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Abstract: We study a toy model of linear-quadratic mean field game with delay. We “lift” the delayed
dynamic into an infinite dimensional space, and recast the mean field game system which is made of
a forward Kolmogorov equation and a backward Hamilton-Jacobi-Bellman equation. We identify the
corresponding master equation. A solution to this master equation is computed, and we show that it
provides an approximation to a Nash equilibrium of the finite player game.
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1. Introduction

A linear quadratic stochastic game model of inter-bank borrowing and lending was proposed in
(Carmona et al. 2015). In this model, each individual bank tries to minimize its costs by controlling
its rate of borrowing or lending to a central bank with no obligation to pay back its loan. The finding
is that, in equilibrium, the central bank acts as a clearing house providing liquidity, and hence
stability is enhanced. This model was extended in (Carmona et al. 2018), where a delay in the
controls was introduced. The financial motivation is that banks are responsible for the past borrowing
or lending, and need to make a repayment after a fixed time (the delay). In this model, the
dynamics of the log-monetary reserves of the banks are described by stochastic delayed differential
equations (SDDE). A closed-loop Nash equilibrium is identified by formulating the original SDDE
in an infinite dimensional space formed by the state and the past of the control, and by solving the
corresponding infinite dimensional Hamilton-Jacobi-Bellman (HJB) equation. For general stochastic
equations and control theory in infinite dimension, we refer to (Bensoussan et al. 2007; Fabbri et al. 2017;
Da Prato and Zabczyk 2008).

In this paper, we study the mean field game (MFG) corresponding to the model proposed in
(Carmona et al. 2018) as the number of banks goes to infinity. We identify the mean field game
system, which is a system of coupled partial differential equations (PDEs). The forward Kolmogorov
equation describes the dynamics of the joint law of current state and past control, and the backward
HJB equation describes the evolution of the value function. Recently, J.-M. Lasry and P.-L. Lions
introduced the concept of “master equation” which contains all the information about the MFG.
The well-posedness of this master equation in presence of a common noise and convergence of the
N-player system is analyzed in (Cardaliaguet et al. 2015) by a PDE approach. A probabilistic approach
is proposed in (Carmona and Delarue 2014; Chassagneux et al. 2014). See also the two-volume book
(Carmona and Delarue 2018) for a complete account of this approach.
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In this paper, the master equation for our delayed mean field game is derived, a solution is given
explicitly, and we show that it is the limit of the closed-loop Nash equilibrium of the N-player game
system as N → ∞.

The paper is organized as follows. In Section 2, we briefly review the stochastic game model with
delay presented in (Carmona et al. 2018). Then, in Section 3, we construct the corresponding mean
field game system. In Section 4, we define derivatives with respect to probability measures in the space
P(H) where H is the Hilbert space defined at the beginning of Section 2.2. In addition, we derive
the master equation, and exhibit an explicit solution. Furthermore, in Section 5, we show that this
solution of the master equation is an approximation of order 1/N to the solution of the finite-player
Nash system. Lastly, in Section 6, we compare the solution of the Nash system, the solution of the
mean field game system, and the solution to the master equation.

2. A Differential Game with Delay

2.1. The Model

Let
(
Xi

t, i = 1, · · · , N
)

represents the log-monetary reserves of the N banks at time t. At each time
t, bank i controls its rate of borrowing or lending αi

t, and it also needs to make a repayment after a
fixed time τ such that 0 ≤ τ ≤ T, at a rate denoted by αi

t−τ . The dynamic of log-monetary reserves for
each bank is given by

dXi
t = (αi

t − αi
t−τ)dt + σdWi

t , (1)

with deterministic initial conditions

Xi
0 = ξ i, and αi

s = φi(s) for s ∈ [−τ, 0], (2)

where Wi
t , i = 1, . . . , N are independent standard Brownian motions, and banks have the same

volatility σ > 0.
Bank i interacts with other banks by choosing its own strategy in order to minimize its cost

functional Ji(αi, α−i), which involves the average of log-monetary reserves of all the other banks.
The notation α−i is a (N − 1) tuple of the αj with j 6= i and j ∈ {1, · · · , N}, which represents all other
banks’ control except bank i. The cost functional for bank i ∈ {1, . . . , N} is given by:

Ji(αi, α−i) = E
[∫ T

0
fi(Xt, αi

t)dt + gi(XT)

]
, (3)

where the running and terminal cost functions f and g are:

fi(x, αi) =
1
2
(αi)2 +

ε

2
(x̄− xi)2, with x̄ :=

1
N

N

∑
k=1

xk, and ε > 0,

gi(x) =
c
2
(x̄− xi)2, c ≥ 0.

(4)

2.2. Construction of a Nash Equilibrium

In order to apply the dynamic programming principle to identify a closed-loop Nash
equilibrium, we have to enlarge the state space by including the path of past controls, which lie in
H := L2([−τ, 0];R), the Hilbert space of square integrable real functions defined on [−τ, 0], and write
an infinite dimensional representation for our system. This evolution equation approach was initiated
in (Vinter and Kwong 1981) under a deterministic control setting, and later was generalized in
(Gozzi and Marinelli 2006) to a stochastic control problem.



Risks 2018, 6, 90 3 of 17

Given z ∈ R×H, z0 ∈ R, and z1 ∈ H will denote the two components of the product space R×H.
The inner product on R×H will be denoted by 〈·, ·〉, and it is defined by

〈z, z̃〉 = z0z̃0 +
∫ 0

−τ
z1(s)z̃1(s)ds. (5)

Therefore, the new state is denoted by Zi
t = (Zi

0,t, Zi
1,t(s)), s ∈ [−τ, 0], which corresponds to

(Xi
t, αi

t−τ−s) in the notation of the original system (1).
Bank i tries to minimize its cost functional Ji(αi, α−i) defined by

Ji(t, z, αi, α−i) = E
[∫ T

t
fi(Z0,s, αi

s)ds + gi(Z0,T)|Zt = z
]

. (6)

After all other players j 6= i have chosen their optimal strategies which minimize their cost
functionals, player i’s value function Vi(t, z) is defined by

Vi(t, z) = inf
αi

Ji(t, z, αi, α−i).

