster 1 Cluster 2 Cluster 3

Our proposed procedure

Australia Mexico China Russia
Brazil South Africa India Japan
Canada Turkey Indonesia South Korea
UK EU

De Luca and Zuccolotto (2011)

Australia Mexico Brazil Indonesia
Canada South Africa Japan Turkey
China Russia
India South Korea
UK EU

Next, we compare the clustering result for k = 4 to k = 3. When k = 4, the clustering dendrogram
is given by Figure 11.
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Figure 11. The dendrogram of the clustering procedure based on WNACut methods with affinity matrix
as WLTMDs for k = 4.

The resulting clusters are listed in Table 7 which preserves the regional characteristics for
currencies of countries in East/Northeast Asia while the partition of the rest of the world in Table A2
is provided by the IMF. For the purpose of comparison, in Table 7, we also provide a clustering result
given by the method of De Luca and Zuccolotto (2011) for k = 4. Here are some remarks on the
clustering outcomes obtained by our clustering procedure.

• All economies in the first group have strong economic connections with the US (under certain
type of free trade agreements). Besides, the nominal per capita GDPs of these economies are all
above $30, 000 (see Table A2 in Appendix D). Thus, it is reasonable to include currencies of these
economies in one group.

• The second group of economies have neither strong economic connection to the US nor high
nominal per capita GDPs (less than $10, 000). Moreover, all of them are identified as emerging
economies by IMF (see Table A2 in Appendix D).

• China is the only member of the third group. Although there is no free trade agreements between
US and China, it is well-acknowledged that China has a strong economic connection with the US.
In addition, China has a very high nominal GDP (the third highest among all 20 economies) but
very low nominal GDP per capita (less than $8000). As a result, it is reasonable to not include
China in any other group.

• It is reasonable to include the rest three economies in one group from the geographical perspective.
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Table 7. Members for each of the clusters when k = 4.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Our proposed procedure

Australia Brazil China Russia
Canada India Japan
UK Indonesia South Korea
EU Mexico

South Africa
Turkey

De Luca and Zuccolotto (2011)

Australia China UK Japan
Canada India
Brazil Indonesia
EU Mexico
Russia
South Korea
South Africa
Turkey

In conclusion, the clustering result for k = 4 seems to more reasonable compared to that of k = 3.
Besides, the clustering result for k = 4 could not be obtained through further partition based on the
clustering result for k = 3 because it requires a combination of {Brazil, Mexico, South Africa, Turkey}
and {India, Indonesia} as a new cluster. Therefore, the clustering result for k = 3 seems not to be
sufficiently stable from our perspective.

5.3. An Example of Portfolio Management with the Clustering

As stressed in Section 1, one important application of time series clustering is risk management.
Since the WLTMD represents the extreme co-movement downwards, the resulting clusters obtained
through our proposed procedure represent groups of assets whose returns move in the same direction
when both returns are extremely low. Hence, we should avoid including two assets from the same
cluster in our portfolio. For instance, if we would like to construct a portfolio with four of the 14
aforementioned currencies, we may consider the following steps:

1. Perform our proposed clustering procedure for k = 4. The clustering result is given in Table 7.
2. From the clustering result in Table 7, one has (4× 6× 1× 3 =) 72 choices if he/she tries to avoid

selecting two assets from the same cluster in his/her portfolio. All 72 resulting portfolios are
listed in Table A3 in Appendix E.

3. Construct portfolio using Markowitz’s procedure (minimum variance criteria), namely,
computing the sample covariance matrix S of the log-returns for any combination of currencies
in Table A3 and solving

min
w

w′Sw (5)

subject to w1 + w2 + w3 + w4 = 1 and wi ≥ 0 for i = 1, 2, 3, 4, where w =
[
w1 w2 w3 w4

]′
.

The resulting weights corresponding to the 72 choices of currencies are also given in Table A3 in
Appendix E.

