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Abstract: In this paper, we study the discounted renewal aggregate claims with a full dependence
structure. Based on a mixing exponential model, the dependence among the inter-claim times,
the claim sizes, as well as the dependence between the inter-claim times and the claim sizes are
included. The main contribution of this paper is the derivation of the closed-form expressions for
the higher moments of the discounted aggregate renewal claims. Then, explicit expressions of these
moments are provided for specific copulas families and some numerical illustrations are given to
analyze the impact of dependency on the moments of the discounted aggregate amount of claims.
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1. Introduction

Over the past few years, extensive studies on the risk aggregation problem for insurance
portfolios have appeared in the literature. Among these studies we find Albrecher and Boxma (2004),
Albrecher and Teugels (2006) and Boudreault et al. (2006) which analyze ruin-related problems;
Léveillé et al. (2010), Léveillé and Adékambi (2011, 2012), investigate the risk aggregation and the
distribution of the discounted aggregate amount of claims; Léveillé and Garrido (2001a, 2001b) use the
renewal theory to derive a closed expressions for the first two moments of the discounted aggregated
claims; and Léveillé and Hamel (2013) study the aggregate discount payment and expenses process for
medical malpractice insurance. Most recently, Jang et al. (2018) study the family of renewal shot-noise
processes. Based on the piecewise deterministic Markov process theory and the martingale methodology,
they obtained the Feynmann-Kac formula and then derived the Laplace transforms of the conditional
moments and asymptotic moments of the processes.

For the risk management of non-life insurance portfolios, the mathematical expectation of the
discounted aggregate claims plays an important role in determining the pure premium, in addition to
giving a measure of the central tendency of its distribution. Moments centered at the 2nd, 3rd and
4th order average are the other moments usually considered, as they generally give a good indication
of the pace of the distribution. The 2nd order centered moment gives us a measure of the dispersion
around its mean, the 3rd order moment gives us a measure of the asymmetry of the distribution of
and the 4th order moment gives us a measure of the flattening of the distribution of the discounted
aggregate sums. Moments, whether simple, joint, or conditional, may be useful for constructing
predictors, regression curves, or approximations of the distribution of the discounted aggregate claims.

The papers cited above assume that the inter-arrival times and the claim amounts are independent.
Such an assumption is not supported by empirical observations which reduces the practicality of these
works. For example, in non-life insurance, the same catastrophic event such as a flood or an earthquake
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could lead to frequent and high losses. This means that in such context a positive dependence between
the claim sizes and the inter-claim times should be observed.

During the last decade, few papers in the actuarial literature considered incorporating this type of
dependence. For example, Barges et al. (2011) introduce the dependence between the claim sizes and the
inter-claim times using a Farlie-Gumbel-Morgenstern (FGM) copula and derive a close-from expression
for the moments of the discounted aggregate claims. Guo et al. (2013) incorporate time dependence in a
mixed Poisson process to study loss models. Landriault et al. (2014) consider a non-homogeneous birth
process for the claim counting process to study time dependent aggregate claims.

For a given portfolio, we consider the renewal risk process suggested by Andersen (1957)
and described as follows. Let {N(t)}t≥0 be a renewal process that counts the number of claims.
The positive random variable (rv) Wk represents the time between the (k− 1)−th and k−th claims,
k ∈ N? = {1, 2, · · · }, and the amount of the k-th claim is given by the positive rv Xk. We also define

{Tk, k ∈ N?} as a sequence of rvs such that Tk =
k
∑

i=1
Wi, T0 = 0. The rv Tk represents the occurrence

time of the k−th received claim. For any given integer n and t ≥ 0, we have {N(t) ≥ n} = {Tn ≤ t}.
The main variable of interest in this paper is the discounted aggregate amount of claims up to a certain
time Z(t) defined as follows

Z(t) =
N(t)

∑
i=1

e−δTi Xi, t ≥ 0, (1)

with Z(t) = 0 if N(t) = 0, where δ is the force of net interest (See e.g., Léveillé and Garrido 2001a).
In the rest of the paper, it is assumed that

• {Wk, k ∈ N? = {1, 2, · · · }} forms a sequence of continuous positive dependent and identically
distributed rvs with a common cumulative distribution function (cdf) FW(.) and a survival
function (sf) F̄W(.) = 1− FW(.),

• The claim amounts {Xk, k ∈ N?} are positive dependent and identically distributed rvs with a
common cdf FX(.) and a common sf F̄X(.) = 1− FX(.), and

• {(Wk, Xk), k ∈ N?} forms a sequence of identically distributed random vectors distributed as the
canonical random vector (W, X) in which the components may be dependent.

In this paper, we specify three sources of dependence: among the claims Xk, among the subsequent
inter-claims time Wk, and a dependence between the subsequent inter-claims time Wk and the claims
Xk. For the dependence between the inter-claim times {Wk, k ∈ N? = {1, 2, · · · }} , we assume the
existence of a positive continuous rv Θ such that given Θ = θ the rvs Wk are iid and exponentially
distributed with a mean 1

θ . Similarly, we introduce the dependence between the amounts of claims
{Xk, k ∈ N?} through a positive continuous rv Λ such that conditional on Λ = λ the rvs Xk are iid
and exponentially distributed with a mean 1

λ . In other words, the conditional distributions of the
components of W and X are only influenced by the rv Θ and Λ respectively. The rvs Θ and Λ represent
the factors that introduce the dependence between risks (e.g., climate conditions, age, · · · , etc.).

In what follows, let FΘ,Λ be the joint cdf of the positive random vector (Θ, Λ) and the marginal cdfs
are FΘ and FΛ. We also define the joint Laplace transform f ?Θ,Λ(s1, s2) =

∫ ∞
0

∫ ∞
0 e−(θs1+λs2)dFΘ,Λ(θ, λ),

for s1, s2 ≥ 0, as well as the univariate Laplace transforms f ?Θ(s) =
∫ ∞

0 e−θsdFΘ(θ) and
f ?Λ(s) =

∫ ∞
0 e−λsdFΛ(λ), for s ≥ 0. Following the model’s specifications, the univariate distributions

of Wi and Xi are given as a mixture of exponential distributions with survival functions given by

F̄W(x) =
∫ ∞

0
e−θxdFΘ(θ) = f ?Θ(x), (2)

and

F̄X(x) =
∫ ∞

0
e−λxdFΛ(λ) = f ?Λ(x), (3)
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for x ≥ 0. This implies that the marginal distributions of Wi and Xi are completely monotone. We refer
to Albrecher et al. (2011) for more details on the mixed exponential model and the completely monotone
marginal distributions. The general mixed risk model that we consider in this paper is an extension of
the risk model described in Albrecher et al. (2011).

This paper is structured as follows: In Section 2, we describe the dependence structure of our risk
model. Moments of the aggregate discounted claims are derived in Section 3. Section 4 provides few
examples of risk models for which explicit expressions for the moment are given. Numerical examples
are provided to illustrate the impact of dependency on the moments of discounted aggregate claims.
Section 5 concludes the paper.

2. The Dependence Structure

In this section, a description of the dependence between the different components of our model is
provided. For a given n and under our conditional exponential model, the joint conditional survival
function of W1, W2, · · · , Wn, X1, X2 · · · , Xn is given by

Pr (W1 ≥ t1, · · · , Wn ≥ tn, X1 ≥ s1, · · · , Xn ≥ sn | Θ = θ, Λ = λ) = e
−θ

n
∑

i=1
ti

e
−λ

n
∑

i=1
si

,

for n ∈ {2, 3, · · · }, t1, · · · , tn ≥ 0 and s1, · · · , sn ≥ 0. it is immediate that the multivariate survival
function of W1, W2, · · · , Wn, X1, X2 · · · , Xn could be expressed in terms of the bivariate Laplace
transform f ?Θ,Λ such that

F̄W1,··· ,Wn ,X1,··· ,Xn (t1, · · · , tn, s1, · · · , sn) =
∫ ∞

0

∫ ∞
0 e
−θ

n
∑

i=1
ti

e
−λ

n
∑

i=1
si

dFΘ,Λ(θ, λ)

= f ?Θ,Λ

(
n
∑

i=1
ti,

n
∑

i=1
si

)
.