By dynamic programming principle, the value function Vi(t, z) must satisfy the following infinite
dimensional HJB equation (see Fabbri et al. 2017 Chapter 2 for details):

∂tVi(t, z) + 1
2 Tr(G∗G∂zzVi(t, z)) + ∑N

k=1〈Azk, ∂zk Vi(t, z)〉+ infαi

[
∑N

k=1〈Bαk, ∂zk Vi(t, z)〉+ fi(z0, αi)
]
= 0, (7)

with terminal condition Vi(T, z) = c
2 (z̄0 − zi

0)
2, where the operator A : D(A) ⊂ R×H → R×H is

defined as

A : (z0, z1(s))→
(

z1(0),−
dz1(s)

ds

)
a.e., s ∈ [−τ, 0],

and its domain is D(A) = {(z0, z1(·)) ∈ R×H : z1(·) ∈W1,2([−τ, 0];R), z1(−τ) = 0}.
The adjoint of A is A∗ : D(A∗) ⊂ R×H→ R×H and is defined by

A∗ : (z0, z1(s))→
(

0,
dz1(s)

ds

)
a.e., s ∈ [−τ, 0],

with domain D(A∗) = {(z0, z1(·)) ∈ R×H : z1(·) ∈W1,2([−τ, 0];R), z0 = z1(0)}.
The operator B : R→ R×H is defined by

B : u→ (u,−δ−τ(s)u), s ∈ [−τ, 0],

where δ−τ(·) is the Dirac measure at −τ.
The adjoint of B is B∗ : R×H→ R given by

B∗ : (z0, z1(s))→ z0 − z1(−τ).

The operator G : RN → RN ×HN is defined by

G : z0 → (σz0, 0).

The infinite dimensional representation of the original system (1) is given by

dZi
t = (AZi

t + Bαi
t)dt + GdWt, 0 ≤ t ≤ T,

Zi
0 = (ξ i, φi(s)) ∈ H.

(8)
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By minimizing the Hamiltonian in (7), the infimum can be computed, so that the optimal control
is attained at

α̂i = −〈B, ∂zi Vi〉 = −
(

∂zi
0
Vi − [∂zi

1
Vi](−τ)

)
. (9)

Assuming that each player follows its own optimal strategy (α̂i)1≤i≤N , which forms a Nash
equilibrium, the corresponding value function follows the HJB equation

∂tVi + 1
2 Tr(G∗G∂zzVi) + ∑N

k=1〈Azk, ∂zk Vi〉 −∑k 6=i
(

B∗∂zk Vi) · (B∗∂zk Vk
)
− 1

2 (B∗∂zi Vi)2 + ε
2 (z̄0 − zi

0)
2 = 0. (10)

After applying the definitions of the operators A, B and Q, the HJB equation for player i becomes:

∂tVi + ∑N
k=1

1
2 σ2∂zk

0zk
0
Vi + ∑N

k=1
∫ 0
−τ zk

1
d
ds (∂zk

1
Vi)ds

−∑N
k 6=i

(
∂zk

0
Vk − [∂zk

1
Vk](−τ)

) (
∂zk

0
Vi − [∂zk

1
Vi](−τ)

)
− 1

2

(
∂zi

0
Vi − [∂zi

1
Vi](−τ)

)2
+ ε

2 (z̄0 − zi
0)

2 = 0.

(11)

As shown in (Carmona et al. 2018), a solution of the system (11) can be found in the form

Vi(t, z) = E0(t)(z̄0 − zi
0)

2 − 2(z̄0 − zi
0)
∫ 0
−τ E1(t,−τ − s)(z̄1 − zi

1)ds

+
∫ 0
−τ

∫ 0
−τ E2(t,−τ − s,−τ − r)(z̄1 − zi

1)(z̄1 − zi
1)dsdr + E3(t),

(12)

for some deterministic functions E0(t), E1(t, s), E2(t, s, r), and E3(t) satisfying the following PDEs

dE0(t)
dt

+ 2
(

1
N2 − 1

)
(E0(t) + E1(t, 0))2 +

ε

2
= 0,

∂E1(t, s)
∂t

− ∂E1(t, s)
∂s

+ 2
(

1
N2 − 1

)
(E0(t) + E1(t, 0))(E1(t, s) + E2(t, s, 0)) = 0,

∂E2(t, s, r)
∂t

− ∂E2(t, s, r)
s

− ∂E2(t, s, r)
r

+ 2
(

1
N2 − 1

)
(E1(t, s) + E2(t, s, 0))(E1(t, r) + E2(t, r, 0)) = 0,

dE3(t)
dt

+ (1− 1
N
)σ2E0(t) = 0,

(13)

with boundary conditions: ∀t ∈ [0, T] and ∀s, r ∈ [−τ, 0],

E0(T) =
c
2

, E1(T, s) = 0, E2(T, s, r) = 0, E2(t, s, r) = E2(t, r, s),

E1(t,−τ) = −E0(t), E2(t, s,−τ) = −E1(t, s), E3(T) = 0.
(14)

This set of PDEs (13) with boundary conditions (14) admits a unique solution as shown in
(Vinter and Kwong 1981), and the optimal strategies take the integral form

α̂i
t = 2

(
1− 1

N

) [
(E1(t, 0) + E0(t)) (z̄0 − zi

0)−
∫ 0
−τ(E2(t,−τ − s, 0) + E1(t,−τ − s))(z̄1 − zi

1)ds

]
. (15)
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3. The Mean Field Game System

The mean field game theory describes the structure of a game with infinite many indistinguishable
players. All players are rational, i.e., each player tries to minimize their cost against the mass of other
players. This assumption implies that the running cost and terminal cost in (4) only depend on i-th
player’s state zi

0 and the empirical distribution of (zj
0)j 6=i. Denoting this empirical distribution by

µi
0 =

1
N − 1 ∑

j 6=i
δ

zj
0
,

these costs, as in (4), can be re-written as

fi(z0, αi) = 1
2 (α

i)2 + ε
2 (z̄0 − zi

0)
2

= 1
2 (α

i)2 + ε
2

(
1− 1

N

)2 (∫
R y0dµi

0(y0)− zi
0
)2 := f (zi

0, µi
0, αi),

gi(z0) = c
2

(
1− 1

N

)2 (∫
R y0dµi

0(y0)− zi
0
)2 := g(zi

0, µi
0).

(16)

As the number N of players goes to ∞, the joint empirical distribution of the states and past
controls Zj

t = (Zj
0,t, Zj

1,t)

νi
t :=

1
N − 1 ∑

j 6=i
δ
(Zj

0,t ,Z
j
1,t)

,

with marginals

µi
0,t =

1
N − 1 ∑

j 6=i
δ

Zj
0,t

, µi
1,t =

1
N − 1 ∑

j 6=i
δ

Zj
1,t

,

converges to a deterministic limit denoted by ν(t) (with marginals denoted by µ0(t) and µ1(t)).
Here, we assume that, at time 0, νi

0 satisfies the LLN (for instance with i.i.d. Zj
0), and that the

propagation of chaos property holds. A full justification of this property would involve generalizing
the result in Section 2.1 of (Carmona and Delarue 2014) to an infinite dimensional setting in order to
take into account the past of the controls. This is highly technical but intuitively sound. A complete
proof is beyond the scope of this paper.

