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Abstract: With the purpose of introducing dependence between different types of claims, multivariate
collective models have recently gained a lot of attention. However, when it comes to the evaluation
of the corresponding compound distribution, the problems increase with the dimensionality of the
model. In this paper, we consider a multivariate collective model that generalizes a model already
studied from the point of view of recursive and FFT evaluation of its distribution, and we extend the
same study to the general model. With the intention to see which method works better for this general
model, we compare the recursive method with the FFT technique, and emphasize the advantages
and drawbacks of each one, based on numerical examples.

Keywords: multivariate collective model; multivariate compound distribution; recursions; Fast
Fourier Transform

1. Introduction

Recently, Robe-Voinea and Vernic (2016a, 2016b, 2017, 2018) and Vernic (2018) studied the
recursive and Fast Fourier Transform (FFT)-based evaluation of the distribution of the following
multivariate collective model:

(S1, ..., Sm) =

(
N1

∑
l=0

U1l +
N0

∑
k=0

L1k, ...,
Nm

∑
l=0

Uml +
N0

∑
k=0

Lmk

)
, m ≥ 2, (1)

which may arise in different contexts (see, e.g., the discussion in Section 14.1 of Reference Sundt and
Vernic (2009)), from which we mention the case where a policyholder has m types of policies, such as
auto, home, business, etc., that can be simultaneously affected by some claim events, such as floods,

storms or earthquakes. More precisely, in this case, ∑
Nj
l=0 Ujl denotes the aggregate claims affecting

solely the policy of type j, while N0 denotes the random variable (r.v.) number of claims simultaneously
affecting all m types of policies, with Ljk denoting the size of the kth such claim corresponding to the
policy of type j. The assumptions under which this model was considered are: Each set of claim sizes
(Ujl)l≥1 are non-negative, independent and identically distributed (i.i.d.) r.v.s, 1 ≤ j ≤ m; they are also
independent of the claim numbers and of the other claim sizes, (L1k, ..., Lmk) included; the random
vectors (L1k, ..., Lmk)k≥1 are non-negative i.i.d. as the generic random vector L = (L1, ..., Lm), and
independent of the claim numbers, while the components of L, however, are dependent; by convention,
Uj0 = Lj0 = 0, 1 ≤ j ≤ m.

Note that the above model assumes that a claim event affects either a single type of insurance line
or all the insurance lines at once; there is no middle way, i.e., an event cannot affect only, say, lines 1
and 2, without causing claims in the other lines.

Risks 2018, 6, 87; doi:10.3390/risks6030087 www.mdpi.com/journal/risks

http://www.mdpi.com/journal/risks
http://www.mdpi.com
https://orcid.org/0000-0002-8694-6440
http://dx.doi.org/10.3390/risks6030087
http://www.mdpi.com/journal/risks
http://www.mdpi.com/2227-9091/6/3/87?type=check_update&version=2


Risks 2018, 6, 87 2 of 14

To overcome this drawback, in this paper we consider the more general multivariate collective model:

S = (S1, ..., Sm) =
m

∑
k=1

∑
1≤i1<...<ik≤m

Ni1...ik

∑
i=0

X(i1...ik)
i , (2)

where

• The m-variate claim size random vectors
(

X(i1...ik)
i

)
i≥1

are i.i.d. as the generic m-variate random

vector X(i1...ik), whose jth univariate component X(i1...ik)
j = 0 if j /∈ {i1, ..., ik} , meaning that X(i1...ik)

results from those claim events simultaneously affecting solely the lines {i1, ..., ik}; these events
are counted by the r.v. Ni1...ik . Moreover, the X(i1...ik)

i s are also independent of the other claim

size random vectors (i.e., of each
(

X(j1...jt)
i

)
i≥1

, where {i1, ..., ik} 6= {j1, ..., jt}) and of the claim

numbers. We let X(i1...ik)
i,j denote the jth univariate component of X(i1...ik)

i , fi1...ik the probability

function (p.f.) of X(i1...ik) (in the discrete case) and, by convention, X(i1...ik)
0 = 0.

• The components of the random vector number of claims N =
(

Ni1...ik
)

1≤k≤m;1≤i1<...<ik≤m are
dependent r.v.s, in total (maximum) ν = 2m − 1.

We adopt the actuarial terminology in which the distribution of S is called “compound” and the
distribution of N is called “counting”.

To evaluate the distribution of this model, we shall consider that all the claim distributions
are of the discrete type (e.g., they have been previously discretized; this is a usual assumption for
collective models). We start the next section by presenting the exact formula of the p.f. of S based on
convolutions, which, unfortunately, is unpractical. Therefore, we also aim at developing recursions
for the evaluation of this distribution, an approach that requires the introduction of supplementary
assumptions under which it is possible to obtain recursive formulas; examples of such recursions are
given in Section 2.1. Apart from the restrictive assumptions, another important drawback of recursions
is that they become very time consuming when the dimensionality m of the model increases (see the
numerical examples in Section 2.3). To overcome these drawbacks, in Section 2.2 we propose the use of
the Fast Fourier Transform (FFT) technique, which can be applied whenever we know the form of the
characteristic function of S and which is very efficient when we want to evaluate the distribution’s tail.
However, this remarkably fast method is an approximate one, and we must pay a special attention to
its specific errors; this aspect is illustrated by the numerical examples discussed in Section 2.3.