(4)

On the other hand, according to Sklar’s theorem for survival functions, see e.g., Sklar (1959),
the joint distribution of the tail of W1, · · · , Wn, X1, · · · , Xn can be written as a function of the marginal
survival functions F̄Wi , F̄Xi , i = 1, · · · , n, and the copula C describing the dependence structure
as follows

F̄W1,··· ,Wn ,X1,··· ,Xn (t1, · · · , tn, s1, · · · , sn) = C
(

F̄W1(t1), · · · , F̄Wn(tn), F̄X1(s1), · · · , F̄Xn(sn)
)

,

for n ∈ {2, 3, · · · }, t1, · · · , tn ≥ 0 and s1, · · · , sn ≥ 0. By combining (2), (3) and (4) with the last
expression, one deduces that for (u1, · · · , un, v1, · · · , vn) ∈ [0, 1]2n

C(u1, · · · , un, v1, · · · , vn) = f ?Θ,Λ

(
n

∑
i=1

f ?−1
Θ (ui),

n

∑
i=1

f ?−1
Λ (vi)

)
. (5)

According to (4), the bivariate survival function of (Wi, Xi), for i = 1, · · · , n, is given by

F̄Wi ,Xi (t, s) = f ?Θ,Λ (t, s) , (6)

for t ≥ 0 and s ≥ 0. Hence, using Sklar’s theorem, the dependency relation between Wi and Xi is
generated by a copula C12 given by

C12(u, v) = f ?Θ,Λ

(
f ?−1
Θ (u), f ?−1

Λ (v)
)

, (7)
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for (u, v) ∈ [0, 1]2. Otherwise, it is clear from (4) that the multivariate survival function of (W1, · · · , Wn)

is given by

F̄W1,··· ,Wn (t1, · · · , tn) = f ?Θ

(
n

∑
i=1

ti

)
, (8)

for t1, · · · , tn ≥ 0. Consequently, an application of Sklar’s theorem shows that the joint distribution of
the tail of W1, · · · , Wn can be written as a function of the marginal survival functions F̄Wi , i = 1, · · · , n,
and a copula C1 describing the dependence structure as follows

F̄W1,··· ,Wn (t1, · · · , tn) = C1
(

F̄W1(t1), · · · , F̄Wn(tn)
)

.

An expression for C1 is identified and for (u1, · · · , un) ∈ [0, 1]n, we obtain

C1(u1, · · · , un) = f ?Θ

(
n

∑
i=1

f ?Θ
−1(ui)

)
. (9)

Similarly, the joint distribution of the tail of X1, · · · , Xn is given by

F̄X1,··· ,Xn (t1, · · · , tn) = f ?Λ

(
n

∑
i=1

ti

)
, (10)

for t1, · · · , tn ≥ 0, and using Sklar’s theorem yields the following survival copula for the Xs

C2(u1, · · · , un) = f ?Λ

(
n

∑
i=1

f ?Λ
−1(ui)

)
, (11)

for (u1, · · · , un) ∈ [0, 1]n. From the expressions for the copulas C1 and C2 obtained above, one can
identify that these two copulas belong to the large class of Archimedean copulas (e.g., Nelsen 1999)
with the corresponding generators f ?Θ

−1 and f ?Λ
−1. Note that although the dependence among the

claim sizes and among the inter-claim times are described by Archimedean copulas. The dependence
between W and X is not restricted to this family of copulas. Moreover, the mixture of exponentials
model introduces a positive dependence between the inter-claim times Ws as well as a positive
dependence between the amount Xs. First, we recall the following definition

Definition 1. Let X and Y be random variables. X and Y are positively quadrant dependent (PQD) if for all
(x, y) in R2,

Pr [X ≤ x, Y ≤ y] ≥ Pr [X ≤ x] Pr [Y ≤ y] ,

or equivalently
Pr [X > x, Y > y] ≥ Pr [X > x] Pr [Y > y] .

Proposition 2.1. Consider the model described by (8) and (10). Then, Wi and Wj (Xi and Xj) are PQD for all
i, j = 1, 2, · · · .

Proof. We refer the reader to Chapter 4 in Joe (1997) for the proof of this proposition.

Combining (5), (7), (9)and (11), one gets

C(u1, · · · , un, v1, · · · , vn) = C12

(
C1(u1, · · · , un), C2(v1, · · · , vn)

)
,



Risks 2018, 6, 86 5 of 17

for (u1, · · · , un, v1, · · · , vn) ∈ [0, 1]2n. Throughout the paper, we suppose that the Laplace transform
f ?Θ,Λ exists over a subset K× K ⊂ R2 including a neighborhood of the origin. In the following section,
the moments of the rv Z(t) are derived.

3. Moments of the Discounted Aggregate Claims

In order to find the moments of the discounted aggregate claims, we first derive an expression for
the moments generating function (mgf) of the rv Z(t) under the dependent model introduced in the
previous section.

Theorem 3.1. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0 and δ > 0, the mgf of Z(t) is given by

MZ(t)(s) = E
[

Λ− se−δt

Λ− s

]Θ
δ

. (12)

Proof. Given Θ = θ and Λ = λ, the aggregate discounted processes, Z(t) is a compound Poisson
processes with independent subsequent inter-claim times. According to Léveillé et al. (2010), the mgf
of Z(t) given Θ = θ and Λ = λ can be written as

MZ(t)|Θ=θ,Λ=λ(s) = E
[
esZ(t) | Θ = θ, Λ = λ

]

= esθ
∫ t

0

[
e−δv

λ−se−δv

]
dv

=

(
λ− se−δt

λ− s

) θ
δ

. (13)

Otherwise MZ(t)(s) =
∫ ∞

0

∫ ∞
0 MZ(t)|Θ=θ,Λ=λ(s)dFΘ,Λ(θ, λ). Substituting (13) into the last

expression yields (12).

The following theorem provides closed formulas for the higher moments of the discounted
aggregate claims Z(t).

Theorem 3.2. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0, n ∈ N? and δ > 0, the n−th moment of Z(t) is given by

E [Zn(t)] = ∑
n!

k1!k2! · · · kn!
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for any t ≥ 0, n ∈ N? and δ > 0, the n−th moment of Z(t) is given by

E [Zn(t)] = ∑
n!

k1!k2! · · · kn!
āk

t δE
[

Θ(Θ− δ) · · · (Θ− δ(k− 1))
Λn

]
, (14)

where āt δ =
1−e−tδ

δ is the standard actuarial notation and the sum is over all nonnegative integer solutions of
the Diophantine equation k1 + 2k2 + · · ·+ nkn = n, k := k1 + k2 + · · ·+ kn.

Proof. Conditional on the two rvs Θ and Λ, we have

E [Zn(t)] =
∫ ∞

0

∫ ∞

0
E [Zn(t) | Θ = θ, Λ = λ] dFΘ,Λ(θ, λ). (15)

Taking the n−th order derivative of (13) with respect to s and using Faà di Bruno’s rule
(see Faa di Bruno 1855) yield

M(n)
Z(t)|Θ=θ,Λ=λ

(s) = ∑
n!

k1!k2! · · · kn!
h(k) (g(s))

n

∏
j=1

(
g(j)(s)

j!

)kj

, (16)

E
[

Θ(Θ− δ) · · · (Θ− δ(k− 1))
Λn

]
, (14)

where
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∏
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, (16)
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(s) = ∑
n!

k1!k2! · · · kn!
h(k) (g(s))

n

∏
j=1

(
g(j)(s)

j!

)kj

, (16)
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where the sum is over all nonnegative integer solutions of the Diophantine equation k1 + 2k2 + · · ·+
nkn = n, k := k1 + k2 + · · ·+ kn, g(s) = λ−se−δt

λ−s and h(s) = s
θ
δ . Otherwise, the k−th derivatives of

g and h are given respectively by

g(k)(s) = λ(1− e−δt)
k!

(λ− s)k+1 , (17)

and

h(k)(s) =
Γ( θ

δ + 1)

Γ( θ
δ − k + 1)

s
θ
δ−k, (18)

for k = 1, · · · , n. By substituting (17) and (18) into (16) with s = 0, one concludes that

E [Zn(t) | Θ = θ, Λ = λ] =
1

λn ∑
n!

k1!k2! · · · kn!

(
1− e−δt

)k Γ( θ
δ + 1)

Γ( θ
δ − k + 1)

= ∑
n!

k1!k2! · · · kn!