In the limit, a single representative player tries to minimize his cost functional, and, dropping the
index i, his value function is defined as

V(t, z) = inf
(αs)t≤s≤T

E
[∫ T

t
f (s, Z0,s, µ0(s), αs)ds + g(Z0,T , µ0(T))|Zt = z

]
, (17)

subject to
dZt = (AZt + Bαt)dt + GdWt. (18)

The HJB equation for the value function V(t, z) reads

∂tV + 1
2 Tr(G∗G∂zzV) + 〈AZ, ∂zV〉+ infα

{
〈Bα, ∂zV〉+ 1

2 α2 + ε
2
(∫

R y0dµ0(y0)− z0
)2
}
= 0, (19)

with terminal condition V(T, z) = c
2 (
∫
R y0dµ0(y0)− z0)

2. Then, we minimize in α to get

α̂t = − (∂z0 V − [∂z1 V](−τ)) . (20)
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After plugging it into (19), our backward HJB equation reads:

∂tV +
1
2

σ2∂z0z0 V +
∫ 0

−τ
z1

d
ds

(∂z1 V)ds− 1
2
(∂z0 V − [∂z1 V](−τ))2

+
ε

2

(∫
R

y0dµ0(y0)− z0

)2
= 0,

V(T, z) =
c
2

(∫
R

y0dµ0(y0)− z0

)2
.

(21)

Next, since we “lift” the original non-Markovian optimization problem into a infinite dimensional
Markovian control problem, we are able to characterize the corresponding generator for (18), which is
denoted by Lt,

Lt ϕ(z) = 〈(AZ + Bα̂t), ∂z ϕ〉+ 1
2

Tr(G∗G∂zz ϕ), (22)

where ϕ is a smooth function and the time dependency comes from α̂t given by (20). The derivation of
the adjoint L∗t of Lt is given in Appendix A. Consequently, the forward Kolmogorov equation for the
distribution ν(t) reads

∂tν =
∫ 0

−τ
∂z1

(
d
ds

z1ν

)
ds−

∫ 0

−τ
∂z1(z1ν)(δ0(s)− δ−τ(s))ds + ∂z0{(∂z0 V − [∂z1 V](−τ))ν}

−
∫ 0

−τ
∂z1{(∂z0 V − [∂z1 V](−τ))ν}δ−τ(s)ds +

1
2

σ2∂z0z0 ν,

ν(0) = P(ξ, φ(s)s∈[−τ,0]).

(23)

Combining (21) with (23), we obtain the mean field game system. To solve this, We make the
following ansatz for the value function

V(t, z) = E0(t)(m0 − z0)
2 − 2(m0 − z0)

∫ 0

−τ
E1(t,−τ − s)(m1 − z1)ds

+
∫ 0

−τ

∫ 0

−τ
E2(t,−τ − s,−τ − r)(m1 − z1)(m1 − z1)dsdr + E3(t).

(24)

where we denote the mean of state m0 :=
∫
R z0dµ0(z0), and the mean of past control m1 :=∫

H z1dµ1(z1). Plugging (24) into (23), multiplying both sides of (23) by z0, and integrating over
R×H, we have∫

R×H
z0∂tνdz =

∫
R×H

z0

∫ 0

−τ
∂z1

(
d
ds

z1ν

)
dsdz−

∫
R×H

z0

∫ 0

−τ
∂z1(z1ν)(δ0(s)− δ−τ(s))dsdz

+
∫
R×H

z0∂z0{(∂z0 V − [∂z1 V](−τ))ν}dz−
∫
R×H

z0

∫ 0

−τ
∂z1{(∂z0 V − [∂z1 V](−τ))ν}δ−τ(s)dsdz

+
∫
R×H

z0
1
2

σ2∂z0z0 νdz.

(25)

After integration by parts, we obtain

∂tm0 =
∫
R×H
{∂z0 V − [∂z1 V](−τ)} νdz = 0, (26)

as can be seen directly using (24).
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Similarly, plugging (24) to (23), multiplying both sides of (23) by z1, and integrating over R×H,
we get

∫
R×H

z1∂tνdz =
∫
R×H

z1

∫ 0

−τ
∂z1

(
d
ds

z1ν

)
dsdz−

∫
R×H

z1

∫ 0

−τ
∂z1(z1ν)(δ0(s)− δ−τ(s))dsdz

+
∫
R×H

z1∂z0{(∂z0 V − [∂z1 V](−τ))ν}dz−
∫
R×H

z1

∫ 0

−τ
∂z1{(∂z0 V − [∂z1 V](−τ))ν}δ−τ(s)dsdz

+
∫
R×H

z1
1
2

σ∂2
z0z0

νdz.

(27)

By integration by parts, we deduce

∂tm1 = −
∫
R×H

∫ 0

−τ

d
ds

z1νdsdz +
∫
R×H

∫ 0

−τ
z1ν(δ0(s)− δ−τ(s))dsdz

+
∫
R×H
{∂z0 V − [∂z1 V](−τ)} νdz

= 0.

(28)

Now we are ready to verify the ansatz (24). We first compute the derivative of the ansatz,

∂tV =
dE0(t)

dt
(m0 − z0)

2 − 2(m0 − z0)
∫ 0

−τ

∂E1(t,−τ − s)
∂t

(m1 − z1)ds

+
∫ 0

−τ

∫ 0

−τ

∂E2(t,−τ − s,−τ − r)
∂t

(m1 − z1)(m1 − z1)dsdr +
dE3(t)

dt
,

∂z0 V = −2E0(t)(m0 − z0) + 2
∫ 0

−τ
E1(t,−τ − s)(m1 − z1)ds,

∂z1 V = 2E1(t,−τ − s)(m0 − z0)− 2
∫ 0

−τ
E2(t,−τ − s,−τ − r)(m1 − z1)dr,

∂z0z0 V = 2E0(t).