The paths of the returns for all 72 combinations are shown in Figure 12. Notice that there are
((14

4 ) =)1001 different combinations of four currencies without considering the clustering result (the
resulting weights as well as the mean and accumulative returns corresponding to these 1001 portfolios
are listed in Table S1 in the Supplementary Materials). We also construct portfolios using Equation (5)
for all of the 1001 combinations of currencies and plot the corresponding paths of returns in Figure 12.
In contrast, in Figure 12, we also provide the paths of aggregated returns of all portfolios constructed
by the method of De Luca and Zuccolotto (2011).
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Figure 12. Returns (black lines) of the selected minimum variance portfolios based on our clustering
procedure (left, 72 portfolios in total) and the procedure proposed by De Luca and Zuccolotto (2011)
(right, 32 portfolios in total). Each portfolio consists of four currencies, selected by choosing one
currency from each of the four resulting clusters, compared to returns (gray lines) of minimum variance
portfolios constructed by all combinations (1001 in total) of four currencies out of total 14 currencies.

In Figure 12, the portfolios constructed through our proposed procedure are shown to have
uniformly exceptional performance among all possible ways to construct portfolios with four
currencies for a long period (September 2012–August 2016). Compared with the portfolios constructed
using the method of De Luca and Zuccolotto (2011), all of our portfolios outperform most of their
portfolios. Besides, the paths of return provided by our portfolios do not vary significantly across the
72 combinations of currencies and seem to have better performance in the long run (the average and
accumulative returns of these 72 portfolios on 17 August 2016 (the last date of the observation period)
are also provided in Table A3 in Appendix E, from which we can see that the accumulative returns are
from −7% to −4%, corresponding to the range shown in the left of Figure 12).

We also show the path of risk adjusted returns provided by our portfolios in Figure 13. The results
also show that our portfolios have outstanding performance most of the time.
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Figure 13. Risk-adjusted returns (black lines) of the 72 minimum variance portfolios selected based on
our proposed clustering procedure, compared to risk-adjusted returns (gray lines) of minimum variance
portfolios constructed by all combinations (1001 in total) of four currencies out of total 14 currencies.
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For a retrospective study, the performance of the proposed portfolios as well as all possible
portfolios from 17 August 2016 to 10 September 2018 are plotted in Figure 14. Although these portfolios
fail to be the best choices again, the resulting returns are still shown to have very strong invulnerability
against fluctuations and risks.
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Figure 14. Returns (black lines) of the selected minimum variance portfolios based on our clustering
procedure (left, 72 portfolios in total) and the procedure proposed by De Luca and Zuccolotto (2011)
(right, 32 portfolios in total). Each portfolio consists of four currencies, selected by choosing one
currency from each of the four clusters, compared to returns (gray lines) of minimum variance portfolios
constructed by all combinations (1001 in total) of four currencies out of total 14 currencies.

In contrast, in Figure 14, we also provide the paths of aggregate returns of all portfolios constructed
by the method of De Luca and Zuccolotto (2011). Obviously, the performances are quite inconsistent
and the returns seem to vary when volatility increases.

For the retrospective study, we also show the path of risk adjusted returns provided by our
portfolios in Figure 15. The performance of our portfolios seems to be very good during early 2018 but
relatively poor during late 2016 to 2017.
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Figure 15. Risk-adjusted returns (black lines) of the 72 minimum variance portfolios selected based on
our proposed clustering procedure, compared to returns (gray lines) of minimum variance portfolios
constructed by all combinations (1001 in total) of four currencies out of total 14 currencies.



Risks 2018, 6, 115 19 of 26

6. Conclusions

In this paper, we have proposed a clustering procedure based on a new affinity measure indicating
the extreme co-movements for financial time series. Unlike the common distance-based affinity matrix,
our proposed affinity matrix is not necessarily symmetric and hence cannot be used as the input in
hierarchical clustering algorithms directly. As a result, clustering procedures based on weighted cuts
are employed and examined, and the WNACut method is finally selected as a recommended clustering
procedure, based on the performances of compared procedures applicable. The resulting clusters seem
to be reasonable when applied to the real exchange rate time series, and the portfolios constructed
based on the resulting clusters are shown to outperform those from other clustering procedures,
particularly in the long run.