(
1− e−δt

)k
θ
δ

(
θ
δ − 1

)
· · ·
(

θ
δ − (k− 1)

)

λn (19)

= ∑
n!

k1!k2! · · · kn!
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Proof. Conditional on the two rvs Θ and Λ, we have

E [Zn(t)] =
∫ ∞

0

∫ ∞

0
E [Zn(t) | Θ = θ, Λ = λ] dFΘ,Λ(θ, λ). (15)

Taking the n−th order derivative of (13) with respect to s and using Faà di Bruno’s rule
(see Faa di Bruno 1855) yield

M(n)
Z(t)|Θ=θ,Λ=λ

(s) = ∑
n!

k1!k2! · · · kn!
h(k) (g(s))

n

∏
j=1

(
g(j)(s)

j!

)kj

, (16)

θ(θ − δ) · · · (θ − δ(k− 1))
λn .

Finally, substitution of (20) into (15) yields the required result.

The moments of Z(t) given in (14) could be simplified and expressed in terms of the expected
value of E

[
Θl

Λn

]
. First, we write

θ

δ

(
θ

δ
− 1
)
· · ·
(

θ

δ
− (k− 1)

)
=

(
θ

δ

)

k
,

where (x)k is the falling factorial. It is known that the falling factorial could be expanded as follows

(x)k =
k

∑
l=1

[
k
l

]
xl , (20)

where the coefficients [kl ] are the Stirling numbers of the first order (see e.g., Ginsburg 1928). Using (20),
we find

θ

δ

(
θ

δ
− 1
)
· · ·
(

θ

δ
− (k− 1)

)
=

k

∑
l=1

[
k
l

] (
θ

δ

)l
.

Thus,

E [Zn(t)] = ∑
n!

k1!k2! · · · kn!
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for (u1, · · · , un, v1, · · · , vn) ∈ [0, 1]2n. Throughout the paper, we suppose that the Laplace transform
f ?Θ,Λ exists over a subset K× K ⊂ R2 including a neighborhood of the origin. In the following section,
the moments of the rv Z(t) are derived.

3. Moments of the Discounted Aggregate Claims

In order to find the moments of the discounted aggregate claims, we first derive an expression for
the moments generating function (mgf) of the rv Z(t) under the dependent model introduced in the
previous section.

Theorem 3.1. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0 and δ > 0, the mgf of Z(t) is given by

MZ(t)(s) = E
[

Λ− se−δt

Λ− s

]Θ
δ

. (12)

Proof. Given Θ = θ and Λ = λ, the aggregate discounted processes, Z(t) is a compound Poisson
processes with independent subsequent inter-claim times. According to Léveillé et al. (2010), the mgf
of Z(t) given Θ = θ and Λ = λ can be written as

MZ(t)|Θ=θ,Λ=λ(s) = E
[
esZ(t) | Θ = θ, Λ = λ

]

= esθ
∫ t

0

[
e−δv

λ−se−δv

]
dv

=

(
λ− se−δt

λ− s

) θ
δ

. (13)

Otherwise MZ(t)(s) =
∫ ∞

0

∫ ∞
0 MZ(t)|Θ=θ,Λ=λ(s)dFΘ,Λ(θ, λ). Substituting (13) into the last

expression yields (12).

The following theorem provides closed formulas for the higher moments of the discounted
aggregate claims Z(t).

Theorem 3.2. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0, n ∈ N? and δ > 0, the n−th moment of Z(t) is given by

E [Zn(t)] = ∑
n!

k1!k2! · · · kn!
āk

t δE
[

Θ(Θ− δ) · · · (Θ− δ(k− 1))
Λn

]
, (14)

where āt δ =
1−e−tδ

δ is the standard actuarial notation and the sum is over all nonnegative integer solutions of
the Diophantine equation k1 + 2k2 + · · ·+ nkn = n, k := k1 + k2 + · · ·+ kn.

Proof. Conditional on the two rvs Θ and Λ, we have

E [Zn(t)] =
∫ ∞

0

∫ ∞

0
E [Zn(t) | Θ = θ, Λ = λ] dFΘ,Λ(θ, λ). (15)

Taking the n−th order derivative of (13) with respect to s and using Faà di Bruno’s rule
(see Faa di Bruno 1855) yield

M(n)
Z(t)|Θ=θ,Λ=λ

(s) = ∑
n!

k1!k2! · · · kn!
h(k) (g(s))

n

∏
j=1

(
g(j)(s)

j!

)kj

, (16)

k

∑
l=1

δk−l
[

k
l

]
E

[
Θl

Λn

]
. (21)

In the rest of the paper, it is assumed that there exist an integer n such that the expected value of
Θi

Λj is finite for positive integers i and j with i, j ≤ n. Using the previous theorem, we give the explicit
expressions of the first two moments of Z(t).

Corollary 3.1. For a given time t and a positive constant forces of interest δ, we have

E [Z(t)] =
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for (u1, · · · , un, v1, · · · , vn) ∈ [0, 1]2n. Throughout the paper, we suppose that the Laplace transform
f ?Θ,Λ exists over a subset K× K ⊂ R2 including a neighborhood of the origin. In the following section,
the moments of the rv Z(t) are derived.

3. Moments of the Discounted Aggregate Claims

In order to find the moments of the discounted aggregate claims, we first derive an expression for
the moments generating function (mgf) of the rv Z(t) under the dependent model introduced in the
previous section.

Theorem 3.1. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0 and δ > 0, the mgf of Z(t) is given by

MZ(t)(s) = E
[

Λ− se−δt

Λ− s

]Θ
δ

. (12)

Proof. Given Θ = θ and Λ = λ, the aggregate discounted processes, Z(t) is a compound Poisson
processes with independent subsequent inter-claim times. According to Léveillé et al. (2010), the mgf
of Z(t) given Θ = θ and Λ = λ can be written as

MZ(t)|Θ=θ,Λ=λ(s) = E
[
esZ(t) | Θ = θ, Λ = λ

]

= esθ
∫ t

0

[
e−δv

λ−se−δv

]
dv

=

(
λ− se−δt

λ− s

) θ
δ

. (13)

Otherwise MZ(t)(s) =
∫ ∞

0

∫ ∞
0 MZ(t)|Θ=θ,Λ=λ(s)dFΘ,Λ(θ, λ). Substituting (13) into the last

expression yields (12).

The following theorem provides closed formulas for the higher moments of the discounted
aggregate claims Z(t).

Theorem 3.2. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0, n ∈ N? and δ > 0, the n−th moment of Z(t) is given by

E [Zn(t)] = ∑
n!

k1!k2! · · · kn!
āk

t δE
[

Θ(Θ− δ) · · · (Θ− δ(k− 1))
Λn

]
, (14)

where āt δ =
1−e−tδ

δ is the standard actuarial notation and the sum is over all nonnegative integer solutions of
the Diophantine equation k1 + 2k2 + · · ·+ nkn = n, k := k1 + k2 + · · ·+ kn.

Proof. Conditional on the two rvs Θ and Λ, we have

E [Zn(t)] =
∫ ∞

0

∫ ∞

0
E [Zn(t) | Θ = θ, Λ = λ] dFΘ,Λ(θ, λ). (15)

Taking the n−th order derivative of (13) with respect to s and using Faà di Bruno’s rule
(see Faa di Bruno 1855) yield

M(n)
Z(t)|Θ=θ,Λ=λ

(s) = ∑
n!

k1!k2! · · · kn!
h(k) (g(s))

n

∏
j=1

(
g(j)(s)

j!

)kj

, (16)

E
[

Θ
Λ

]
, (22)
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and

E
[
Z2(t)

]
= 2
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and

E
[
Z2(t)

]
= 2āt 2δE

[
Θ
Λ2

]
+ ā2

t δE
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] = āt δE [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2āt 2δE [Θ] E

[
1

Λ2

]
+ ā2

t δE
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N? ×N?.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]

j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)

∂um dx. (25)

E
[

Θ
Λ2

]
+

Risks 2018, xx, 1 7 of 17

and

E
[
Z2(t)

]
= 2āt 2δE

[
Θ
Λ2

]
+ ā2

t δE
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] = āt δE [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2āt 2δE [Θ] E

[
1

Λ2

]
+ ā2

t δE
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N? ×N?.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]

j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)

∂um dx. (25)

E
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] =
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for (u1, · · · , un, v1, · · · , vn) ∈ [0, 1]2n. Throughout the paper, we suppose that the Laplace transform
f ?Θ,Λ exists over a subset K× K ⊂ R2 including a neighborhood of the origin. In the following section,
the moments of the rv Z(t) are derived.