(29)

Then, we plug the ansatz (24) into (7), and by collecting (m0 − z0)
2 terms, (m0 − z0)(m1 − z1)

terms, (m1 − z1)
2 terms, and constant terms, we obtain the following system of PDEs:

dE0(t)
dt

− 2(E0(t) + E1(t, 0))2 +
ε

2
= 0,

∂E1(t, s)
∂t

− ∂E1(t, s)
∂s

− 2(E0(t) + E1(t, 0))(E1(t, s) + E2(t, s, 0)) = 0,

∂E2(t, s, r)
∂t

− ∂E2(t, s, r)
s

− ∂E2(t, s, r)
r

− 2(E1(t, s) + E2(t, s, 0))(E1(t, r) + E2(t, r, 0)) = 0,

dE3(t)
dt

+ σ2E0(t) = 0,

(30)

with boundary conditions

E0(T) =
c
2

, E1(T, s) = 0, E2(T, s, r) = 0, E2(t, s, r) = E2(t, r, s),

E1(t,−τ) = −E0(t), E2(t, s,−τ) = −E1(t, s), E3(T) = 0.
(31)

As for (13)–(14), the system (30)–(31) admits a unique solution.
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4. The Master Equation

4.1. Derivatives

The master equation for this delayed game lies in an infinite dimensional space, and it requires a
notion of derivatives in the space of measures in P(H).

The set P(H) of probability measure on H is endowed with Monge-Kantorovich distance

dMK(µ1, µ′1) = sup
{∥∥∥∥∫H f (z)d(µ1 − µ′1)(z)

∥∥∥∥
H

: f ∈ Lip1(H)

}
, (32)

where Lip(H) is the collection of real-valued Lipschitz functions on H with Lipschitz constant 1.

Definition 1. We say that F : P(H)→ H is C1 if there exists an operator δF
δν : P(H)×H→ H such that for

any µ1 and µ′1 ∈ P(H)

lim
ε→0+

F(µ1 + ε(µ′1 − µ1))− F(µ1)

ε
=
∫
H

δF
δµ1

(µ1, y1)d(µ′1 − µ1)(y1). (33)

Definition 2. If δF
δµ1

(µ1, y1) is of class C1 with respect to y1, the marginal derivative Dµ1 F : P(H)×H→ H
is defined in the sense of Fréchet derivative:

Dµ1 F(µ1, y1) := Dy1

δF
δµ1

(µ1, y1). (34)

Remark 1. Usually we will encounter a map U : P(H) → R. In this case, U can be expressed in a form of
composition Ũ ◦ F, where Ũ : H→ R, and F : P(H)→ H, i.e., U = (Ũ ◦ F)(µ1).

If δF
δµ1

is C1 with respect to y1, and Ũ is Fréchet differentiable, then δU
δµ1

: P(H)×H → H, and Dµ1U :
P(H)×H→ H are defined by

δU
δµ1

(µ1, y1) := (DFŨ)

(
δF
δµ1

)
, and Dµ1U(µ1, y1) :=

(
DFŨ

) (
Dµ1 F

)
. (35)

Example 1. Suppose U(µ1) =
∫ 0
−τ

∫
H g(x1(s))dµ1(x1)ds, where g : H → H is Fréchet differentiable.

Then U(µ1) can be written as Ũ[F(µ1)](s), where Ũ[F] =
∫ 0
−τ F(s)ds, and F(µ1) =

∫
H g(x1(s))dµ1(x1). Then

F(µ1 + ε(µ′1 − µ1)) =
∫
H

g(x1(s))d(µ1 + ε(µ′1 − µ1)).

So
F(µ1 + ε(µ′1 − µ1))− F(µ1)

ε
=
∫
H

g(x1(s))d(µ′1 − µ1).

Then
δF
δµ1

(µ1, y1) = g(y1), and Dµ1 F(µ1, y1) = Dy1 g(y1).

Since DFŨ[F] = 1, we have

δU
δµ1

(µ1, y1) = g(y1) and Dµ1U(µ1, y1) = Dy1 g(y1).
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4.2. The Master Equation

Theorem 1. For any (t0, ν0) ∈ [0, T]×P(R×H), we define

U(t0, ·, ν0) := V(t0, ·), (36)

where (V, ν) is a classical solution to the system of forward-backward Equations (21) and (23), with initial
condition ν(t0) = ν0, and terminal condition V(T, z) = c

2 (
∫
R y0dµ0(y0)− z0)

2, respectively. Then U must
satisfy the following master equation

∂tU(t, z0, z1, ν) +
1
2

σ2∂z0z0U(t, z0, z1, ν) +
1
2

σ2
∫
R

∂y0 Dµ0U(t, z0, z1, ν, y0)dµ0(y0)

+
∫ 0

−τ
z1

d
ds

∂z1U(t, z0, z1, ν)ds +
∫ 0

−τ

∫
H

y1
d
ds
[
Dµ1U(t, z0, z1, ν, y1)

]
(s)dµ1(y1)ds

−
∫
R×H

(
∂y0U(t, y0, y1, ν)− [∂y1U(t, y0, y1, ν)](−τ)

)
Dµ0U(t, z0, z1, ν, y0)dν(y)

+
∫
R×H

(
∂y0U(t, y0, y1, ν)− [∂y1U(t, y0, y1, ν)](−τ)

)
[Dµ1U(t, z0, z1, ν, y1)](−τ)dν(y)

− 1
2
(∂z0U(t, z0, z1, ν)− [∂z1U(t, z0, z1, ν)](−τ))2 +

ε

2

(∫
R

y0dµ0(y0)− z0

)2
= 0,

(37)

where µ0 and µ1 are the marginal law for Z0 and Z1 respectively.

Proof. For any h ∈ [0, T − t0], V(t0 + h, ·) = U(t0 + h, ·, ν(t0 + h)). Then

∂tV(t0, z)

=∂tU(t0, z, ν0) +
∫
R×H

δU
δν

(t0, z, ν, y)∂tν(t0, y)dy

=∂tU(t0, z, ν0) +
∫
R×H

δU
δν

(t0, z, ν, y)
(∫ 0

−τ
∂y1

(
d
ds

y1ν

)
ds−

∫ 0

−τ
∂y1(y1ν)(δ0(s)− δ−τ(s))ds

+∂y0

{
(∂y0U − [∂y1U](−τ))ν

}
−
∫ 0

−τ
∂y1

{
(∂y0U − [∂y1U](−τ))ν

}
δ−τ(s)ds +

1
2

σ2∂y0y0 ν

)
dy

=∂tU(t0, z, ν0)−
∫ 0

−τ

∫
R×H

Dµ1U(t0, z, ν, y)
d
ds

y1νdyds

+
∫ 0

−τ

∫
R×H

Dµ1Uy1ν(δ0(s)− δ−τ(s))dyds−
∫
R×H

Dµ0U(∂y0U − [∂y1U](−τ))νdy

+
∫ 0

−τ

∫
R×H

Dµ1U(∂y0U − [∂y1U](−τ)ν)δ−τ(s)dyds +
∫
R×H

1
2

σ2∂y0 Dµ0Uνdy

=∂tU(t0, z, ν0) +
∫ 0

−τ

∫
R×H

y1
d
ds

Dµ1Uνdyds−
∫
R×H

Dµ0U(∂y0U − [∂y1U](−τ))νdy

+
∫
R×H

[Dµ1U](−τ)((∂y0U − [∂y1U](−τ))νdy +
1
2

σ2
∫
R×H

∂y0 Dµ0Uνdy.