For simplicity, let us introduce more notation: We denote by fS the p.f. of S, by g and ϕ the
probability generating function (pgf) and the characteristic function (cf), respectively, of a r.v., which
will be indexed with the r.v.’s name. Also, n, t, x, y are vectors whose corresponding dimension results

from the context, 0 is the zero-vector, while the difference x− y is componentwise. By x+ =
m
∑

i=1
xi we

denote the sum of the components of the vector x and by f ∗n the n-fold convolution of f . To shorten
the formulas, we rewrite the sum ∑m

k=1 ∑1≤i1<...<ik≤m as ∑
1≤k≤m

1≤i1<...<ik≤m

.

2. Evaluation of the Compound Distribution

We start by presenting the exact formula of the p.f. of S based on convolutions. This formula is so
complex that, in general, it cannot be directly applied to find the distribution of S.
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Proposition 1. The p.f. of the multivariate collective model (2) is given by

fS(x) = ∑
n

Pr (N = n) ∑
x= ∑

1≤k≤m
1≤i1<...<ik≤m

xi1...ik

 ∏
1≤k≤m

1≤i1<...<ik≤m

f
∗ni1...ik
i1...ik

(
xi1...ik

) ,

where n = (ni1...ik )1≤k≤m;1≤i1<...<ik≤m, ni1...ik ∈ N.

Proof. We have

fS(x) = Pr (S = x) = ∑
n

Pr (N = n)Pr

(
m

∑
k=1

∑
1≤i1<...<ik≤m

ni1...ik

∑
i=0

X(i1...ik)
i = x

)

= ∑
n

Pr (N = n) ∑
x= ∑

1≤k≤m
1≤i1<...<ik≤m

xi1...ik

Pr

 ⋂
1≤k≤m

1≤i1<...<ik≤m

(ni1...ik

∑
i=0

X(i1...ik)
i = xi1...ik

) ,

which immediately yields the result.

We shall also need the pgf and the cf of S.

Proposition 2. The pgf and cf of the general multivariate collective model (2) are, respectively, given by

gS(t) = gN

((
g

X(i1...ik)
(t)
)

1≤k≤m;1≤i1<...<ik≤m

)
, (3)

ϕS(t) = gN

((
ϕ

X(i1...ik)
(t)
)

1≤k≤m;1≤i1<...<ik≤m

)
. (4)

Proof. We prove only the pgf formula (the one for the cf follows along the same lines). Considering the
independence assumptions of the model, we have

gS(t) = E
[

m

∏
j=1

t
Sj
j

]
= E

 m

∏
j=1

t
∑m

k=1 ∑1≤i1<...<ik≤m ∑
Ni1...ik
i=0 X(i1...ik)

i,j
j


= E

 m

∏
k=1

∏
1≤i1<...<ik≤m

E

 m

∏
j=1

t
∑

Ni1...ik
i=0 X(i1...ik)

i,j
j

∣∣∣∣∣∣N


= E

[
m

∏
k=1

∏
1≤i1<...<ik≤m

g
Ni1...ik

X(i1...ik)
(t)

]
,

hence the formula (3).

2.1. Recursive Evaluation

Due to the difficulty of directly applying the exact formula from Proposition 1, we present in
the following examples of alternative recursive formulas for obtaining the p.f. of S under some
supplementary assumptions. These assumptions are chosen such that the multivariate compound
distribution of S can be rewritten as a compound distribution with a univariate counting distribution,
for which we can apply the already existing recursions.



Risks 2018, 6, 87 4 of 14

2.1.1. Case 1 Assumptions

As in Reference Robe-Voinea and Vernic (2017), we assume that N follows the multivariate
Poisson distribution MPo(λ; λ̃) with parameters λ > 0 and λ̃ = (λi1...ik )1≤k≤m;1≤i1<...<ik≤m > 0,
having the pgf (see, e.g., Johnson et al. (1997))

gN (t) = exp

λ

 ∏
1≤k≤m

1≤i1<...<ik≤m

ti1...ik − 1

+
m

∑
k=1

∑
1≤i1<...<ik≤m

λi1...ik
(
ti1...ik − 1

) .

As a consequence, Proposition 2 easily yields the following pgf and cf

gS(t) = exp

λ

 ∏
1≤k≤m

1≤i1<...<ik≤m

g
X(i1...ik)

(t)− 1

+ ∑
1≤k≤m

1≤i1<...<ik≤m

λi1...ik

(
g

X(i1...ik)
(t)− 1

) , (5)

ϕS(t) = exp

λ

 ∏
1≤k≤m

1≤i1<...<ik≤m

ϕ
X(i1...ik)

(t)− 1

+ ∑
1≤k≤m

1≤i1<...<ik≤m

λi1...ik

(
ϕ

X(i1...ik)
(t)− 1

) . (6)

Also, two recursive formulas for evaluating the distribution of S are obtained in the following
proposition, where we denote by fX+ the p.f. of the sum r.v. ∑1≤k≤m;1≤i1<...<ik≤m

X(i1...ik).