3. Moments of the Discounted Aggregate Claims

In order to find the moments of the discounted aggregate claims, we first derive an expression for
the moments generating function (mgf) of the rv Z(t) under the dependent model introduced in the
previous section.

Theorem 3.1. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0 and δ > 0, the mgf of Z(t) is given by

MZ(t)(s) = E
[

Λ− se−δt

Λ− s

]Θ
δ

. (12)

Proof. Given Θ = θ and Λ = λ, the aggregate discounted processes, Z(t) is a compound Poisson
processes with independent subsequent inter-claim times. According to Léveillé et al. (2010), the mgf
of Z(t) given Θ = θ and Λ = λ can be written as

MZ(t)|Θ=θ,Λ=λ(s) = E
[
esZ(t) | Θ = θ, Λ = λ

]

= esθ
∫ t

0

[
e−δv

λ−se−δv

]
dv

=

(
λ− se−δt

λ− s

) θ
δ

. (13)

Otherwise MZ(t)(s) =
∫ ∞

0

∫ ∞
0 MZ(t)|Θ=θ,Λ=λ(s)dFΘ,Λ(θ, λ). Substituting (13) into the last

expression yields (12).

The following theorem provides closed formulas for the higher moments of the discounted
aggregate claims Z(t).

Theorem 3.2. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0, n ∈ N? and δ > 0, the n−th moment of Z(t) is given by

E [Zn(t)] = ∑
n!

k1!k2! · · · kn!
āk

t δE
[

Θ(Θ− δ) · · · (Θ− δ(k− 1))
Λn

]
, (14)

where āt δ =
1−e−tδ

δ is the standard actuarial notation and the sum is over all nonnegative integer solutions of
the Diophantine equation k1 + 2k2 + · · ·+ nkn = n, k := k1 + k2 + · · ·+ kn.

Proof. Conditional on the two rvs Θ and Λ, we have

E [Zn(t)] =
∫ ∞

0

∫ ∞

0
E [Zn(t) | Θ = θ, Λ = λ] dFΘ,Λ(θ, λ). (15)

Taking the n−th order derivative of (13) with respect to s and using Faà di Bruno’s rule
(see Faa di Bruno 1855) yield

M(n)
Z(t)|Θ=θ,Λ=λ

(s) = ∑
n!

k1!k2! · · · kn!
h(k) (g(s))

n

∏
j=1

(
g(j)(s)

j!

)kj

, (16)

E [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2
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and

E
[
Z2(t)

]
= 2āt 2δE

[
Θ
Λ2

]
+ ā2

t δE
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] = āt δE [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2āt 2δE [Θ] E

[
1

Λ2

]
+ ā2

t δE
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N? ×N?.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]

j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)

∂um dx. (25)

E [Θ] E
[

1
Λ2

]
+
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and

E
[
Z2(t)

]
= 2āt 2δE

[
Θ
Λ2

]
+ ā2

t δE
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] = āt δE [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2āt 2δE [Θ] E

[
1

Λ2

]
+ ā2

t δE
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N? ×N?.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]

j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)

∂um dx. (25)

E
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N? ×N?.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]

j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)

∂um dx. (25)
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4. Examples

In the previous section, a general formula for the moments of Z(t) is derived. In order to illustrate
our findings and to discuss further features of our risk model, we provide some examples when
additional assumptions on the marginal distributions and the copulas are added. For each example,
first the joint Laplace distribution of the mixing distribution FΘ,Λ is specified then the expressions of
the copulas C1, C2 and C12 are identified. Applying our closed-form, the moments of Z(t) are given
for these specific models. Some numerical illustrations are provided in order to stress the impact of
dependence between different components of the risk models on the distribution of the discounted
aggregated amount of claims.

4.1. Clayton Copula with Pareto Claims and Inter-Claim Times

Assume that the mixing random vector (Θ, Λ) has a bivariate Gamma distribution with a Laplace
transform f ?Θ,Λ defined by

f ?Θ,Λ(s, x) =
[
(1 + as)α̃1 + (1 + bx)α̃2 − 1

]−α
, s ≥ 0, x ≥ 0, (26)

with α, a, b, α1, α2 > 0 and α̃i =
αi
α , i = 1, 2. Then, the random variables Θ and Λ are distributed as

gamma distributions, Θ ∼ Ga(α1, 1
a ) and Λ ∼ Ga(α2, 1

b ). Also, from (2) and (3), the claim amounts
Xi and the inter-claim times Wi, for i = 1, 2, · · · , follow Pareto distributions X ∼ Pa(α2, 1

b ) and
W ∼ Pa(α1, 1

a ). From (9) and (11), we identify the copulas C1 and C2 to be Clayton copulas with
parameters 1

α1
and 1

α2
, respectively. We have

C1(u1, · · · , un) =

[
u
−1
α1
1 + · · ·+ u

−1
α1
n − (n− 1)

]−α1

,

and

C2(u1, · · · , un) =

[
u
−1
α2
1 + · · ·+ u

−1
α2
n − (n− 1)

]−α2

,

for (u1, · · · , un) ∈ [0, 1]n. The Clayton copula is first introduced by Clayton (1978). The dependence
between the Clayton copula parameter and Kendall’s tau rank measure, τi, is given by (see e.g.,
Joe 1997 and Nelsen 1999):

τi =
1

1 + 2αi
, i = 1, 2. (27)

This suggests that the Clayton copula does not allow for negative dependence. If αi → ∞, i = 1, 2,
then the marginal distributions become independent, when αi = 0, i = 1, 2, the Clayton copula
approximates the Fréchet–Hoeffding upper bound.

From (7), the joint copula C12 is also a Clayton copula with a parameter 1
α and we have

C12(u, v) =
[
u
−1
α + v

−1
α − 1

]−α
,

for (u, v) ∈ [0, 1]2. Let τ12 be the Kendall’s tau dependence measure for the copula C12. It follows that

τ12 =
1

1 + 2α
. (28)

The following corollary gives the expressions of the first two moments of Z(t) for this model.
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Corollary 4.1. For a given horizon t and a positive constant forces of real interest δ, we have

E [Z(t)] =
aα1

b
(

α̃2(α + 1)− 1
)
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for (u1, · · · , un, v1, · · · , vn) ∈ [0, 1]2n. Throughout the paper, we suppose that the Laplace transform
f ?Θ,Λ exists over a subset K× K ⊂ R2 including a neighborhood of the origin. In the following section,
the moments of the rv Z(t) are derived.

3. Moments of the Discounted Aggregate Claims

In order to find the moments of the discounted aggregate claims, we first derive an expression for
the moments generating function (mgf) of the rv Z(t) under the dependent model introduced in the
previous section.

Theorem 3.1. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0 and δ > 0, the mgf of Z(t) is given by

MZ(t)(s) = E
[

Λ− se−δt

Λ− s

]Θ
δ

. (12)

Proof. Given Θ = θ and Λ = λ, the aggregate discounted processes, Z(t) is a compound Poisson
processes with independent subsequent inter-claim times. According to Léveillé et al. (2010), the mgf
of Z(t) given Θ = θ and Λ = λ can be written as

MZ(t)|Θ=θ,Λ=λ(s) = E
[
esZ(t) | Θ = θ, Λ = λ

]

= esθ
∫ t

0

[
e−δv

λ−se−δv

]
dv

=

(
λ− se−δt

λ− s

) θ
δ

. (13)

Otherwise MZ(t)(s) =
∫ ∞

0

∫ ∞
0 MZ(t)|Θ=θ,Λ=λ(s)dFΘ,Λ(θ, λ). Substituting (13) into the last

expression yields (12).

The following theorem provides closed formulas for the higher moments of the discounted
aggregate claims Z(t).

Theorem 3.2. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0, n ∈ N? and δ > 0, the n−th moment of Z(t) is given by

E [Zn(t)] = ∑
n!

k1!k2! · · · kn!
āk

t δE
[

Θ(Θ− δ) · · · (Θ− δ(k− 1))
Λn

]
, (14)

where āt δ =
1−e−tδ

δ is the standard actuarial notation and the sum is over all nonnegative integer solutions of
the Diophantine equation k1 + 2k2 + · · ·+ nkn = n, k := k1 + k2 + · · ·+ kn.

Proof. Conditional on the two rvs Θ and Λ, we have

E [Zn(t)] =
∫ ∞

0

∫ ∞

0
E [Zn(t) | Θ = θ, Λ = λ] dFΘ,Λ(θ, λ). (15)

Taking the n−th order derivative of (13) with respect to s and using Faà di Bruno’s rule
(see Faa di Bruno 1855) yield

M(n)
Z(t)|Θ=θ,Λ=λ

(s) = ∑
n!

k1!k2! · · · kn!
h(k) (g(s))

n

∏
j=1

(
g(j)(s)

j!