(38)

On the other hand, V satisfies the HJB Equation (7).

∂tV

=− 1
2

σ2∂z0z0 V −
∫ 0

−τ
z1

d
ds

(∂z1 V)ds +
1
2
(∂z0 V − [∂z1 V](−τ))2 − ε

2

(∫
R

y0dµ0(y0)− z0

)2

=− 1
2

σ2∂z0z0U −
∫ 0

−τ
z1

d
ds

(∂z1U)ds +
1
2
(∂z0U − [∂z1U](−τ))2 − ε

2

(∫
R

y0dµ0(y0)− z0

)2
.

(39)

Therefore, subtracting (39) from (38), we have shown that U satisfies the master Equation (37).
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4.3. Explicit Solution of the Master Equation

It turns out that this master Equation (37) can be solved explicitly by making the following ansatz,
and we also define m0 :=

∫
R y0dµ0(y0) and m1 :=

∫
H y1dµ1(y1) for convenience.

U(t, z0, z1, ν) = E0(t)(m0 − z0)
2 − 2(m0 − z0)

∫ 0

−τ
E1(t,−τ − s)(m1 − z1)ds

+
∫ 0

−τ

∫ 0

−τ
E2(t,−τ − s,−τ − r)(m1 − z1)(m1 − z1)dsdr + E3(t).

(40)

Then, we compute the partial derivatives needed in (37) explicitly, we have

∂tU =
dE0(t)

dt
(m0 − z0)

2 − 2(m0 − z0)
∫ 0

−τ

∂E1(t,−τ − s)
∂t

(m1 − z1)ds

+
∫ 0

−τ

∫ 0

−τ

∂E2(t,−τ − s,−τ − r)
∂t

(m1 − z1)(m1 − z1)dsdr +
dE3(t)

dt
,

∂z0U = −2E0(t)(m0 − z0) + 2
∫ 0

−τ
E1(t,−τ − s)(m1 − z1)ds,

∂z1U = 2E1(t,−τ − s)(m0 − z0)− 2
∫ 0

−τ
E2(t,−τ − s,−τ − r)(m1 − z1)dr,

Dµ0U = 2E0(t)(m0 − z0)− 2
∫ 0

−τ
E1(t,−τ − s)(m1 − z1)ds,

Dµ1U = −2E1(t,−τ − s)(m0 − z0) + 2
∫ 0

−τ
E2(t,−τ − s,−τ − r)(m1 − z1)dr,

∂z0z0U = 2E0(t),

(41)

and plug those into our master Equation (37). We have

dE0(t)
dt

(m0 − z0)
2 − 2(m0 − z0)

∫ 0

−τ

∂E1(t,−τ − s)
∂t

(m1 − z1)ds

+
∫ 0

−τ

∫ 0

−τ

∂E2(t,−τ − s,−τ − r)
∂t

(m1 − z1)(m1 − z1)dsdr +
dE3(t)

dt
+

1
2

σ2(2E0(t))

−
∫ 0

−τ
(m1 − z1)

(
2

∂E1(t,−τ − s)
∂s

(m0 − z0)− 2
∫ 0

−τ

∂E2(t,−τ − s,−τ − r)
∂s

(m1 − z1)dr
)

ds

− 2
(
(E0(t) + E1(t, 0))(m0 − z0)−

∫ 0

−τ
(E1(t,−τ − s) + E2(t,−τ − s, 0))(m1 − z1)ds

)2

+
ε

2
(m0 − z0)

2 = 0.

Collecting (m0 − z0)
2 terms, (m0 − z0)(m1 − z1) terms, (m1 − z1)

2 terms, and constant terms,
we obtain that the function Ei, i = 0, · · · , 3, satisfy the system of PDEs (30) with boundary conditions (31).

5. Convergence of the Nash System

From the previous section, we have seen that our master equation is well posed, and we obtained
an explicit solution. Furthermore, it also describes the limit of Nash equilibria of the N-player games
as N → ∞. In this section, generalizing to the case with delay the results of (Cardaliaguet et al. 2015)
(see also Kolokoltsov et al. 2014), we show that the solution of the Nash system (11) converges
to the solution of the master Equation (37) as number of players N → +∞, with a 1/N Cesaro
convergence rate.

In Section 4, we find that (40) is a solution to the master Equation (37). We set
ui(t, z0, z1) := U(t, zi

0, zi
1, νi), where νi = 1

N−1 ∑k 6=i δ(zk
0,zk

1)
, denotes the joint empirical measure of
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z0 and z1. The empirical measure of z0 is given by µi
0 = 1

N−1 ∑k 6=i δzk
0
, and the empirical measure of z1

is given by µi
1 = 1

N−1 ∑k 6=i δzk
1
. Note that, by direct computation, for k 6= i, and any N ≥ 2,

∂zk
0
ui(t, z0, z1) =

1
N − 1

Dµi
0
U(t, zi

0, zi
1, νi, zk

0),

∂zk
1
ui(t, z0, z1) =

1
N − 1

Dµi
1
U(t, zi

0, zi
1, νi, zk

1),

∂zk
0zk

0
ui(t, z0, z1) =

1
N − 1

∂zk
0
[Dµi

0
U](t, zi

0, zi
1, νi, zk

0) +
1

(N − 1)2 Dµi
0µi

0
U(t, zi

0, zi
1, νi, zk

0, zk
0).

(42)

Proposition 1. For any i ∈ {1, · · · , N}, ui(t, z0, z1) satisfies

∂tui + ∑N
k=1

1
2 σ2∂zk

0zk
0
ui + ∑N

k=1
∫ 0
−τ zk

1
d
ds (∂zk

1
ui)ds−∑N

k 6=i

(
∂zk

0
uk − [∂zk

1
uk](−τ)

) (
∂zk

0
ui − [∂zk

1
ui](−τ)

)
− 1

2

(
∂zi

0
ui − [∂zi

1
ui](−τ)

)2
+ ε

2 (z̄0 − zi
0)

2 + ei(t, z) = 0,
(43)

where ‖ei(t, z)‖ < C
N , with terminal condition ui(T, z) = c

2 (z̄0 − zi
0)

2.
This shows that (ui)i∈{1,...,N} is “almost” a solution to the Nash system (11).

Proof. We compute each term in the above equation in terms of U using the relationship (42), and we
use the fact that U is a solution to the master equation.