Future research should focus on seeking consistent nonparametric estimators for the coefficients
of maximal tail dependence such as WLTMD, since parametric copulas having explicit forms of these
coefficients are not always available for the standard residuals extracted from the data. As pointed
out in (Furman et al. 2015, sct. 7), the achievement in the area of M-estimators may be a possible
way to obtain such estimators as well as the relevant statistical inference. Moreover, the idea of the
OLS estimator (see Gabaix and Ibragimov 2011, for instance) may also be a potential way to address
this challenging problem. Furthermore, as indexes of maximal tail dependence such as WLTMD are
measures of extreme co-movements, they might not reflect the potential causality between quantities
and hence could not be directly applied to some important issues in the financial markets such as
contagion effects. Nevertheless, our proposed clustering procedure provides an insight to analyze
financial time series using asymmetric information matrices such as matrices of contagion measures.

Supplementary Materials: The following are available at http://www.mdpi.com/2227-9091/6/4/115/s1,
Table S1: 1001 portfolios constructed for all combinations of 4 currencies out of 14 currencies. The portfolio weights
obtained by Markowitz minimal variance criteria is given in the bracket. Also, mean returns and accumulative
returns are listed.
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Appendix A. Proof of Proposition 2.1

Proof. Since there exists a function ϕ∗(u) ∈ A such that

Π∗(u) = C(ϕ∗(u), u2/ϕ∗(u)),

combined with the upper Fréchet–Hoeffding bound of copulas we must have for any x ∈ (0, 2),

C(ux, u2−x) ≤ Π∗(u) ≤ min{ϕ∗(u), u2/ϕ∗(u)} (A1)

for all u ∈ (0, 1] because ux, u2−x ∈ A. From Equation (A1), it is easy to obtain

Π∗(u) ≤ u. (A2)

Given the Lipschitz condition of copula, we have∣∣∣C(ux, u2−x)− C(1, u2)
∣∣∣ ≤ ∣∣ux − 1

∣∣+ u2
∣∣∣u−x − 1

∣∣∣→ 0

as x ↓ 0 by noticing C(1, u2) = u2, then

lim
x↓0

C(ux, u2−x) = u2 (A3)

http://www.mdpi.com/2227-9091/6/4/115/s1
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for all u ∈ (0, 1]. Combining Equations (A1) and (A3) yields

Π∗(u) ≥ u2 (A4)

for all u ∈ (0, 1], and since Π∗(u) = `∗(u)uκ∗L , it further follows by Equations (A2) and (A4) that

1− log `∗(u)
log(u)

≤ κ∗L ≤ 2− log `∗(u)
log(u)

(A5)

for all u ∈ (0, 1]. Provided the Karamata’s Representation Theorem, the slowly varying function `∗(u)
has the following representation:

`∗(u) = c∗(u) exp

{∫ 1/u

1

ε∗(t)
t

dt

}
, (A6)

where measurable functions c∗(u) and ε∗(t) satisfy

lim
u↓0

c∗(u) = c ∈ (0, ∞)

and
lim
t→∞

ε∗(t) = 0.

Hence, by Equation (A6), we have for all u ∈ (0, 1]

log `∗(u)
log(u)

=
1

log(u)

(
log c∗(u) +

∫ 1/u

1

ε∗(t)
t

dt

)
. (A7)

Notice that, in Equation (A7), it is obvious that

lim
u↓0

log c∗(u)
log(u)

= 0, (A8)

the major discussion should focus on the limit of the rest part of Equation (A7) as u ↓ 0. Since ε∗(t)→ 0
as t → ∞, by defining Tε := sup{t ∈ (1, ∞) : |ε∗(t)| ≥ ε} for arbitrary ε > 0 we know that Tε < ∞.
Hence, for small enough u ∈ (0, 1], we could rewrite

1
log(u)

∫ 1/u

1

ε∗(t)
t

dt =
1

log(u)

(∫ Tε

1

ε∗(t)
t

dt +
∫ 1/u

Tε

ε∗(t)
t

dt

)
. (A9)

Then, for Equation (A9), it is obvious, that for u < Uε := exp

{
−1

ε

∫ Tε

1

ε∗(t)
t

dt

}
, we have

∣∣∣∣∣ 1
log(u)

∫ Tε

1

ε∗(t)
t

dt

∣∣∣∣∣ < ε,

while for u < T−0.5
ε ,∣∣∣∣∣ 1

log(u)

∫ 1/u

Tε

ε∗(t)
t

dt

∣∣∣∣∣ <
∣∣∣∣∣ 1
log(u)

∣∣∣∣∣ ∣∣− log(u)− log Tε

∣∣ ε =

∣∣∣∣∣1 + log Tε

log(u)

∣∣∣∣∣ ε ≤ ε.
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Therefore, for all u < min{T−0.5
ε , Uε} we have∣∣∣∣∣ 1

log(u)

∫ 1/u

1

ε∗(t)
t

dt

∣∣∣∣∣ < 2ε,

which is equivalent to

lim
u↓0

1
log(u)

∫ 1/u

1

ε∗(t)
t

dt = 0.