)kj

, (16)

,

for α̃2 ≥ 1
1+α , and

E
[
Z2(t)

]
=

2aα1

b2
(

α̃2(α + 1)− 1
)(

α̃2(α + 1)− 2
)
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and

E
[
Z2(t)

]
= 2āt 2δE

[
Θ
Λ2

]
+ ā2

t δE
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] = āt δE [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2āt 2δE [Θ] E

[
1

Λ2

]
+ ā2

t δE
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N? ×N?.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]

j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)

∂um dx. (25)

+
a2

b2


 α1(1− α̃1)(

α̃2(α + 1)− 1
)(

α̃2(α + 1)− 2
) +

α1α̃1(1 + α)(
α̃2(α + 2)− 1

)(
α̃2(α + 2)− 2

)
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and

E
[
Z2(t)

]
= 2āt 2δE

[
Θ
Λ2

]
+ ā2

t δE
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] = āt δE [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2āt 2δE [Θ] E

[
1

Λ2

]
+ ā2

t δE
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N? ×N?.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]

j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)

∂um dx. (25)

,

for α̃1 ≥ 1
1+α .

Proof. We have from (4.1)

lim
s→0

∂ f ∗Θ,Λ(−s, x)
∂s

= aα1 [1 + bx]−α̃2(1+α) , (29)

and

lim
s→0

∂2 f ∗Θ,Λ(−s, x)
∂s2 = a2

[
α1(1− α̃1) (1 + bx)−α̃2(1+α) + α1α̃1(1 + α) (1 + bx)−α̃2(2+α)

]
. (30)

Let I(n, α, b) be defined as

I(n, α, b) =
∫ ∞

0
sn−1(1 + bs)−αds, n ∈ N?, α > 0.

Set x = (1 + bs)−1, the integral becomes

I(n, α, b) =
1
bn

∫ 1

0
xα−n−1(1− x)n−1dx =

Γ(n)Γ(α− n)
bnΓ(α)

, (31)

for α > n. Combination of (24), (29) and (31) yields

E
[

Θ
Λ

]
=

aα1

Γ(1)
I
(

1, α̃2(α + 1), b
)
=

aα1

b
(

α̃2(α + 1)− 1
) .

Substitution of (29) into (24) and use of (31) gives

E
[

Θ
Λ2

]
=

aα1

Γ(2)
I
(

2, α̃2(α + 1), b
)
=

aα1

b2
(

α̃2(α + 1)− 1
)(

α̃2(α + 1)− 2
) .

Similarly, susbtitution of (30) into (24) and use of (31) gives

E
[

Θ2

Λ2

]
=

a2α1(1− α̃)

Γ(2)
I
(

2, α̃2(α + 1), b
)
+

a2α1α̃1(1 + α)

Γ(2)
I
(

2, α̃2(α + 2), b
)

,

=
a2

b2


 α1(1− α̃1)(

α̃2(α + 1)− 1
)(

α̃2(α + 1)− 2
) +

α1α̃1(1 + α)(
α̃2(α + 2)− 1

)(
α̃2(α + 2)− 2

)


 .
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Finally, we find the expressions for E [Z ] and E
[
Z2(t)

]
by applying the Corollary (3.1).

Corollary 4.2. For the special case α1 = α2 = α, we have

E [Z(t)] =
a
b

Risks 2018, xx, 1 5 of 17

for (u1, · · · , un, v1, · · · , vn) ∈ [0, 1]2n. Throughout the paper, we suppose that the Laplace transform
f ?Θ,Λ exists over a subset K× K ⊂ R2 including a neighborhood of the origin. In the following section,
the moments of the rv Z(t) are derived.

3. Moments of the Discounted Aggregate Claims

In order to find the moments of the discounted aggregate claims, we first derive an expression for
the moments generating function (mgf) of the rv Z(t) under the dependent model introduced in the
previous section.

Theorem 3.1. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0 and δ > 0, the mgf of Z(t) is given by

MZ(t)(s) = E
[

Λ− se−δt

Λ− s

]Θ
δ

. (12)

Proof. Given Θ = θ and Λ = λ, the aggregate discounted processes, Z(t) is a compound Poisson
processes with independent subsequent inter-claim times. According to Léveillé et al. (2010), the mgf
of Z(t) given Θ = θ and Λ = λ can be written as

MZ(t)|Θ=θ,Λ=λ(s) = E
[
esZ(t) | Θ = θ, Λ = λ

]

= esθ
∫ t

0

[
e−δv

λ−se−δv

]
dv

=

(
λ− se−δt

λ− s

) θ
δ

. (13)

Otherwise MZ(t)(s) =
∫ ∞

0

∫ ∞
0 MZ(t)|Θ=θ,Λ=λ(s)dFΘ,Λ(θ, λ). Substituting (13) into the last

expression yields (12).

The following theorem provides closed formulas for the higher moments of the discounted
aggregate claims Z(t).

Theorem 3.2. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0, n ∈ N? and δ > 0, the n−th moment of Z(t) is given by

E [Zn(t)] = ∑
n!

k1!k2! · · · kn!
āk

t δE
[

Θ(Θ− δ) · · · (Θ− δ(k− 1))
Λn

]
, (14)

where āt δ =
1−e−tδ

δ is the standard actuarial notation and the sum is over all nonnegative integer solutions of
the Diophantine equation k1 + 2k2 + · · ·+ nkn = n, k := k1 + k2 + · · ·+ kn.

Proof. Conditional on the two rvs Θ and Λ, we have

E [Zn(t)] =
∫ ∞

0

∫ ∞

0
E [Zn(t) | Θ = θ, Λ = λ] dFΘ,Λ(θ, λ). (15)

Taking the n−th order derivative of (13) with respect to s and using Faà di Bruno’s rule
(see Faa di Bruno 1855) yield

M(n)
Z(t)|Θ=θ,Λ=λ

(s) = ∑
n!

k1!k2! · · · kn!
h(k) (g(s))

n

∏
j=1

(
g(j)(s)

j!

)kj

, (16)

, (32)

and

E
[
Z2(t)

]
=

2a
b2(α− 1)
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and

E
[
Z2(t)

]
= 2āt 2δE

[
Θ
Λ2

]
+ ā2

t δE
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] = āt δE [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2āt 2δE [Θ] E

[
1

Λ2

]
+ ā2

t δE
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N? ×N?.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]

j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)

∂um dx. (25)

+
a2

b2
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and

E
[
Z2(t)

]
= 2āt 2δE

[
Θ
Λ2

]
+ ā2

t δE
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] = āt δE [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2āt 2δE [Θ] E

[
1

Λ2

]
+ ā2

t δE
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N? ×N?.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]

j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)

∂um dx. (25)

. (33)

Proof. The result follows directly from Corollary (4.1).

4.2. Lomax Copula with Pareto Marginal Distributions

In the previous example and for the special case α1 = α2 = α, we have

f ?Θ,Λ(s, x) = (1 + as + bx)−α , s ≥ 0, x ≥ 0.

This specification of the joint Laplace transform leads to the Clayton copula model with the same
parameter for the copulas C1, C2 and C12. It is possible to modify this model in order to include more
flexibility in the model. In this example, it is assumed that the random vector (Θ, Λ) has a bivariate
Gamma distribution with the following Laplace transform

f ?Θ,Λ(s, x) = (1 + as + bx + csx)−α , s ≥ 0, x ≥ 0, (34)

with c ≥ 0. The extra parameter c introduces more flexible dependence between the mixing
distributions and between the Xs and Ws. For example, it is possible to obtain the independence
between Θ and Λ which implies that W and X are independent when c = ab. The univariate Laplace
transforms are given by

f ?Θ(s) = (1 + as)−α ,

and
f ?Λ(x) = (1 + bx)−α .