•

N

∑
k=1

1
2

σ2∂zk
0zk

0
ui(t, z0, z1)

=
1
2

σ2∂zi
0zi

0
ui(t, z0, z1) + ∑

k 6=i

1
2

σ2∂zk
0zk

0
ui(t, z0, z1)

=
1
2

σ2∂zi
0zi

0
U(t, zi

0, zi
1, νi) +

1
2

σ2 ∑
k 6=i

1
N − 1

∂zk
0
[Dµi

0
U](t, zi

0, zi
1, νi, zk

0)

+
1
2

σ2 ∑
k 6=i

1
(N − 1)2 Dµi

0µi
0
U(t, zi

0, zi
1, νi, zk

0, zk
0)

=
1
2

σ2∂zi
0zi

0
U(t, zi

0, zi
1, νi) +

1
2

σ2
∫
R

∂y0 [Dµi
0
U](t, zi

0, zi
1, νi, y0)dµi

0(y0)

+
1
2

σ2 1
N − 1

∫
R

Dµi
0µi

0
U(t, zi

0, zi
1, νi, y0, y0)dµi

0(y0).

•

N

∑
k=1

∫ 0

−τ
zk

1
d
ds

(∂zk
1
ui)ds

=
∫ 0

−τ
zi

1
d
ds

(∂zi
1
ui)ds + ∑

k 6=i

∫ 0

−τ
zk

1
d
ds

(∂zk
1
ui)ds

=
∫ 0

−τ
zi

1
d
ds

(∂zi
1
U)ds + ∑

k 6=i

∫ 0

−τ
zk

1
d
ds

[
1

N − 1
Dµi

1
U(t, zi

0, zi
1, νi, zk

1)

]
ds

=
∫ 0

−τ
zi

1
d
ds

(∂zi
1
U)ds +

∫ 0

−τ

∫
H

y1
d
ds

[
Dµi

1
U(t, zi

0, zi
1, νi, y1)

]
dµi

1(y1)ds.
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• From the solution (40) of the master equation, ∂zU is Lipschitz with respect to the measures. Namely,

|∂z0U(t, zk, νi)− ∂z0U(t, zk, νk)| ≤ C1(dMK(µ
i
0, µk

0) + dMK(µ
i
1, µk

1)) ≤
C1

N − 1
,

‖∂z1U(t, zk, νi)− ∂z1U(t, zk, νk)‖H ≤ C2(dMK(µ
i
0, µk

0) + dMK(µ
i
1, µk

1)) ≤
C2

N − 1
.

(44)

Thus,

∑
k 6=i

(∂zk
0
uk − [∂zk

1
uk](−τ))(∂zk

0
ui − [∂zk

1
ui](−τ))

= ∑
k 6=i

∂zk
0
U(t, zk

0, zk
1, νk)

(
1

N − 1
Dµi

0
U(t, zi

0, zk
1, νi, zk

0)−
1

N − 1
[Dµi

1
U(t, zi

0, zi
1, νi, zk

1)](−τ)

)
−∑

k 6=i
[∂zk

1
U(t, zk

0, zk
1, νk)](−τ)

(
1

N − 1
Dµi

0
U(t, zi

0, zk
1, νi, zk

0)−
1

N − 1
[Dµi

1
U(t, zi

0, zi
1, νi, zk

1)](−τ)

)
= ∑

k 6=i
∂zk

0
U(t, zk

0, zk
1, νi)

(
1

N − 1
Dµi

0
U(t, zi

0, zk
1, νi, zk

0)−
1

N − 1
[Dµi

1
U(t, zi

0, zi
1, νi, zk

1)](−τ)

)
−∑

k 6=i
[∂zk

1
U(t, zk

0, zk
1, νi)](−τ)

(
1

N − 1
Dµi

0
U(t, zi

0, zk
1, νi, zk

0)−
1

N − 1
[Dµi

1
U(t, zi

0, zi
1, νi, zk

1)](−τ)

)
+ O(

1
N
)

=
∫ 0

−τ

∫
R×H

(
∂y0U − ∂y1U

)
(t, y0, y1, νi) ·

(
Dµi

0
U − Dµi

1
U
)
(t, zi

0, zi
1, νi, y0, y1)dν(y0, y1)δ−τ(s)ds

+ O(
1
N
).

Then,

∂tui +
N

∑
k=1

1
2

σ2∂zk
0zk

0
ui +

N

∑
k=1

∫ 0

−τ
zk

1
d
ds

(∂zk
1
ui)ds

−
N

∑
k 6=i

(∂zk
0
uk − [∂zk

1
uk](−τ))(∂zk

0
ui − [∂zk

1
ui](−τ))− 1

2

(
∂zi

0
ui − [∂zi

1
ui](−τ)

)2
+

ε

2
(z̄0 − zi

0)
2

=∂tU +
1
2

σ2∂zi
0zi

0
U(t, zi

0, zi
1, νi) +

1
2

σ2
∫
R

∂y0 [Dµi
0
U](t, zi

0, zi
1, νi, y0)dµi

0(y0)

+
∫ 0

−τ
zi

1
d
ds

(∂zi
1
U)ds +

∫ 0

−τ

∫
H

y1
d
ds

[
Dµi

1
U(t, zi

0, zi
1, νi, y1)

]
dµi

1(y1)ds

−
∫
R×H

(
∂y0U − [∂y1U](−τ)

)
(t, y0, y1, νi) ·

(
Dµi

0
U − [Dµi

1
U](−τ)

)
(t, zi

0, zi
1, νi, y0, y1)dνi(y0, y1)

− 1
2
(∂zi

0
U − [∂zi

1
U](−τ))2 +

ε

2

(∫
y0dµi

0(y0)− zi
0

)2

+ O(
1
N
) +

1
2

σ2 1
N − 1

∫
R

Dµi
0µi

0
U(t, zi

0, zi
1, νi, y0, y0)dµi

0(y0)

=O(
1
N
).
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Theorem 2. Let Vi be the solution to the HJB Equation (11) of the N-player system, where N ≥ 1 fixed, and U
be the solution to the master Equation (37). Fix any (t0, ν0) ∈ [0, T]× P(R×H). Then for any z ∈ RN ,
let νi = 1