Proposition 3. Under the assumption that N ∼ MPo(λ; λ̃) it holds that

fS(x) =
m

∑
k=1

∑
1≤i1<...<ik≤m

l∈{i1,...,ik}

λi1...ik ∑
0<
(

yi1
,...,yik

)
≤
(

xi1
,...,xik

)
yik+1

=...=yim=0

yl
xl

fi1...ik (y) fS(x− y)

+λ ∑
0<y≤x

yl
xl

fX+ (y) fS(x− y), xl ≥ 1, xj ≥ 0, ∀j 6= l,

and

fS(x) =
1

x+

 ∑
1≤k≤m

1≤i1<...<ik≤m

λi1...ik ∑
0<
(

yi1
,...,yik

)
≤
(

xi1
,...,xik

)
yik+1

=...=yim=0

y+ fi1...ik (y) fS(x− y)

+λ ∑
0<y≤x

y+ fX+ (y) fS(x− y)

]
, x+ ≥ 1, (7)

with starting value

fS(0) = exp

λ ∏
1≤k≤m

1≤i1<...<ik≤m

fi1...ik (0) + ∑
1≤k≤m

1≤i1<...<ik≤m

λi1...ik fi1...ik (0)− λ+

 ,

where λ+ = λ + ∑1≤k≤m;1≤i1<...<ik≤m
λi1...ik . In the above formulas, y = (y1, ..., ym) is such that

(
yi1 , ..., yim

)
is

a permutation of its components.
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Proof. Due to the independence of the random vectors X(i1...ik), we have that gX+ =

∏
1≤k≤m;1≤i1<...<ik≤m

g
X(i1...ik)

; therefore, we can rewrite the pgf (5) as

gS(t) = exp

λ+

 λ

λ+

(
gX+ (t)− 1

)
+ ∑

1≤k≤m
1≤i1<...<ik≤m

λi1...ik
λ+

(
g

X(i1...ik)
(t)− 1

)


= exp

λ+

 λ

λ+
gX+ (t) + ∑

1≤k≤m
1≤i1<...<ik≤m

λi1...ik
λ+

g
X(i1...ik)

(t)− 1


 ,

meaning that in this case, the distribution of Model (2) is also a compound distribution, with a
univariate Poisson counting distribution. More precisely, S can also be rewritten as

S =
Ñ

∑
k=0

Ck, (8)

where Ñ ∼ Po (λ+) , C0 = 0, while the random vectors C1, C2, ... are i.i.d. as the m-variate random
vector C having the mixture p.f.

fC(x) =
λ

λ+
fX+(x) + ∑

1≤k≤m;1≤i1<...<ik≤m

λi1...ik
λ+

fi1...ik (x). (9)

Regarding model (8), with Ñ satisfying Panjer’s recursion (see Panjer (1981)) with parameters
a, b ∈ R, i.e.,

Pr
(

Ñ = n
)
=

(
a +

b
n

)
Pr
(

Ñ = n− 1
)

, ∀n ≥ 1,

from Reference Sundt (1999) (see, also, formulas (15.4) and, respectively, (15.5) in Sundt and Vernic
(2009)) it holds that

fS(x) =
1

1− a fC(0)
∑

0<y≤x

(
a + b

yl
xl

)
fC(y) fS(x− y), xl ≥ 1, (10)

fS(x) =
1

1− a fC(0)
∑

0<y≤x

(
a + b

y+
x+

)
fC(y) fS(x− y), x > 0. (11)

Since in our case Ñ ∼ Po (λ+) , we have a = 0 and b = λ+. Based on this, we insert Equation (9)
into Equation(10) and obtain for xl ≥ 1,

fS(x) = λ+ ∑
0<y≤x

yl
xl

 λ

λ+
fX+(y) + ∑

1≤k≤m;1≤i1<...<ik≤m

λi1...ik
λ+

fi1...ik (y)

 fS(x− y).

We know that X(i1...ik)
j = 0 if j /∈ {i1, ..., ik} , hence, concerning the argument y of fi1...ik (y) , we can

take the components yik+1
= ... = yim = 0. Therefore, if l /∈ {i1, ..., ik} , clearly yl = 0 in the argument

y of fi1...ik (y) , which yields the first stated formula. The second formula results in a similar way by
inserting Equation (9) into Equation (11), while the starting value is immediate from fS(0) = gS(0)
and from the above form of gS. This completes the proof.

2.1.2. Case 2 Assumptions

Similarly to Robe-Voinea and Vernic (2016a, 2016b), the supplementary assumptions are now:
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A1 The p.f. of the total number of claims Ntot = ∑1≤k≤m;1≤i1<...<ik≤m Ni1...ik satisfies Panjer’s recursion
for a, b ∈ R.