Finally, combined with (A8) we deduce

lim
u↓0

log `∗(u)
log(u)

= 0.

Therefore, we may conclude that κ∗L ∈ [1, 2] by letting u ↓ 0 for both inequalities of Equation
(A9).

Appendix B. Details of the Clustering Algorithm in Simulation

Algorithm A1 Best WCut (Meilă and Pentney 2007, Algorithm 4.1).

Require: Affinity matrix, ∆; diagonal matrix of volume weights, V; diagonal matrix of row weights,
R; number of clusters, k;

Ensure: The clustering, C∗;
1: Update ∆ through the linear transform R∆;
2: Define Di = ∑d

j=1 δij and D = diag{Di}i=1,...,n;
3: Define H(B) = 1

2 (B + Bᵀ), where B = V−1/2 (D− ∆)V−1/2;
4: Compute Y the n × k matrix with orthonormal columns containing the eigenvectors of H(B)
corresponding to the k smallest eigenvalues;
5: Cluster the rows of X = V−1/2Y as points in Rk.
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Appendix C. Goodness-of-Fit Test

Table A1. Estimated Kolmogorov statistics for the goodness-of-fit test.

AUD BRL CAD CNY GBP INR IDR JPY KRW MXN RUB ZAR TRY EUR

AUD — 0.0634 0.0778 0.0636 0.0733 0.0614 0.0460 0.0747 0.0685 0.0922 0.0563 0.0815 0.0644 0.0487
BRL 0.0794 — 0.0685 0.0539 0.0425 0.0493 0.0488 0.0501 0.0527 0.0668 0.0766 0.0665 0.0841 0.0454
CAD 0.0899 0.0655 — 0.0502 0.0545 0.0512 0.0561 0.0673 0.0601 0.0568 0.0668 0.0563 0.0555 0.0629
CNY 0.0495 0.0445 0.0469 — 0.0794 0.0375 0.0633 0.0489 0.0666 0.0496 0.0494 0.0516 0.0516 0.0470
GBP 0.0603 0.0579 0.0517 0.0705 — 0.0481 0.0584 0.0580 0.0565 0.0493 0.0494 0.0486 0.0754 0.0414
INR 0.0633 0.0433 0.0470 0.0383 0.0484 — 0.0367 0.0476 0.0472 0.0290 0.0604 0.0462 0.0577 0.0637
IDR 0.0480 0.0531 0.0502 0.0612 0.0584 0.0371 — 0.0675 0.0686 0.0395 0.0577 0.0750 0.0665 0.0505
JPY 0.0687 0.0522 0.0677 0.0534 0.0611 0.0516 0.0705 — 0.0645 0.0637 0.0497 0.0513 0.0587 0.0542

KRW 0.0763 0.0619 0.0581 0.0797 0.0821 0.0569 0.0696 0.0643 — 0.0628 0.0578 0.0797 0.0896 0.0448
MXN 0.0861 0.0648 0.0748 0.0511 0.0524 0.0353 0.0353 0.0637 0.0543 — 0.0718 0.0585 0.0589 0.0446
RUB 0.0558 0.0748 0.0520 0.0550 0.0481 0.0493 0.0559 0.0485 0.0382 0.0512 — 0.0561 0.0565 0.0592
ZAR 0.0715 0.0620 0.0500 0.0566 0.0518 0.0504 0.0565 0.0510 0.0726 0.0786 0.0647 — 0.0687 0.0465
TRY 0.0675 0.0614 0.0542 0.0555 0.0890 0.0512 0.0599 0.0604 0.0719 0.0698 0.0576 0.0753 — 0.0483
EUR 0.0415 0.0574 0.0663 0.0483 0.0418 0.0607 0.0399 0.0548 0.0306 0.0339 0.0540 0.0419 0.0506 —
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Appendix D. Economic Summary of G20 Nations

Table A2. Part of the economic summary of G20 nations 2015 by IMF (2014).