N−1 ∑N
j 6=i δ

(zj
0,zj

1)
, we have

1
N

N

∑
i=1
|Vi(t0, z)−U(t0, zi, νi)| ≤ CN−1. (45)

Proof. We first apply Ito’s formula to (Vi)i∈{1,...,N}, and use the fact that Vi satisfies the HJB Equation (11)
for the Nash system.

dVi(t, Zt)

=∂tVidt + ∂zVidZt +
1
2

Tr(∂zzVid[Z, Z]t)

=∂tVidt + 〈AZ, ∂zVi〉dt + 〈Bα̂i, ∂zVi〉dt + 〈∂zVi, G〉dWt +
1
2

Tr(G∗G∂zzVi)dt

=∂tVidt +
N

∑
k=1

∫ 0

−τ
zk

1
d
ds

(∂zk
1
Vi)dsdt−

N

∑
k=1

(∂zk
0
Vi − [∂zk

1
Vi](−τ))(∂zk

0
Vk − [∂zk

1
Vk](−τ))dt

+
N

∑
k=1

1
2

σ2∂zk
0zk

0
Vidt +

N

∑
k=1

σ∂zk
0
VidWk

t

=

[
−1

2
(∂zi

0
Vi − [∂zi

1
Vi](−τ))2 − ε

2
(Z̄0 − Zi

0)
2
]

dt +
N

∑
k=1

σ∂zk
0
VidWk

t .

(46)

Then, we apply Ito’s formula to ui(t, Zt), and use the fact that u satisfies (43)

dui(t, Z)

=∂tuidt + ∂zuidZt +
1
2

Tr(∂zzuid[Z, Z]t)

=∂tuidt + 〈AZ, ∂zui〉dt + 〈Bα̂i, ∂zui〉dt + 〈∂zui, G〉dt +
1
2

Tr(G∗G∂zzui)dt

=∂tuidt +
N

∑
k=1

∫ 0

−τ
zk

1
d
ds

(∂zk
1
ui)dsdt−

N

∑
k=1

(∂zk
0
ui − [∂zk

1
ui](−τ))(∂zk

0
Vk − [∂zk

1
Vk](−τ))dt

+
N

∑
k=1

1
2

σ2∂zk
0zk

0
uidt +

N

∑
k=1

σ∂zk
0
uidWk

t

=
N

∑
k=1

(
∂zk

0
uk − [∂zk

1
uk](−τ)

) (
∂zk

0
ui − [∂zk

1
ui](−τ)

)
dt

−
N

∑
k=1

(∂zk
0
ui − [∂zk

1
ui](−τ))(∂zk

0
Vk − [∂zk

1
Vk](−τ))dt− 1

2
(∂zi

0
ui − [∂zi

1
ui](−τ))2dt

− ε

2
(Z̄0 − Zi

0)
2dt− eidt +

N

∑
k=1

σ∂zk
0
uidWk

t .

(47)
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Substracting (46) from (47), taking the square and applying Ito’s formula again, we obtain

d[ui(t, Zt)−Vi(t, Zt)]
2

=2[ui(t, Zt)−Vi(t, Zt)](dui(t, Zt)− dVi(t, Zt)) + d[ui −Vi, ui −Vi]t

=− 2(ui −Vi)

(
1
2
(∂zi

0
ui − [∂zi

1
ui](−τ))2 − 1

2
(∂zi

0
Vi − [∂zi

1
Vi](−τ))2

)
dt− 2(ui −Vi)eidt

− 2(ui −Vi)

(
N

∑
k=1

(
∂zk

0
ui − [∂zk

1
ui](−τ)

) (
(∂zk

0
Vk − ∂zk

0
uk)−

(
[∂zk

1
Vk](−τ)− [∂zk

1
uk](−τ)

)))
dt

+
N

∑
k=1

σ2|∂zk
0
ui − ∂zk

0
Vi|2dt +

N

∑
k=1

σ
(

∂zk
0
ui − ∂zk

0
Vi
)

dWk
t .

(48)

Recall that ∂zk
0
ui(t, z0, z1) = 1

N−1 Dµi
0
U(t, zi

0, zi
1, νi, zk

0) is bounded by C
N for k 6= i, and ei is

bounded by C
N . Let (Ξi)i∈{1,...,N} be a family of independent random variable with common law

ν0. By integrating (48) from t to T, and taking expectation conditional on Ξ, we have

EΞ[|ui
t −Vi

t |2] + σ2
N

∑
k=1

EΞ
[∫ T

t
|∂zk

0
ui

s − ∂zk
0
Vi

s |2ds
]

+ CEΞ
[∫ T

t
|ui

s −Vi
s | · |[∂zi

1
ui

s](−τ)− [∂zi
1
Vi

s ](−τ)|
]

ds

+
C
N

N

∑
k=1,k 6=i

EΞ
[∫ T

t
|ui

s −Vi
s | · |[∂zk

1
uk

s ](−τ)− [∂zk
1
Vk

s ](−τ)|
]

ds

≤EΞ[|ui
T −Vi

T |2] + CEΞ
[∫ T

t
|ui

s −Vi
s | · |∂zi

0
ui

s − ∂zi
0
Vi

s |
]

ds

+
C
N

N

∑
k=1,k 6=i

EΞ
[∫ T

t
|ui

s −Vi
s | · |∂zk

0
uk

s − ∂zk
0
Vk

s |
]

ds

+
C
N

∫ T

t
EΞ[|ui

s −Vi
s |]ds.

(49)

By the fact that ui
T = Vi

T , and using Young’s inequality, we have

EΞ[|ui
t −Vi

t |2] +EΞ
[∫ T

t
|∂zi

0
ui

s − ∂zi
0
Vi

s |2ds
]

≤0 +
C

2ε1
EΞ
[∫ T

t
|ui

s −Vi
s |2ds

]
+

Cε1

2
EΞ
[∫ T

t
|∂zi

0
ui

s − ∂zi
0
Vi

s |2ds
]
+

C
2Nε2

N

∑
k=1

EΞ
[∫ T

t
|ui

s −Vi
s |2ds

]

+
Cε2

2N

N

∑
k=1

EΞ
[∫ T

t
|∂zk

0
uk

s − ∂zk
0
Vk

s |2ds
]
+

C
2Nε3

EΞ
[∫ T

t
|ui

s −Vi
s |2ds

]
+

Cε3

2N

∫ T

t
1ds

≤ C
N2 + CEΞ

[∫ T

t
|ui

s −Vi
s |2ds

]
+

C
2N

N

∑
k=1

EΞ
[∫ T

t
|∂zk

0
uk

s − ∂zk
0
Vk

s |2ds
]

.