It follows that the copulas C1 and C2 are Clayton copulas with dependence parameter 1
α . The joint

survival copula of (W, X) is given by

C12(u, v) = f ?Θ,Λ

(
a−1(u

−1
α − 1), b−1(v

−1
α − 1)

)

=
(

u
−1
α + v

−1
α − 1 + c

ab

(
u
−1
α − 1

) (
v
−1
α − 1

))−α

= uv
(

u
1
α + v

1
α − u

1
α v

1
α + c

ab u
1
α v

1
α

(
u
−1
α − 1

) (
v
−1
α − 1

))−α

= uv
(

1− γ(1− u
1
α )(1− v

1
α )
)−α

,

(35)

which is the Lomax copula defined in Fang et al. (2000) with Kendall’s tau, τ12, given by (see e.g.,
Fang et al. 2000):

τ12 =
2αγ

(2α + 1)2

∞

∑
k=0

k!γk

(2α + 2)k
, (36)

where (a)k = a(a + 1) · · · (a + k − 1), and (a)0 = 1 where a is a real number (See e.g.,
Erdélyi et al. 1953). Some properties of the family of copulas in (35) are the following:

• when c = ab, (γ = 0), C12(uv) = uv corresponds to the case of independence.
• as α = 1, C12 in (35) becomes C12(u, v) = uv

1−γ(1−u)(1−v) , which is the Ali-Mikhail-Haq
(AMH) copula.
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• when c = 0, (γ = 1), C12(u, v) =
(

u−
1
α + v−

1
α − 1

)−α
is the Clayton’s copula.

Note that from (8) and (10), the joint survival function of (W1, W2, · · · , Wn) and (X1, X2, · · · , Xn)

can then be written, for xi ≥ 0, i = 1, · · · , n, as

F̄W1,··· ,Wn(s1, · · · , sn) =

(
1 + a

n

∑
i=1

si

)−α

, (37)

and

F̄X1,··· ,Xn(x1, · · · , xn) =

(
1 + b

n

∑
i=1

xi

)−α

, (38)

which are the joint survival function of a Pareto II distribution proposed by Arnold (1983, 2015).
The following corollary gives the expressions of the first two moments of Z(t) for this model.

Corollary 4.3. For a given time t ≥ 0 and a positive constant forces of real interest δ, we have

E [Z(t)] =

(
a
b
+

c
b2(α− 1)

)
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for (u1, · · · , un, v1, · · · , vn) ∈ [0, 1]2n. Throughout the paper, we suppose that the Laplace transform
f ?Θ,Λ exists over a subset K× K ⊂ R2 including a neighborhood of the origin. In the following section,
the moments of the rv Z(t) are derived.

3. Moments of the Discounted Aggregate Claims

In order to find the moments of the discounted aggregate claims, we first derive an expression for
the moments generating function (mgf) of the rv Z(t) under the dependent model introduced in the
previous section.

Theorem 3.1. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0 and δ > 0, the mgf of Z(t) is given by

MZ(t)(s) = E
[

Λ− se−δt

Λ− s

]Θ
δ

. (12)

Proof. Given Θ = θ and Λ = λ, the aggregate discounted processes, Z(t) is a compound Poisson
processes with independent subsequent inter-claim times. According to Léveillé et al. (2010), the mgf
of Z(t) given Θ = θ and Λ = λ can be written as

MZ(t)|Θ=θ,Λ=λ(s) = E
[
esZ(t) | Θ = θ, Λ = λ

]

= esθ
∫ t

0

[
e−δv

λ−se−δv

]
dv

=

(
λ− se−δt

λ− s

) θ
δ

. (13)

Otherwise MZ(t)(s) =
∫ ∞

0

∫ ∞
0 MZ(t)|Θ=θ,Λ=λ(s)dFΘ,Λ(θ, λ). Substituting (13) into the last

expression yields (12).

The following theorem provides closed formulas for the higher moments of the discounted
aggregate claims Z(t).

Theorem 3.2. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0, n ∈ N? and δ > 0, the n−th moment of Z(t) is given by

E [Zn(t)] = ∑
n!

k1!k2! · · · kn!
āk

t δE
[

Θ(Θ− δ) · · · (Θ− δ(k− 1))
Λn

]
, (14)

where āt δ =
1−e−tδ

δ is the standard actuarial notation and the sum is over all nonnegative integer solutions of
the Diophantine equation k1 + 2k2 + · · ·+ nkn = n, k := k1 + k2 + · · ·+ kn.

Proof. Conditional on the two rvs Θ and Λ, we have

E [Zn(t)] =
∫ ∞

0

∫ ∞

0
E [Zn(t) | Θ = θ, Λ = λ] dFΘ,Λ(θ, λ). (15)

Taking the n−th order derivative of (13) with respect to s and using Faà di Bruno’s rule
(see Faa di Bruno 1855) yield

M(n)
Z(t)|Θ=θ,Λ=λ

(s) = ∑
n!

k1!k2! · · · kn!
h(k) (g(s))

n

∏
j=1

(
g(j)(s)

j!

)kj

, (16)

,

for α > 1, and

E
[
Z2(t)

]
= 2

(
abα + 2(c− ab)
b3(α− 1)(α− 2)

)
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and

E
[
Z2(t)

]
= 2āt 2δE

[
Θ
Λ2

]
+ ā2

t δE
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] = āt δE [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2āt 2δE [Θ] E

[
1

Λ2

]
+ ā2

t δE
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N? ×N?.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]

j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)

∂um dx. (25)

+

(
a2

b2 +
4ac

b3(α− 1)
+

6c2

b4(α− 1)(α− 2)

)
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and

E
[
Z2(t)

]
= 2āt 2δE

[
Θ
Λ2

]
+ ā2

t δE
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] = āt δE [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2āt 2δE [Θ] E

[
1

Λ2

]
+ ā2

t δE
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N? ×N?.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]

j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)

∂um dx. (25)

,

for α > 2.

Proof. Use of (24) and (34), show that

E

[
Θl

Λn

]
= Γ(α+l)

Γ(n)Γ(α)

∫ ∞
0 xn−1(a + cx)l(1 + bx)−(α+l)dx

=
Γ(α + l)
Γ(n)Γ(α) ∑l

j=0 (
l
j)al−jcj I(n + j, α + l, b),

(39)

where I(n, α, b) =
∫ ∞

0 xn−1(1 + bx)−αdx. With the help of (31) and (39), one gets

E
[

Θ
Λ

]
= α [aI(1, α + 1, b) + cI(2, α + 1, b)] =

a
b
+

c
b2(α− 1)

,

E
[

Θ
Λ2

]
= α [aI(2, α + 1, b) + cI(3, α + 1, b)] =

abα + 2(c− ab)
b3(α− 1)(α− 2)

,

and

E
[

Θ2

Λ2

]
= α(α + 1)

[
a2 I(2, α + 2, b) + 2acI(3, α + 2, b) + c2 I(4, α + 2, b)

]

=
a2

b2 +
4ac

b3(α− 1)
+

6c2

b4(α− 1)(α− 2)
.

Applying corollary (3.1), we obtain expressions for the first two moments E [Z(t)] and
E
[
Z2(t)

]
.
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4.3. Lomax Copulas and Mixed Exponential-Negative Binomial Marginal Distributions

The next model that we consider in our examples is the mixed exponential-Negative Binomial
marginal distributions with Lomax copulas. For this purpose it is assumed that (Θ, Λ) has a bivariate
shifted Negative Binomial distribution (see e.g., Marshall and Olkin 1988), the Laplace transform of
(Θ, Λ) is defined by

f ?Θ,Λ(s, x) =

(
p

es+x − q

)α

, s , x ≥ 0, (40)

where α > 0, 0 < p < 1 and q = 1− p. Then, the random variables Θ and Λ are distributed as
shifted Negative Binomial distributions Θ ∼ NB(p, α) and Λ ∼ NB(p, α). With the help of (8),
the multivariate survival function of (W1, W2, · · · , Wn) can be written, for si ≥ 0, i = 1, · · · , n, as

F̄W1,··· ,Wn(s1, · · · , sn) =




p

e

n
∑

i=1
si − q




α

. (41)

Then, the marginal survival functions of Wi is given, for s ≥ 0, by

F̄Wi (s) =

(
p

es − q

)α

, i = 1, · · · , n. (42)

The corresponding copula takes the form

C1(u1, · · · , un) =




p
n
∏
i=1

(
pui

−1
α + q

)
− q




α

, (43)

for (u1, · · · , un) ∈ [0, 1]n. Similarly, the joint survival function of (X1, X2, · · · , Xn) can be written,
for xi ≥ 0, i = 1, · · · , n, as

F̄X1,··· ,Xn(x1, · · · , xn) =




p

e

n
∑

i=1
xi − q




α

. (44)