Member Nom. GDP mil.
USD

PPP GDP mil.
USD

Nom. GDP per
capitaUSD

PPP GDP per
capltaUSD HDI Population Area Economic

Classification (IMF)

Argentina 585,623 964,300 13,589 22,554 0.836 42,961,000 2,780,400 Emerging
Australia 1,223,887 1,489,000 50,962 47,389 0.935 23,599,000 7,692,024 Advanced

Brazil 1,772,589 3,166,000 8670 16,155 0.755 202,768,000 8,515,767 Emerging
Canada 1,552,386 1,632,000 43,332 44,967 0.913 35,467,000 9,984,670 Advanced
China 10,982,829 19,510,000 7990 14,107 0.727 1,367,520,000 9,572,900 Emerging
France 2,421,560 2,647,000 37,675 41,181 0.888 63,951,000 640,679 Advanced

Germany 3,357,614 3,842,000 40,997 46,893 0.916 80,940,000 357,114 Advanced
India 2,090,706 7,965,000 1617 6162 0.609 1,259,695,000 3,287,263 Emerging

Indonesia 858,953 2,839,000 3362 11,126 0.684 251,490,000 1,904,569 Emerging
Italy 1,815,757 2,174,000 29,867 35,708 0.873 60,665,551 301,336 Advanced

Japan 4,123,258 4,658,000 32,486 38,054 0.891 127,061,000 377,930 Advanced
South Korea 1,376,868 1,849,000 27,195 36,511 0.898 50,437,000 100,210 Advanced

Mexico 1,144,334 2,220,000 9009 17,534 0.756 119,581,789 1,964,375 Emerging
Russia 1,324,734 3,471,000 9055 25,411 0.798 146,300,000 17,098,242 Emerging

Saudi Arabia 653,219 1,683,000 20,813 53,624 0.837 30,624,000 2,149,690 Emerging
South Africa 312,957 723,518 5695 13,165 0.666 53,699,000 1,221,037 Emerging

Turkey 733,642 1,589,000 9437 20,438 0.761 77,324,000 783,562 Emerging
United Kingdom 2,849,345 2,660,000 43,771 41,159 0.907 64,511,000 242,495 Advanced

United States 17,947,000 17,947,000 55,805 55,805 0.915 318,523,000 9,526,468 Advanced
European Union 16,220,370 19,180,000 31,918 37,852 0.876 505,570,700 4,422,773 N/A
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Appendix E. Seventy-Two Portfolios Constructed Based on Our Clustering Result in Table 7

Table A3. Sevent-two portfolios constructed based on our clustering result in Table 7. Notice that
for each cluster only one currency is selected. The portfolio weights obtained by Markowitz minimal
variance criteria is given in the bracket. In addition, mean returns and accumulative returns are listed.

Portfolio Currency from
Cluster 1

Currency from
Cluster 2

Currency from
Cluster 3

Currency from
Cluster 4

Mean
Return

Accumulative
Return

1 AUD (0.0000) BRL (0.0220) CNY (0.9177) JPY (0.0603) −0.0321% −6.6162%
2 CAD (0.0122) BRL (0.0195) CNY (0.9089) JPY (0.0595) −0.0329% −6.7676%
3 GBP (0.0221) BRL (0.0196) CNY (0.8984) JPY (0.0599) −0.0333% −6.8559%
4 EUR (0.0392) BRL (0.0164) CNY (0.8944) JPY (0.0499) −0.0313% −6.4531%
5 AUD (0.0000) INR (0.0539) CNY (0.8841) JPY (0.0620) −0.0316% −6.5051%
6 CAD (0.0188) INR (0.0500) CNY (0.8709) JPY (0.0603) −0.0332% −6.8367%
7 GBP (0.0236) INR (0.0508) CNY (0.8643) JPY (0.0613) −0.0331% −6.8180%
8 EUR (0.0419) INR (0.0483) CNY (0.8596) JPY (0.0502) −0.0315% −6.4815%
9 AUD (0.0000) IDR (0.0322) CNY (0.9072) JPY (0.0606) −0.0320% −6.5924%