(50)

Taking average on both sides, we have

1
N

N

∑
i=1

EΞ[|ui
t −Vi

t |2] +
1
N

N

∑
i=1

EΞ
[∫ T

t
|∂zi

0
ui

s − ∂zi
0
Vi

s |2ds
]

≤ C
N2 +

1
N

N

∑
i=1

CEΞ
[∫ T

t
|ui

s −Vi
s |2ds

]
+

C
2N

N

∑
k=1

EΞ
[∫ T

t
|∂zk

0
uk

s − ∂zk
0
Vk

s |2ds
]

⇒ 1
N

N

∑
i=1

EΞ[|ui
t −Vi

t |2] ≤
C

N2 + CEΞ

[
1
N

N

∑
i=1

∫ T

t
|ui

s −Vi
s |2ds

]
.

(51)
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By Gronwall’s inequality and taking supremum over [0, T], we have

sup
t∈[0,T]

[
1
N

N

∑
i=1

EΞ|ui
t −Vi

t |2
]
≤ C

N2 , (52)

which implies
1
N

N

∑
i=1
|ui(t0, Ξ)−Vi(t0, Ξ)| ≤ C

N
. (53)

Choosing Ξ uniformly distributed in (R×H)N , then by continuity of ui and Vi, and the fact that
ui(t, Z) is defined by U(t, Zi

0, Zi
1, νi), we have, for any z ∈ (R×H)N ,

1
N

N

∑
i=1
|U(t0, zi, νi

0)−Vi(t0, z)| ≤ C
N

. (54)

6. Conclusions

The mean field game system acts as a characteristic of the master equation. The master equation
contains all the information in the mean field game system, and it turns the forward-backward PDE
into a single equation. The solution to the mean field game system is a pair (V, ν), that is the value
function and the joint law of current state and past law. The solution to the master equation is a
function of (t, z, ν).

Since our model is linear quadratic, we are able to solve both the mean field game system and the
master equation as shown in Sections 3 and 4, however, the techniques are not the same. The technique
for solving the mean field game is that we first make an ansatz for the solution of the HJB equation.
Then plugging this ansatz into the Fokker-Planck Equation (23), we find that the means of state and
past control are constant. Hence, the ansatz (24) can be verified. On the other hand, a notion of
derivative with respect to measure is needed in order to solve the master equation. Again, we make an
ansatz (40), which has a similar form as (24) but is a function of (t, z, ν), and we verify that it satisfies
the master equation.

The sets of PDEs (30) with boundary conditions (31) are the same for the two problems. This is due
to the fact that our model is linear-quadratic and the means of states and past controls are constants.

Last but not the least, the Nash equilibrium of the corresponding N-player game is presented
in Section 2. The value function (12) looks similar to the value function (24) in the mean field game
system and the solution (40) to the master equation. As N → ∞, the set of PDEs (13) becomes
the same as (30). This implies that the solution to the mean filed game appears to be the limit of
the Nash system, but generally, the convergence has been known in very few specific situations.
Additionally, the solution to the master equation is also a limit to the Nash system, as shown
in Section 5.

To summarize, we have extended the notion of master equation in the context of our toy model
with delay, and we have shown that, as in the case without delay, this master equation provides an
approximation to the corresponding finite-player game with delay. A general form of such a result,
not necessarily for linear-quadratic games, is part of our ongoing research.
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Abbreviations

The following abbreviations are used in this manuscript:

SDDE Stochastic Delayed Differential Equation
HJB Hamilton-Jacobi-Bellman
MFG Mean Field Game
PDE Partial Differential Equation
LLN Law of Large Numbers
NSF National Science Foundation

Appendix A. Adjoint Operator

Let ϕ be a smooth test function defined on R×H. In the following computation, we use the notation

〈ϕ, ν(t)〉 =
∫
R×H

ϕ(z)dν(t, z).

If the test function ϕ is of the form ϕ(z) =
∫ 0
−τ ψ(z0, z1(s))ds for a smooth function ψ defined on

R2, then

〈ϕ, ν(t)〉 =
∫ 0

−τ

∫
R×R

ψ(z0, z1(s))ν(t, z0, z1(s))dz0dz1(s)ds,

where ν(t, z0, z1(s)) is understood as a two-dimensional density. By abuse of notation, we also use

〈ϕ, ν(t)〉 =
∫
R×H

ϕ(z)ν(t, z)dz =
∫ 0

−τ

∫
R×R

ψ(z)ν(t, z)dzds.

Then, we have

〈Lt ϕ, ν(t)〉

=
∫ 0

−τ

∫
R×R

z1
d∂z1 ϕ(z)

ds
ν(t, z)dzds +

∫
R×H
−(∂z0 V − [∂z1 V](−τ))∂z0 ϕ(z)ν(t, z)dz

−
∫ 0

−τ

∫
R×R
−(∂z0 V − [∂z1 V](−τ))∂z1 ϕ(z)δ−τ(s)ν(t, z)dzds

+
∫
R×H

1
2

σ2∂z0z0 ϕ(z)ν(t, z)dz

=−
∫ 0

−τ

∫
R×R

dz1

ds
∂z1 ϕ(z)ν(t, z)dzds +

∫ 0

−τ

∫
R×R

z1∂z1 ϕ(z)ν(t, z)(δ0(s)− δ−τ(s))dzds

+
∫
R×H

∂z0 {(∂z0 V − [∂z1 V](−τ))ν(t, z)} ϕ(z)dz

−
∫ 0

−τ

∫
R×R

∂z1 {(∂z0 V − [∂z1 V](−τ))ν(t, z)} δ−τ(s)ϕ(z)dzds

+
∫
R×H

1
2

σ2∂z0z0 ν(t, z)ϕ(z)dz

=
∫ 0

−τ

∫
R×R

∂z1

(
dz1

ds
ν(t, z)

)
ϕ(z)dzds−

∫ 0

−τ

∫
R×R

∂z1(z1ν(t, z))ϕ(z)(δ0(s)− δ−τ(s))dzds

+
∫
R×H

∂z0 {(∂z0 V − [∂z1 V](−τ))ν(t, z)} ϕ(z)dz

−
∫ 0

−τ

∫
R×R

∂z1 {(∂z0 V − [∂z1 V](−τ))ν(t, z)} δ−τ(s)ϕ(z)dzds

+
∫
R×H

1
2

σ2∂z0z0 ν(t, z)ϕ(z)dz

=〈ϕ,L∗t ν(t)〉.
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