The marginal survival functions of Xi is given by

F̄Xi (x) =

(
p

ex − q

)α

, i = 1, · · · , n, (45)

for x ≥ 0 and i = 1, · · · , n. The corresponding dependence structure takes the form

C2(u1, · · · , un) =




p
n
∏
i=1

(
pui

−1
α + q

)
− q




α

. (46)

Note that the marginal survival functions of Wi and Xi, i = 1, · · · , n, in (42) and (45) correspond
to the survival function of the univariate mixed exponential-geometric distribution introduced in
Adamidis and Loukas (1998). It is useful to note that the mixed exponential-geometric distribution
is completely monotone (see Marshall and Olkin 1988). The copulas C1 and C2 in (43) and (46) are
multivariate shifted negative binomial copulas presented in Joe (2014).
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The joint survival function of the bivariate random vector (Wi, Xi) is given by

F̄Wi ,Xi (s, x) =

(
p

es+x − q

)α

, s, x ≥ 0,

for i = 1, · · · , n. Then, the corresponding dependence structure is the copula C12 given by

C12(u1, u2) =


 p

(q + pu−
1
α

1 )(q + pu−
1
α

2 )− q




α

=


 pu

1
α
1 u

1
α
2

(qu
1
α
1 + p)(qu

1
α
2 + p)− qu

1
α
1 u

1
α
2




α

(47)

=
u1u2(

1− q(1− u
1
α
1 )(1− u

1
α
2 )

)α ,

which corresponds to the Lomax copula.
We now state a Corollary for calculating the first an second moments of the discounted aggregate

renewal claims.

Corollary 4.4. For a positive constant forces of real interest δ:

E [Z(t)] =

Risks 2018, xx, 1 5 of 17

for (u1, · · · , un, v1, · · · , vn) ∈ [0, 1]2n. Throughout the paper, we suppose that the Laplace transform
f ?Θ,Λ exists over a subset K× K ⊂ R2 including a neighborhood of the origin. In the following section,
the moments of the rv Z(t) are derived.

3. Moments of the Discounted Aggregate Claims

In order to find the moments of the discounted aggregate claims, we first derive an expression for
the moments generating function (mgf) of the rv Z(t) under the dependent model introduced in the
previous section.

Theorem 3.1. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0 and δ > 0, the mgf of Z(t) is given by

MZ(t)(s) = E
[

Λ− se−δt

Λ− s

]Θ
δ

. (12)

Proof. Given Θ = θ and Λ = λ, the aggregate discounted processes, Z(t) is a compound Poisson
processes with independent subsequent inter-claim times. According to Léveillé et al. (2010), the mgf
of Z(t) given Θ = θ and Λ = λ can be written as

MZ(t)|Θ=θ,Λ=λ(s) = E
[
esZ(t) | Θ = θ, Λ = λ

]

= esθ
∫ t

0

[
e−δv

λ−se−δv

]
dv

=

(
λ− se−δt

λ− s

) θ
δ

. (13)

Otherwise MZ(t)(s) =
∫ ∞

0

∫ ∞
0 MZ(t)|Θ=θ,Λ=λ(s)dFΘ,Λ(θ, λ). Substituting (13) into the last

expression yields (12).

The following theorem provides closed formulas for the higher moments of the discounted
aggregate claims Z(t).

Theorem 3.2. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0, n ∈ N? and δ > 0, the n−th moment of Z(t) is given by

E [Zn(t)] = ∑
n!

k1!k2! · · · kn!
āk

t δE
[

Θ(Θ− δ) · · · (Θ− δ(k− 1))
Λn

]
, (14)

where āt δ =
1−e−tδ

δ is the standard actuarial notation and the sum is over all nonnegative integer solutions of
the Diophantine equation k1 + 2k2 + · · ·+ nkn = n, k := k1 + k2 + · · ·+ kn.

Proof. Conditional on the two rvs Θ and Λ, we have

E [Zn(t)] =
∫ ∞

0

∫ ∞

0
E [Zn(t) | Θ = θ, Λ = λ] dFΘ,Λ(θ, λ). (15)

Taking the n−th order derivative of (13) with respect to s and using Faà di Bruno’s rule
(see Faa di Bruno 1855) yield

M(n)
Z(t)|Θ=θ,Λ=λ

(s) = ∑
n!

k1!k2! · · · kn!
h(k) (g(s))

n

∏
j=1

(
g(j)(s)

j!

)kj

, (16)

, (48)

and

E
[
Z2(t)

]
=
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and

E
[
Z2(t)

]
= 2āt 2δE

[
Θ
Λ2

]
+ ā2

t δE
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] = āt δE [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2āt 2δE [Θ] E

[
1

Λ2

]
+ ā2

t δE
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N? ×N?.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]

j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)

∂um dx. (25)

+ 2
(

p
q

)α

B(q; α, 1− α)
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and

E
[
Z2(t)

]
= 2āt 2δE

[
Θ
Λ2

]
+ ā2

t δE
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] = āt δE [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2āt 2δE [Θ] E

[
1

Λ2

]
+ ā2

t δE
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N? ×N?.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]

j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)

∂um dx. (25)

, (49)

where B(z; α, β) =
∫ z

0 uα−1(1− u)β−1du is the incomplete Beta function.

Proof. From elementary calculus, one gets from (40)

lim
s→0

∂ f ?Θ,Λ(−s, x)
∂s

= αpα ex

(ex − q)α+1 . (50)

Substituting the last expression into (24) with (n = l = 1) yields E
[

Θ
Λ

]
= 1. Combining this with

Corollary (3.1), one gets (48). Otherwise, we get from (24) with (n = 2 and l = 1)

E
[

Θ
Λ2

]
= αpα

∫ ∞
0 x

ex

(ex − q)α+1 dx = pα
∫ ∞

0
1

(ex − q)α
dx

=

(
p
q

)α ∫ q
0 uα−1(1− u)−αdu =

(
p
q

)α

B(q; α, 1− α),
(51)

where B(z; α, β) =
∫ z

0 uα−1(1 − u)β−1du is the incomplete Beta function. Otherwise,

lims→0
∂2 f ?Θ,Λ(−s,x)

∂2s = αpα qex+αe2x

(ex−q)α+2 . Substituting the last expression into (24) with (n = 2 and l = 2),
one gets

E
[

Θ2

Λ2

]
= αqpα

∫ ∞

0

xex

(ex − q)α+2 dx + α2 pα
∫ ∞

0

xe2x

(ex − q)α+2 dx. (52)
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Otherwise, integration by parts gives

∫ ∞
0

xex

(ex − q)α+2 dx =
1

α + 1
∫ ∞

0
1

(ex − q)α+1 dx

=
1

α + 1
1

qα+1 B(q; α + 1,−α).
(53)

Similarly, integrating by parts

∫ ∞
0

xe2x

(ex − q)α+2 dx =
1

α + 1
∫ ∞

0
ex + xex

(ex − q)α+1 dx

=
1

α + 1

(
1

αpα
+

1
α

1
qα B(q; α,−α + 1)

)
.

(54)

Hence, through (52), (53) and (54), we obtain

E
[

Θ2

Λ2

]
=

α

(α + 1)
+

αpα

(α + 1)qα
(B(q; α + 1,−α) + B(q; α, 1− α)) = 1.

Finally, we combine the last expression with (51) and Corollary (3.1) to obtain (49).

Note that if α = 1, the copula C12 in (48) reduces to the AMH copula with Kendall’s tau, τ12,
given by (see e.g., Nelsen 1999)

τ12 =
3q− 2

3q
− 2(1− q)2ln(1− q)

3q2 .

For this special case, we obtain E [Z(t)] =
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for (u1, · · · , un, v1, · · · , vn) ∈ [0, 1]2n. Throughout the paper, we suppose that the Laplace transform
f ?Θ,Λ exists over a subset K× K ⊂ R2 including a neighborhood of the origin. In the following section,
the moments of the rv Z(t) are derived.

3. Moments of the Discounted Aggregate Claims

In order to find the moments of the discounted aggregate claims, we first derive an expression for
the moments generating function (mgf) of the rv Z(t) under the dependent model introduced in the
previous section.