A2 Given Ntot = n, the conditional distribution of the random vector number of claims N is assumed
to be multinomial Mnom(n; p) with parameters n ∈ N and p = (pi1...ik )1≤k≤m;1≤i1<...<ik≤m,
where pi1...ik ∈ (0, 1) such that ∑1≤k≤m;1≤i1<...<ik≤m pi1...ik = 1. Therefore, with n =

(ni1...ik )1≤k≤m;1≤i1<...<ik≤m and n = ∑1≤k≤m;1≤i1<...<ik≤m ni1...ik ,

Pr(N = n|Ntot = n) =
n!

∏1≤k≤m;1≤i1<...<ik≤m ni1...ik ! ∏
1≤k≤m;1≤i1<...<ik≤m

p
ni1...ik
i1...ik

.

Under these assumptions, the pgf, the cf of S and two alternative recursive formulas are presented
in the following.

Proposition 4. Under the assumptions (A1 and A2), the pgf and cf of the general multivariate collective model (2)
become, respectively,

gS(t) = gNtot

(
m

∑
k=1

∑
1≤i1<...<ik≤m

pi1...ik g
X(i1...ik)

(t)

)
, (12)

ϕS(t) = gNtot

(
m

∑
k=1

∑
1≤i1<...<ik≤m

pi1...ik ϕ
X(i1...ik)

(t)

)
. (13)

Proof. To obtain the pgf formula, we recall that the pgf of the multinomial distribution Mnom(n; p)

is (see, e.g., Johnson et al. (1997)) g(t) =
(

∑1≤k≤m;1≤i1<...<ik≤m pi1...ik ti1...ik

)n
, so that the pgf of N

becomes for t =
(
ti1...ik

)
1≤k≤m;1≤i1<...<ik≤m ,

gN(t) = E
[
E
[

m

∏
k=1

∏
1≤i1<...<ik≤m

t
Ni1...ik
i1...ik

∣∣∣∣∣Ntot

]]
= E

( m

∑
k=1

∑
1≤i1<...<ik≤m

pi1...ik ti1...ik

)Ntot


= gNtot

(
m

∑
k=1

∑
1≤i1<...<ik≤m

pi1...ik ti1...ik

)
.

Inserting this into Equation (3) easily yields Equation (12). Equation (13) follows in a similar way,
which completes the proof.

Proposition 5. Under the assumptions (A1 and A2) of Model (2), with starting value

fS(0) = gS(0) = gNtot

(
m

∑
k=1

∑
1≤i1<...<ik≤m

pi1...ik fi1...ik (0)

)
,

the following recursive formula holds for xl ≥ 1, xj ≥ 0, ∀j 6= l,
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fS(x) = K
m

∑
k=1


∑

1≤i1<...<ik≤m
l∈{i1,...,ik}

pi1...ik ∑
0<
(

yi1
,...,yik

)
≤
(

xi1
,...,xik

)
yik+1

=...=yim=0

(
a + b

yl
xl

)
fi1...ik (y) fS(x− y)

+a ∑
1≤i1<...<ik≤m

l /∈{i1,...,ik}

pi1...ik ∑
0<
(

yi1
,...,yik

)
≤
(

xi1
,...,xik

)
yik+1

=...=yim=0

fi1...ik (y) fS(x− y)


, (14)

while for x+ > 0,

fS(x) = K ∑
1≤k≤m

1≤i1<...<ik≤m

pi1...ik ∑
0<
(

yi1
,...,yik

)
≤
(

xi1
,...,xik

)
yik+1

=...=yim=0

(
a + b

y+
x+

)
fi1...ik (y) fS(x− y), (15)

where K =
[
1− a ∑1≤k≤m;1≤i1<...<ik≤m pi1...ik fi1...ik (0)

]−1
and y = (y1, ..., ym) is such that

(
yi1 , ..., yim

)
is a

permutation of its components.

Proof. Considering the assumptions (A1 and A2), we rewrite Model (2) as

S =
Ntot

∑
k=0

Ck,

where C0 = 0, while the random vectors C1, C2, ... are i.i.d. as the m-variate random vector C with the p.f.

fC(y) =
m

∑
k=1

∑
1≤i1<...<ik≤m

pi1...ik fi1...ik (y) . (16)

We use again Equations (10) and (11). By inserting Equation (16) into Equation (10), the stated
formula of the constant K is easily obtained and, for xl ≥ 1,

fS(x) = K ∑
0<y≤x

(
a + b

yl
xl

)( m

∑
k=1

∑
1≤i1<...<ik≤m

pi1...ik fi1...ik (y)

)
fS(x− y)

= K
m

∑
k=1

∑
1≤i1<...<ik≤m

pi1...ik ∑
0<y≤x

(
a + b

yl
xl

)
fi1...ik (y) fS(x− y).

Using reasoning similar with the one used in the proof of Proposition 3, we obtain Equation (14).
Similarly, Equations (11) and (16) lead to Equation (15). This completes the proof.