10 CAD (0.0227) IDR (0.0271) CNY (0.8913) JPY (0.0589) −0.0336% −6.9266%
11 GBP (0.0278) IDR (0.0317) CNY (0.8807) JPY (0.0597) −0.0340% −6.9977%
12 EUR (0.0441) IDR (0.0263) CNY (0.8810) JPY (0.0486) −0.0315% −6.4964%
13 AUD (0.0023) MXN (0.0109) CNY (0.9221) JPY (0.0647) −0.0299% −6.1674%
14 CAD (0.0300) MXN (0.0000) CNY (0.9093) JPY (0.0608) −0.0310% −6.3935%
15 GBP (0.0269) MXN (0.0066) CNY (0.9029) JPY (0.0636) −0.0310% −6.3900%
16 EUR (0.0468) MXN (0.0031) CNY (0.8995) JPY (0.0507) −0.0288% −5.9339%
17 AUD (0.0085) ZAR (0.0000) CNY (0.9290) JPY (0.0626) −0.0290% −5.9725%
18 CAD (0.0300) ZAR (0.0000) CNY (0.9093) JPY (0.0608) −0.0310% −6.3935%
19 GBP (0.0282) ZAR (0.0000) CNY (0.9091) JPY (0.0627) −0.0301% −6.2074%
20 EUR (0.0476) ZAR (0.0000) CNY (0.9024) JPY (0.0501) −0.0284% −5.8410%
21 AUD (0.0085) TRY (0.0000) CNY (0.9290) JPY (0.0626) −0.0290% −5.9725%
22 CAD (0.0300) TRY (0.0000) CNY (0.9093) JPY (0.0608) −0.0310% −6.3935%
23 GBP (0.0282) TRY (0.0000) CNY (0.9091) JPY (0.0627) −0.0301% −6.2074%
24 EUR (0.0476) TRY (0.0000) CNY (0.9024) JPY (0.0501) −-0.0284% −5.8410%
25 AUD (0.0000) BRL (0.0264) CNY (0.9736) KRW (0.0000) −0.0271% −5.5828%
26 CAD (0.0217) BRL (0.0218) CNY (0.9566) KRW (0.0000) −0.0285% −5.8756%
27 GBP (0.0234) BRL (0.0238) CNY (0.9528) KRW (0.0000) −0.0284% −5.8427%
28 EUR (0.0606) BRL (0.0166) CNY (0.9228) KRW (0.0000) −0.0272% −5.6042%
29 AUD (0.0045) INR (0.0558) CNY (0.9397) KRW (0.0000) −0.0262% −5.3969%
30 CAD (0.0304) INR (0.0511) CNY (0.9185) KRW (0.0000) −0.0286% −5.8954%
31 GBP (0.0260) INR (0.0541) CNY (0.9200) KRW (0.0000) −0.0275% −5.6677%
32 EUR (0.0635) INR (0.0480) CNY (0.8885) KRW (0.0000) −0.0273% −5.6167%
33 AUD (0.0058) IDR (0.0391) CNY (0.9516) KRW (0.0036) −0.0276% −5.6778%
34 CAD (0.0321) IDR (0.0346) CNY (0.9332) KRW (0.0000) −0.0299% −6.1540%
35 GBP (0.0303) IDR (0.0416) CNY (0.9282) KRW (0.0000) −0.0296% −6.1004%
36 EUR (0.0643) IDR (0.0307) CNY (0.9050) KRW (0.0000) −0.0281% −5.7784%
37 AUD (0.0143) MXN (0.0000) CNY (0.9762) KRW (0.0094) −0.0233% −4.7940%
38 CAD (0.0418) MXN (0.0000) CNY (0.9581) KRW (0.0001) −0.0264% −5.4331%
39 GBP (0.0289) MXN (0.0000) CNY (0.9621) KRW (0.0089) −0.0238% −4.8943%
40 EUR (0.0690) MXN (0.0000) CNY (0.9310) KRW (0.0000) −0.0242% −4.9823%
41 AUD (0.0143) ZAR (0.0000) CNY (0.9762) KRW (0.0094) −0.0233% −4.7940%
42 CAD (0.0418) ZAR (0.0000) CNY (0.9581) KRW (0.0001) −0.0264% −5.4331%
43 GBP (0.0289) ZAR (0.0000) CNY (0.9621) KRW (0.0089) −0.0238% −4.8943%
44 EUR (0.0690) ZAR (0.0000) CNY (0.9310) KRW (0.0000) −0.0242% −4.9823%
45 AUD (0.0143) TRY (0.0000) CNY (0.9762) KRW (0.0094) −0.0233% −4.7940%
46 CAD (0.0418) TRY (0.0000) CNY (0.9581) KRW (0.0001) −0.0264% −5.4331%
47 GBP (0.0289) TRY (0.0000) CNY (0.9621) KRW (0.0089) −0.0238% −4.8943%
48 EUR (0.0690) TRY (0.0000) CNY (0.9310) KRW (0.0000) −0.0242% −4.9823%
49 AUD (0.0000) BRL (0.0264) CNY (0.9736) RUB (0.0000) −0.0271% −5.5828%
50 CAD (0.0217) BRL (0.0218) CNY (0.9566) RUB (0.0000) −0.0285% −5.8756%
51 GBP (0.0234) BRL (0.0238) CNY (0.9528) RUB (0.0000) −0.0284% −5.8427%
52 EUR (0.0606) BRL (0.0166) CNY (0.9228) RUB (0.0000) −0.0272% −5.6042%
53 AUD (0.0045) INR (0.0558) CNY (0.9397) RUB (0.0000) −0.0262% −5.3969%
54 CAD (0.0304) INR (0.0511) CNY (0.9185) RUB (0.0000) −0.0286% −5.8954%
55 GBP (0.0260) INR (0.0541) CNY (0.9200) RUB (0.0000) −0.0275% −5.6677%
56 EUR (0.0635) INR (0.0480) CNY (0.8885) RUB (0.0000) −0.0273% −5.6167%
57 AUD (0.0071) IDR (0.0394) CNY (0.9534) RUB (0.0000) −0.0279% −5.7458%
58 CAD (0.0321) IDR (0.0346) CNY (0.9332) RUB (0.0000) −0.0299% −6.1540%
59 GBP (0.0303) IDR (0.0416) CNY (0.9282) RUB (0.0000) −0.0296% −6.1004%
60 EUR (0.0643) IDR (0.0307) CNY (0.9050) RUB (0.0000) −0.0281% −5.7784%
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Table A3. Cont.