Theorem 3.1. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0 and δ > 0, the mgf of Z(t) is given by

MZ(t)(s) = E
[

Λ− se−δt

Λ− s

]Θ
δ

. (12)

Proof. Given Θ = θ and Λ = λ, the aggregate discounted processes, Z(t) is a compound Poisson
processes with independent subsequent inter-claim times. According to Léveillé et al. (2010), the mgf
of Z(t) given Θ = θ and Λ = λ can be written as

MZ(t)|Θ=θ,Λ=λ(s) = E
[
esZ(t) | Θ = θ, Λ = λ

]

= esθ
∫ t

0

[
e−δv

λ−se−δv

]
dv

=

(
λ− se−δt

λ− s

) θ
δ

. (13)

Otherwise MZ(t)(s) =
∫ ∞

0

∫ ∞
0 MZ(t)|Θ=θ,Λ=λ(s)dFΘ,Λ(θ, λ). Substituting (13) into the last

expression yields (12).

The following theorem provides closed formulas for the higher moments of the discounted
aggregate claims Z(t).

Theorem 3.2. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0, n ∈ N? and δ > 0, the n−th moment of Z(t) is given by

E [Zn(t)] = ∑
n!

k1!k2! · · · kn!
āk

t δE
[

Θ(Θ− δ) · · · (Θ− δ(k− 1))
Λn

]
, (14)

where āt δ =
1−e−tδ

δ is the standard actuarial notation and the sum is over all nonnegative integer solutions of
the Diophantine equation k1 + 2k2 + · · ·+ nkn = n, k := k1 + k2 + · · ·+ kn.

Proof. Conditional on the two rvs Θ and Λ, we have

E [Zn(t)] =
∫ ∞

0

∫ ∞

0
E [Zn(t) | Θ = θ, Λ = λ] dFΘ,Λ(θ, λ). (15)

Taking the n−th order derivative of (13) with respect to s and using Faà di Bruno’s rule
(see Faa di Bruno 1855) yield

M(n)
Z(t)|Θ=θ,Λ=λ

(s) = ∑
n!

k1!k2! · · · kn!
h(k) (g(s))

n

∏
j=1

(
g(j)(s)

j!

)kj

, (16)

, and E
[
Z2(t)

]
=
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and

E
[
Z2(t)

]
= 2āt 2δE

[
Θ
Λ2

]
+ ā2

t δE
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] = āt δE [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2āt 2δE [Θ] E

[
1

Λ2

]
+ ā2

t δE
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N? ×N?.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]

j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)

∂um dx. (25)

− 2( p
q )log(p)

Risks 2018, xx, 1 7 of 17

and

E
[
Z2(t)

]
= 2āt 2δE

[
Θ
Λ2

]
+ ā2

t δE
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] = āt δE [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2āt 2δE [Θ] E

[
1

Λ2

]
+ ā2

t δE
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N? ×N?.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]

j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)

∂um dx. (25)

.

4.4. Numerical Illustrations

In this subsection, we present numerical examples to illustrate how the distribution of
the discounted renewal aggregate claims behaves when we change the dependency parameters.
The computations provided are related to the general case of Clayton copulas. For the discounted
aggregate amount of claims, as in Section 4.1, we assume that the force of interest is fixed at the value
of δ = 5% and we set a = 1 and b = 0.2. The sensitivity analysis is done by varying Kendall’s tau
dependence measures τi, i = 1, 2 and τ12 given by (27) and (28) respectively. In order to investigate
the impact of the dependence structure on the distribution of Z(t), we compute the mean E[Z(t)],
the standard deviation SD[Z(t)], the skewness Skew[Z(t)] and the kurtosis Kurt[Z(t)] using different
values for the Kendall tau’s of the copulas C12, C1 and C2. Both the expressions of E[Z(t)] and
SD[Z(t)] are given in Section 4.1. The third and the fourth moments are computed numerically. Using
the software Matlab, we evaluate the integral in (25) then we use the closed form in (3.1) for n = 3 and
4. The results are presented using different time horizons where t is set to be 110, 100 and ∞.

Tables 1–3 display the obtained results. For a fixed t, τ1 and τ12, increasing the dependence
between the claims leads to a higher level of risk, i.e., large values of E [Z(t)] and SD [Z(t)]. On the
other hand, increasing the dependence between the inter-claim times reduces the level of risk for the
whole portfolio. We also notice that both the expected value and volatility of the aggregate discounted
claims decrease as τ12 increases. A strong positive dependence between the inter-claim times and
the claim sizes means that the portfolio generates either large and less frequent losses or small and
very frequent losses. This leads to a small value of E [Z(t)] and less volatile Z(t). Increasing the
dependence parameter τ12 or τ1 generates longer and fatter right tails. Decreasing τ2 has the same
impact on the shape of the tails as increasing the Kendall’s tau measures of the copulas C12 and C1.
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Table 1. Impact of changing τ12 on the distribution of Z(t) with τ1 = 0.8 and τ2 = 0.3.

E[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.45 0.2937 2.3694 5.9813 6.0219
0.55 0.2020 1.6294 4.1132 4.1411
0.65 0.1355 1.0930 2.7591 2.7778
0.75 0.0851 0.6863 1.7324 1.7442

SD[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.45 0.8740 4.0281 9.2282 9.2864
0.55 0.7306 3.4214 7.8775 7.9274
0.65 0.5970 2.7841 6.4017 6.4422
0.75 0.4650 2.0910 4.7519 4.7816

Skew[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.45 1.8969 1.2997 1.3984 1.3991
0.55 2.5299 2.0445 2.2137 2.2148
0.65 3.3014 3.0643 3.3997 3.4018
0.75 4.3794 4.9922 5.8956 5.9010

Kurt[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.45 3.9901 2.1244 1.9211 1.9199
0.55 6.7845 5.3719 5.7602 5.7624
0.65 11.5174 13.0582 15.3542 15.3674
0.75 21.2007 39.8072 52.3969 52.4717

Table 2. Impact of changing τ1 on the distribution of Z(t) with τ12 = 0.4 and τ2 = 0.2.

E[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.7 0.2850 2.2995 5.8048 5.8442
0.75 0.2217 1.7885 4.5148 4.5455
0.8 0.1663 1.3414 3.3861 3.4091

0.85 0.1174 0.9469 2.3902 2.4064

SD[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.7 0.8683 4.0706 9.3752 9.4346
0.75 0.7748 3.7135 8.6088 8.6637
0.8 0.6777 3.3068 7.7043 7.7536

0.85 0.5744 2.8438 6.6520 6.6947

Skew[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.7 1.9920 1.4973 1.6216 1.6225
0.75 2.3856 1.7579 1.8353 1.8358
0.8 2.8825 2.1144 2.1588 2.1592

0.85 3.5647 2.6220 2.6404 2.6406

Kurt[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.7 4.1974 1.0229 0.1587 0.1537
0.75 5.6748 1.3470 0.3437 0.3381
0.8 7.9450 1.9977 0.7742 0.7675

0.85 11.7835 3.2307 1.6279 1.6194
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Table 3. Impact of changing τ2 on the distribution of Z(t) with τ12 = 0.55 and τ1 = 0.85.

E[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.05 0.0136 0.1094 0.2763 0.2781
0.15 0.0491 0.3964 1.0006 1.0073
0.25 0.1033 0.8332 2.1034 2.1176
0.35 0.1957 1.5792 3.9865 4.0136

SD[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.05 0.1974 0.9952 2.3387 2.3537
0.15 0.3730 1.8589 4.3553 4.3833
0.25 0.5349 2.6167 6.1008 6.1399
0.35 0.7224 3.4130 7.8788 7.9288

Skew[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.05 11.4633 9.3207 9.4760 9.4772
0.15 5.8516 4.7009 4.8002 4.8009
0.25 3.8518 3.0297 3.1204 3.1211
0.35 2.5621 1.9254 2.0290 2.0298

Kurt[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.05 116.7367 44.8970 32.4352 32.3701
0.15 31.1083 12.4559 9.3112 9.2946
0.25 14.0675 6.5740 5.5232 5.5176
0.35 6.9009 5.2676 5.6800 5.6824

5. Conclusions

In this paper, we derived explicit expressions for the higher moments of the discounted aggregate
renewal claims with dependence. Closed expressions for the moments of the aggregate discounted
claims are obtained when the claims and the subsequent inter-claim are distributed as Pareto and
Mixed exponential-geometric distributions. Numerical examples are given to illustrate the impact of
dependency on the moments of the discounted aggregate renewal mixed process.

Since the assumption of constant force of interest is quite restrictive, studying the discounted
renewal aggregate claims with a stochastic force of interest would be interesting. A more challenging
problem would be the extension of the mixed exponential risk model to incorporate other forms of
dependence structure between the model components.
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