Particular case: m = 3. Let us now have a look at a recursive formula in the trivariate case, where
the general Model (2) is S = (S1, S2, S3) with

S1 =
N1

∑
i=0

X(1)
i,1 +

N12

∑
i=0

X(12)
i,1 +

N13

∑
i=0

X(13)
i,1 +

N123

∑
i=0

X(123)
i,1 ,

S2 =
N2

∑
i=0

X(2)
i,2 +

N12

∑
i=0

X(12)
i,2 +

N23

∑
i=0

X(23)
i,2 +

N123

∑
i=0

X(123)
i,2 ,

S3 =
N3

∑
i=0

X(3)
i,3 +

N13

∑
i=0

X(13)
i,3 +

N23

∑
i=0

X(23)
i,3 +

N123

∑
i=0

X(123)
i,3 .



Risks 2018, 6, 87 8 of 14

For example, Equation (15) becomes

fS(x) = K


3

∑
i=1

pi ∑
1≤yi≤xi
y2=y3=0

(
a + b

yi
x+

)
fi (y) fS(x− y)

+ ∑
1≤i1<i2≤3

pi1i2 ∑
0<(yi1

,yi2)≤(xi1
,xi2)

yi3=0

(
a + b

yi1 + yi2
x+

)
fi1i2 (y) fS(x− y)

+p123 ∑
0<y≤x

(
a + b

y+
x+

)
f123 (y) fS(x− y)

}
, (17)

where K =
[
1− a

(
∑3

i=1 pi fi (0) + ∑1≤i1<i2≤3 pi1i2 fi1i2 (0) + p123 f123 (0)
)]−1

.

2.1.3. Case 3 Assumptions

Another assumption under which recursive formulas already exist is the univariate mixed Poisson
counting distribution. To this purpose, we assume that, given that a positive univariate r.v. Θ takes the
value θ, the r.v.s Ni1...ik are all i.i.d. Poisson distributed such that Ni1...ik |Θ=θ ∼ Po

(
θλi1...ik

)
, λi1...ik >

0, 1 ≤ k ≤ m, 1 ≤ i1 < ... < ik ≤ m. Then, the pgf of S given Θ = θ becomes, from Equation (3):

gS|Θ=θ (t) = gN|Θ=θ

((
g

X(i1...ik)
(t)
)

1≤k≤m;1≤i1<...<ik≤m

)

= exp

θλ+

 ∑
1≤k≤m;1≤i1<...<ik≤m

λi1...ik
λ+

g
X(i1...ik)

(t)− 1

 ,

where λ+ = ∑1≤k≤m;1≤i1<...<ik≤m
λi1...ik . This is the pgf of a compound distribution with univariate

Poisson Po (θλ+) counting distribution and multivariate claims distribution having p.f. h =

∑1≤k≤m;1≤i1<...<ik≤m

λi1...ik
λ+

fi1...ik ; hence, the conditional distribution of S, given Θ = θ, can be evaluated
based on Equations (10) and (11), with a = 0 and b = θλ+. To find the unconditional distribution of S,
we use the technique described in Chapter 20 of Sundt and Vernic (2009). Therefore, with U denoting
the distribution function of Θ, we introduce the auxiliary functions

vi (x) =
∫ ∞

0
θi fS|Θ=θ (x)dU (θ) , i = 0, 1, 2, ...,

and note that fS = v0. Multiplying Equations (10) and (11) by θi and integrating yields the following
two recursions for vi

vi (x) =
λ+

xl
∑

0<y≤x
ylh (y) vi+1 (x− y) , xl ≥ 1,

vi (x) =
λ+

x+
∑

0<y≤x
y+h (y) vi+1 (x− y) , x+ > 0,

with starting value vi (0) =
∫ ∞

0 θieθλ+(h(0)−1)dU (θ). Therefore, the algorithm for evaluating fS (y) for
all 0 ≤ y ≤ x is more complex and implies the backward evaluation of all vi (y) , 0 ≤ y ≤ x, i = 1, ..., x+
(here backward means by decreasing i, see, e.g., the algorithm in Section 20.4.1 in Reference Sundt and
Vernic (2009)). Being very time consuming, we don’t insist on this algorithm. However, we note that
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the recursions can be refined under the assumption that the mixing distribution U is of the continuous
type, with the density denoted by u satisfying the condition

d
dθ

ln u (θ) =
∑k

i=0 ηiθ
i

∑k
i=0 χiθi

.

This is also called Willmot’s mixing distribution, see Reference Willmot (1993).

Remark 1. In view of the FFT, we also display the formula of the cf of S given Θ = θ,

ϕS|Θ=θ (t) = exp

θ

 ∑
1≤k≤m;1≤i1<...<ik≤m

λi1...ik ϕ
X(i1...ik)

(t)− λ+

 ,

where
ϕS(t) =

∫ ∞

0
ϕS|Θ=θ (t)dU (θ) . (18)

Particular case: Simpler recursions are obtained when Θ is gamma Ga (δ, β) distributed, with
δ, β > 0. In this case, the univariate mixed Poisson Po (θλ+) distribution becomes a Negative Binomial
distribution NB

(
δ, β

β + λ+

)
, which satisfies Panjer’s recursion with a = λ+

β + λ+
and b = (δ− 1) λ+

β + λ+
.