Portfolio Currency from
Cluster 1

Currency from
Cluster 2

Currency from
Cluster 3

Currency from
Cluster 4

Mean
Return

Accumulative
Return

61 AUD (0.0182) MXN (0.0000) CNY (0.9818) RUB (0.0000) −0.0240% −4.9542%
62 CAD (0.0418) MXN (0.0000) CNY (0.9582) RUB (0.0000) −0.0264% −5.4349%
63 GBP (0.0310) MXN (0.0000) CNY (0.9690) RUB (0.0000) −0.0242% −4.9888%
64 EUR (0.0690) MXN (0.0000) CNY (0.9310) RUB (0.0000) −0.0242% −4.9823%
65 AUD (0.0182) ZAR (0.0000) CNY (0.9818) RUB (0.0000) −0.0240% −4.9542%
66 CAD (0.0418) ZAR (0.0000) CNY (0.9582) RUB (0.0000) −0.0264% −5.4349%
67 GBP (0.0310) ZAR (0.0000) CNY (0.9690) RUB (0.0000) −0.0242% −4.9888%
68 EUR (0.0690) ZAR (0.0000) CNY (0.9310) RUB (0.0000) −0.0242% −4.9823%
69 AUD (0.0182) TRY (0.0000) CNY (0.9818) RUB (0.0000) −0.0240% −4.9542%
70 CAD (0.0418) TRY (0.0000) CNY (0.9582) RUB (0.0000) −0.0264% −5.4349%
71 GBP (0.0310) TRY (0.0000) CNY (0.9690) RUB (0.0000) −0.0242% −4.9888%
72 EUR (0.0690) TRY (0.0000) CNY (0.9310) RUB (0.0000) −0.0242% −4.9823%
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