Since

fS(x) =
∫ ∞

0
fS|Θ=θ (x)dU (θ) = ∑

n
h∗n(x)

∫ ∞

0
Pr
(

Ñθ = n
)

dU (θ) = ∑
n

Pr
(

Ñ = n
)

h∗n(x),

where Ñθ ∼ Po (θλ+) , hence Ñ ∼ NB
(

δ, β
β+λ+

)
, and it follows that we can use Equations (10) and

(11) to obtain direct recursions for fS, i.e.,

fS(x) =
λ+

β + λ+ − λ+h (0) ∑
0<y≤x

(
1 + (δ− 1)

yl
xl

)
h(y) fS(x− y), xl ≥ 1,

fS(x) =
λ+

β + λ+ − λ+h (0) ∑
0<y≤x

(
1 + (δ− 1)

y+
x+

)
h(y) fS(x− y), x > 0, (19)

with starting value fS(x) =
(

β
β + λ+−λ+h(0)

)δ
. Moreover, regarding the cf, we easily obtain

ϕS(t) =
βδ

Γ (δ)

∫ ∞

0
ϕS|Θ=θ (t)θ

δ−1e−βθdθ

=

(
β

β−∑1≤k≤m;1≤i1<...<ik≤m
λi1...ik ϕ

X(i1...ik)
(t) + λ+

)δ

. (20)

2.2. Fast Fourier Transform Evaluation

The recursive method is an exact one, but, as already mentioned in the introduction, it has some
important drawbacks: It can be applied only on some particular models and it becomes quite slow with
the increasing of the dimensionality of S. A much faster and less restrictive way to evaluate the p.f. of S
is provided by the Fast Fourier Transform method, which is an approximate technique used to strongly
reduce the computing time, especially when evaluating the distribution’s tail. As an advantage,
this method can be applied to any model as long as its cf (4) (on which it is based) has a closed
form, even if there is no recursive formula available. Therefore, the FFT technique received special
consideration in the actuarial literature (see, e.g., References Bühlmann (1984), Embrechts et al. (1993),
Jin and Ren (2014) or Robe-Voinea and Vernic (2018)). It consists of an algorithm that computes the
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discrete Fourier transform of a multivariate function, as well as its inverse, extremely fast. Let f (x)

denote an m-variate function defined on the integer support
m
×

j=1

{
0, 1, ..., rj − 1

}
; then its discrete

Fourier transform, f̃ , and, respectively, the inverse mapping, can defined by (definition consistent with
the functions fftn and ifftn in Matlab)

f̃ (c) =
r1−1

∑
x1=0

...
rm−1

∑
xm=0

f (x) exp

{
−2πi

m

∑
j=1

xjcj

rj

}
, cj = 0, ..., rj − 1, 1 ≤ j ≤ m,

f (x) =
1

m
∏
j=1

rj

r1−1

∑
c1=0

...
rm−1

∑
cm=0

f̃ (c) exp

{
2πi

m

∑
j=1

xjcj

rj

}
, xj = 0, ..., rj − 1, 1 ≤ j ≤ m.

In general, the FFT method requires that the values rj are powers of two for all j. For the
multivariate model (2), this algorithm becomes:

FFT Algorithm for model (2)
Step 1. After setting the truncation point for each claim size random vector X(i1...ik) at the

same r = (r1, ..., rm), the corresponding truncated claim size distribution is obtained as f(i1...ik) =[
fi1...ik (j)

]
0≤j≤r−1; if necessary, the resulting f(i1...ik) will be filled with zeros (e.g., to constraint the rjs

to be powers of two).
Step 2. Apply the m-dimensional FFT to each f(i1...ik), which results in the multidimensional table

f̃(i1...ik).
Step 3. Use Equation (4) in the general case to obtain the discrete cf

ϕ̃S(j) = gN

((
f̃(i1...ik) (j)

)
1≤k≤m;1≤i1<...<ik≤m

)
, 0 ≤ j ≤ r− 1.

Step 4. Apply the multidimensional IFFT to ϕ̃S to obtain the p.f. of S.

Usually, to find the optimal rjs, one gradually increases them until the differences between the
actual solutions and the previous ones are under a certain threshold (e.g., we increase rj as 32, 64,
128, 256 etc.). However, when dealing with heavy tailed claim size distributions, the results of this
method can be strongly affected by a specific error caused by the discrete Fourier transform, which
consists of placing under the truncation point the compound probability mass which is in fact above
this point. This so-called “aliasing error” (AE) can be significantly reduced by applying to the claim
size distributions an exponential change of measure, hence, forcing the tails of these distributions to
decrease at an exponential rate; this transformation is known under the name of “exponential tilting”
(for more details on this transformation see, e.g., Reference Grübel and Hermesmeier (1999)).

Particular cases: Under the particular assumptions considered in the previous section to allow
for a recursive evaluation, one should use the following formulas at Step 3 of the above algorithm:

- When N ∼ MPo(λ; λ̃), ϕ̃S is given by Equation (6);
- Under the Case 2 assumptions (A1 and A2), ϕ̃S is given by Equation (13);
- Under the Case 3 mixed Poisson assumption, ϕ̃S is given by Equation (18).
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2.3. Numerical Illustration

In this section, we consider a particular trivariate model (2) with

S1 =
N1

∑
i=0

X(1)
i,1 +

N12

∑
i=0

X(12)
i,1 +

N13

∑
i=0

X(13)
i,1 +

N123

∑
i=0

X(123)
i,1 ,

S2 =
N2

∑
i=0

X(2)
i,2 +

N12

∑
i=0

X(12)
i,2 +

N123

∑
i=0

X(123)
i,2 ,

S3 =
N3

∑
i=0

X(3)
i,3 +

N13

∑
i=0

X(13)
i,3 +

N123

∑
i=0

X(123)
i,3 ,

for which we implemented both the recursive formulas and the FFT algorithm, under different
assumptions.

As claim size distributions, we considered only type II Pareto distributions with the purpose
to emphasize the effect of the exponential tilting on the FFT technique. We recall that the
decumulative distribution (or survival) function of the m-variate type II Pareto distribution
Pam I I

(
α, (σi)i=1,...,m

)
, α, σi > 0, i = 1, ..., m, is given by

F̄ (x) =

(
1 +

m

∑
i=1

xi
σi

)−α

, xi > 0, i = 1, ..., m.

The expected value of each marginal exists only if α > 1, while the variance exists only when
α > 2. We took (mainly from the numerical Example 4 in Reference Robe-Voinea and Vernic (2018))

X(1) ∼ Pa1 I I (1, 1) , X(2) ∼ Pa1 I I (2, 2) , X(3) ∼ Pa1 I I (3, 1) ,

X(12) ∼ Pa2 I I (1.5, 1, 2) , X(13) ∼ Pa2 I I (2, 1, 1) , X(123) ∼ Pa3 I I (1.5; 2, 2, 2) .

The expected value of X(1) and the variances of X(2), X(12), X(13), X(123) do not exist, hence we can see
the effect of the exponential tilting in the heavy-tailed case. To discretize these distributions, we used
the method of rounding considering the span h = 1 (good enough for illustration, but not optimal, see
the discussion in Reference Robe-Voinea and Vernic (2018)).

Concerning the FFT method, as discussed in Section 2.2, we increased the truncation point
r = (r, r, r) (we took r1 = r2 = r3 = r for simplicity) from 16 till 128 (unfortunately, r = 256 generated
an “out of memory” warning), and noticed that r = 128 yielded enough accurate results (for our data)
compared to the exact method (see Tables 1, 3 and 5). Moreover, we also varied the tilting parameter
θ = (θ1 = θ2 = θ3) and noticed that an increasing of θ improves the results till θ = 7/r, while a larger
value like θ = 9/r doesn’t significantly improve the results (see Table 4 in Example 2).

As expected, there is an important difference between the computing times requested by the two
methods. This difference increases with the increasing of the truncation point r and becomes really
huge for r = 32 in Example 1 and for r = 128 in Examples 2 and 3. Therefore, we decided to compare
the resulting p.f.s only up to a certain right endpoint denoted by xM = (xM − 1, xM − 1, xM − 1) ,
even if the support of the FFT was much larger. Note that the discretization time was not taken into
account in the displayed computing times since discretization is needed by both methods (the total
discretization time up to r = 128 was about 160 s).
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To emphasize the differences between the FFT and the recursive results, we used the cumulative
distribution function (cdf), the AE and the maximum absolute error evaluated between the exact p.f.
and the FFT one; these last two are defined, respectively, by

AE = ∑
0≤x≤xM

∣∣∣ fS(x)− f FFT
S (x)

∣∣∣ ,

Max.err = max
0≤x≤xM

∣∣∣ fS(x)− f FFT
S (x)

∣∣∣ .

We shall now present three examples based on the three particular cases considered in Section 2.1.
From these examples, we also note that in cdf terms, FFFT

S (xM) ≥ FS(xM), an inequality caused by the
AE that places compound mass below the truncation point.

Example 1. We assume that N ∼ MPo(λ; λ̃), where λ = 1, λ1 = 3, λ2 = 3, λ3 = 2, λ12 = 2, λ13 =

1.7, λ123 = 1.5; since for this particular model, the recursive method (we implemented Equation (7)) implies
the evaluation of the p.f. fX+ (i.e., multivariate convolutions), the corresponding computing time increases
tremendously with r. Therefore, starting with r = 32, we took only xM = 20, which needed about 30 minutes
only for the convolution part. However, the FFT was ready in only a few s even for r = 128, see Table 1, where
we also display a comparison of the accuracy of the two methods. This example clearly emphasizes the speed
discrepancy between the two methods and the important advantage of the FFT speed.

Table 1. Example 1: Comparing recursive and FFT methods for h = 1, θ = 7/r and various r, xM.

r = xM = 16 r = 32, xM = 20 r = 64, xM = 20 r = 128, xM = 20

Rec. FS(xM) 0.219737 0.312845 0.312845 0.312845
FFT FFFT

S (xM) 0.219884 0.312909 0.312855 0.312847
FFT time up to r 0.016 s 0.124 s 0.952 s 9.484 s
AE 1.4743 × 10−4 6.3771 × 10−5 1.0251 × 10−5 1.7488 × 10−6

Max.err 8.8571 × 10−8 2.0810 × 10−8 3.5244 × 10−9 6.9685 × 10−10

Example 2. We now assume that Ntot follows a Poisson distribution Po (λ = 5) , for which we recall that
a = 0, b = λ and gNtot = eλ(t−1). Numerically, we took the multinomial parameters p1 = 0.3, p2 = 0.2, p3 =

0.2, p12 = 0.15, p13 = 0.1, p123 = 0.05. We implemented the recursive Equation (17) and performed it up to
the maximum xM = 70 in about 35 min. The speed difference between the two methods can be seen in Table 2,
where we displayed the relative computing times Rec/FFT (for r = 128, FFT took about 8 s).

Table 2. Example 2: Relative performances of the two methods when varying r (θ = 7/r).

r = 16 r = 32 r = 64

Rec/FFT in time 12 130 781

The accuracy comparison of the two methods is presented in Table 3 and the effect of changing the tilting
parameters in Table 4, both supporting the above conclusions regarding the choices of r and θ.

Table 3. Example 2: Comparing recursive and FFT methods for h = 1, θ = 7/r and various r, xM.

r = xM = 16 r = xM = 32 r = xM = 64 r = 128, xM = 70

Rec. FS(xM) 0.80035 0.91543 0.96436 0.96804
FFT FFFT

S (xM) 0.80039 0.91544 0.96436 0.96804
AE 4.3580 × 10−5 1.4294 × 10−5 3.8798 × 10−6 9.0937 × 10−7

Max.err 7.9393 × 10−7 1.8276 × 10−7 4.1642 × 10−8 9.6893 × 10−9
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Table 4. Example 2: Comparing recursive and FFT methods for h = 1, r = 64 and various θ.

Recursion FFT no tilt. FFT tilt.
θ = 5/r

FFT tilt.
θ = 7/r

FFT tilt.
θ = 9/r

FS(xM) 0.96436 0.96863 0.96439 0.96436 0.96436
AE 4.2693 × 10−3 2.8485 × 10−5 3.8798 × 10−6 5.4867 × 10−6

Max.err 4.5823 × 10−5 3.0770 × 10−7 4.1642 × 10−8 2.7813 × 10−8

Example 3. This example is related to Case 3, i.e., N follows a mixed Poisson distribution and, for simplicity, we
let Θ ∼ Ga (δ, β) . Therefore, we implemented recursion (19) and the FFT based on Equation (20). The values of
the parameters are: δ = β = 2, λ1 = λ2 = 2.5, λ3 = λ12 = 2, λ13 = 1.7, λ123 = 1.5. The comparison between
the two methods is presented in Table 5, from where we note once again that a value of r = 128 is sufficient to
obtain good enough results by FFT (at least for these data). Concerning the computing times, the values were
similar with the ones obtained in Example 2, see Table 2.

Table 5. Example 3: Comparing recursive and FFT methods for h = 1, θ = 7/r and various r, xM.

r = xM = 16 r = xM = 32 r = xM = 64 r = 128, xM = 70

Rec. FS(xM) 0.49044 0.72191 0.88701 0.90087
FFT FFFT

S (xM) 0.49055 0.72200 0.88705 0.90088
AE 1.0650 × 10−4 8.3639 × 10−5 3.5553 × 10−5 6.4368 × 10−6

Max.err 1.6674 × 10−7 3.2871 × 10−8 6.8457 × 10−9 1.5338 × 10−9

3. Conclusions

In this paper, we proposed a general multivariate collective model that allows for dependence
between the r.v.s number of claims, and, moreover, between the different r.v.s claim sizes. Since the
evaluation of the resulting compound distribution is not straightforward, we discussed two types
of techniques to deal with it: The recursive method that was presented in Section 2.1 and the FFT
algorithm that was described in Section 2.2. Unfortunately, even if the recursive method has the
advantage of being exact, it has two main drawbacks compared with the FFT method: First, recursions
are available under some restrictive assumptions and second, they become very slow with the
increasing of the dimensionality of the model. On the other hand, the main drawback of the FFT
method consists in its specific errors, especially the aliasing error. However, the FFT technique is so fast
compared with the exact recursions, that it is quite worthwhile to use it, especially when values from
the tail of the compound distribution are needed (nevertheless, it is important to pay attention when
choosing optimal values for the truncation points and for the tilting parameters). Another advantage
of the FFT is that specific functions are already implemented in existing software, even for higher
dimensions, with, eventually, the disadvantage of memory limitation.

To conclude, we would recommend the following approach: If recursive formulas are available
for the considered model, they should be used to evaluate the compound distribution until some
reasonable (in computing time terms) upper limit is reached, and then the FFT method should be
applied for a more extended domain; to validate the accuracy of the FFT results, they should be
compared with the ones obtained by the recursive method.
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